| Commit message (Collapse) | Author | Age | Files | Lines |
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
|
|/
|
|
|
|
|
|
| |
Use IS_ERR() instead of comparing to NULL.
Signed-off-by: Jani Nikula <ext-jani.1.nikula@nokia.com>
Acked-by: Sonny Rao <sonnyrao@us.ibm.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On Mon, Nov 17, 2008 at 01:26:13AM -0600, Sonny Rao wrote:
> On Fri, Nov 07, 2008 at 04:28:29PM +1100, Paul Mackerras wrote:
> > Sonny Rao writes:
> >
> > > Fix the BSR driver to allow small BSR devices, which are limited to a
> > > single 4k space, on a 64k page kernel. Previously the driver would
> > > reject the mmap since the size was smaller than PAGESIZE (or because
> > > the size was greater than the size of the device). Now, we check for
> > > this case use remap_4k_pfn(). Also, take out code to set vm_flags,
> > > as the remap_pfn functions will do this for us.
> >
> > Thanks.
> >
> > Do we know that the BSR size will always be 4k if it's not a multiple
> > of 64k? Is it possible that we could get 8k, 16k or 32k or BSRs?
> > If it is possible, what does the user need to be able to do? Do they
> > just want to map 4k, or might then want to map the whole thing?
>
>
> Hi Paul, I took a look at changing the driver to reject a request for
> mapping more than a single 4k page, however the only indication we get
> of the requested size in the mmap function is the vma size, and this
> is always one page at minimum. So, it's not possible to determine if
> the user wants one 4k page or more. As I noted in my first response,
> there is only one case where this is even possible and I don't think
> it is a significant concern.
>
> I did notice that I left out the check to see if the user is trying to
> map more than the device length, so I fixed that. Here's the revised
> patch.
Alright, I've reworked this now so that if we get one of these cases
where there's a bsr that's > 4k and < 64k on a 64k kernel we'll only
advertise that it is a 4k BSR to userspace. I think this is the best
solution since user programs are only supposed to look at sysfs to
determine how much can be mapped, and libbsr does this as well.
Please consider for 2.6.31 as a fix, thanks.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
| |
Add a 4096 byte BSR size which will be used on new machines. Also, remove
the warning when we run into an unknown size, as this can spam the kernel
log excessively.
Signed-off-by: Sonny Rao <sonnyrao@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
| |
The C99 specification states in section 6.11.5:
The placement of a storage-class specifier other than at the
beginning of the declaration specifiers in a declaration is an
obsolescent feature.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|
|
|
|
|
|
| |
This is a powerpc specific driver.
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for multiple BSR nodes in the OF device tree.
Previously, the BSR driver only supported a single OF node describing
a BSR. Apparently when an LPAR is set to use "all system resources"
the BSR appears as a single node, but when it is handed out in pieces,
each 8 byte piece gets its own node. So, this keeps a list of BSR
devices instead of the array and includes all nodes.
Also, this makes the code be more inclusive of what BSR devices we
accept by only checking compatibility and not the device name property
(which might change in the future versions of BSR).
Signed-off-by: Sonny Rao <sonnyrao@us.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
|
|
|
|
|
|
| |
Now that device_create() has been audited, rename things back to the
original call to be sane.
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
Adds a character driver for BSR support on IBM POWER systems including
Power5 and Power6. The BSR is an optional processor facility not currently
implemented by any other processors. It's primary purpose is fast large SMP
synchronization. More details on the BSR are in comments to the code which
follows. This patch adds BSR driver to pseries_defconfig.
Signed-off-by: Sonny Rao <sonnyrao@linux.vnet.ibm.com>
Signed-off-by: Joel Schopp <jschopp@austin.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|