| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
| |
These were missed in commit f5b940997397 "All Arch: remove linkage
for sys_nfsservctl system call" due to them having no sys_ prefix
(presumably).
Cc: NeilBrown <neilb@suse.de>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: linux-parisc@vger.kernel.org
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: James Bottomley <James.Bottomley@hansenpartnership.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We are seeing boot failures on some very large boxes even with
commit b5416ca9f824 (powerpc: Move kdump default base address to
64MB on 64bit).
This patch halves the RMO so both kernels get about the same
amount of RMO memory. On large machines this region will be
at least 256MB, so each kernel will get 128MB.
We cap it at 256MB (small SLB size) since some early allocations need
to be in the bolted SLB region. We could relax this on machines with
1TB SLBs in a future patch.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
| |
One definition of PV_POWER7 seems enough to me.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I hit an oops at boot on the first instruction of timer_cpu_notify:
NIP [c000000000722f88] .timer_cpu_notify+0x0/0x388
The code should look like:
c000000000722f78: eb e9 00 30 ld r31,48(r9)
c000000000722f7c: 2f bf 00 00 cmpdi cr7,r31,0
c000000000722f80: 40 9e ff 44 bne+ cr7,c000000000722ec4
c000000000722f84: 4b ff ff 74 b c000000000722ef8
c000000000722f88 <.timer_cpu_notify>:
c000000000722f88: 7c 08 02 a6 mflr r0
c000000000722f8c: 2f a4 00 07 cmpdi cr7,r4,7
c000000000722f90: fb c1 ff f0 std r30,-16(r1)
c000000000722f94: fb 61 ff d8 std r27,-40(r1)
But the oops output shows:
eb61ffd8 eb81ffe0 eba1ffe8 ebc1fff0 7c0803a6 ebe1fff8 4e800020
00000000 ebe90030 c0000000 00ad0a28 00000000 2fa40007 fbc1fff0 fb61ffd8
So we scribbled over our instructions with c000000000ad0a28, which
is an address inside the jump_table ELF section.
It turns out the jump_table section is only aligned to 8 bytes but
we are aligning our entries within the section to 16 bytes. This
means our entries are offset from the table:
c000000000acd4a8 <__start___jump_table>:
...
c000000000ad0a10: c0 00 00 00 lfs f0,0(0)
c000000000ad0a14: 00 70 cd 5c .long 0x70cd5c
c000000000ad0a18: c0 00 00 00 lfs f0,0(0)
c000000000ad0a1c: 00 70 cd 90 .long 0x70cd90
c000000000ad0a20: c0 00 00 00 lfs f0,0(0)
c000000000ad0a24: 00 ac a4 20 .long 0xaca420
And the jump table sort code gets very confused and writes into the
wrong spot. Remove the alignment, and also remove the padding since
we it saves some space and we shouldn't need it.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a cast in case the caller passes in a different type, as it would
if mtspr/mtmsr were functions.
Previously, if a 64-bit type was passed in on 32-bit, GCC would bind the
constraint to a pair of registers, and would substitute the first register
in the pair in the asm code. This corresponds to the upper half of the
64-bit register, which is generally not the desired behavior.
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/arm/linux-arm-soc
* 'next/cross-platform' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/linux-arm-soc:
ARM: Consolidate the clkdev header files
ARM: set vga memory base at run-time
ARM: convert PCI defines to variables
ARM: pci: make pcibios_assign_all_busses use pci_has_flag
ARM: remove unnecessary mach/hardware.h includes
pci: move microblaze and powerpc pci flag functions into asm-generic
powerpc: rename ppc_pci_*_flags to pci_*_flags
Fix up conflicts in arch/microblaze/include/asm/pci-bridge.h
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Move separate microblaze and powerpc pci flag functions pci_set_flags,
pci_add_flags, and pci_has_flag into asm-generic/pci-bridge.h so other
archs can use them.
Signed-off-by: Rob Herring <rob.herring@calxeda.com>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Michal Simek <monstr@monstr.eu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This renames pci flags functions and enums in preparation for creating
generic version in asm-generic/pci-bridge.h. The following search and
replace is done:
s/ppc_pci_/pci_/
s/PPC_PCI_/PCI_/
Direct accesses to ppc_pci_flag variable are replaced with helper
functions.
Signed-off-by: Rob Herring <rob.herring@calxeda.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
After changing all consumers of atomics to include <linux/atomic.h>, we
ran into some compile time errors due to this dependency chain:
linux/atomic.h
-> asm/atomic.h
-> asm-generic/atomic-long.h
where atomic-long.h could use funcs defined later in linux/atomic.h
without a prototype. This patches moves the code that includes
asm-generic/atomic*.h to linux/atomic.h.
Archs that need <asm-generic/atomic64.h> need to select
CONFIG_GENERIC_ATOMIC64 from now on (some of them used to include it
unconditionally).
Compile tested on i386 and x86_64 with allnoconfig.
Signed-off-by: Arun Sharma <asharma@fb.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This is in preparation for more generic atomic primitives based on
__atomic_add_unless.
Signed-off-by: Arun Sharma <asharma@fb.com>
Signed-off-by: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The majority of architectures implement ext2 atomic bitops as
test_and_{set,clear}_bit() without spinlock.
This adds this type of generic implementation in ext2-atomic-setbit.h and
use it wherever possible.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Suggested-by: Andreas Dilger <adilger@dilger.ca>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
[ poleg@redhat.com: no need to declare show_regs() in ptrace.h, sched.h does this ]
Signed-off-by: Mike Frysinger <vapier@gentoo.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (99 commits)
drivers/virt: add missing linux/interrupt.h to fsl_hypervisor.c
powerpc/85xx: fix mpic configuration in CAMP mode
powerpc: Copy back TIF flags on return from softirq stack
powerpc/64: Make server perfmon only built on ppc64 server devices
powerpc/pseries: Fix hvc_vio.c build due to recent changes
powerpc: Exporting boot_cpuid_phys
powerpc: Add CFAR to oops output
hvc_console: Add kdb support
powerpc/pseries: Fix hvterm_raw_get_chars to accept < 16 chars, fixing xmon
powerpc/irq: Quieten irq mapping printks
powerpc: Enable lockup and hung task detectors in pseries and ppc64 defeconfigs
powerpc: Add mpt2sas driver to pseries and ppc64 defconfig
powerpc: Disable IRQs off tracer in ppc64 defconfig
powerpc: Sync pseries and ppc64 defconfigs
powerpc/pseries/hvconsole: Fix dropped console output
hvc_console: Improve tty/console put_chars handling
powerpc/kdump: Fix timeout in crash_kexec_wait_realmode
powerpc/mm: Fix output of total_ram.
powerpc/cpufreq: Add cpufreq driver for Momentum Maple boards
powerpc: Correct annotations of pmu registration functions
...
Fix up trivial Kconfig/Makefile conflicts in arch/powerpc, drivers, and
drivers/cpufreq
|
| |\ \ |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Since other OS's may be running on the other cores don't use tlbivax
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Tony Breeds <tony@bakeyournoodle.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Josh Boyer <jwboyer@linux.vnet.ibm.com>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | | |
This is used to round-robin TLBCAM entries.
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This patch adds support for the new "jump label" feature.
Unlike x86 and sparc we just merrily patch the code with no locks etc,
as far as I know this is safe, but I'm not really sure what the x86/sparc
code is protecting against so maybe it's not.
I also don't see any reason for us to implement the poke_early() routine,
even though sparc does.
[BenH: Updated the patch to upstream generic changes]
Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
A mix of think & mismerge on my side caused a problem where both the
new hvsi_lib and the old hvsi driver gets compiled and try to define
symbols with the same name.
This fixes it by renaming the hvsi_lib exported symbols.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
a9c0f41b3a64955fd6f4e9d66ae1df1cbdee0cd0 breaks the build
on some platforms. The extern declaration must be shielded
against assembly.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This patch adds a printk companion to replace the udbg progress function
when initmem is freed.
Suggested-by: Milton Miller <miltonm@bga.com>
Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Dave Carroll <dcarroll@astekcorp.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| |\ \
| | |/ |
|
| | |
| | |
| | |
| | |
| | |
| | | |
This will allow a different backend to share it
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
On pseries machines, consoles are provided by the hypervisor using
a low level get_chars/put_chars type interface. However, this is
really just a transport to the service processor which implements
them either as "raw" console (networked consoles, HMC, ...) or as
"hvsi" serial ports.
The later is a simple packet protocol on top of the raw character
interface that is supposed to convey additional "serial port" style
semantics. In practice however, all it does is provide a way to
read the CD line and set/clear our DTR line, that's it.
We currently implement the "raw" protocol as an hvc console backend
(/dev/hvcN) and the "hvsi" protocol using a separate tty driver
(/dev/hvsi0).
However this is quite impractical. The arbitrary difference between
the two type of devices has been a major source of user (and distro)
confusion. Additionally, there's an additional mini -hvsi implementation
in the pseries platform code for our low level debug console and early
boot kernel messages, which means code duplication, though that low
level variant is impractical as it's incapable of doing the initial
protocol negociation to establish the link to the FSP.
This essentially replaces the dedicated hvsi driver and the platform
udbg code completely by extending the existing hvc_vio backend used
in "raw" mode so that:
- It now supports HVSI as well
- We add support for hvc backend providing tiocm{get,set}
- It also provides a udbg interface for early debug and boot console
This is overall less code, though this will only be obvious once we
remove the old "hvsi" driver, which is still available for now. When
the old driver is enabled, the new code still kicks in for the low
level udbg console, replacing the old mini implementation in the platform
code, it just doesn't provide the higher level "hvc" interface.
In addition to producing generally simler code, this has several benefits
over our current situation:
- The user/distro only has to deal with /dev/hvcN for the hypervisor
console, avoiding all sort of confusion that has plagued us in the past
- The tty, kernel and low level debug console all use the same code
base which supports the full protocol establishment process, thus the
console is now available much earlier than it used to be with the
old HVSI driver. The kernel console works much earlier and udbg is
available much earlier too. Hackers can enable a hard coded very-early
debug console as well that works with HVSI (previously that was only
supported for the "raw" mode).
I've tried to keep the same semantics as hvsi relative to how I react
to things like CD changes, with some subtle differences though:
- I clear DTR on close if HUPCL is set
- Current hvsi triggers a hangup if it detects a up->down transition
on CD (you can still open a console with CD down). My new implementation
triggers a hangup if the link to the FSP is severed, and severs it upon
detecting a up->down transition on CD.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Embed the struct hvsi_header in the various packet definitions
rather than open coding it multiple times. Will help provide
stronger type checking.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This moves various HVSI protocol definitions from the hvsi.c
driver to a header file that can be used later on by a udbg
implementation
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This introduces pSeries_reconfig_notify() as a just wrapper of
blocking_notifier_call_chain() for pSeries_reconfig_chain.
This is a preparation to improvement of error code on reconfiguration
notifier failure.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | | |
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
On MMUs such as FSL where we can guarantee the entire linear mapping is
bolted, we don't need to worry about linear TLB misses. If on top of
that we do a full table walk, we get rid of all recursive TLB faults, and
can dispense with some state saving. This gains a few percent on
TLB-miss-heavy workloads, and around 50% on a benchmark that had a high
rate of virtual page table faults under the normal handler.
While touching the EX_TLB layout, remove EX_TLB_MMUCR0, EX_TLB_SRR0, and
EX_TLB_SRR1 as they're not used.
[BenH: Fixed build with 64K pages (wsp config)]
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | | |
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The Freescale ePAPR reference hypervisor provides interrupt controller
services via a hypercall interface, instead of emulating the MPIC
controller. This is called the VMPIC.
The ePAPR "virtual interrupt controller" provides interrupt controller
services for external interrupts. External interrupts received by a
partition can come from two sources:
- Hardware interrupts - hardware interrupts come from external
interrupt lines or on-chip I/O devices.
- Virtual interrupts - virtual interrupts are generated by the hypervisor
as part of some hypervisor service or hypervisor-created virtual device.
Both types of interrupts are processed using the same programming model and
same set of hypercalls.
Signed-off-by: Ashish Kalra <ashish.kalra@freescale.com>
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
ePAPR hypervisors provide operating system services via a "hypercall"
interface. The following steps need to be performed to make an hcall:
1. Load r11 with the hcall number
2. Load specific other registers with parameters
3. Issue instrucion "sc 1"
4. The return code is in r3
5. Other returned parameters are in other registers.
To provide this service to the kernel, these steps are wrapped in inline
assembly functions. Standard ePAPR hcalls are in epapr_hcalls.h, and
Freescale extensions are in fsl_hcalls.h.
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Move irq_choose_cpu() into arch/powerpc/kernel/irq.c so that it can be used
by other PIC drivers. The function is not MPIC-specific.
Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
Signed-off-by: Timur Tabi <timur@freescale.com>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
We expect this is actually faster, and we end up needing more space than we
can get from the SPRGs in some instances. This is also useful when running
as a guest OS - SPRGs4-7 do not have guest versions.
8 slots are allocated in thread_info for this even though we only actually
use 4 of them - this allows space for future code to have more scratch
space (and we know we'll need it for things like hugetlb).
Signed-off-by: Ashish Kalra <Ashish.Kalra@freescale.com>
Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org>
Signed-off-by: Kumar Gala <galak@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
doorbell type is defined as bits 32:36 so should be shifted by 63-36 =
27 rather than 28.
We never noticed this bug as we've only every used type PPC_DBELL = 0.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Kumar Gala <galak@kernel.crashing.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
smp_release_cpus() waits for all cpus (including the bootcpu) due to an
off-by-one count on boot_cpu_count (which is all CPUs). This patch replaces
that with spinning_secondaries (which is all secondary CPUs).
Signed-off-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (43 commits)
fs: Merge split strings
treewide: fix potentially dangerous trailing ';' in #defined values/expressions
uwb: Fix misspelling of neighbourhood in comment
net, netfilter: Remove redundant goto in ebt_ulog_packet
trivial: don't touch files that are removed in the staging tree
lib/vsprintf: replace link to Draft by final RFC number
doc: Kconfig: `to be' -> `be'
doc: Kconfig: Typo: square -> squared
doc: Konfig: Documentation/power/{pm => apm-acpi}.txt
drivers/net: static should be at beginning of declaration
drivers/media: static should be at beginning of declaration
drivers/i2c: static should be at beginning of declaration
XTENSA: static should be at beginning of declaration
SH: static should be at beginning of declaration
MIPS: static should be at beginning of declaration
ARM: static should be at beginning of declaration
rcu: treewide: Do not use rcu_read_lock_held when calling rcu_dereference_check
Update my e-mail address
PCIe ASPM: forcedly -> forcibly
gma500: push through device driver tree
...
Fix up trivial conflicts:
- arch/arm/mach-ep93xx/dma-m2p.c (deleted)
- drivers/gpio/gpio-ep93xx.c (renamed and context nearby)
- drivers/net/r8169.c (just context changes)
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
All these are instances of
#define NAME value;
or
#define NAME(params_opt) value;
These of course fail to build when used in contexts like
if(foo $OP NAME)
while(bar $OP NAME)
and may silently generate the wrong code in contexts such as
foo = NAME + 1; /* foo = value; + 1; */
bar = NAME - 1; /* bar = value; - 1; */
baz = NAME & quux; /* baz = value; & quux; */
Reported on comp.lang.c,
Message-ID: <ab0d55fe-25e5-482b-811e-c475aa6065c3@c29g2000yqd.googlegroups.com>
Initial analysis of the dangers provided by Keith Thompson in that thread.
There are many more instances of more complicated macros having unnecessary
trailing semicolons, but this pile seems to be all of the cases of simple
values suffering from the problem. (Thus things that are likely to be found
in one of the contexts above, more complicated ones aren't.)
Signed-off-by: Phil Carmody <ext-phil.2.carmody@nokia.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
| |\ \ \
| | | |/
| | |/|
| | | |
| | | | |
Sync with Linus' tree to be able to apply pending patches that
are based on newer code already present upstream.
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Several fixes as well where the +1 was missing.
Done via coccinelle scripts like:
@@
struct resource *ptr;
@@
- ptr->end - ptr->start + 1
+ resource_size(ptr)
and some grep and typing.
Mostly uncompiled, no cross-compilers.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
* 'kvm-updates/3.1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (143 commits)
KVM: IOMMU: Disable device assignment without interrupt remapping
KVM: MMU: trace mmio page fault
KVM: MMU: mmio page fault support
KVM: MMU: reorganize struct kvm_shadow_walk_iterator
KVM: MMU: lockless walking shadow page table
KVM: MMU: do not need atomicly to set/clear spte
KVM: MMU: introduce the rules to modify shadow page table
KVM: MMU: abstract some functions to handle fault pfn
KVM: MMU: filter out the mmio pfn from the fault pfn
KVM: MMU: remove bypass_guest_pf
KVM: MMU: split kvm_mmu_free_page
KVM: MMU: count used shadow pages on prepareing path
KVM: MMU: rename 'pt_write' to 'emulate'
KVM: MMU: cleanup for FNAME(fetch)
KVM: MMU: optimize to handle dirty bit
KVM: MMU: cache mmio info on page fault path
KVM: x86: introduce vcpu_mmio_gva_to_gpa to cleanup the code
KVM: MMU: do not update slot bitmap if spte is nonpresent
KVM: MMU: fix walking shadow page table
KVM guest: KVM Steal time registration
...
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Commit c8f729d408 (KVM: PPC: Deliver program interrupts right away instead
of queueing them) made away with all users of prog_flags, so we can just
remove it from the headers.
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode. Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.
There are several differences between the PPC970 and POWER7 in how
guests are managed. These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits. Notably, on PPC970:
* The LPCR, LPID or RMOR registers don't exist, and the functions of
those registers are provided by bits in HID4 and one bit in HID0.
* External interrupts can be directed to the hypervisor, but unlike
POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
SRR0/1 not HSRR0/1.
* There is no virtual RMA (VRMA) mode; the guest must use an RMO
(real mode offset) area.
* The TLB entries are not tagged with the LPID, so it is necessary to
flush the whole TLB on partition switch. Furthermore, when switching
partitions we have to ensure that no other CPU is executing the tlbie
or tlbsync instructions in either the old or the new partition,
otherwise undefined behaviour can occur.
* The PMU has 8 counters (PMC registers) rather than 6.
* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.
* The SLB has 64 entries rather than 32.
* There is no mediated external interrupt facility, so if we switch to
a guest that has a virtual external interrupt pending but the guest
has MSR[EE] = 0, we have to arrange to have an interrupt pending for
it so that we can get control back once it re-enables interrupts. We
do that by sending ourselves an IPI with smp_send_reschedule after
hard-disabling interrupts.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
architecture bits
This replaces the single CPU_FTR_HVMODE_206 bit with two bits, one to
indicate that we have a usable hypervisor mode, and another to indicate
that the processor conforms to PowerISA version 2.06. We also add
another bit to indicate that the processor conforms to ISA version 2.01
and set that for PPC970 and derivatives.
Some PPC970 chips (specifically those in Apple machines) have a
hypervisor mode in that MSR[HV] is always 1, but the hypervisor mode
is not useful in the sense that there is no way to run any code in
supervisor mode (HV=0 PR=0). On these processors, the LPES0 and LPES1
bits in HID4 are always 0, and we use that as a way of detecting that
hypervisor mode is not useful.
Where we have a feature section in assembly code around code that
only applies on POWER7 in hypervisor mode, we use a construct like
END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
The definition of END_FTR_SECTION_IFSET is such that the code will
be enabled (not overwritten with nops) only if all bits in the
provided mask are set.
Note that the CPU feature check in __tlbie() only needs to check the
ARCH_206 bit, not the HVMODE bit, because __tlbie() can only get called
if we are running bare-metal, i.e. in hypervisor mode.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility. These processors require a physically
contiguous, aligned area of memory for each guest. When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access. The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.
Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator. The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.
KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs. The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.
This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA. It
also returns the size of the RMA in the argument structure.
Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace. To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory. Subsequently we will get rid of this
array and use memory associated with each memslot instead.
This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region. Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB. However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.
Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest. This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7. The host still has to run single-threaded.
This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability. The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.
To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode. KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline). To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c. In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it. Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.
When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host. This number is exported
to userspace via the KVM_CAP_PPC_SMT capability. If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.
We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host. We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked. This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.
When a vcore starts to run, it executes in the context of one of the
vcpu threads. The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).
It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running. In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest. It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.
Note that there is no fixed relationship between the hardware thread
number and the vcpu number. Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This improves I/O performance for guests using the PAPR
paravirtualization interface by making the H_PUT_TCE hcall faster, by
implementing it in real mode. H_PUT_TCE is used for updating virtual
IOMMU tables, and is used both for virtual I/O and for real I/O in the
PAPR interface.
Since this moves the IOMMU tables into the kernel, we define a new
KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables. The
ioctl returns a file descriptor which can be used to mmap the newly
created table. The qemu driver models use them in the same way as
userspace managed tables, but they can be updated directly by the
guest with a real-mode H_PUT_TCE implementation, reducing the number
of host/guest context switches during guest IO.
There are certain circumstances where it is useful for userland qemu
to write to the TCE table even if the kernel H_PUT_TCE path is used
most of the time. Specifically, allowing this will avoid awkwardness
when we need to reset the table. More importantly, we will in the
future need to write the table in order to restore its state after a
checkpoint resume or migration.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This adds the infrastructure for handling PAPR hcalls in the kernel,
either early in the guest exit path while we are still in real mode,
or later once the MMU has been turned back on and we are in the full
kernel context. The advantage of handling hcalls in real mode if
possible is that we avoid two partition switches -- and this will
become more important when we support SMT4 guests, since a partition
switch means we have to pull all of the threads in the core out of
the guest. The disadvantage is that we can only access the kernel
linear mapping, not anything vmalloced or ioremapped, since the MMU
is off.
This also adds code to handle the following hcalls in real mode:
H_ENTER Add an HPTE to the hashed page table
H_REMOVE Remove an HPTE from the hashed page table
H_READ Read HPTEs from the hashed page table
H_PROTECT Change the protection bits in an HPTE
H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table
H_SET_DABR Set the data address breakpoint register
Plus code to handle the following hcalls in the kernel:
H_CEDE Idle the vcpu until an interrupt or H_PROD hcall arrives
H_PROD Wake up a ceded vcpu
H_REGISTER_VPA Register a virtual processor area (VPA)
The code that runs in real mode has to be in the base kernel, not in
the module, if KVM is compiled as a module. The real-mode code can
only access the kernel linear mapping, not vmalloc or ioremap space.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode. Using hypervisor mode means
that the guest can use the processor's supervisor mode. That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host. This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.
This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses. That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification. In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.
Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.
This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.
With the guest running in supervisor mode, most exceptions go straight
to the guest. We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest. Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.
We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.
In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount. Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.
The POWER7 processor has a restriction that all threads in a core have
to be in the same partition. MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest. At present we require the host and guest to run
in single-thread mode because of this hardware restriction.
This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management. This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.
This also adds a few new exports needed by the book3s_hv code.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
There are several fields in struct kvmppc_book3s_shadow_vcpu that
temporarily store bits of host state while a guest is running,
rather than anything relating to the particular guest or vcpu.
This splits them out into a new kvmppc_host_state structure and
modifies the definitions in asm-offsets.c to suit.
On 32-bit, we have a kvmppc_host_state structure inside the
kvmppc_book3s_shadow_vcpu since the assembly code needs to be able
to get to them both with one pointer. On 64-bit they are separate
fields in the PACA. This means that on 64-bit we don't need to
copy the kvmppc_host_state in and out on vcpu load/unload, and
in future will mean that the book3s_hv code doesn't need a
shadow_vcpu struct in the PACA at all. That does mean that we
have to be careful not to rely on any values persisting in the
hstate field of the paca across any point where we could block
or get preempted.
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
|