| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"An unfortunately larger set of fixes, but a large portion is
selftests:
- Fix the missing clusterid initializaiton for x2apic cluster
management which caused boot failures due to IPIs being sent to the
wrong cluster
- Drop TX_COMPAT when a 64bit executable is exec()'ed from a compat
task
- Wrap access to __supported_pte_mask in __startup_64() where clang
compile fails due to a non PC relative access being generated.
- Two fixes for 5 level paging fallout in the decompressor:
- Handle GOT correctly for paging_prepare() and
cleanup_trampoline()
- Fix the page table handling in cleanup_trampoline() to avoid
page table corruption.
- Stop special casing protection key 0 as this is inconsistent with
the manpage and also inconsistent with the allocation map handling.
- Override the protection key wen moving away from PROT_EXEC to
prevent inaccessible memory.
- Fix and update the protection key selftests to address breakage and
to cover the above issue
- Add a MOV SS self test"
[ Part of the x86 fixes were in the earlier core pull due to dependencies ]
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86/mm: Drop TS_COMPAT on 64-bit exec() syscall
x86/apic/x2apic: Initialize cluster ID properly
x86/boot/compressed/64: Fix moving page table out of trampoline memory
x86/boot/compressed/64: Set up GOT for paging_prepare() and cleanup_trampoline()
x86/pkeys: Do not special case protection key 0
x86/pkeys/selftests: Add a test for pkey 0
x86/pkeys/selftests: Save off 'prot' for allocations
x86/pkeys/selftests: Fix pointer math
x86/pkeys: Override pkey when moving away from PROT_EXEC
x86/pkeys/selftests: Fix pkey exhaustion test off-by-one
x86/pkeys/selftests: Add PROT_EXEC test
x86/pkeys/selftests: Factor out "instruction page"
x86/pkeys/selftests: Allow faults on unknown keys
x86/pkeys/selftests: Avoid printf-in-signal deadlocks
x86/pkeys/selftests: Remove dead debugging code, fix dprint_in_signal
x86/pkeys/selftests: Stop using assert()
x86/pkeys/selftests: Give better unexpected fault error messages
x86/selftests: Add mov_to_ss test
x86/mpx/selftests: Adjust the self-test to fresh distros that export the MPX ABI
x86/pkeys/selftests: Adjust the self-test to fresh distros that export the pkeys ABI
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The x86 mmap() code selects the mmap base for an allocation depending on
the bitness of the syscall. For 64bit sycalls it select mm->mmap_base and
for 32bit mm->mmap_compat_base.
exec() calls mmap() which in turn uses in_compat_syscall() to check whether
the mapping is for a 32bit or a 64bit task. The decision is made on the
following criteria:
ia32 child->thread.status & TS_COMPAT
x32 child->pt_regs.orig_ax & __X32_SYSCALL_BIT
ia64 !ia32 && !x32
__set_personality_x32() was dropping TS_COMPAT flag, but
set_personality_64bit() has kept compat syscall flag making
in_compat_syscall() return true during the first exec() syscall.
Which in result has user-visible effects, mentioned by Alexey:
1) It breaks ASAN
$ gcc -fsanitize=address wrap.c -o wrap-asan
$ ./wrap32 ./wrap-asan true
==1217==Shadow memory range interleaves with an existing memory mapping. ASan cannot proceed correctly. ABORTING.
==1217==ASan shadow was supposed to be located in the [0x00007fff7000-0x10007fff7fff] range.
==1217==Process memory map follows:
0x000000400000-0x000000401000 /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan
0x000000600000-0x000000601000 /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan
0x000000601000-0x000000602000 /home/izbyshev/test/gcc/asan-exec-from-32bit/wrap-asan
0x0000f7dbd000-0x0000f7de2000 /lib64/ld-2.27.so
0x0000f7fe2000-0x0000f7fe3000 /lib64/ld-2.27.so
0x0000f7fe3000-0x0000f7fe4000 /lib64/ld-2.27.so
0x0000f7fe4000-0x0000f7fe5000
0x7fed9abff000-0x7fed9af54000
0x7fed9af54000-0x7fed9af6b000 /lib64/libgcc_s.so.1
[snip]
2) It doesn't seem to be great for security if an attacker always knows
that ld.so is going to be mapped into the first 4GB in this case
(the same thing happens for PIEs as well).
The testcase:
$ cat wrap.c
int main(int argc, char *argv[]) {
execvp(argv[1], &argv[1]);
return 127;
}
$ gcc wrap.c -o wrap
$ LD_SHOW_AUXV=1 ./wrap ./wrap true |& grep AT_BASE
AT_BASE: 0x7f63b8309000
AT_BASE: 0x7faec143c000
AT_BASE: 0x7fbdb25fa000
$ gcc -m32 wrap.c -o wrap32
$ LD_SHOW_AUXV=1 ./wrap32 ./wrap true |& grep AT_BASE
AT_BASE: 0xf7eff000
AT_BASE: 0xf7cee000
AT_BASE: 0x7f8b9774e000
Fixes: 1b028f784e8c ("x86/mm: Introduce mmap_compat_base() for 32-bit mmap()")
Fixes: ada26481dfe6 ("x86/mm: Make in_compat_syscall() work during exec")
Reported-by: Alexey Izbyshev <izbyshev@ispras.ru>
Bisected-by: Alexander Monakov <amonakov@ispras.ru>
Investigated-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Alexander Monakov <amonakov@ispras.ru>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: stable@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: https://lkml.kernel.org/r/20180517233510.24996-1-dima@arista.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Rick bisected a regression on large systems which use the x2apic cluster
mode for interrupt delivery to the commit wich reworked the cluster
management.
The problem is caused by a missing initialization of the clusterid field
in the shared cluster data structures. So all structures end up with
cluster ID 0 which only allows sharing between all CPUs which belong to
cluster 0. All other CPUs with a cluster ID > 0 cannot share the data
structure because they cannot find existing data with their cluster
ID. This causes malfunction with IPIs because IPIs are sent to the wrong
cluster and the caller waits for ever that the target CPU handles the IPI.
Add the missing initialization when a upcoming CPU is the first in a
cluster so that the later booting CPUs can find the data and share it for
proper operation.
Fixes: 023a611748fd ("x86/apic/x2apic: Simplify cluster management")
Reported-by: Rick Warner <rick@microway.com>
Bisected-by: Rick Warner <rick@microway.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Rick Warner <rick@microway.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1805171418210.1947@nanos.tec.linutronix.de
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Clang builds with defconfig started crashing after the following
commit:
fb43d6cb91ef ("x86/mm: Do not auto-massage page protections")
This was caused by introducing a new global access in __startup_64().
Code in __startup_64() can be relocated during execution, but the compiler
doesn't have to generate PC-relative relocations when accessing globals
from that function. Clang actually does not generate them, which leads
to boot-time crashes. To work around this problem, every global pointer
must be adjusted using fixup_pointer().
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: dvyukov@google.com
Cc: kirill.shutemov@linux.intel.com
Cc: linux-mm@kvack.org
Cc: md@google.com
Cc: mka@chromium.org
Fixes: fb43d6cb91ef ("x86/mm: Do not auto-massage page protections")
Link: http://lkml.kernel.org/r/20180509091822.191810-1-glider@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS fix from Thomas Gleixner:
"Fix a regression in the new AMD SMCA code which issues an SMP function
call from the early interrupt disabled region of CPU hotplug. To avoid
that, use cached block addresses which can be used directly"
* 'ras-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/MCE/AMD: Cache SMCA MISC block addresses
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
... into a global, two-dimensional array and service subsequent reads from
that cache to avoid rdmsr_on_cpu() calls during CPU hotplug (IPIs with IRQs
disabled).
In addition, this fixes a KASAN slab-out-of-bounds read due to wrong usage
of the bank->blocks pointer.
Fixes: 27bd59502702 ("x86/mce/AMD: Get address from already initialized block")
Reported-by: Johannes Hirte <johannes.hirte@datenkhaos.de>
Tested-by: Johannes Hirte <johannes.hirte@datenkhaos.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Link: http://lkml.kernel.org/r/20180414004230.GA2033@probook
|
|\ \ \
| |/ /
|/| /
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core fixes from Thomas Gleixner:
- Unbreak the BPF compilation which got broken by the unconditional
requirement of asm-goto, which is not supported by clang.
- Prevent probing on exception masking instructions in uprobes and
kprobes to avoid the issues of the delayed exceptions instead of
having an ugly workaround.
- Prevent a double free_page() in the error path of do_kexec_load()
- A set of objtool updates addressing various issues mostly related to
switch tables and the noreturn detection for recursive sibling calls
- Header sync for tools.
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
objtool: Detect RIP-relative switch table references, part 2
objtool: Detect RIP-relative switch table references
objtool: Support GCC 8 switch tables
objtool: Support GCC 8's cold subfunctions
objtool: Fix "noreturn" detection for recursive sibling calls
objtool, kprobes/x86: Sync the latest <asm/insn.h> header with tools/objtool/arch/x86/include/asm/insn.h
x86/cpufeature: Guard asm_volatile_goto usage for BPF compilation
uprobes/x86: Prohibit probing on MOV SS instruction
kprobes/x86: Prohibit probing on exception masking instructions
x86/kexec: Avoid double free_page() upon do_kexec_load() failure
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since MOV SS and POP SS instructions will delay the exceptions until the
next instruction is executed, single-stepping on it by uprobes must be
prohibited.
uprobe already rejects probing on POP SS (0x1f), but allows probing on MOV
SS (0x8e and reg == 2). This checks the target instruction and if it is
MOV SS or POP SS, returns -ENOTSUPP to reject probing.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Francis Deslauriers <francis.deslauriers@efficios.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "David S . Miller" <davem@davemloft.net>
Link: https://lkml.kernel.org/r/152587072544.17316.5950935243917346341.stgit@devbox
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since MOV SS and POP SS instructions will delay the exceptions until the
next instruction is executed, single-stepping on it by kprobes must be
prohibited.
However, kprobes usually executes those instructions directly on trampoline
buffer (a.k.a. kprobe-booster), except for the kprobes which has
post_handler. Thus if kprobe user probes MOV SS with post_handler, it will
do single-stepping on the MOV SS.
This means it is safe that if it is used via ftrace or perf/bpf since those
don't use the post_handler.
Anyway, since the stack switching is a rare case, it is safer just
rejecting kprobes on such instructions.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Francis Deslauriers <francis.deslauriers@efficios.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Yonghong Song <yhs@fb.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: "David S . Miller" <davem@davemloft.net>
Link: https://lkml.kernel.org/r/152587069574.17316.3311695234863248641.stgit@devbox
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
>From ff82bedd3e12f0d3353282054ae48c3bd8c72012 Mon Sep 17 00:00:00 2001
From: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Date: Wed, 9 May 2018 12:12:39 +0900
Subject: [PATCH v3] x86/kexec: avoid double free_page() upon do_kexec_load() failure.
syzbot is reporting crashes after memory allocation failure inside
do_kexec_load() [1]. This is because free_transition_pgtable() is called
by both init_transition_pgtable() and machine_kexec_cleanup() when memory
allocation failed inside init_transition_pgtable().
Regarding 32bit code, machine_kexec_free_page_tables() is called by both
machine_kexec_alloc_page_tables() and machine_kexec_cleanup() when memory
allocation failed inside machine_kexec_alloc_page_tables().
Fix this by leaving the error handling to machine_kexec_cleanup()
(and optionally setting NULL after free_page()).
[1] https://syzkaller.appspot.com/bug?id=91e52396168cf2bdd572fe1e1bc0bc645c1c6b40
Fixes: f5deb79679af6eb4 ("x86: kexec: Use one page table in x86_64 machine_kexec")
Fixes: 92be3d6bdf2cb349 ("kexec/i386: allocate page table pages dynamically")
Reported-by: syzbot <syzbot+d96f60296ef613fe1d69@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: thomas.lendacky@amd.com
Cc: prudo@linux.vnet.ibm.com
Cc: Huang Ying <ying.huang@intel.com>
Cc: syzkaller-bugs@googlegroups.com
Cc: takahiro.akashi@linaro.org
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: akpm@linux-foundation.org
Cc: dyoung@redhat.com
Cc: kirill.shutemov@linux.intel.com
Link: https://lkml.kernel.org/r/201805091942.DGG12448.tMFVFSJFQOOLHO@I-love.SAKURA.ne.jp
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging
Pull hwmon fixes from Guenter Roeck:
"Two k10temp fixes:
- fix race condition when accessing System Management Network
registers
- fix reading critical temperatures on F15h M60h and M70h
Also add PCI ID's for the AMD Raven Ridge root bridge"
* tag 'hwmon-for-linus-v4.17-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging:
hwmon: (k10temp) Use API function to access System Management Network
x86/amd_nb: Add support for Raven Ridge CPUs
hwmon: (k10temp) Fix reading critical temperature register
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Add Raven Ridge root bridge and data fabric PCI IDs.
This is required for amd_pci_dev_to_node_id() and amd_smn_read().
Cc: stable@vger.kernel.org # v4.16+
Tested-by: Gabriel Craciunescu <nix.or.die@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
|
| |/
|/|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
KVM_HINTS_DEDICATED seems to be somewhat confusing:
Guest doesn't really care whether it's the only task running on a host
CPU as long as it's not preempted.
And there are more reasons for Guest to be preempted than host CPU
sharing, for example, with memory overcommit it can get preempted on a
memory access, post copy migration can cause preemption, etc.
Let's call it KVM_HINTS_REALTIME which seems to better
match what guests expect.
Also, the flag most be set on all vCPUs - current guests assume this.
Note so in the documentation.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fix from Thomas Gleixner:
"Unbreak the CPUID CPUID_8000_0008_EBX reload which got dropped when
the evaluation of physical and virtual bits which uses the same CPUID
leaf was moved out of get_cpu_cap()"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Restore CPUID_8000_0008_EBX reload
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The recent commt which addresses the x86_phys_bits corruption with
encrypted memory on CPUID reload after a microcode update lost the reload
of CPUID_8000_0008_EBX as well.
As a consequence IBRS and IBRS_FW are not longer detected
Restore the behaviour by bringing the reload of CPUID_8000_0008_EBX
back. This restore has a twist due to the convoluted way the cpuid analysis
works:
CPUID_8000_0008_EBX is used by AMD to enumerate IBRB, IBRS, STIBP. On Intel
EBX is not used. But the speculation control code sets the AMD bits when
running on Intel depending on the Intel specific speculation control
bits. This was done to use the same bits for alternatives.
The change which moved the 8000_0008 evaluation out of get_cpu_cap() broke
this nasty scheme due to ordering. So that on Intel the store to
CPUID_8000_0008_EBX clears the IBRB, IBRS, STIBP bits which had been set
before by software.
So the actual CPUID_8000_0008_EBX needs to go back to the place where it
was and the phys/virt address space calculation cannot touch it.
In hindsight this should have used completely synthetic bits for IBRB,
IBRS, STIBP instead of reusing the AMD bits, but that's for 4.18.
/me needs to find time to cleanup that steaming pile of ...
Fixes: d94a155c59c9 ("x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption")
Reported-by: Jörg Otte <jrg.otte@gmail.com>
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jörg Otte <jrg.otte@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: kirill.shutemov@linux.intel.com
Cc: Borislav Petkov <bp@alien8.de
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1805021043510.1668@nanos.tec.linutronix.de
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
mark_tsc_unstable() also needs to affect tsc_early, Now that
clocksource_mark_unstable() can be used on a clocksource irrespective of
its registration state, use it on both tsc_early and tsc.
This does however require cs->list to be initialized empty, otherwise it
cannot tell the registation state before registation.
Fixes: aa83c45762a2 ("x86/tsc: Introduce early tsc clocksource")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Diego Viola <diego.viola@gmail.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: len.brown@intel.com
Cc: rjw@rjwysocki.net
Cc: rui.zhang@intel.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180430100344.533326547@infradead.org
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Don't leave the tsc-early clocksource registered if it errors out
early.
This was reported by Diego, who on his Core2 era machine got TSC
invalidated while it was running with tsc-early (due to C-states).
This results in keeping tsc-early with very bad effects.
Reported-and-Tested-by: Diego Viola <diego.viola@gmail.com>
Fixes: aa83c45762a2 ("x86/tsc: Introduce early tsc clocksource")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: len.brown@intel.com
Cc: rjw@rjwysocki.net
Cc: diego.viola@gmail.com
Cc: rui.zhang@intel.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180430100344.350507853@infradead.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Xen PV domains cannot shut down and start a crash kernel. Instead,
the crashing kernel makes a SCHEDOP_shutdown hypercall with the
reason code SHUTDOWN_crash, cf. xen_crash_shutdown() machine op in
arch/x86/xen/enlighten_pv.c.
A crash kernel reservation is merely a waste of RAM in this case. It
may also confuse users of kexec_load(2) and/or kexec_file_load(2).
When flags include KEXEC_ON_CRASH or KEXEC_FILE_ON_CRASH,
respectively, these syscalls return success, which is technically
correct, but the crash kexec image will never be actually used.
Signed-off-by: Petr Tesarik <ptesarik@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: xen-devel@lists.xenproject.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Jean Delvare <jdelvare@suse.de>
Link: https://lkml.kernel.org/r/20180425120835.23cef60c@ezekiel.suse.cz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Make kernel print the correct number of TLB entries on Intel Xeon Phi 7210
(and others)
Before:
[ 0.320005] Last level dTLB entries: 4KB 0, 2MB 0, 4MB 0, 1GB 0
After:
[ 0.320005] Last level dTLB entries: 4KB 256, 2MB 128, 4MB 128, 1GB 16
The entries do exist in the official Intel SMD but the type column there is
incorrect (states "Cache" where it should read "TLB"), but the entries for
the values 0x6B, 0x6C and 0x6D are correctly described as 'Data TLB'.
Signed-off-by: Jacek Tomaka <jacek.tomaka@poczta.fm>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20180423161425.24366-1-jacekt@dugeo.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recent AMD systems support using MWAIT for C1 state. However, MWAIT will
not allow deeper cstates than C1 on current systems.
play_dead() expects to use the deepest state available. The deepest state
available on AMD systems is reached through SystemIO or HALT. If MWAIT is
available, it is preferred over the other methods, so the CPU never reaches
the deepest possible state.
Don't try to use MWAIT to play_dead() on AMD systems. Instead, use CPUIDLE
to enter the deepest state advertised by firmware. If CPUIDLE is not
available then fallback to HALT.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Cc: Yazen Ghannam <Yazen.Ghannam@amd.com>
Link: https://lkml.kernel.org/r/20180403140228.58540-1-Yazen.Ghannam@amd.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Vitezslav reported a case where the
"Timeout during microcode update!"
panic would hit. After a deeper look, it turned out that his .config had
CONFIG_HOTPLUG_CPU disabled which practically made save_mc_for_early() a
no-op.
When that happened, the discovered microcode patch wasn't saved into the
cache and the late loading path wouldn't find any.
This, then, lead to early exit from __reload_late() and thus CPUs waiting
until the timeout is reached, leading to the panic.
In hindsight, that function should have been written so it does not return
before the post-synchronization. Oh well, I know better now...
Fixes: bb8c13d61a62 ("x86/microcode: Fix CPU synchronization routine")
Reported-by: Vitezslav Samel <vitezslav@samel.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vitezslav Samel <vitezslav@samel.cz>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20180418081140.GA2439@pc11.op.pod.cz
Link: https://lkml.kernel.org/r/20180421081930.15741-2-bp@alien8.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
save_mc_for_early() was a no-op on !CONFIG_HOTPLUG_CPU but the
generic_load_microcode() path saves the microcode patches it has found into
the cache of patches which is used for late loading too. Regardless of
whether CPU hotplug is used or not.
Make the saving unconditional so that late loading can find the proper
patch.
Reported-by: Vitezslav Samel <vitezslav@samel.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vitezslav Samel <vitezslav@samel.cz>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20180418081140.GA2439@pc11.op.pod.cz
Link: https://lkml.kernel.org/r/20180421081930.15741-1-bp@alien8.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GPL2.0 is not a valid SPDX identiier. Replace it with GPL-2.0.
Fixes: 4a362601baa6 ("x86/jailhouse: Add infrastructure for running in non-root cell")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Jan Kiszka <jan.kiszka@siemens.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Link: https://lkml.kernel.org/r/20180422220832.815346488@linutronix.de
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A small set of fixes for x86:
- Prevent X2APIC ID 0xFFFFFFFF from being treated as valid, which
causes the possible CPU count to be wrong.
- Prevent 32bit truncation in calc_hpet_ref() which causes the TSC
calibration to fail
- Fix the page table setup for temporary text mappings in the resume
code which causes resume failures
- Make the page table dump code handle HIGHPTE correctly instead of
oopsing
- Support for topologies where NUMA nodes share an LLC to prevent a
invalid topology warning and further malfunction on such systems.
- Remove the now unused pci-nommu code
- Remove stale function declarations"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/power/64: Fix page-table setup for temporary text mapping
x86/mm: Prevent kernel Oops in PTDUMP code with HIGHPTE=y
x86,sched: Allow topologies where NUMA nodes share an LLC
x86/processor: Remove two unused function declarations
x86/acpi: Prevent X2APIC id 0xffffffff from being accounted
x86/tsc: Prevent 32bit truncation in calc_hpet_ref()
x86: Remove pci-nommu.c
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Intel's Skylake Server CPUs have a different LLC topology than previous
generations. When in Sub-NUMA-Clustering (SNC) mode, the package is divided
into two "slices", each containing half the cores, half the LLC, and one
memory controller and each slice is enumerated to Linux as a NUMA
node. This is similar to how the cores and LLC were arranged for the
Cluster-On-Die (CoD) feature.
CoD allowed the same cache line to be present in each half of the LLC.
But, with SNC, each line is only ever present in *one* slice. This means
that the portion of the LLC *available* to a CPU depends on the data being
accessed:
Remote socket: entire package LLC is shared
Local socket->local slice: data goes into local slice LLC
Local socket->remote slice: data goes into remote-slice LLC. Slightly
higher latency than local slice LLC.
The biggest implication from this is that a process accessing all
NUMA-local memory only sees half the LLC capacity.
The CPU describes its cache hierarchy with the CPUID instruction. One of
the CPUID leaves enumerates the "logical processors sharing this
cache". This information is used for scheduling decisions so that tasks
move more freely between CPUs sharing the cache.
But, the CPUID for the SNC configuration discussed above enumerates the LLC
as being shared by the entire package. This is not 100% precise because the
entire cache is not usable by all accesses. But, it *is* the way the
hardware enumerates itself, and this is not likely to change.
The userspace visible impact of all the above is that the sysfs info
reports the entire LLC as being available to the entire package. As noted
above, this is not true for local socket accesses. This patch does not
correct the sysfs info. It is the same, pre and post patch.
The current code emits the following warning:
sched: CPU #3's llc-sibling CPU #0 is not on the same node! [node: 1 != 0]. Ignoring dependency.
The warning is coming from the topology_sane() check in smpboot.c because
the topology is not matching the expectations of the model for obvious
reasons.
To fix this, add a vendor and model specific check to never call
topology_sane() for these systems. Also, just like "Cluster-on-Die" disable
the "coregroup" sched_domain_topology_level and use NUMA information from
the SRAT alone.
This is OK at least on the hardware we are immediately concerned about
because the LLC sharing happens at both the slice and at the package level,
which are also NUMA boundaries.
Signed-off-by: Alison Schofield <alison.schofield@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: brice.goglin@gmail.com
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "H. Peter Anvin" <hpa@linux.intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: https://lkml.kernel.org/r/20180407002130.GA18984@alison-desk.jf.intel.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
RongQing reported that there are some X2APIC id 0xffffffff in his machine's
ACPI MADT table, which makes the number of possible CPU inaccurate.
The reason is that the ACPI X2APIC parser has no sanity check for APIC ID
0xffffffff, which is an invalid id in all APIC types. See "Intel® 64
Architecture x2APIC Specification", Chapter 2.4.1.
Add a sanity check to acpi_parse_x2apic() which ignores the invalid id.
Reported-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: len.brown@intel.com
Cc: rjw@rjwysocki.net
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/20180412014052.25186-1-douly.fnst@cn.fujitsu.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The TSC calibration code uses HPET as reference. The conversion normalizes
the delta of two HPET timestamps:
hpetref = ((tshpet1 - tshpet2) * HPET_PERIOD) / 1e6
and then divides the normalized delta of the corresponding TSC timestamps
by the result to calulate the TSC frequency.
tscfreq = ((tstsc1 - tstsc2 ) * 1e6) / hpetref
This uses do_div() which takes an u32 as the divisor, which worked so far
because the HPET frequency was low enough that 'hpetref' never exceeded
32bit.
On Skylake machines the HPET frequency increased so 'hpetref' can exceed
32bit. do_div() truncates the divisor, which causes the calibration to
fail.
Use div64_u64() to avoid the problem.
[ tglx: Fixes whitespace mangled patch and rewrote changelog ]
Signed-off-by: Xiaoming Gao <newtongao@tencent.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: peterz@infradead.org
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/38894564-4fc9-b8ec-353f-de702839e44e@gmail.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The commit that switched x86 to dma_direct_ops stopped using and building
this file, but accidentally left it in the tree. Remove it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: iommu@lists.infradead.org
Link: https://lkml.kernel.org/r/20180416124442.13831-1-hch@lst.de
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Chun-Yi reported a kernel warning message below:
WARNING: CPU: 0 PID: 0 at ../mm/early_ioremap.c:182 early_iounmap+0x4f/0x12c()
early_iounmap(ffffffffff200180, 00000118) [0] size not consistent 00000120
The problem is x86 kexec_file_load adds extra alignment to the efi
memmap: in bzImage64_load():
efi_map_sz = efi_get_runtime_map_size();
efi_map_sz = ALIGN(efi_map_sz, 16);
And __efi_memmap_init maps with the size including the alignment bytes
but efi_memmap_unmap use nr_maps * desc_size which does not include the
extra bytes.
The alignment in kexec code is only needed for the kexec buffer internal
use Actually kexec should pass exact size of the efi memmap to 2nd
kernel.
Link: http://lkml.kernel.org/r/20180417083600.GA1972@dhcp-128-65.nay.redhat.com
Signed-off-by: Dave Young <dyoung@redhat.com>
Reported-by: joeyli <jlee@suse.com>
Tested-by: Randy Wright <rwright@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The |= operator will let us end up with an invalid PTE. Use
the correct &= instead.
[ The bug was also independently reported by Shuah Khan ]
Fixes: fb43d6cb91ef ('x86/mm: Do not auto-massage page protections')
Acked-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
"A set of fixes and updates for x86:
- Address a swiotlb regression which was caused by the recent DMA
rework and made driver fail because dma_direct_supported() returned
false
- Fix a signedness bug in the APIC ID validation which caused invalid
APIC IDs to be detected as valid thereby bloating the CPU possible
space.
- Fix inconsisten config dependcy/select magic for the MFD_CS5535
driver.
- Fix a corruption of the physical address space bits when encryption
has reduced the address space and late cpuinfo updates overwrite
the reduced bit information with the original value.
- Dominiks syscall rework which consolidates the architecture
specific syscall functions so all syscalls can be wrapped with the
same macros. This allows to switch x86/64 to struct pt_regs based
syscalls. Extend the clearing of user space controlled registers in
the entry patch to the lower registers"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Fix signedness bug in APIC ID validity checks
x86/cpu: Prevent cpuinfo_x86::x86_phys_bits adjustment corruption
x86/olpc: Fix inconsistent MFD_CS5535 configuration
swiotlb: Use dma_direct_supported() for swiotlb_ops
syscalls/x86: Adapt syscall_wrapper.h to the new syscall stub naming convention
syscalls/core, syscalls/x86: Rename struct pt_regs-based sys_*() to __x64_sys_*()
syscalls/core, syscalls/x86: Clean up compat syscall stub naming convention
syscalls/core, syscalls/x86: Clean up syscall stub naming convention
syscalls/x86: Extend register clearing on syscall entry to lower registers
syscalls/x86: Unconditionally enable 'struct pt_regs' based syscalls on x86_64
syscalls/x86: Use 'struct pt_regs' based syscall calling for IA32_EMULATION and x32
syscalls/core: Prepare CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y for compat syscalls
syscalls/x86: Use 'struct pt_regs' based syscall calling convention for 64-bit syscalls
syscalls/core: Introduce CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y
x86/syscalls: Don't pointlessly reload the system call number
x86/mm: Fix documentation of module mapping range with 4-level paging
x86/cpuid: Switch to 'static const' specifier
|
| |\
| | |
| | |
| | | |
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The APIC ID as parsed from ACPI MADT is validity checked with the
apic->apic_id_valid() callback, which depends on the selected APIC type.
For non X2APIC types APIC IDs >= 0xFF are invalid, but values > 0x7FFFFFFF
are detected as valid. This happens because the 'apicid' argument of the
apic_id_valid() callback is type 'int'. So the resulting comparison
apicid < 0xFF
evaluates to true for all unsigned int values > 0x7FFFFFFF which are handed
to default_apic_id_valid(). As a consequence, invalid APIC IDs in !X2APIC
mode are considered valid and accounted as possible CPUs.
Change the apicid argument type of the apic_id_valid() callback to u32 so
the evaluation is unsigned and returns the correct result.
[ tglx: Massaged changelog ]
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: jgross@suse.com
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1523322966-10296-1-git-send-email-lirongqing@baidu.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Some features (Intel MKTME, AMD SME) reduce the number of effectively
available physical address bits. cpuinfo_x86::x86_phys_bits is adjusted
accordingly during the early cpu feature detection.
Though if get_cpu_cap() is called later again then this adjustement is
overwritten. That happens in setup_pku(), which is called after
detect_tme().
To address this, extract the address sizes enumeration into a separate
function, which is only called only from early_identify_cpu() and from
generic_identify().
This makes get_cpu_cap() safe to be called later during boot proccess
without overwriting cpuinfo_x86::x86_phys_bits.
[ tglx: Massaged changelog ]
Fixes: cb06d8e3d020 ("x86/tme: Detect if TME and MKTME is activated by BIOS")
Reported-by: Kai Huang <kai.huang@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: linux-mm@kvack.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180410092704.41106-1-kirill.shutemov@linux.intel.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This is the only spot where the 'const static' specifier is used;
everywhere else 'static const' is preferred, as static should be the
first specifier.
This is just a cosmetic fix that aligns this, no functional change.
Signed-off-by: Ralf Ramsauer <ralf.ramsauer@oth-regensburg.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Gayatri Kammela <gayatri.kammela@intel.com>
Link: https://lkml.kernel.org/r/20180307160734.6691-1-ralf.ramsauer@oth-regensburg.de
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti updates from Thomas Gleixner:
"Another series of PTI related changes:
- Remove the manual stack switch for user entries from the idtentry
code. This debloats entry by 5k+ bytes of text.
- Use the proper types for the asm/bootparam.h defines to prevent
user space compile errors.
- Use PAGE_GLOBAL for !PCID systems to gain back performance
- Prevent setting of huge PUD/PMD entries when the entries are not
leaf entries otherwise the entries to which the PUD/PMD points to
and are populated get lost"
* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/pgtable: Don't set huge PUD/PMD on non-leaf entries
x86/pti: Leave kernel text global for !PCID
x86/pti: Never implicitly clear _PAGE_GLOBAL for kernel image
x86/pti: Enable global pages for shared areas
x86/mm: Do not forbid _PAGE_RW before init for __ro_after_init
x86/mm: Comment _PAGE_GLOBAL mystery
x86/mm: Remove extra filtering in pageattr code
x86/mm: Do not auto-massage page protections
x86/espfix: Document use of _PAGE_GLOBAL
x86/mm: Introduce "default" kernel PTE mask
x86/mm: Undo double _PAGE_PSE clearing
x86/mm: Factor out pageattr _PAGE_GLOBAL setting
x86/entry/64: Drop idtentry's manual stack switch for user entries
x86/uapi: Fix asm/bootparam.h userspace compilation errors
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
I was mystified as to where the _PAGE_GLOBAL in the kernel page tables
for kernel text came from. I audited all the places I could find, but
I missed one: head_64.S.
The page tables that we create in here live for a long time, and they
also have _PAGE_GLOBAL set, despite whether the processor supports it
or not. It's harmless, and we got *lucky* that the pageattr code
accidentally clears it when we wipe it out of __supported_pte_mask and
then later try to mark kernel text read-only.
Comment some of these properties to make it easier to find and
understand in the future.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180406205513.079BB265@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
A PTE is constructed from a physical address and a pgprotval_t.
__PAGE_KERNEL, for instance, is a pgprot_t and must be converted
into a pgprotval_t before it can be used to create a PTE. This is
done implicitly within functions like pfn_pte() by massage_pgprot().
However, this makes it very challenging to set bits (and keep them
set) if your bit is being filtered out by massage_pgprot().
This moves the bit filtering out of pfn_pte() and friends. For
users of PAGE_KERNEL*, filtering will be done automatically inside
those macros but for users of __PAGE_KERNEL*, they need to do their
own filtering now.
Note that we also just move pfn_pte/pmd/pud() over to check_pgprot()
instead of massage_pgprot(). This way, we still *look* for
unsupported bits and properly warn about them if we find them. This
might happen if an unfiltered __PAGE_KERNEL* value was passed in,
for instance.
- printk format warning fix from: Arnd Bergmann <arnd@arndb.de>
- boot crash fix from: Tom Lendacky <thomas.lendacky@amd.com>
- crash bisected by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reported-and-fixed-by: Arnd Bergmann <arnd@arndb.de>
Fixed-by: Tom Lendacky <thomas.lendacky@amd.com>
Bisected-by: Mike Galbraith <efault@gmx.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180406205509.77E1D7F6@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The "normal" kernel page table creation mechanisms using
PAGE_KERNEL_* page protections will never set _PAGE_GLOBAL with PTI.
The few places in the kernel that always want _PAGE_GLOBAL must
avoid using PAGE_KERNEL_*.
Document that we want it here and its use is not accidental.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Link: http://lkml.kernel.org/r/20180406205507.BCF4D4F0@viggo.jf.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
For s390 new kernels are loaded to fixed addresses in memory before they
are booted. With the current code this is a problem as it assumes the
kernel will be loaded to an 'arbitrary' address. In particular,
kexec_locate_mem_hole searches for a large enough memory region and sets
the load address (kexec_bufer->mem) to it.
Luckily there is a simple workaround for this problem. By returning 1
in arch_kexec_walk_mem, kexec_locate_mem_hole is turned off. This
allows the architecture to set kbuf->mem by hand. While the trick works
fine for the kernel it does not for the purgatory as here the
architectures don't have access to its kexec_buffer.
Give architectures access to the purgatories kexec_buffer by changing
kexec_load_purgatory to take a pointer to it. With this change
architectures have access to the buffer and can edit it as they need.
A nice side effect of this change is that we can get rid of the
purgatory_info->purgatory_load_address field. As now the information
stored there can directly be accessed from kbuf->mem.
Link: http://lkml.kernel.org/r/20180321112751.22196-11-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The current code uses the sh_offset field in purgatory_info->sechdrs to
store a pointer to the current load address of the section. Depending
whether the section will be loaded or not this is either a pointer into
purgatory_info->purgatory_buf or kexec_purgatory. This is not only a
violation of the ELF standard but also makes the code very hard to
understand as you cannot tell if the memory you are using is read-only
or not.
Remove this misuse and store the offset of the section in
pugaroty_info->purgatory_buf in sh_offset.
Link: http://lkml.kernel.org/r/20180321112751.22196-10-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
When the relocations are applied to the purgatory only the section the
relocations are applied to is writable. The other sections, i.e. the
symtab and .rel/.rela, are in read-only kexec_purgatory. Highlight this
by marking the corresponding variables as 'const'.
While at it also change the signatures of arch_kexec_apply_relocations* to
take section pointers instead of just the index of the relocation section.
This removes the second lookup and sanity check of the sections in arch
code.
Link: http://lkml.kernel.org/r/20180321112751.22196-6-prudo@linux.vnet.ibm.com
Signed-off-by: Philipp Rudo <prudo@linux.vnet.ibm.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
In the previous patches, commonly-used routines, exclude_mem_range() and
prepare_elf64_headers(), were carved out. Now place them in kexec
common code. A prefix "crash_" is given to each of their names to avoid
possible name collisions.
Link: http://lkml.kernel.org/r/20180306102303.9063-8-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Removing bufp variable in prepare_elf64_headers() makes the code simpler
and more understandable.
Link: http://lkml.kernel.org/r/20180306102303.9063-7-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
While CRASH_MAX_RANGES (== 16) seems to be good enough, fixed-number
array is not a good idea in general.
In this patch, size of crash_mem buffer is calculated as before and the
buffer is now dynamically allocated. This change also allows removing
crash_elf_data structure.
Link: http://lkml.kernel.org/r/20180306102303.9063-6-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The code guarded by CONFIG_X86_64 is necessary on some architectures
which have a dedicated kernel mapping outside of linear memory mapping.
(arm64 is among those.)
In this patch, an additional argument, kernel_map, is added to enable/
disable the code removing #ifdef.
Link: http://lkml.kernel.org/r/20180306102303.9063-5-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
While prepare_elf64_headers() in x86 looks pretty generic for other
architectures' use, it contains some code which tries to list crash
memory regions by walking through system resources, which is not always
architecture agnostic. To make this function more generic, the related
code should be purged.
In this patch, prepare_elf64_headers() simply scans crash_mem buffer
passed and add all the listed regions to elf header as a PT_LOAD
segment. So walk_system_ram_res(prepare_elf64_headers_callback) have
been moved forward before prepare_elf64_headers() where the callback,
prepare_elf64_headers_callback(), is now responsible for filling up
crash_mem buffer.
Meanwhile exclude_elf_header_ranges() used to be called every time in
this callback it is rather redundant and now called only once in
prepare_elf_headers() as well.
Link: http://lkml.kernel.org/r/20180306102303.9063-4-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
As arch_kexec_kernel_image_{probe,load}(),
arch_kimage_file_post_load_cleanup() and arch_kexec_kernel_verify_sig()
are almost duplicated among architectures, they can be commonalized with
an architecture-defined kexec_file_ops array. So let's factor them out.
Link: http://lkml.kernel.org/r/20180306102303.9063-3-takahiro.akashi@linaro.org
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Dave Young <dyoung@redhat.com>
Tested-by: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Thiago Jung Bauermann <bauerman@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux
Pull parisc updates from Helge Deller:
- fix panic when halting system via "shutdown -h now"
- drop own coding in favour of generic CONFIG_COMPAT_BINFMT_ELF
implementation
- add FPE_CONDTRAP constant: last outstanding parisc-specific cleanup
for Eric Biedermans siginfo patches
- move some functions to .init and some to .text.hot linker sections
* 'parisc-4.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller/parisc-linux:
parisc: Prevent panic at system halt
parisc: Switch to generic COMPAT_BINFMT_ELF
parisc: Move cache flush functions into .text.hot section
parisc/signal: Add FPE_CONDTRAP for conditional trap handling
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Posix and common sense requires that SI_USER not be a signal specific
si_code. Thus add a new FPE_CONDTRAP si_code for conditional traps.
Signed-off-by: Helge Deller <deller@gmx.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
|