summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kvm
Commit message (Collapse)AuthorAgeFilesLines
* Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2014-07-217-56/+33
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull kvm fixes from Paolo Bonzini: "These are mostly PPC changes for 3.16-new things. However, there is an x86 change too and it is a regression from 3.14. As it only affects nested virtualization and there were other changes in this area in 3.16, I am not nominating it for 3.15-stable" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM: x86: Check for nested events if there is an injectable interrupt KVM: PPC: RTAS: Do byte swaps explicitly KVM: PPC: Book3S PR: Fix ABIv2 on LE KVM: PPC: Assembly functions exported to modules need _GLOBAL_TOC() PPC: Add _GLOBAL_TOC for 32bit KVM: PPC: BOOK3S: HV: Use base page size when comparing against slb value KVM: PPC: Book3E: Unlock mmu_lock when setting caching atttribute
| * Merge tag 'signed-for-3.16' of git://github.com/agraf/linux-2.6 into kvm-masterPaolo Bonzini2014-07-087-56/+33
| |\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch queue for 3.16 - 2014-07-08 A few bug fixes to make 3.16 work well with KVM on PowerPC: - Fix ppc32 module builds - Fix Little Endian hosts - Fix Book3S HV HPTE lookup with huge pages in guest - Fix BookE lock leak
| | * KVM: PPC: RTAS: Do byte swaps explicitlyAlexander Graf2014-07-071-47/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In commit b59d9d26b we introduced implicit byte swaps for RTAS calls. Unfortunately we messed up and didn't swizzle return values properly. Also the old approach wasn't "sparse" compatible - we were randomly reading __be32 values on an LE system. Let's just do all of the swizzling explicitly with byte swaps right where values get used. That way we can at least catch bugs using sparse. This patch fixes XICS RTAS emulation on little endian hosts for me. Signed-off-by: Alexander Graf <agraf@suse.de>
| | * KVM: PPC: Book3S PR: Fix ABIv2 on LEAlexander Graf2014-07-072-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | We switched to ABIv2 on Little Endian systems now which gets rid of the dotted function names. Branch to the actual functions when we see such a system. Signed-off-by: Alexander Graf <agraf@suse.de>
| | * KVM: PPC: Assembly functions exported to modules need _GLOBAL_TOC()Anton Blanchard2014-07-072-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Both kvmppc_hv_entry_trampoline and kvmppc_entry_trampoline are assembly functions that are exported to modules and also require a valid r2. As such we need to use _GLOBAL_TOC so we provide a global entry point that establishes the TOC (r2). Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * KVM: PPC: BOOK3S: HV: Use base page size when comparing against slb valueAneesh Kumar K.V2014-06-252-6/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With guests supporting Multiple page size per segment (MPSS), hpte_page_size returns the actual page size used. Add a new function to return base page size and use that to compare against the the page size calculated from SLB. Without this patch a hpte lookup can fail since we are comparing wrong page size in kvmppc_hv_find_lock_hpte. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| | * KVM: PPC: Book3E: Unlock mmu_lock when setting caching atttributeMihai Caraman2014-06-241-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The patch 08c9a188d0d0fc0f0c5e17d89a06bb59c493110f kvm: powerpc: use caching attributes as per linux pte do not handle properly the error case, letting mmu_lock locked. The lock will further generate a RCU stall from kvmppc_e500_emul_tlbwe() caller. In case of an error go to out label. Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com> Signed-off-by: Alexander Graf <agraf@suse.de>
* | | powerpc/kvm: Remove redundant save of SIER AND MMCR2Joel Stanley2014-07-111-5/+0
|/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | These two registers are already saved in the block above. Aside from being unnecessary, by the time we get down to the second save location r8 no longer contains MMCR2, so we are clobbering the saved value with PMC5. MMCR2 primarily consists of counter freeze bits. So restoring the value of PMC5 into MMCR2 will most likely have the effect of freezing counters. Fixes: 72cde5a88d37 ("KVM: PPC: Book3S HV: Save/restore host PMU registers that are new in POWER8") Cc: stable@vger.kernel.org Signed-off-by: Joel Stanley <joel@jms.id.au> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Acked-by: Paul Mackerras <paulus@samba.org> Reviewed-by: Alexander Graf <agraf@suse.de> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* | powerpc/book3s: Fix guest MC delivery mechanism to avoid soft lockups in guest.Mahesh Salgaonkar2014-06-112-11/+23
|/ | | | | | | | | | | | | | | | | | Currently we forward MCEs to guest which have been recovered by guest. And for unhandled errors we do not deliver the MCE to guest. It looks like with no support of FWNMI in qemu, guest just panics whenever we deliver the recovered MCEs to guest. Also, the existig code used to return to host for unhandled errors which was casuing guest to hang with soft lockups inside guest and makes it difficult to recover guest instance. This patch now forwards all fatal MCEs to guest causing guest to crash/panic. And, for recovered errors we just go back to normal functioning of guest instead of returning to host. This fixes soft lockup issues in guest. This patch also fixes an issue where guest MCE events were not logged to host console. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* Merge branch 'next' of ↵Linus Torvalds2014-06-105-35/+71
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc Pull powerpc updates from Ben Herrenschmidt: "Here is the bulk of the powerpc changes for this merge window. It got a bit delayed in part because I wasn't paying attention, and in part because I discovered I had a core PCI change without a PCI maintainer ack in it. Bjorn eventually agreed it was ok to merge it though we'll probably improve it later and I didn't want to rebase to add his ack. There is going to be a bit more next week, essentially fixes that I still want to sort through and test. The biggest item this time is the support to build the ppc64 LE kernel with our new v2 ABI. We previously supported v2 userspace but the kernel itself was a tougher nut to crack. This is now sorted mostly thanks to Anton and Rusty. We also have a fairly big series from Cedric that add support for 64-bit LE zImage boot wrapper. This was made harder by the fact that traditionally our zImage wrapper was always 32-bit, but our new LE toolchains don't really support 32-bit anymore (it's somewhat there but not really "supported") so we didn't want to rely on it. This meant more churn that just endian fixes. This brings some more LE bits as well, such as the ability to run in LE mode without a hypervisor (ie. under OPAL firmware) by doing the right OPAL call to reinitialize the CPU to take HV interrupts in the right mode and the usual pile of endian fixes. There's another series from Gavin adding EEH improvements (one day we *will* have a release with less than 20 EEH patches, I promise!). Another highlight is the support for the "Split core" functionality on P8 by Michael. This allows a P8 core to be split into "sub cores" of 4 threads which allows the subcores to run different guests under KVM (the HW still doesn't support a partition per thread). And then the usual misc bits and fixes ..." [ Further delayed by gmail deciding that BenH is a dirty spammer. Google knows. ] * 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (155 commits) powerpc/powernv: Add missing include to LPC code selftests/powerpc: Test the THP bug we fixed in the previous commit powerpc/mm: Check paca psize is up to date for huge mappings powerpc/powernv: Pass buffer size to OPAL validate flash call powerpc/pseries: hcall functions are exported to modules, need _GLOBAL_TOC() powerpc: Exported functions __clear_user and copy_page use r2 so need _GLOBAL_TOC() powerpc/powernv: Set memory_block_size_bytes to 256MB powerpc: Allow ppc_md platform hook to override memory_block_size_bytes powerpc/powernv: Fix endian issues in memory error handling code powerpc/eeh: Skip eeh sysfs when eeh is disabled powerpc: 64bit sendfile is capped at 2GB powerpc/powernv: Provide debugfs access to the LPC bus via OPAL powerpc/serial: Use saner flags when creating legacy ports powerpc: Add cpu family documentation powerpc/xmon: Fix up xmon format strings powerpc/powernv: Add calls to support little endian host powerpc: Document sysfs DSCR interface powerpc: Fix regression of per-CPU DSCR setting powerpc: Split __SYSFS_SPRSETUP macro arch: powerpc/fadump: Cleaning up inconsistent NULL checks ...
| * powerpc: Fix regression of per-CPU DSCR settingSam bobroff2014-05-281-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since commit "efcac65 powerpc: Per process DSCR + some fixes (try#4)" it is no longer possible to set the DSCR on a per-CPU basis. The old behaviour was to minipulate the DSCR SPR directly but this is no longer sufficient: the value is quickly overwritten by context switching. This patch stores the per-CPU DSCR value in a kernel variable rather than directly in the SPR and it is used whenever a process has not set the DSCR itself. The sysfs interface (/sys/devices/system/cpu/cpuN/dscr) is unchanged. Writes to the old global default (/sys/devices/system/cpu/dscr_default) now set all of the per-CPU values and reads return the last written value. The new per-CPU default is added to the paca_struct and is used everywhere outside of sysfs.c instead of the old global default. Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
| * powerpc/kvm/book3s_hv: Use threads_per_subcore in KVMMichael Ellerman2014-05-282-11/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To support split core on POWER8 we need to modify various parts of the KVM code to use threads_per_subcore instead of threads_per_core. On systems that do not support split core threads_per_subcore == threads_per_core and these changes are a nop. We use threads_per_subcore as the value reported by KVM_CAP_PPC_SMT. This communicates to userspace that guests can only be created with a value of threads_per_core that is less than or equal to the current threads_per_subcore. This ensures that guests can only be created with a thread configuration that we are able to run given the current split core mode. Although threads_per_subcore can change during the life of the system, the commit that enables that will ensure that threads_per_subcore does not change during the life of a KVM VM. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Michael Neuling <mikey@neuling.org> Acked-by: Alexander Graf <agraf@suse.de> Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
| * powerpc/kvm/book3s_hv: Rework the secondary inhibit codeMichael Ellerman2014-05-282-4/+35
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As part of the support for split core on POWER8, we want to be able to block splitting of the core while KVM VMs are active. The logic to do that would be exactly the same as the code we currently have for inhibiting onlining of secondaries. Instead of adding an identical mechanism to block split core, rework the secondary inhibit code to be a "HV KVM is active" check. We can then use that in both the cpu hotplug code and the upcoming split core code. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Michael Neuling <mikey@neuling.org> Acked-by: Alexander Graf <agraf@suse.de> Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
| * Merge remote-tracking branch 'anton/abiv2' into nextBenjamin Herrenschmidt2014-05-052-18/+18
| |\ | | | | | | | | | | | | | | | | | | This series adds support for building the powerpc 64-bit LE kernel using the new ABI v2. We already supported running ABI v2 userspace programs but this adds support for building the kernel itself using the new ABI.
| | * powerpc: Create DOTSYM to wrap dot symbol usageAnton Blanchard2014-04-231-14/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are a few places we have to use dot symbols with the current ABI - the syscall table and the kvm hcall table. Wrap both of these with a new macro called DOTSYM so it will be easy to transition away from dot symbols in a future ABI. Signed-off-by: Anton Blanchard <anton@samba.org>
| | * powerpc: No need to use dot symbols when branching to a functionAnton Blanchard2014-04-232-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | binutils is smart enough to know that a branch to a function descriptor is actually a branch to the functions text address. Alan tells me that binutils has been doing this for 9 years. Signed-off-by: Anton Blanchard <anton@samba.org>
* | | Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm into nextLinus Torvalds2014-06-0424-332/+803
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull KVM updates from Paolo Bonzini: "At over 200 commits, covering almost all supported architectures, this was a pretty active cycle for KVM. Changes include: - a lot of s390 changes: optimizations, support for migration, GDB support and more - ARM changes are pretty small: support for the PSCI 0.2 hypercall interface on both the guest and the host (the latter acked by Catalin) - initial POWER8 and little-endian host support - support for running u-boot on embedded POWER targets - pretty large changes to MIPS too, completing the userspace interface and improving the handling of virtualized timer hardware - for x86, a larger set of changes is scheduled for 3.17. Still, we have a few emulator bugfixes and support for running nested fully-virtualized Xen guests (para-virtualized Xen guests have always worked). And some optimizations too. The only missing architecture here is ia64. It's not a coincidence that support for KVM on ia64 is scheduled for removal in 3.17" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (203 commits) KVM: add missing cleanup_srcu_struct KVM: PPC: Book3S PR: Rework SLB switching code KVM: PPC: Book3S PR: Use SLB entry 0 KVM: PPC: Book3S HV: Fix machine check delivery to guest KVM: PPC: Book3S HV: Work around POWER8 performance monitor bugs KVM: PPC: Book3S HV: Make sure we don't miss dirty pages KVM: PPC: Book3S HV: Fix dirty map for hugepages KVM: PPC: Book3S HV: Put huge-page HPTEs in rmap chain for base address KVM: PPC: Book3S HV: Fix check for running inside guest in global_invalidates() KVM: PPC: Book3S: Move KVM_REG_PPC_WORT to an unused register number KVM: PPC: Book3S: Add ONE_REG register names that were missed KVM: PPC: Add CAP to indicate hcall fixes KVM: PPC: MPIC: Reset IRQ source private members KVM: PPC: Graciously fail broken LE hypercalls PPC: ePAPR: Fix hypercall on LE guest KVM: PPC: BOOK3S: Remove open coded make_dsisr in alignment handler KVM: PPC: BOOK3S: Always use the saved DAR value PPC: KVM: Make NX bit available with magic page KVM: PPC: Disable NX for old magic page using guests KVM: PPC: BOOK3S: HV: Add mixed page-size support for guest ...
| * | | KVM: PPC: Book3S PR: Rework SLB switching codeAlexander Graf2014-05-301-45/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On LPAR guest systems Linux enables the shadow SLB to indicate to the hypervisor a number of SLB entries that always have to be available. Today we go through this shadow SLB and disable all ESID's valid bits. However, pHyp doesn't like this approach very much and honors us with fancy machine checks. Fortunately the shadow SLB descriptor also has an entry that indicates the number of valid entries following. During the lifetime of a guest we can just swap that value to 0 and don't have to worry about the SLB restoration magic. While we're touching the code, let's also make it more readable (get rid of rldicl), allow it to deal with a dynamic number of bolted SLB entries and only do shadow SLB swizzling on LPAR systems. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S PR: Use SLB entry 0Alexander Graf2014-05-302-8/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We didn't make use of SLB entry 0 because ... of no good reason. SLB entry 0 will always be used by the Linux linear SLB entry, so the fact that slbia does not invalidate it doesn't matter as we overwrite SLB 0 on exit anyway. Just enable use of SLB entry 0 for our shadow SLB code. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S HV: Fix machine check delivery to guestPaul Mackerras2014-05-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The code that delivered a machine check to the guest after handling it in real mode failed to load up r11 before calling kvmppc_msr_interrupt, which needs the old MSR value in r11 so it can see the transactional state there. This adds the missing load. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S HV: Work around POWER8 performance monitor bugsPaul Mackerras2014-05-301-2/+57
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds workarounds for two hardware bugs in the POWER8 performance monitor unit (PMU), both related to interrupt generation. The effect of these bugs is that PMU interrupts can get lost, leading to tools such as perf reporting fewer counts and samples than they should. The first bug relates to the PMAO (perf. mon. alert occurred) bit in MMCR0; setting it should cause an interrupt, but doesn't. The other bug relates to the PMAE (perf. mon. alert enable) bit in MMCR0. Setting PMAE when a counter is negative and counter negative conditions are enabled to cause alerts should cause an alert, but doesn't. The workaround for the first bug is to create conditions where a counter will overflow, whenever we are about to restore a MMCR0 value that has PMAO set (and PMAO_SYNC clear). The workaround for the second bug is to freeze all counters using MMCR2 before reading MMCR0. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S HV: Make sure we don't miss dirty pagesPaul Mackerras2014-05-301-10/+37
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Current, when testing whether a page is dirty (when constructing the bitmap for the KVM_GET_DIRTY_LOG ioctl), we test the C (changed) bit in the HPT entries mapping the page, and if it is 0, we consider the page to be clean. However, the Power ISA doesn't require processors to set the C bit to 1 immediately when writing to a page, and in fact allows them to delay the writeback of the C bit until they receive a TLB invalidation for the page. Thus it is possible that the page could be dirty and we miss it. Now, if there are vcpus running, this is not serious since the collection of the dirty log is racy already - some vcpu could dirty the page just after we check it. But if there are no vcpus running we should return definitive results, in case we are in the final phase of migrating the guest. Also, if the permission bits in the HPTE don't allow writing, then we know that no CPU can set C. If the HPTE was previously writable and the page was modified, any C bit writeback would have been flushed out by the tlbie that we did when changing the HPTE to read-only. Otherwise we need to do a TLB invalidation even if the C bit is 0, and then check the C bit. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S HV: Fix dirty map for hugepagesAlexey Kardashevskiy2014-05-301-9/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The dirty map that we construct for the KVM_GET_DIRTY_LOG ioctl has one bit per system page (4K/64K). Currently, we only set one bit in the map for each HPT entry with the Change bit set, even if the HPT is for a large page (e.g., 16MB). Userspace then considers only the first system page dirty, though in fact the guest may have modified anywhere in the large page. To fix this, we make kvm_test_clear_dirty() return the actual number of pages that are dirty (and rename it to kvm_test_clear_dirty_npages() to emphasize that that's what it returns). In kvmppc_hv_get_dirty_log() we then set that many bits in the dirty map. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S HV: Put huge-page HPTEs in rmap chain for base addressPaul Mackerras2014-05-301-2/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, when a huge page is faulted in for a guest, we select the rmap chain to insert the HPTE into based on the guest physical address that the guest tried to access. Since there is an rmap chain for each system page, there are many rmap chains for the area covered by a huge page (e.g. 256 for 16MB pages when PAGE_SIZE = 64kB), and the huge-page HPTE could end up in any one of them. For consistency, and to make the huge-page HPTEs easier to find, we now put huge-page HPTEs in the rmap chain corresponding to the base address of the huge page. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S HV: Fix check for running inside guest in global_invalidates()Paul Mackerras2014-05-301-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The global_invalidates() function contains a check that is intended to tell whether we are currently executing in the context of a hypercall issued by the guest. The reason is that the optimization of using a local TLB invalidate instruction is only valid in that context. The check was testing local_paca->kvm_hstate.kvm_vcore, which gets set when entering the guest but no longer gets cleared when exiting the guest. To fix this, we use the kvm_vcpu field instead, which does get cleared when exiting the guest, by the kvmppc_release_hwthread() calls inside kvmppc_run_core(). The effect of having the check wrong was that when kvmppc_do_h_remove() got called from htab_write() on the destination machine during a migration, it cleared the current cpu's bit in kvm->arch.need_tlb_flush. This meant that when the guest started running in the destination VM, it may miss out on doing a complete TLB flush, and therefore may end up using stale TLB entries from a previous guest that used the same LPID value. This should make migration more reliable. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Add CAP to indicate hcall fixesAlexander Graf2014-05-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We worked around some nasty KVM magic page hcall breakages: 1) NX bit not honored, so ignore NX when we detect it 2) LE guests swizzle hypercall instruction Without these fixes in place, there's no way it would make sense to expose kvm hypercalls to a guest. Chances are immensely high it would trip over and break. So add a new CAP that gives user space a hint that we have workarounds for the bugs above in place. It can use those as hint to disable PV hypercalls when the guest CPU is anything POWER7 or higher and the host does not have fixes in place. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: MPIC: Reset IRQ source private membersAlexander Graf2014-05-301-1/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When we reset the in-kernel MPIC controller, we forget to reset some hidden state such as destmask and output. This state is usually set when the guest writes to the IDR register for a specific IRQ line. To make sure we stay in sync and don't forget hidden state, treat reset of the IDR register as a simple write of the IDR register. That automatically updates all the hidden state as well. Reported-by: Paul Janzen <pcj@pauljanzen.org> Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Graciously fail broken LE hypercallsAlexander Graf2014-05-301-0/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are LE Linux guests out there that don't handle hypercalls correctly. Instead of interpreting the instruction stream from device tree as big endian they assume it's a little endian instruction stream and fail. When we see an illegal instruction from such a byte reversed instruction stream, bail out graciously and just declare every hcall as error. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: BOOK3S: Remove open coded make_dsisr in alignment handlerAneesh Kumar K.V2014-05-301-38/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use make_dsisr instead of open coding it. This also have the added benefit of handling alignment interrupt on additional instructions. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: BOOK3S: Always use the saved DAR valueAneesh Kumar K.V2014-05-301-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Although it's optional, IBM POWER cpus always had DAR value set on alignment interrupt. So don't try to compute these values. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Disable NX for old magic page using guestsAlexander Graf2014-05-302-2/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Old guests try to use the magic page, but map their trampoline code inside of an NX region. Since we can't fix those old kernels, try to detect whether the guest is sane or not. If not, just disable NX functionality in KVM so that old guests at least work at all. For newer guests, add a bit that we can set to keep NX functionality available. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: BOOK3S: HV: Add mixed page-size support for guestAneesh Kumar K.V2014-05-301-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On recent IBM Power CPUs, while the hashed page table is looked up using the page size from the segmentation hardware (i.e. the SLB), it is possible to have the HPT entry indicate a larger page size. Thus for example it is possible to put a 16MB page in a 64kB segment, but since the hash lookup is done using a 64kB page size, it may be necessary to put multiple entries in the HPT for a single 16MB page. This capability is called mixed page-size segment (MPSS). With MPSS, there are two relevant page sizes: the base page size, which is the size used in searching the HPT, and the actual page size, which is the size indicated in the HPT entry. [ Note that the actual page size is always >= base page size ]. We use "ibm,segment-page-sizes" device tree node to advertise the MPSS support to PAPR guest. The penc encoding indicates whether we support a specific combination of base page size and actual page size in the same segment. We also use the penc value in the LP encoding of HPTE entry. This patch exposes MPSS support to KVM guest by advertising the feature via "ibm,segment-page-sizes". It also adds the necessary changes to decode the base page size and the actual page size correctly from the HPTE entry. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: BOOK3S: HV: Prefer CMA region for hash page table allocationAneesh Kumar K.V2014-05-301-17/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Today when KVM tries to reserve memory for the hash page table it allocates from the normal page allocator first. If that fails it falls back to CMA's reserved region. One of the side effects of this is that we could end up exhausting the page allocator and get linux into OOM conditions while we still have plenty of space available in CMA. This patch addresses this issue by first trying hash page table allocation from CMA's reserved region before falling back to the normal page allocator. So if we run out of memory, we really are out of memory. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S PR: Expose TM registersAlexander Graf2014-05-302-1/+41
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | POWER8 introduces transactional memory which brings along a number of new registers and MSR bits. Implementing all of those is a pretty big headache, so for now let's at least emulate enough to make Linux's context switching code happy. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S PR: Expose EBB registersAlexander Graf2014-05-303-18/+40
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | POWER8 introduces a new facility called the "Event Based Branch" facility. It contains of a few registers that indicate where a guest should branch to when a defined event occurs and it's in PR mode. We don't want to really enable EBB as it will create a big mess with !PR guest mode while hardware is in PR and we don't really emulate the PMU anyway. So instead, let's just leave it at emulation of all its registers. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S PR: Expose TAR facility to guestAlexander Graf2014-05-303-6/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | POWER8 implements a new register called TAR. This register has to be enabled in FSCR and then from KVM's point of view is mere storage. This patch enables the guest to use TAR. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S PR: Handle Facility interrupt and FSCRAlexander Graf2014-05-305-6/+109
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | POWER8 introduced a new interrupt type called "Facility unavailable interrupt" which contains its status message in a new register called FSCR. Handle these exits and try to emulate instructions for unhandled facilities. Follow-on patches enable KVM to expose specific facilities into the guest. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S PR: Emulate TIR registerAlexander Graf2014-05-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In parallel to the Processor ID Register (PIR) threaded POWER8 also adds a Thread ID Register (TIR). Since PR KVM doesn't emulate more than one thread per core, we can just always expose 0 here. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S PR: Ignore PMU SPRsAlexander Graf2014-05-301-0/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | When we expose a POWER8 CPU into the guest, it will start accessing PMU SPRs that we don't emulate. Just ignore accesses to them. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S: Move little endian conflict to HV KVMAlexander Graf2014-05-301-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With the previous patches applied, we can now successfully use PR KVM on little endian hosts which means we can now allow users to select it. However, HV KVM still needs some work, so let's keep the kconfig conflict on that one. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S PR: Do dcbz32 patching with big endian instructionsAlexander Graf2014-05-302-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When the host CPU we're running on doesn't support dcbz32 itself, but the guest wants to have dcbz only clear 32 bytes of data, we loop through every executable mapped page to search for dcbz instructions and patch them with a special privileged instruction that we emulate as dcbz32. The only guests that want to see dcbz act as 32byte are book3s_32 guests, so we don't have to worry about little endian instruction ordering. So let's just always search for big endian dcbz instructions, also when we're on a little endian host. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Make shared struct aka magic page guest endianAlexander Graf2014-05-3015-136/+221
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The shared (magic) page is a data structure that contains often used supervisor privileged SPRs accessible via memory to the user to reduce the number of exits we have to take to read/write them. When we actually share this structure with the guest we have to maintain it in guest endianness, because some of the patch tricks only work with native endian load/store operations. Since we only share the structure with either host or guest in little endian on book3s_64 pr mode, we don't have to worry about booke or book3s hv. For booke, the shared struct stays big endian. For book3s_64 hv we maintain the struct in host native endian, since it never gets shared with the guest. For book3s_64 pr we introduce a variable that tells us which endianness the shared struct is in and route every access to it through helper inline functions that evaluate this variable. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: PR: Fill pvinfo hcall instructions in big endianAlexander Graf2014-05-301-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We expose a blob of hypercall instructions to user space that it gives to the guest via device tree again. That blob should contain a stream of instructions necessary to do a hypercall in big endian, as it just gets passed into the guest and old guests use them straight away. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S PR: PAPR: Access RTAS in big endianAlexander Graf2014-05-301-0/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When the guest does an RTAS hypercall it keeps all RTAS variables inside a big endian data structure. To make sure we don't have to bother about endianness inside the actual RTAS handlers, let's just convert the whole structure to host endian before we call our RTAS handlers and back to big endian when we return to the guest. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S PR: PAPR: Access HTAB in big endianAlexander Graf2014-05-301-3/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The HTAB on PPC is always in big endian. When we access it via hypercalls on behalf of the guest and we're running on a little endian host, we need to make sure we swap the bits accordingly. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S PR: Default to big endian guestAlexander Graf2014-05-301-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The default MSR when user space does not define anything should be identical on little and big endian hosts, so remove MSR_LE from it. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S_64 PR: Access shadow slb in big endianAlexander Graf2014-05-301-17/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The "shadow SLB" in the PACA is shared with the hypervisor, so it has to be big endian. We access the shadow SLB during world switch, so let's make sure we access it in big endian even when we're on a little endian host. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S_64 PR: Access HTAB in big endianAlexander Graf2014-05-301-4/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The HTAB is always big endian. We access the guest's HTAB using copy_from/to_user, but don't yet take care of the fact that we might be running on an LE host. Wrap all accesses to the guest HTAB with big endian accessors. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S_32: PR: Access HTAB in big endianAlexander Graf2014-05-301-6/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The HTAB is always big endian. We access the guest's HTAB using copy_from/to_user, but don't yet take care of the fact that we might be running on an LE host. Wrap all accesses to the guest HTAB with big endian accessors. Signed-off-by: Alexander Graf <agraf@suse.de>
| * | | KVM: PPC: Book3S: PR: Fix C/R bit settingAlexander Graf2014-05-302-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 9308ab8e2d made C/R HTAB updates go byte-wise into the target HTAB. However, it didn't update the guest's copy of the HTAB, but instead the host local copy of it. Write to the guest's HTAB instead. Signed-off-by: Alexander Graf <agraf@suse.de> CC: Paul Mackerras <paulus@samba.org> Acked-by: Paul Mackerras <paulus@samba.org>
OpenPOWER on IntegriCloud