| Commit message (Collapse) | Author | Age | Files | Lines |
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
A customer of ours, complained that when setting the reset
vector back to 0, it trashed other data and hung their box.
They noticed when only 4 bytes were set to 0 instead of 8,
everything worked correctly.
Mathew pointed out:
|
| We're supposed to be resetting trampoline_phys_low and
| trampoline_phys_high here, which are two 16-bit values.
| Writing 64 bits is definitely going to overwrite space
| that we're not supposed to be touching.
|
So limit the area modified to u32.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Acked-by: Matthew Garrett <mjg@redhat.com>
Cc: <stable@kernel.org>
LKML-Reference: <1297139100-424-1-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86 quirk: Fix polarity for IRQ0 pin2 override on SB800 systems
x86/mrst: Fix apb timer rating when lapic timer is used
x86: Fix reboot problem on VersaLogic Menlow boards
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
On some SB800 systems polarity for IOAPIC pin2 is wrongly
specified as low active by BIOS. This caused system hangs after
resume from S3 when HPET was used in one-shot mode on such
systems because a timer interrupt was missed (HPET signal is
high active).
For more details see:
http://marc.info/?l=linux-kernel&m=129623757413868
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Tested-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: Borislav Petkov <borislav.petkov@amd.com>
Cc: stable@kernel.org # 37.x, 32.x
LKML-Reference: <20110224145346.GD3658@alberich.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The function do_suspend_lowlevel() is specific to x86 and defined in
assembly code, so it should be called from the x86 low-level suspend
code rather than from acpi_suspend_enter().
Merge do_suspend_lowlevel() into the x86's acpi_save_state_mem() and
change the name of the latter to acpi_suspend_lowlevel(), so that the
function's purpose is better reflected by its name.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
|
|/ /
| |
| |
| |
| |
| |
| | |
The function acpi_restore_state_mem() has never been and most likely
never will be used, so remove it.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Several people have reported spurious unknown NMI
messages on some P4 CPUs.
This patch fixes it by checking for an overflow (negative
counter values) directly, instead of relying on the
P4_CCCR_OVF bit.
Reported-by: George Spelvin <linux@horizon.com>
Reported-by: Meelis Roos <mroos@linux.ee>
Reported-by: Don Zickus <dzickus@redhat.com>
Reported-by: Dave Airlie <airlied@gmail.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <AANLkTinfuTfCck_FfaOHrDqQZZehtRzkBum4SpFoO=KJ@mail.gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
| |
We use it in non __cpuinit code now too so drop marker.
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20110211171754.GA21047@aftab>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Additionally doing things conditionally upon smp_processor_id()
being zero is generally a bad idea, as this means CPU 0 cannot
be offlined and brought back online later again.
While there may be other places where this is done, I think adding
more of those should be avoided so that some day SMP can really
become "symmetrical".
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
LKML-Reference: <4D525C7E0200007800030EE1@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86-32: Make sure the stack is set up before we use it
x86, mtrr: Avoid MTRR reprogramming on BP during boot on UP platforms
x86, nx: Don't force pages RW when setting NX bits
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since checkin ebba638ae723d8a8fc2f7abce5ec18b688b791d7 we call
verify_cpu even in 32-bit mode. Unfortunately, calling a function
means using the stack, and the stack pointer was not initialized in
the 32-bit setup code! This code initializes the stack pointer, and
simplifies the interface slightly since it is easier to rely on just a
pointer value rather than a descriptor; we need to have different
values for the segment register anyway.
This retains start_stack as a virtual address, even though a physical
address would be more convenient for 32 bits; the 64-bit code wants
the other way around...
Reported-by: Matthieu Castet <castet.matthieu@free.fr>
LKML-Reference: <4D41E86D.8060205@free.fr>
Tested-by: Kees Cook <kees.cook@canonical.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
switching mm
Clearing the cpu in prev's mm_cpumask early will avoid the flush tlb
IPI's while the cr3 is still pointing to the prev mm. And this window
can lead to the possibility of bogus TLB fills resulting in strange
failures. One such problematic scenario is mentioned below.
T1. CPU-1 is context switching from mm1 to mm2 context and got a NMI
etc between the point of clearing the cpu from the mm_cpumask(mm1)
and before reloading the cr3 with the new mm2.
T2. CPU-2 is tearing down a specific vma for mm1 and will proceed with
flushing the TLB for mm1. It doesn't send the flush TLB to CPU-1
as it doesn't see that cpu listed in the mm_cpumask(mm1).
T3. After the TLB flush is complete, CPU-2 goes ahead and frees the
page-table pages associated with the removed vma mapping.
T4. CPU-2 now allocates those freed page-table pages for something
else.
T5. As the CR3 and TLB caches for mm1 is still active on CPU-1, CPU-1
can potentially speculate and walk through the page-table caches
and can insert new TLB entries. As the page-table pages are
already freed and being used on CPU-2, this page walk can
potentially insert a bogus global TLB entry depending on the
(random) contents of the page that is being used on CPU-2.
T6. This bogus TLB entry being global will be active across future CR3
changes and can result in weird memory corruption etc.
To avoid this issue, for the prev mm that is handing over the cpu to
another mm, clear the cpu from the mm_cpumask(prev) after the cr3 is
changed.
Marking it for -stable, though we haven't seen any reported failure that
can be attributed to this.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: stable@kernel.org [v2.6.32+]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
percpu, x86: Fix percpu_xchg_op()
x86: Remove left over system_64.h
x86-64: Don't use pointer to out-of-scope variable in dump_trace()
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
These recent percpu commits:
2485b6464cf8: x86,percpu: Move out of place 64 bit ops into X86_64 section
8270137a0d50: cpuops: Use cmpxchg for xchg to avoid lock semantics
Caused this 'perf top' crash:
Kernel panic - not syncing: Fatal exception in interrupt
Pid: 0, comm: swapper Tainted: G D
2.6.38-rc2-00181-gef71723 #413 Call Trace: <IRQ> [<ffffffff810465b5>]
? panic
? kmsg_dump
? kmsg_dump
? oops_end
? no_context
? __bad_area_nosemaphore
? perf_output_begin
? bad_area_nosemaphore
? do_page_fault
? __task_pid_nr_ns
? perf_event_tid
? __perf_event_header__init_id
? validate_chain
? perf_output_sample
? trace_hardirqs_off
? page_fault
? irq_work_run
? update_process_times
? tick_sched_timer
? tick_sched_timer
? __run_hrtimer
? hrtimer_interrupt
? account_system_vtime
? smp_apic_timer_interrupt
? apic_timer_interrupt
...
Looking at assembly code, I found:
list = this_cpu_xchg(irq_work_list, NULL);
gives this wrong code : (gcc-4.1.2 cross compiler)
ffffffff810bc45e:
mov %gs:0xead0,%rax
cmpxchg %rax,%gs:0xead0
jne ffffffff810bc45e <irq_work_run+0x3e>
test %rax,%rax
je ffffffff810bc4aa <irq_work_run+0x8a>
Tell gcc we dirty eax/rax register in percpu_xchg_op()
Compiler must use another register to store pxo_new__
We also dont need to reload percpu value after a jump,
since a 'failed' cmpxchg already updated eax/rax
Wrong generated code was :
xor %rax,%rax /* load 0 into %rax */
1: mov %gs:0xead0,%rax
cmpxchg %rax,%gs:0xead0
jne 1b
test %rax,%rax
After patch :
xor %rdx,%rdx /* load 0 into %rdx */
mov %gs:0xead0,%rax
1: cmpxchg %rdx,%gs:0xead0
jne 1b:
test %rax,%rax
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
LKML-Reference: <1295973114.3588.312.camel@edumazet-laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Left-over from the x86 merge ...
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4D3E23D1.7010405@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes TRANSPARENT_HUGEPAGE=y with PARAVIRT=y and HIGHMEM64=n.
The #ifdef that this patch removes was erratically introduced to fix a
build error for noPAE (where pmd.pmd doesn't exist). So then the kernel
built but it failed at runtime because set_pmd_at was a noop. This will
correct it by enabling set_pmd_at for noPAE mode too.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: werner <w.landgraf@ru.ru>
Reported-by: Minchan Kim <minchan.kim@gmail.com>
Tested-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: Fix jump label with RO/NX module protection crash
x86, hotplug: Fix powersavings with offlined cores on AMD
x86, mcheck, therm_throt.c: Export symbol platform_thermal_notify to allow coretemp to handler intr
x86: Use asm-generic/cacheflush.h
x86: Update CPU cache attributes table descriptors
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If we use jump table in module init, there are marked
as removed in __jump_table section after init is done.
But we already applied ro permissions on the module, so
we can't modify a read only section (crash in
remove_jump_label_module_init).
Make the __jump_table section rw.
Signed-off-by: Matthieu CASTET <castet.matthieu@free.fr>
Cc: Xiaotian Feng <xtfeng@gmail.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Siarhei Liakh <sliakh.lkml@gmail.com>
Cc: Xuxian Jiang <jiang@cs.ncsu.edu>
Cc: James Morris <jmorris@namei.org>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dave Jones <davej@redhat.com>
Cc: Kees Cook <kees.cook@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <4D3C3F20.7030203@free.fr>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
ea53069231f9317062910d6e772cca4ce93de8c8 made a CPU use monitor/mwait
when offline. This is not the optimal choice for AMD wrt to powersavings
and we'd prefer our cores to halt (i.e. enter C1) instead. For this, the
same selection whether to use monitor/mwait has to be used as when we
select the idle routine for the machine.
With this patch, offlining cores 1-5 on a X6 machine allows core0 to
boost again.
[ hpa: putting this in urgent since it is a (power) regression fix ]
Reported-by: Andreas Herrmann <andreas.herrmann3@amd.com>
Cc: stable@kernel.org # 37.x
Cc: H. Peter Anvin <hpa@linux.intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.hl>
Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <1295534572-10730-1-git-send-email-bp@amd64.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The implementation of the cache flushing interfaces on the x86
is identical with the default implementation in asm-generic.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: arnd@arndb.de
LKML-Reference: <1295523136-4277-2-git-send-email-akinobu.mita@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\ \
| |/
|/|
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
* 'fixes-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
x86,percpu: Move out of place 64 bit ops into X86_64 section
|
| |
| |
| |
| |
| |
| |
| |
| | |
Some operations that operate on 64 bit operands are defined for 32 bit.
Move them into the correct section.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In order to be able to suppress the use of SRAT tables that
32-bit Linux can't deal with (in one case known to lead to a
non-bootable system, unless disabling ACPI altogether), move the
"numa=" option handling to common code.
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Reviewed-by: Thomas Renninger <trenn@suse.de>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Renninger <trenn@suse.de>
LKML-Reference: <4D36B581020000780002D0FF@vpn.id2.novell.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-idle-2.6
* 'idle-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-idle-2.6:
cpuidle/x86/perf: fix power:cpu_idle double end events and throw cpu_idle events from the cpuidle layer
intel_idle: open broadcast clock event
cpuidle: CPUIDLE_FLAG_CHECK_BM is omap3_idle specific
cpuidle: CPUIDLE_FLAG_TLB_FLUSHED is specific to intel_idle
cpuidle: delete unused CPUIDLE_FLAG_SHALLOW, BALANCED, DEEP definitions
SH, cpuidle: delete use of NOP CPUIDLE_FLAGS_SHALLOW
cpuidle: delete NOP CPUIDLE_FLAG_POLL
ACPI: processor_idle: delete use of NOP CPUIDLE_FLAGs
cpuidle: Rename X86 specific idle poll state[0] from C0 to POLL
ACPI, intel_idle: Cleanup idle= internal variables
cpuidle: Make cpuidle_enable_device() call poll_idle_init()
intel_idle: update Sandy Bridge core C-state residency targets
|
| |\ \ |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Having four variables for the same thing:
idle_halt, idle_nomwait, force_mwait and boot_option_idle_overrides
is rather confusing and unnecessary complex.
if idle= boot param is passed, only set up one variable:
boot_option_idle_overrides
Introduces following functional changes/fixes:
- intel_idle driver does not register if any idle=xy
boot param is passed.
- processor_idle.c will also not register a cpuidle driver
and get active if idle=halt is passed.
Before a cpuidle driver with one (C1, halt) state got registered
Now the default_idle function will be used which finally uses
the same idle call to enter sleep state (safe_halt()), but
without registering a whole cpuidle driver.
That means idle= param will always avoid cpuidle drivers to register
with one exception (same behavior as before):
idle=nomwait
may still register acpi_idle cpuidle driver, but C1 will not use
mwait, but hlt. This can be a workaround for IO based deeper sleep
states where C1 mwait causes problems.
Signed-off-by: Thomas Renninger <trenn@suse.de>
cc: x86@kernel.org
Signed-off-by: Len Brown <len.brown@intel.com>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen
* 'stable/gntdev' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
xen/p2m: Fix module linking error.
xen p2m: clear the old pte when adding a page to m2p_override
xen gntdev: use gnttab_map_refs and gnttab_unmap_refs
xen: introduce gnttab_map_refs and gnttab_unmap_refs
xen p2m: transparently change the p2m mappings in the m2p override
xen/gntdev: Fix circular locking dependency
xen/gntdev: stop using "token" argument
xen: gntdev: move use of GNTMAP_contains_pte next to the map_op
xen: add m2p override mechanism
xen: move p2m handling to separate file
xen/gntdev: add VM_PFNMAP to vma
xen/gntdev: allow usermode to map granted pages
xen: define gnttab_set_map_op/unmap_op
Fix up trivial conflict in drivers/xen/Kconfig
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
When adding a page to m2p_override we change the p2m of the page so we
need to also clear the old pte of the kernel linear mapping because it
doesn't correspond anymore.
When we remove the page from m2p_override we restore the original p2m of
the page and we also restore the old pte of the kernel linear mapping.
Before changing the p2m mappings in m2p_add_override and
m2p_remove_override, check that the page passed as argument is valid and
return an error if it is not.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
|
| |/ / /
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add a simple hashtable based mechanism to override some portions of the
m2p, so that we can find out the pfn corresponding to an mfn of a
granted page. In fact entries corresponding to granted pages in the m2p
hold the original pfn value of the page in the source domain that
granted it.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
For GRU and EPT, we need gup-fast to set referenced bit too (this is why
it's correct to return 0 when shadow_access_mask is zero, it requires
gup-fast to set the referenced bit). qemu-kvm access already sets the
young bit in the pte if it isn't zero-copy, if it's zero copy or a shadow
paging EPT minor fault we relay on gup-fast to signal the page is in
use...
We also need to check the young bits on the secondary pagetables for NPT
and not nested shadow mmu as the data may never get accessed again by the
primary pte.
Without this closer accuracy, we'd have to remove the heuristic that
avoids collapsing hugepages in hugepage virtual regions that have not even
a single subpage in use.
->test_young is full backwards compatible with GRU and other usages that
don't have young bits in pagetables set by the hardware and that should
nuke the secondary mmu mappings when ->clear_flush_young runs just like
EPT does.
Removing the heuristic that checks the young bit in
khugepaged/collapse_huge_page completely isn't so bad either probably but
I thought it was worth it and this makes it reliable.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Archs implementing Transparent Hugepage Support must implement a function
called has_transparent_hugepage to be sure the virtual or physical CPU
supports Transparent Hugepages.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add pmd_modify() for use with mprotect() on huge pmds.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add support for transparent hugepages to x86 32bit.
Share the same VM_ bitflag for VM_MAPPED_COPY. mm/nommu.c will never
support transparent hugepages.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs. Some of the restrictions I'd like to
see removed:
1) hugepages have to be swappable or the guest physical memory remains
locked in RAM and can't be paged out to swap
2) if a hugepage allocation fails, regular pages should be allocated
instead and mixed in the same vma without any failure and without
userland noticing
3) if some task quits and more hugepages become available in the
buddy, guest physical memory backed by regular pages should be
relocated on hugepages automatically in regions under
madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
not null)
4) avoidance of reservation and maximization of use of hugepages whenever
possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
1 machine with 1 database with 1 database cache with 1 database cache size
known at boot time. It's definitely not feasible with a virtualization
hypervisor usage like RHEV-H that runs an unknown number of virtual machines
with an unknown size of each virtual machine with an unknown amount of
pagecache that could be potentially useful in the host for guest not using
O_DIRECT (aka cache=off).
hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...). Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario. So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).
The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas. This is what this patch tries to achieve in the
least intrusive possible way. We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).
The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails! This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...
Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail. This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM. Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*. The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle). In short the
very value of split_huge_page is that it can't fail.
The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon. It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode. collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later. collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).
The default I like is that transparent hugepages are used at page fault
time. This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used. /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".
The pmd_trans_splitting/pmd_trans_huge locking is very solid. The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head. I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view. In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...). And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.
If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet). But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.
Swap and oom works fine (well just like with regular pages ;). MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.
NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores. I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks. One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault). Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only. If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot. If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time. It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).
This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone. Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation. hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits. hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.
Some performance result:
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988
============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define SIZE (3UL*1024*1024*1024)
int main()
{
char *p = malloc(SIZE), *p2;
struct timeval before, after;
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset page fault %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
return 0;
}
============
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add needed pmd mangling functions with symmetry with their pte
counterparts. pmdp_splitting_flush() is the only new addition on the pmd_
methods and it's needed to serialize the VM against split_huge_page. It
simply atomically sets the splitting bit in a similar way
pmdp_clear_flush_young atomically clears the accessed bit.
pmdp_splitting_flush() also has to flush the tlb to make it effective
against gup_fast, but it wouldn't really require to flush the tlb too.
Just the tlb flush is the simplest operation we can invoke to serialize
pmdp_splitting_flush() against gup_fast.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
These returns 0 at compile time when the config option is disabled, to
allow gcc to eliminate the transparent hugepage function calls at compile
time without additional #ifdefs (only the export of those functions have
to be visible to gcc but they won't be required at link time and
huge_memory.o can be not built at all).
_PAGE_BIT_UNUSED1 is never used for pmd, only on pte.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
No paravirt version of set_pmd_at/pmd_update/pmd_update_defer.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Paravirt ops pmd_update/pmd_update_defer/pmd_set_at. Not all might be
necessary (vmware needs pmd_update, Xen needs set_pmd_at, nobody needs
pmd_update_defer), but this is to keep full simmetry with pte paravirt
ops, which looks cleaner and simpler from a common code POV.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Used by paravirt and not paravirt set_pmd_at.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'x86-olpc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, olpc: Speed up device tree creation during boot
x86, olpc: Add OLPC device-tree support
x86, of: Define irq functions to allow drivers/of/* to build on x86
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Make use of PROC_DEVICETREE to export the tree, and sparc's PROMTREE code to
call into OLPC's Open Firmware to build the tree.
v5: fix buglet with root node check (introduced in v4)
v4: address some minor style issues pointed out by Grant, and explicitly cast
negative phandle checks to s32.
v3: rename olpc_prom to olpc_dt
- rework Kconfig entries
- drop devtree build hook from proc, instead adding a call to x86's
paging_init (similarly to how sparc64 does it)
- switch allocation from using slab to alloc_bootmem. this allows
the DT to be built earlier during boot (during setup_arch); the
downside is that there are some 1200 bootmem reservations that are
done during boot. Not ideal..
- add a helper olpc_ofw_is_installed function to test for the
existence and successful detection of OLPC's OFW.
Signed-off-by: Andres Salomon <dilinger@queued.net>
LKML-Reference: <20101116220952.26526a80@queued.net>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
- Define a stub irq_create_of_mapping for x86 as a stop-gap solution until
drivers/of/irq is further along.
- Define irq_dispose_mapping for x86 to appease of_i2c.c
These are needed to allow stuff in drivers/of/ to build on x86. This stuff
will eventually get replaced; quoting Grant,
"The long term plan is to have the drivers/of/ code handling the mapping
intelligently like powerpc currently does." But for now, just provide
these functions.
Signed-off-by: Andres Salomon <dilinger@queued.net>
LKML-Reference: <20101111214526.5de7121b@queued.net>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
|
|\ \ \ \ \
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
* 'kvm-updates/2.6.38' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (142 commits)
KVM: Initialize fpu state in preemptible context
KVM: VMX: when entering real mode align segment base to 16 bytes
KVM: MMU: handle 'map_writable' in set_spte() function
KVM: MMU: audit: allow audit more guests at the same time
KVM: Fetch guest cr3 from hardware on demand
KVM: Replace reads of vcpu->arch.cr3 by an accessor
KVM: MMU: only write protect mappings at pagetable level
KVM: VMX: Correct asm constraint in vmcs_load()/vmcs_clear()
KVM: MMU: Initialize base_role for tdp mmus
KVM: VMX: Optimize atomic EFER load
KVM: VMX: Add definitions for more vm entry/exit control bits
KVM: SVM: copy instruction bytes from VMCB
KVM: SVM: implement enhanced INVLPG intercept
KVM: SVM: enhance mov DR intercept handler
KVM: SVM: enhance MOV CR intercept handler
KVM: SVM: add new SVM feature bit names
KVM: cleanup emulate_instruction
KVM: move complete_insn_gp() into x86.c
KVM: x86: fix CR8 handling
KVM guest: Fix kvm clock initialization when it's configured out
...
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
It only allows to audit one guest in the system since:
- 'audit_point' is a glob variable
- mmu_audit_disable() is called in kvm_mmu_destroy(), so audit is disabled
after a guest exited
this patch fix those issues then allow to audit more guests at the same time
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Instead of syncing the guest cr3 every exit, which is expensince on vmx
with ept enabled, sync it only on demand.
[sheng: fix incorrect cr3 seen by Windows XP]
Signed-off-by: Sheng Yang <sheng@linux.intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
In case of a nested page fault or an intercepted #PF newer SVM
implementations provide a copy of the faulting instruction bytes
in the VMCB.
Use these bytes to feed the instruction emulator and avoid the costly
guest instruction fetch in this case.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Newer SVM implementations provide the GPR number in the VMCB, so
that the emulation path is no longer necesarry to handle CR
register access intercepts. Implement the handling in svm.c and
use it when the info is provided.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
emulate_instruction had many callers, but only one used all
parameters. One parameter was unused, another one is now
hidden by a wrapper function (required for a future addition
anyway), so most callers use now a shorter parameter list.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
move the complete_insn_gp() helper function out of the VMX part
into the generic x86 part to make it usable by SVM.
Signed-off-by: Andre Przywara <andre.przywara@amd.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
|