| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Contiguous Memory Allocator is a set of helper functions for DMA
mapping framework that improves allocations of contiguous memory chunks.
CMA grabs memory on system boot, marks it with MIGRATE_CMA migrate type
and gives back to the system. Kernel is allowed to allocate only movable
pages within CMA's managed memory so that it can be used for example for
page cache when DMA mapping do not use it. On
dma_alloc_from_contiguous() request such pages are migrated out of CMA
area to free required contiguous block and fulfill the request. This
allows to allocate large contiguous chunks of memory at any time
assuming that there is enough free memory available in the system.
This code is heavily based on earlier works by Michal Nazarewicz.
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Tested-by: Rob Clark <rob.clark@linaro.org>
Tested-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Traditionally, any System-on-Chip based platform creates a flat list
of platform_devices directly under /sys/devices/platform.
In order to give these some better structure, this introduces a new
bus type for soc_devices that are registered with the new
soc_device_register() function. All devices that are on the same
chip should then be registered as child devices of the soc device.
The soc bus also exports a few standardised device attributes which
allow user space to query the specific type of soc.
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that all users of 'struct sysdev' are removed from the kernel, we
can safely remove the .h and .c files for this code, to ensure that no
one accidentally starts to use it again.
Many thanks for Kay who did all the hard work here on making this
happen.
Cc: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|\
| |
| |
| |
| |
| |
| | |
* 'dma-buf-merge' of git://people.freedesktop.org/~airlied/linux:
dma-buf: mark EXPERIMENTAL for 1st release.
dma-buf: Documentation for buffer sharing framework
dma-buf: Introduce dma buffer sharing mechanism
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This is the first step in defining a dma buffer sharing mechanism.
A new buffer object dma_buf is added, with operations and API to allow easy
sharing of this buffer object across devices.
The framework allows:
- creation of a buffer object, its association with a file pointer, and
associated allocator-defined operations on that buffer. This operation is
called the 'export' operation.
- different devices to 'attach' themselves to this exported buffer object, to
facilitate backing storage negotiation, using dma_buf_attach() API.
- the exported buffer object to be shared with the other entity by asking for
its 'file-descriptor (fd)', and sharing the fd across.
- a received fd to get the buffer object back, where it can be accessed using
the associated exporter-defined operations.
- the exporter and user to share the scatterlist associated with this buffer
object using map_dma_buf and unmap_dma_buf operations.
Atleast one 'attach()' call is required to be made prior to calling the
map_dma_buf() operation.
Couple of building blocks in map_dma_buf() are added to ease introduction
of sync'ing across exporter and users, and late allocation by the exporter.
For this first version, this framework will work with certain conditions:
- *ONLY* exporter will be allowed to mmap to userspace (outside of this
framework - mmap is not a buffer object operation),
- currently, *ONLY* users that do not need CPU access to the buffer are
allowed.
More details are there in the documentation patch.
This is based on design suggestions from many people at the mini-summits[1],
most notably from Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
Daniel Vetter <daniel@ffwll.ch>.
The implementation is inspired from proof-of-concept patch-set from
Tomasz Stanislawski <t.stanislaws@samsung.com>, who demonstrated buffer sharing
between two v4l2 devices. [2]
[1]: https://wiki.linaro.org/OfficeofCTO/MemoryManagement
[2]: http://lwn.net/Articles/454389
Signed-off-by: Sumit Semwal <sumit.semwal@linaro.org>
Signed-off-by: Sumit Semwal <sumit.semwal@ti.com>
Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Reviewed-by: Dave Airlie <airlied@redhat.com>
Reviewed-and-Tested-by: Rob Clark <rob.clark@linaro.org>
Signed-off-by: Dave Airlie <airlied@redhat.com>
|
|/
|
|
|
|
|
|
|
|
|
| |
We should provide topology information to userland even if it's not
very interesting. The current code appears to work properly for !SMP
(tested on i386).
Reference: http://bugs.debian.org/649216
Reported-by: Marcus Osdoba <marcus.osdoba@googlemail.com>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regmap
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regmap:
regulator: Convert tps65023 to use regmap API
regmap: Add SPI bus support
regmap: Add I2C bus support
regmap: Add generic non-memory mapped register access API
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
There are many places in the tree where we implement register access for
devices on non-memory mapped buses, especially I2C and SPI. Since hardware
designers seem to have settled on a relatively consistent set of register
interfaces this can be effectively factored out into shared code. There
are a standard set of formats for marshalling data for exchange with the
device, with the actual I/O mechanisms generally being simple byte
streams.
We create an abstraction for marshaling data into formats which can be
sent on the control interfaces, and create a standard method for
plugging in actual transport underneath that.
This is mostly a refactoring and renaming of the bottom level of the
existing code for sharing register I/O which we have in ASoC. A
subsequent patch in this series converts ASoC to use this. The main
difference in interface is that reads return values by writing to a
location provided by a pointer rather than in the return value, ensuring
we can use the full range of the type for register data. We also use
unsigned types rather than ints for the same reason.
As some of the devices can have very large register maps the existing
ASoC code also contains infrastructure for managing register caches.
This cache work will be moved over in a future stage to allow for
separate review, the current patch only deals with the physical I/O.
Signed-off-by: Mark Brown <broonie@opensource.wolfsonmicro.com>
Acked-by: Liam Girdwood <lrg@ti.com>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Acked-by: Wolfram Sang <w.sang@pengutronix.de>
Acked-by: Grant Likely <grant.likely@secretlab.ca>
|
|/
|
|
|
|
|
|
|
|
|
|
|
| |
Create a dedicated folder for iommu drivers, and move the base
iommu implementation over there.
Grouping the various iommu drivers in a single location will help
finding similar problems shared by different platforms, so they
could be solved once, in the iommu framework, instead of solved
differently (or duplicated) in each driver.
Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some subsystems need to carry out suspend/resume and shutdown
operations with one CPU on-line and interrupts disabled. The only
way to register such operations is to define a sysdev class and
a sysdev specifically for this purpose which is cumbersome and
inefficient. Moreover, the arguments taken by sysdev suspend,
resume and shutdown callbacks are practically never necessary.
For this reason, introduce a simpler interface allowing subsystems
to register operations to be executed very late during system suspend
and shutdown and very early during resume in the form of
strcut syscore_ops objects.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
| |
Replace EXTRA_CFLAGS with ccflags-y.
Signed-off-by: matt mooney <mfm@muteddisk.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Devtmpfs lets the kernel create a tmpfs instance called devtmpfs
very early at kernel initialization, before any driver-core device
is registered. Every device with a major/minor will provide a
device node in devtmpfs.
Devtmpfs can be changed and altered by userspace at any time,
and in any way needed - just like today's udev-mounted tmpfs.
Unmodified udev versions will run just fine on top of it, and will
recognize an already existing kernel-created device node and use it.
The default node permissions are root:root 0600. Proper permissions
and user/group ownership, meaningful symlinks, all other policy still
needs to be applied by userspace.
If a node is created by devtmps, devtmpfs will remove the device node
when the device goes away. If the device node was created by
userspace, or the devtmpfs created node was replaced by userspace, it
will no longer be removed by devtmpfs.
If it is requested to auto-mount it, it makes init=/bin/sh work
without any further userspace support. /dev will be fully populated
and dynamic, and always reflect the current device state of the kernel.
With the commonly used dynamic device numbers, it solves the problem
where static devices nodes may point to the wrong devices.
It is intended to make the initial bootup logic simpler and more robust,
by de-coupling the creation of the inital environment, to reliably run
userspace processes, from a complex userspace bootstrap logic to provide
a working /dev.
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Jan Blunck <jblunck@suse.de>
Tested-By: Harald Hoyer <harald@redhat.com>
Tested-By: Scott James Remnant <scott@ubuntu.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
| |
Placing dma-coherent.c in driver/base is better than in kernel,
since it contains code to do per-device coherent dma memory
handling.
Signed-off-by: Ming Lei <tom.leiming@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
| |
These two IOMMUs can implement the current version of this API. So
select the API if one or both of these IOMMU drivers is selected.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/willy/misc
* 'dmapool' of git://git.kernel.org/pub/scm/linux/kernel/git/willy/misc:
pool: Improve memory usage for devices which can't cross boundaries
Change dmapool free block management
dmapool: Tidy up includes and add comments
dmapool: Validate parameters to dma_pool_create
Avoid taking waitqueue lock in dmapool
dmapool: Fix style problems
Move dmapool.c to mm/ directory
|
| |
| |
| |
| | |
Signed-off-by: Matthew Wilcox <willy@linux.intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When SYSFS=n and MODULES=y, build ends with:
linux-2.6.24-rc6-mm1/drivers/base/module.c: In function 'module_add_driver':
linux-2.6.24-rc6-mm1/drivers/base/module.c:49: error: 'module_kset' undeclared (first use in this function)
make[3]: *** [drivers/base/module.o] Error 1
Below is one possible fix.
Build-tested with all 4 config combinations of SYSFS & MODULES.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The module driver specific code should belong in the driver core, not in
the kernel/ directory. So move this code. This is done in preparation
for some struct device_driver rework that should be confined to the
driver core code only.
This also lets us keep from exporting these functions, as no external
code should ever be calling it.
Thanks to Andrew Morton for the !CONFIG_MODULES fix.
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Architectures that don't support DMA can say so by adding a config NO_DMA
to their Kconfig file. This will prevent compilation of some dma specific
driver code. Also dma-mapping-broken.h isn't needed anymore on at least
s390. This avoids compilation and linking of otherwise dead/broken code.
Other architectures that include dma-mapping-broken.h are arm26, h8300,
m68k, m68knommu and v850. If these could be converted as well we could get
rid of the header file.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
"John W. Linville" <linville@tuxdriver.com>
Cc: Kyle McMartin <kyle@parisc-linux.org>
Cc: <James.Bottomley@SteelEye.com>
Cc: Tejun Heo <htejun@gmail.com>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: <geert@linux-m68k.org>
Cc: <zippel@linux-m68k.org>
Cc: <spyro@f2s.com>
Cc: <uclinux-v850@lsi.nec.co.jp>
Cc: <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implement device resource management, in short, devres. A device
driver can allocate arbirary size of devres data which is associated
with a release function. On driver detach, release function is
invoked on the devres data, then, devres data is freed.
devreses are typed by associated release functions. Some devreses are
better represented by single instance of the type while others need
multiple instances sharing the same release function. Both usages are
supported.
devreses can be grouped using devres group such that a device driver
can easily release acquired resources halfway through initialization
or selectively release resources (e.g. resources for port 1 out of 4
ports).
This patch adds devres core including documentation and the following
managed interfaces.
* alloc/free : devm_kzalloc(), devm_kzfree()
* IO region : devm_request_region(), devm_release_region()
* IRQ : devm_request_irq(), devm_free_irq()
* DMA : dmam_alloc_coherent(), dmam_free_coherent(),
dmam_declare_coherent_memory(), dmam_pool_create(),
dmam_pool_destroy()
* PCI : pcim_enable_device(), pcim_pin_device(), pci_is_managed()
* iomap : devm_ioport_map(), devm_ioport_unmap(), devm_ioremap(),
devm_ioremap_nocache(), devm_iounmap(), pcim_iomap_table(),
pcim_iomap(), pcim_iounmap()
Signed-off-by: Tejun Heo <htejun@gmail.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
|
|
|
|
|
|
|
|
|
|
| |
Migate CONFIG_MEMORY_HOTPLUG to CONFIG_MEMORY_HOTPLUG_SPARSE where needed.
Signed-off-by: Keith Mannthey <kmannth@us.ibm.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During the recent "isa drivers using platform devices" discussion it was
pointed out that (ALSA) ISA drivers ran into the problem of not having
the option to fail driver load (device registration rather) upon not
finding their hardware due to a probe() error not being passed up
through the driver model. In the course of that, I suggested a seperate
ISA bus might be best; Russell King agreed and suggested this bus could
use the .match() method for the actual device discovery.
The attached does this. For this old non (generically) discoverable ISA
hardware only the driver itself can do discovery so as a difference with
the platform_bus, this isa_bus also distributes match() up to the driver.
As another difference: these devices only exist in the driver model due
to the driver creating them because it might want to drive them, meaning
that all device creation has been made internal as well.
The usage model this provides is nice, and has been acked from the ALSA
side by Takashi Iwai and Jaroslav Kysela. The ALSA driver module_init's
now (for oldisa-only drivers) become:
static int __init alsa_card_foo_init(void)
{
return isa_register_driver(&snd_foo_isa_driver, SNDRV_CARDS);
}
static void __exit alsa_card_foo_exit(void)
{
isa_unregister_driver(&snd_foo_isa_driver);
}
Quite like the other bus models therefore. This removes a lot of
duplicated init code from the ALSA ISA drivers.
The passed in isa_driver struct is the regular driver struct embedding a
struct device_driver, the normal probe/remove/shutdown/suspend/resume
callbacks, and as indicated that .match callback.
The "SNDRV_CARDS" you see being passed in is a "unsigned int ndev"
parameter, indicating how many devices to create and call our methods with.
The platform_driver callbacks are called with a platform_device param;
the isa_driver callbacks are being called with a "struct device *dev,
unsigned int id" pair directly -- with the device creation completely
internal to the bus it's much cleaner to not leak isa_dev's by passing
them in at all. The id is the only thing we ever want other then the
struct device * anyways, and it makes for nicer code in the callbacks as
well.
With this additional .match() callback ISA drivers have all options. If
ALSA would want to keep the old non-load behaviour, it could stick all
of the old .probe in .match, which would only keep them registered after
everything was found to be present and accounted for. If it wanted the
behaviour of always loading as it inadvertently did for a bit after the
changeover to platform devices, it could just not provide a .match() and
do everything in .probe() as before.
If it, as Takashi Iwai already suggested earlier as a way of following
the model from saner buses more closely, wants to load when a later bind
could conceivably succeed, it could use .match() for the prerequisites
(such as checking the user wants the card enabled and that port/irq/dma
values have been passed in) and .probe() for everything else. This is
the nicest model.
To the code...
This exports only two functions; isa_{,un}register_driver().
isa_register_driver() register's the struct device_driver, and then
loops over the passed in ndev creating devices and registering them.
This causes the bus match method to be called for them, which is:
int isa_bus_match(struct device *dev, struct device_driver *driver)
{
struct isa_driver *isa_driver = to_isa_driver(driver);
if (dev->platform_data == isa_driver) {
if (!isa_driver->match ||
isa_driver->match(dev, to_isa_dev(dev)->id))
return 1;
dev->platform_data = NULL;
}
return 0;
}
The first thing this does is check if this device is in fact one of this
driver's devices by seeing if the device's platform_data pointer is set
to this driver. Platform devices compare strings, but we don't need to
do that with everything being internal, so isa_register_driver() abuses
dev->platform_data as a isa_driver pointer which we can then check here.
I believe platform_data is available for this, but if rather not, moving
the isa_driver pointer to the private struct isa_dev is ofcourse fine as
well.
Then, if the the driver did not provide a .match, it matches. If it did,
the driver match() method is called to determine a match.
If it did _not_ match, dev->platform_data is reset to indicate this to
isa_register_driver which can then unregister the device again.
If during all this, there's any error, or no devices matched at all
everything is backed out again and the error, or -ENODEV, is returned.
isa_unregister_driver() just unregisters the matched devices and the
driver itself.
More global points/questions...
- I'm introducing include/linux/isa.h. It was available but is ofcourse
a somewhat generic name. Moving more isa stuff over to it in time is
ofcourse fine, so can I have it please? :)
- I'm using device_initcall() and added the isa.o (dependent on
CONFIG_ISA) after the base driver model things in the Makefile. Will
this do, or I really need to stick it in drivers/base/init.c, inside
#ifdef CONFIG_ISA? It's working fine.
Lastly -- I also looked, a bit, into integrating with PnP. "Old ISA"
could be another pnp_protocol, but this does not seem to be a good
match, largely due to the same reason platform_devices weren't -- the
devices do not have a life of their own outside the driver, meaning the
pnp_protocol {get,set}_resources callbacks would need to callback into
driver -- which again means you first need to _have_ that driver. Even
if there's clean way around that, you only end up inventing fake but
valid-form PnP IDs and generally catering to the PnP layer without any
practical advantages over this very simple isa_bus. The thing I also
suggested earlier about the user echoing values into /sys to set up the
hardware from userspace first is... well, cute, but a horrible idea from
a user standpoint.
Comments ofcourse appreciated. Hope it's okay. As said, the usage model
is nice at least.
Signed-off-by: Rene Herman <rene.herman@keyaccess.nl>
|
|
|
|
|
|
|
|
|
|
| |
To have a home for all hypervisors, this patch creates /sys/hypervisor.
A new config option SYS_HYPERVISOR is introduced, which should to be set
by architecture dependent hypervisors (e.g. s390 or Xen).
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Michael Holzheu <holzheu@de.ibm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The patch implements cpu topology exportation by sysfs.
Items (attributes) are similar to /proc/cpuinfo.
1) /sys/devices/system/cpu/cpuX/topology/physical_package_id:
represent the physical package id of cpu X;
2) /sys/devices/system/cpu/cpuX/topology/core_id:
represent the cpu core id to cpu X;
3) /sys/devices/system/cpu/cpuX/topology/thread_siblings:
represent the thread siblings to cpu X in the same core;
4) /sys/devices/system/cpu/cpuX/topology/core_siblings:
represent the thread siblings to cpu X in the same physical package;
To implement it in an architecture-neutral way, a new source file,
driver/base/topology.c, is to export the 5 attributes.
If one architecture wants to support this feature, it just needs to
implement 4 defines, typically in file include/asm-XXX/topology.h.
The 4 defines are:
#define topology_physical_package_id(cpu)
#define topology_core_id(cpu)
#define topology_thread_siblings(cpu)
#define topology_core_siblings(cpu)
The type of **_id is int.
The type of siblings is cpumask_t.
To be consistent on all architectures, the 4 attributes should have
deafult values if their values are unavailable. Below is the rule.
1) physical_package_id: If cpu has no physical package id, -1 is the
default value.
2) core_id: If cpu doesn't support multi-core, its core id is 0.
3) thread_siblings: Just include itself, if the cpu doesn't support
HT/multi-thread.
4) core_siblings: Just include itself, if the cpu doesn't support
multi-core and HT/Multi-thread.
So be careful when declaring the 4 defines in include/asm-XXX/topology.h.
If an attribute isn't defined on an architecture, it won't be exported.
Thank Nathan, Greg, Andi, Paul and Venki.
The patch provides defines for i386/x86_64/ia64.
Signed-off-by: Zhang, Yanmin <yanmin.zhang@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds generic memory add/remove and supporting functions for memory
hotplug into a new file as well as a memory hotplug kernel config option.
Individual architecture patches will follow.
For now, disable memory hotplug when swsusp is enabled. There's a lot of
churn there right now. We'll fix it up properly once it calms down.
Signed-off-by: Matt Tolentino <matthew.e.tolentino@intel.com>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
| |
This relocates the driver binding/unbinding code to drivers/base/dd.c. This is done
for two reasons: One, it's not code related to the bus_type itself; it uses some from
that, some from devices, and some from drivers. And Two, it will make it easier to do
some of the upcoming lock removal on that code..
Signed-off-by: Patrick Mochel <mochel@digitalimplant.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
| |
anymore.
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The driver model has a "detach_state" mechanism that:
- Has never been used by any in-kernel drive;
- Is superfluous, since driver remove() methods can do the same thing;
- Became buggy when the suspend() parameter changed semantics and type;
- Could self-deadlock when called from certain suspend contexts;
- Is effectively wasted documentation, object code, and headspace.
This removes that "detach_state" mechanism; net code shrink, as well
as a per-device saving in the driver model and sysfs.
Signed-off-by: David Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|