| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Meelis Roos reported that kernels built with gcc-4.9 do not boot, we
eventually narrowed this down to only impacting machines using
UltraSPARC-III and derivitive cpus.
The crash happens right when the first user process is spawned:
[ 54.451346] Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000004
[ 54.451346]
[ 54.571516] CPU: 1 PID: 1 Comm: init Not tainted 3.16.0-rc2-00211-gd7933ab #96
[ 54.666431] Call Trace:
[ 54.698453] [0000000000762f8c] panic+0xb0/0x224
[ 54.759071] [000000000045cf68] do_exit+0x948/0x960
[ 54.823123] [000000000042cbc0] fault_in_user_windows+0xe0/0x100
[ 54.902036] [0000000000404ad0] __handle_user_windows+0x0/0x10
[ 54.978662] Press Stop-A (L1-A) to return to the boot prom
[ 55.050713] ---[ end Kernel panic - not syncing: Attempted to kill init! exitcode=0x00000004
Further investigation showed that compiling only per_cpu_patch() with
an older compiler fixes the boot.
Detailed analysis showed that the function is not being miscompiled by
gcc-4.9, but it is using a different register allocation ordering.
With the gcc-4.9 compiled function, something during the code patching
causes some of the %i* input registers to get corrupted. Perhaps
we have a TLB miss path into the firmware that is deep enough to
cause a register window spill and subsequent restore when we get
back from the TLB miss trap.
Let's plug this up by doing two things:
1) Stop using the firmware stack for client interface calls into
the firmware. Just use the kernel's stack.
2) As soon as we can, call into a new function "start_early_boot()"
to put a one-register-window buffer between the firmware's
deepest stack frame and the top-most initial kernel one.
Reported-by: Meelis Roos <mroos@linux.ee>
Tested-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
| |
Drop extern for all prototypes and adjust alignment of parameters
as required after the removal.
In a few rare cases adjust linelength to conform to maximum 80 chars,
and likewise in a few rare cases adjust alignment of parameters
to static functions.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
prom_printf() takes printf style arguments. Specifing GCC's format
attribute reveals that there are several wrong usages of prom_printf().
This fixes those wrong format strings and arguments, and also leaves
format attributes in order to detect similar mistakes at compile time.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: sparclinux@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
| |
Completely unused.
Based upon a patch by Julian Calaby.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
sparc64 systems have a restriction in that passing in buffer
addressses above 4GB to prom calls is not reliable.
We end up violating this when we do prom console writes, because we
use an on-stack buffer to translate '\n' into '\r\n'.
So instead, do this translation into an intermediate buffer, which is
in the kernel image and thus below 4GB, then pass that to the PROM
console write calls.
On the 32-bit side we don't have to deal with any of these issues, so
the new prom_console_write_buf() uses the existing prom_nbputchar()
implementation. However we can now mark those routines static.
Since the 64-bit side completely uses new code we can delete the
putchar bits as they are now completely unused.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
| |
Completely unused.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
| |
This gets us closer to being able to eliminate the use
of dynamic and stack based buffers, so that we can adhere
to the "no buffer addresses above 4GB" rule for PROM calls.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
| |
Never used outside of console_{32,64}.c
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
| |
Unused.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
| |
Only used by functions in misc_64.c so make it private
to that file.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
| |
Completely unused.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
| |
Unused.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
| |
Rather than passing around ints everywhere, use the
phandle type where appropriate for the various functions
that talk to the PROM.
Signed-off-by: Andres Salomon <dilinger@queued.net>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is based upon a report by Meelis Roos showing that it's possible
that we'll try to fetch a property that is 32K in size with some
devices. With the current fixed 3K buffer we use for moving data in
and out of the firmware during PROM calls, that simply won't work.
In fact, it will scramble random kernel data during bootup.
The reasoning behind the temporary buffer is entirely historical. It
used to be the case that we had problems referencing dynamic kernel
memory (including the stack) early in the boot process before we
explicitly told the firwmare to switch us over to the kernel trap
table.
So what we did was always give the firmware buffers that were locked
into the main kernel image.
But we no longer have problems like that, so get rid of all of this
indirect bounce buffering.
Besides fixing Meelis's bug, this also makes the kernel data about 3K
smaller.
It was also discovered during these conversions that the
implementation of prom_retain() was completely wrong, so that was
fixed here as well. Currently that interface is not in use.
Reported-by: Meelis Roos <mroos@linux.ee>
Tested-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
| |
__prom_getchild() and __prom_getsibling() are not used anywhere, so
don't export them.
Signed-off-by: Julian Calaby <julian.calaby@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
The majority of this patch was created by the following script:
***
ASM=arch/sparc/include/asm
mkdir -p $ASM
git mv include/asm-sparc64/ftrace.h $ASM
git rm include/asm-sparc64/*
git mv include/asm-sparc/* $ASM
sed -ie 's/asm-sparc64/asm/g' $ASM/*
sed -ie 's/asm-sparc/asm/g' $ASM/*
***
The rest was an update of the top-level Makefile to use sparc
for header files when sparc64 is being build.
And a small fixlet to pick up the correct unistd.h from
sparc64 code.
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
|