summaryrefslogtreecommitdiffstats
path: root/arch/s390/lib/uaccess.c
Commit message (Collapse)AuthorAgeFilesLines
* s390: fix preemption race in disable_sacf_uaccessMartin Schwidefsky2017-12-151-1/+1
| | | | | | | | | | | | | With CONFIG_PREEMPT=y there is a possible race in disable_sacf_uaccess. The new set_fs value needs to be stored the the task structure first, the control register update needs to be second. Otherwise a preemptive schedule may interrupt the code right after the control register update has been done and the next time the task is scheduled we get an incorrect value in the control register due to the old set_fs setting. Fixes: 0aaba41b58 ("s390: remove all code using the access register mode") Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390: remove all code using the access register modeMartin Schwidefsky2017-11-141-10/+80
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The vdso code for the getcpu() and the clock_gettime() call use the access register mode to access the per-CPU vdso data page with the current code. An alternative to the complicated AR mode is to use the secondary space mode. This makes the vdso faster and quite a bit simpler. The downside is that the uaccess code has to be changed quite a bit. Which instructions are used depends on the machine and what kind of uaccess operation is requested. The instruction dictates which ASCE value needs to be loaded into %cr1 and %cr7. The different cases: * User copy with MVCOS for z10 and newer machines The MVCOS instruction can copy between the primary space (aka user) and the home space (aka kernel) directly. For set_fs(KERNEL_DS) the kernel ASCE is loaded into %cr1. For set_fs(USER_DS) the user space is already loaded in %cr1. * User copy with MVCP/MVCS for older machines To be able to execute the MVCP/MVCS instructions the kernel needs to switch to primary mode. The control register %cr1 has to be set to the kernel ASCE and %cr7 to either the kernel ASCE or the user ASCE dependent on set_fs(KERNEL_DS) vs set_fs(USER_DS). * Data access in the user address space for strnlen / futex To use "normal" instruction with data from the user address space the secondary space mode is used. The kernel needs to switch to primary mode, %cr1 has to contain the kernel ASCE and %cr7 either the user ASCE or the kernel ASCE, dependent on set_fs. To load a new value into %cr1 or %cr7 is an expensive operation, the kernel tries to be lazy about it. E.g. for multiple user copies in a row with MVCP/MVCS the replacement of the vdso ASCE in %cr7 with the user ASCE is done only once. On return to user space a CPU bit is checked that loads the vdso ASCE again. To enable and disable the data access via the secondary space two new functions are added, enable_sacf_uaccess and disable_sacf_uaccess. The fact that a context is in secondary space uaccess mode is stored in the mm_segment_t value for the task. The code of an interrupt may use set_fs as long as it returns to the previous state it got with get_fs with another call to set_fs. The code in finish_arch_post_lock_switch simply has to do a set_fs with the current mm_segment_t value for the task. For CPUs with MVCOS: CPU running in | %cr1 ASCE | %cr7 ASCE | --------------------------------------|-----------|-----------| user space | user | vdso | kernel, USER_DS, normal-mode | user | vdso | kernel, USER_DS, normal-mode, lazy | user | user | kernel, USER_DS, sacf-mode | kernel | user | kernel, KERNEL_DS, normal-mode | kernel | vdso | kernel, KERNEL_DS, normal-mode, lazy | kernel | kernel | kernel, KERNEL_DS, sacf-mode | kernel | kernel | For CPUs without MVCOS: CPU running in | %cr1 ASCE | %cr7 ASCE | --------------------------------------|-----------|-----------| user space | user | vdso | kernel, USER_DS, normal-mode | user | vdso | kernel, USER_DS, normal-mode lazy | kernel | user | kernel, USER_DS, sacf-mode | kernel | user | kernel, KERNEL_DS, normal-mode | kernel | vdso | kernel, KERNEL_DS, normal-mode, lazy | kernel | kernel | kernel, KERNEL_DS, sacf-mode | kernel | kernel | The lines with "lazy" refer to the state after a copy via the secondary space with a delayed reload of %cr1 and %cr7. There are three hardware address spaces that can cause a DAT exception, primary, secondary and home space. The exception can be related to four different fault types: user space fault, vdso fault, kernel fault, and the gmap faults. Dependent on the set_fs state and normal vs. sacf mode there are a number of fault combinations: 1) user address space fault via the primary ASCE 2) gmap address space fault via the primary ASCE 3) kernel address space fault via the primary ASCE for machines with MVCOS and set_fs(KERNEL_DS) 4) vdso address space faults via the secondary ASCE with an invalid address while running in secondary space in problem state 5) user address space fault via the secondary ASCE for user-copy based on the secondary space mode, e.g. futex_ops or strnlen_user 6) kernel address space fault via the secondary ASCE for user-copy with secondary space mode with set_fs(KERNEL_DS) 7) kernel address space fault via the primary ASCE for user-copy with secondary space mode with set_fs(USER_DS) on machines without MVCOS. 8) kernel address space fault via the home space ASCE Replace user_space_fault() with a new function get_fault_type() that can distinguish all four different fault types. With these changes the futex atomic ops from the kernel and the strnlen_user will get a little bit slower, as well as the old style uaccess with MVCP/MVCS. All user accesses based on MVCOS will be as fast as before. On the positive side, the user space vdso code is a lot faster and Linux ceases to use the complicated AR mode. Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
* License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman2017-11-021-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* s390/uaccess: avoid mvcos jump labelMartin Schwidefsky2017-08-291-12/+26
| | | | | | | | | | | | If the kernel is compiled for z10 or later machines the uaccess code inlines the mvcos instruction. The facility bit 27 which indicates the availability of MVCOS has to be set. The have_mvcos jump label will always be true. Make the generation of the have_mvcos jump label conditional on !CONFIG_HAVE_MARCH_Z10_FEATURES. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/uaccess: use sane length for __strncpy_from_user()Heiko Carstens2017-05-091-2/+2
| | | | | | | | | | | | | | | | | | | | | | | The average string that is copied from user space to kernel space is rather short. E.g. booting a system involves about 50.000 strncpy_from_user() calls where the NULL terminated string has an average size of 27 bytes. By default our s390 specific strncpy_from_user() implementation however copies up to 4096 bytes, which is a waste of cpu cycles and cache lines. Therefore reduce the default length to L1_CACHE_BYTES (256 bytes), which also reduces the average execution time of strncpy_from_user() by 30-40%. Alternatively we could have switched to the generic strncpy_from_user() implementation, however it turned out that that variant would be slower than the now optimized s390 variant. Reported-by: Al Viro <viro@ZenIV.linux.org.uk> Reported-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Reviewed-by: Gerald Schaefer <gerald.schaefer@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390: get rid of zeroing, switch to RAW_COPY_USERAl Viro2017-03-301-45/+23
| | | | | [folded a fix from Martin] Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* Merge tag 'usercopy-v4.8' of ↵Linus Torvalds2016-08-081-0/+2
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull usercopy protection from Kees Cook: "Tbhis implements HARDENED_USERCOPY verification of copy_to_user and copy_from_user bounds checking for most architectures on SLAB and SLUB" * tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: mm: SLUB hardened usercopy support mm: SLAB hardened usercopy support s390/uaccess: Enable hardened usercopy sparc/uaccess: Enable hardened usercopy powerpc/uaccess: Enable hardened usercopy ia64/uaccess: Enable hardened usercopy arm64/uaccess: Enable hardened usercopy ARM: uaccess: Enable hardened usercopy x86/uaccess: Enable hardened usercopy mm: Hardened usercopy mm: Implement stack frame object validation mm: Add is_migrate_cma_page
| * s390/uaccess: Enable hardened usercopyKees Cook2016-07-261-0/+2
| | | | | | | | | | | | Enables CONFIG_HARDENED_USERCOPY checks on s390. Signed-off-by: Kees Cook <keescook@chromium.org>
* | s390/uaccess: fix whitespace damageHeiko Carstens2016-06-131-3/+3
|/ | | | | | | | Fix some whitespace damage that was introduced by me with a query-replace when removing 31 bit support. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* Merge branch 'locking-core-for-linus' of ↵Linus Torvalds2015-09-031-6/+6
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking and atomic updates from Ingo Molnar: "Main changes in this cycle are: - Extend atomic primitives with coherent logic op primitives (atomic_{or,and,xor}()) and deprecate the old partial APIs (atomic_{set,clear}_mask()) The old ops were incoherent with incompatible signatures across architectures and with incomplete support. Now every architecture supports the primitives consistently (by Peter Zijlstra) - Generic support for 'relaxed atomics': - _acquire/release/relaxed() flavours of xchg(), cmpxchg() and {add,sub}_return() - atomic_read_acquire() - atomic_set_release() This came out of porting qwrlock code to arm64 (by Will Deacon) - Clean up the fragile static_key APIs that were causing repeat bugs, by introducing a new one: DEFINE_STATIC_KEY_TRUE(name); DEFINE_STATIC_KEY_FALSE(name); which define a key of different types with an initial true/false value. Then allow: static_branch_likely() static_branch_unlikely() to take a key of either type and emit the right instruction for the case. To be able to know the 'type' of the static key we encode it in the jump entry (by Peter Zijlstra) - Static key self-tests (by Jason Baron) - qrwlock optimizations (by Waiman Long) - small futex enhancements (by Davidlohr Bueso) - ... and misc other changes" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (63 commits) jump_label/x86: Work around asm build bug on older/backported GCCs locking, ARM, atomics: Define our SMP atomics in terms of _relaxed() operations locking, include/llist: Use linux/atomic.h instead of asm/cmpxchg.h locking/qrwlock: Make use of _{acquire|release|relaxed}() atomics locking/qrwlock: Implement queue_write_unlock() using smp_store_release() locking/lockref: Remove homebrew cmpxchg64_relaxed() macro definition locking, asm-generic: Add _{relaxed|acquire|release}() variants for 'atomic_long_t' locking, asm-generic: Rework atomic-long.h to avoid bulk code duplication locking/atomics: Add _{acquire|release|relaxed}() variants of some atomic operations locking, compiler.h: Cast away attributes in the WRITE_ONCE() magic locking/static_keys: Make verify_keys() static jump label, locking/static_keys: Update docs locking/static_keys: Provide a selftest jump_label: Provide a self-test s390/uaccess, locking/static_keys: employ static_branch_likely() x86, tsc, locking/static_keys: Employ static_branch_likely() locking/static_keys: Add selftest locking/static_keys: Add a new static_key interface locking/static_keys: Rework update logic locking/static_keys: Add static_key_{en,dis}able() helpers ...
| * s390/uaccess, locking/static_keys: employ static_branch_likely()Heiko Carstens2015-08-031-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use the new static_branch_likely() primitive to make sure that the most likely case is executed without taking an unconditional branch. This wasn't possible with the old jump label primitives. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20150729064600.GB3953@osiris Signed-off-by: Ingo Molnar <mingo@kernel.org>
* | s390/uaccess: remove uaccess_primary kernel parameterHeiko Carstens2015-08-191-14/+1
|/ | | | | | | | | | | | | | | get_user() and put_user() are inline functions in the meantime again. Both will generate the mvcos instruction if compiled with -march=z10 (or greater). The kernel parameter "uaccess_primary" can only change the behavior of out-of-line uaccess functions like copy_from_user() to not use the mvcos instruction, but not for the above named inlined functions. Therefore it is quite useless and the parameter can be removed. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390: remove 31 bit supportHeiko Carstens2015-03-251-75/+61
| | | | | | | | | | | | | | | | | | | Remove the 31 bit support in order to reduce maintenance cost and effectively remove dead code. Since a couple of years there is no distribution left that comes with a 31 bit kernel. The 31 bit kernel also has been broken since more than a year before anybody noticed. In addition I added a removal warning to the kernel shown at ipl for 5 minutes: a960062e5826 ("s390: add 31 bit warning message") which let everybody know about the plan to remove 31 bit code. We didn't get any response. Given that the last 31 bit only machine was introduced in 1999 let's remove the code. Anybody with 31 bit user space code can still use the compat mode. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/uaccess: simplify control register updatesMartin Schwidefsky2014-05-201-5/+5
| | | | | | | | | | | | | Always switch to the kernel ASCE in switch_mm. Load the secondary space ASCE in finish_arch_post_lock_switch after checking that any pending page table operations have completed. The primary ASCE is loaded in entry[64].S. With this the update_primary_asce call can be removed from the switch_to macro and from the start of switch_mm function. Remove the load_primary argument from update_user_asce/clear_user_asce, rename update_user_asce to set_user_asce and rename update_primary_asce to load_kernel_asce. Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/uaccess: fix possible register corruption in strnlen_user_srst()Heiko Carstens2014-04-111-3/+2
| | | | | | | | | | | | The whole point of the out-of-line strnlen_user_srst() function was to avoid corruption of register 0 due to register asm assignment. However 'somebody' :) forgot to remove the update_primary_asce() function call, which may clobber register 0 contents. So let's remove that call and also move the size check to the calling function. Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* s390/uaccess: rework uaccess code - fix locking issuesHeiko Carstens2014-04-031-0/+407
The current uaccess code uses a page table walk in some circumstances, e.g. in case of the in atomic futex operations or if running on old hardware which doesn't support the mvcos instruction. However it turned out that the page table walk code does not correctly lock page tables when accessing page table entries. In other words: a different cpu may invalidate a page table entry while the current cpu inspects the pte. This may lead to random data corruption. Adding correct locking however isn't trivial for all uaccess operations. Especially copy_in_user() is problematic since that requires to hold at least two locks, but must be protected against ABBA deadlock when a different cpu also performs a copy_in_user() operation. So the solution is a different approach where we change address spaces: User space runs in primary address mode, or access register mode within vdso code, like it currently already does. The kernel usually also runs in home space mode, however when accessing user space the kernel switches to primary or secondary address mode if the mvcos instruction is not available or if a compare-and-swap (futex) instruction on a user space address is performed. KVM however is special, since that requires the kernel to run in home address space while implicitly accessing user space with the sie instruction. So we end up with: User space: - runs in primary or access register mode - cr1 contains the user asce - cr7 contains the user asce - cr13 contains the kernel asce Kernel space: - runs in home space mode - cr1 contains the user or kernel asce -> the kernel asce is loaded when a uaccess requires primary or secondary address mode - cr7 contains the user or kernel asce, (changed with set_fs()) - cr13 contains the kernel asce In case of uaccess the kernel changes to: - primary space mode in case of a uaccess (copy_to_user) and uses e.g. the mvcp instruction to access user space. However the kernel will stay in home space mode if the mvcos instruction is available - secondary space mode in case of futex atomic operations, so that the instructions come from primary address space and data from secondary space In case of kvm the kernel runs in home space mode, but cr1 gets switched to contain the gmap asce before the sie instruction gets executed. When the sie instruction is finished cr1 will be switched back to contain the user asce. A context switch between two processes will always load the kernel asce for the next process in cr1. So the first exit to user space is a bit more expensive (one extra load control register instruction) than before, however keeps the code rather simple. In sum this means there is no need to perform any error prone page table walks anymore when accessing user space. The patch seems to be rather large, however it mainly removes the the page table walk code and restores the previously deleted "standard" uaccess code, with a couple of changes. The uaccess without mvcos mode can be enforced with the "uaccess_primary" kernel parameter. Reported-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
OpenPOWER on IntegriCloud