summaryrefslogtreecommitdiffstats
path: root/arch/x86/crypto/sha1_ssse3_glue.c
Commit message (Collapse)AuthorAgeFilesLines
* x86/fpu, crypto x86/sha1_ssse3: Simplify the sha1_ssse3_mod_init() xfeature ↵Ingo Molnar2015-05-191-11/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | checks Use the new 'cpu_has_xfeatures()' function to query AVX CPU support. This has the following advantages to the driver: - Decouples the driver from FPU internals: it's now only using <asm/fpu/api.h>. - Removes detection complexity from the driver, no more raw XGETBV instruction - Shrinks the code a bit. - Standardizes feature name error message printouts across drivers There are also advantages to the x86 FPU code: once all drivers are decoupled from internals we can move them out of common headers and we'll also be able to remove xcr.h. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/fpu: Rename fpu/xsave.h to fpu/xstate.hIngo Molnar2015-05-191-1/+1
| | | | | | | | | | | | | | | | | | | | | | 'xsave' is an x86 instruction name to most people - but xsave.h is about a lot more than just the XSAVE instruction: it includes definitions and support, both internal and external, related to xstate and xfeatures support. As a first step in cleaning up the various xstate uses rename this header to 'fpu/xstate.h' to better reflect what this header file is about. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/fpu: Move xsave.h to fpu/xsave.hIngo Molnar2015-05-191-1/+1
| | | | | | | | | | | | | | | Move the xsave.h header file to the FPU directory as well. Reviewed-by: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/fpu: Rename i387.h to fpu/api.hIngo Molnar2015-05-191-1/+1
| | | | | | | | | | | | | | | | | | We already have fpu/types.h, move i387.h to fpu/api.h. The file name has become a misnomer anyway: it offers generic FPU APIs, but is not limited to i387 functionality. Reviewed-by: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
* crypto: x86/sha1_ssse3 - move SHA-1 SSSE3 implementation to base layerArd Biesheuvel2015-04-101-111/+28
| | | | | | | | This removes all the boilerplate from the existing implementation, and replaces it with calls into the base layer. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: prefix module autoloading with "crypto-"Kees Cook2014-11-241-1/+1
| | | | | | | | | | | This prefixes all crypto module loading with "crypto-" so we never run the risk of exposing module auto-loading to userspace via a crypto API, as demonstrated by Mathias Krause: https://lkml.org/lkml/2013/3/4/70 Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: x86/sha1 - re-enable the AVX variantMathias Krause2014-03-251-10/+16
| | | | | | | | | | | | | | | | | | Commit 7c1da8d0d0 "crypto: sha - SHA1 transform x86_64 AVX2" accidentally disabled the AVX variant by making the avx_usable() test not only fail in case the CPU doesn't support AVX or OSXSAVE but also if it doesn't support AVX2. Fix that regression by splitting up the AVX/AVX2 test into two functions. Also test for the BMI1 extension in the avx2_usable() test as the AVX2 implementation not only makes use of BMI2 but also BMI1 instructions. Cc: Chandramouli Narayanan <mouli@linux.intel.com> Signed-off-by: Mathias Krause <minipli@googlemail.com> Reviewed-by: H. Peter Anvin <hpa@linux.intel.com> Reviewed-by: Marek Vasut <marex@denx.de> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: sha - SHA1 transform x86_64 AVX2chandramouli narayanan2014-03-211-7/+42
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This git patch adds x86_64 AVX2 optimization of SHA1 transform to crypto support. The patch has been tested with 3.14.0-rc1 kernel. On a Haswell desktop, with turbo disabled and all cpus running at maximum frequency, tcrypt shows AVX2 performance improvement from 3% for 256 bytes update to 16% for 1024 bytes update over AVX implementation. This patch adds sha1_avx2_transform(), the glue, build and configuration changes needed for AVX2 optimization of SHA1 transform to crypto support. sha1-ssse3 is one module which adds the necessary optimization support (SSSE3/AVX/AVX2) for the low-level SHA1 transform function. With better optimization support, transform function is overridden as the case may be. In the case of AVX2, due to performance reasons across datablock sizes, the AVX or AVX2 transform function is used at run-time as it suits best. The Makefile change therefore appends the necessary objects to the linkage. Due to this, the patch merely appends AVX2 transform to the existing build mix and Kconfig support and leaves the configuration build support as is. Signed-off-by: Chandramouli Narayanan <mouli@linux.intel.com> Reviewed-by: Marek Vasut <marex@denx.de> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: sha1 - use Kbuild supplied flags for AVX testMathias Krause2012-06-121-3/+3
| | | | | | | | | | | Commit ea4d26ae ("raid5: add AVX optimized RAID5 checksumming") introduced x86/ arch wide defines for AFLAGS and CFLAGS indicating AVX support in binutils based on the same test we have in x86/crypto/ right now. To minimize duplication drop our implementation in favour to the one in x86/. Signed-off-by: Mathias Krause <minipli@googlemail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: sha1 - SSSE3 based SHA1 implementation for x86-64Mathias Krause2011-08-101-0/+240
This is an assembler implementation of the SHA1 algorithm using the Supplemental SSE3 (SSSE3) instructions or, when available, the Advanced Vector Extensions (AVX). Testing with the tcrypt module shows the raw hash performance is up to 2.3 times faster than the C implementation, using 8k data blocks on a Core 2 Duo T5500. For the smalest data set (16 byte) it is still 25% faster. Since this implementation uses SSE/YMM registers it cannot safely be used in every situation, e.g. while an IRQ interrupts a kernel thread. The implementation falls back to the generic SHA1 variant, if using the SSE/YMM registers is not possible. With this algorithm I was able to increase the throughput of a single IPsec link from 344 Mbit/s to 464 Mbit/s on a Core 2 Quad CPU using the SSSE3 variant -- a speedup of +34.8%. Saving and restoring SSE/YMM state might make the actual throughput fluctuate when there are FPU intensive userland applications running. For example, meassuring the performance using iperf2 directly on the machine under test gives wobbling numbers because iperf2 uses the FPU for each packet to check if the reporting interval has expired (in the above test I got min/max/avg: 402/484/464 MBit/s). Using this algorithm on a IPsec gateway gives much more reasonable and stable numbers, albeit not as high as in the directly connected case. Here is the result from an RFC 2544 test run with a EXFO Packet Blazer FTB-8510: frame size sha1-generic sha1-ssse3 delta 64 byte 37.5 MBit/s 37.5 MBit/s 0.0% 128 byte 56.3 MBit/s 62.5 MBit/s +11.0% 256 byte 87.5 MBit/s 100.0 MBit/s +14.3% 512 byte 131.3 MBit/s 150.0 MBit/s +14.2% 1024 byte 162.5 MBit/s 193.8 MBit/s +19.3% 1280 byte 175.0 MBit/s 212.5 MBit/s +21.4% 1420 byte 175.0 MBit/s 218.7 MBit/s +25.0% 1518 byte 150.0 MBit/s 181.2 MBit/s +20.8% The throughput for the largest frame size is lower than for the previous size because the IP packets need to be fragmented in this case to make there way through the IPsec tunnel. Signed-off-by: Mathias Krause <minipli@googlemail.com> Cc: Maxim Locktyukhin <maxim.locktyukhin@intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
OpenPOWER on IntegriCloud