summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/include/asm/mmu-hash64.h
Commit message (Collapse)AuthorAgeFilesLines
* powerpc/mm: Move hash related mmu-*.h headers to book3s/Aneesh Kumar K.V2016-03-031-616/+0
| | | | | | | No code changes. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* powerpc/mm: Split hash page table sizing heuristic into a helperDavid Gibson2016-03-021-0/+3
| | | | | | | | | | | | | | | htab_get_table_size() either retrieve the size of the hash page table (HPT) from the device tree - if the HPT size is determined by firmware - or uses a heuristic to determine a good size based on RAM size if the kernel is responsible for allocating the HPT. To support a PAPR extension allowing resizing of the HPT, we're going to want the memory size -> HPT size logic elsewhere, so split it out into a helper function. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* powerpc: Add POWER9 cputable entryMichael Neuling2016-02-221-0/+1
| | | | | | | | | | | | | | | | | Add a cputable entry for POWER9. More code is required to actually boot and run on a POWER9 but this gets the base piece in which we can start building on. Copies over from POWER8 except for: - Adds a new CPU_FTR_ARCH_300 bit to start hanging new architecture features from (in subsequent patches). - Advertises new user features bits PPC_FEATURE2_ARCH_3_00 & HAS_IEEE128 when on POWER9. - Drops CPU_FTR_SUBCORE. - Drops PMU code and machine check. Signed-off-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* powerpc/mm: make a separate copy for book3sAneesh Kumar K.V2015-12-141-1/+1
| | | | | | | | | | | | | In this patch we do: cp pgtable-ppc32.h book3s/32/pgtable.h cp pgtable-ppc64.h book3s/64/pgtable.h This enable us to do further changes to hash specific config. We will change the page table format for 64bit hash in later patches. Acked-by: Scott Wood <scottwood@freescale.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* powerpc/mm: Differentiate between hugetlb and THP during page walkAneesh Kumar K.V2015-10-121-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | We need to properly identify whether a hugepage is an explicit or a transparent hugepage in follow_huge_addr(). We used to depend on hugepage shift argument to do that. But in some case that can result in wrong results. For ex: On finding a transparent hugepage we set hugepage shift to PMD_SHIFT. But we can end up clearing the thp pte, via pmdp_huge_get_and_clear. We do prevent reusing the pfn page via the usage of kick_all_cpus_sync(). But that happens after we updated the pte to 0. Hence in follow_huge_addr() we can find hugepage shift set, but transparent huge page check fail for a thp pte. NOTE: We fixed a variant of this race against thp split in commit 691e95fd7396905a38d98919e9c150dbc3ea21a3 ("powerpc/mm/thp: Make page table walk safe against thp split/collapse") Without this patch, we may hit the BUG_ON(flags & FOLL_GET) in follow_page_mask occasionally. In the long term, we may want to switch ppc64 64k page size config to enable CONFIG_ARCH_WANT_GENERAL_HUGETLB Reported-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* powerpc/mmu: Add userspace-to-physical addresses translation cacheAlexey Kardashevskiy2015-06-111-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We are adding support for DMA memory pre-registration to be used in conjunction with VFIO. The idea is that the userspace which is going to run a guest may want to pre-register a user space memory region so it all gets pinned once and never goes away. Having this done, a hypervisor will not have to pin/unpin pages on every DMA map/unmap request. This is going to help with multiple pinning of the same memory. Another use of it is in-kernel real mode (mmu off) acceleration of DMA requests where real time translation of guest physical to host physical addresses is non-trivial and may fail as linux ptes may be temporarily invalid. Also, having cached host physical addresses (compared to just pinning at the start and then walking the page table again on every H_PUT_TCE), we can be sure that the addresses which we put into TCE table are the ones we already pinned. This adds a list of memory regions to mm_context_t. Each region consists of a header and a list of physical addresses. This adds API to: 1. register/unregister memory regions; 2. do final cleanup (which puts all pre-registered pages); 3. do userspace to physical address translation; 4. manage usage counters; multiple registration of the same memory is allowed (once per container). This implements 2 counters per registered memory region: - @mapped: incremented on every DMA mapping; decremented on unmapping; initialized to 1 when a region is just registered; once it becomes zero, no more mappings allowe; - @used: incremented on every "register" ioctl; decremented on "unregister"; unregistration is allowed for DMA mapped regions unless it is the very last reference. For the very last reference this checks that the region is still mapped and returns -EBUSY so the userspace gets to know that memory is still pinned and unregistration needs to be retried; @used remains 1. Host physical addresses are stored in vmalloc'ed array. In order to access these in the real mode (mmu off), there is a real_vmalloc_addr() helper. In-kernel acceleration patchset will move it from KVM to MMU code. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* powerpc/book3s: Fix flush_tlb cpu_spec hook to take a generic argument.Mahesh Salgaonkar2015-03-171-0/+1
| | | | | | | | | | | | | | The flush_tlb hook in cpu_spec was introduced as a generic function hook to invalidate TLBs. But the current implementation of flush_tlb hook takes IS (invalidation selector) as an argument which is architecture dependent. Hence, It is not right to have a generic routine where caller has to pass non-generic argument. This patch fixes this and makes flush_tlb hook as high level API. Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* powerpc/mm: don't do tlbie for updatepp request with NO HPTE faultAneesh Kumar K.V2014-12-051-8/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | upatepp can get called for a nohpte fault when we find from the linux page table that the translation was hashed before. In that case we are sure that there is no existing translation, hence we could avoid doing tlbie. We could possibly race with a parallel fault filling the TLB. But that should be ok because updatepp is only ever relaxing permissions. We also look at linux pte permission bits when filling hash pte permission bits. We also hold the linux pte busy bits while inserting/updating a hashpte entry, hence a paralle update of linux pte is not possible. On the other hand mprotect involves ptep_modify_prot_start which cause a hpte invalidate and not updatepp. Performance number: We use randbox_access_bench written by Anton. Kernel with THP disabled and smaller hash page table size. 86.60% random_access_b [kernel.kallsyms] [k] .native_hpte_updatepp 2.10% random_access_b random_access_bench [.] doit 1.99% random_access_b [kernel.kallsyms] [k] .do_raw_spin_lock 1.85% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 1.26% random_access_b [kernel.kallsyms] [k] .native_flush_hash_range 1.18% random_access_b [kernel.kallsyms] [k] .__delay 0.69% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 0.37% random_access_b [kernel.kallsyms] [k] .clear_user_page 0.34% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 0.32% random_access_b [kernel.kallsyms] [k] fast_exception_return 0.30% random_access_b [kernel.kallsyms] [k] .hash_page_mm With Fix: 27.54% random_access_b random_access_bench [.] doit 22.90% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 5.76% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 5.20% random_access_b [kernel.kallsyms] [k] fast_exception_return 5.12% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 4.80% random_access_b [kernel.kallsyms] [k] .hash_page_mm 3.31% random_access_b [kernel.kallsyms] [k] data_access_common 1.84% random_access_b [kernel.kallsyms] [k] .trace_hardirqs_on_caller Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* powerpc/mm: Add new hash_page_mm()Ian Munsie2014-10-081-0/+1
| | | | | | | | | | | | | | This adds a new function hash_page_mm() based on the existing hash_page(). This version allows any struct mm to be passed in, rather than assuming current. This is useful for servicing co-processor faults which are not in the context of the current running process. We need to be careful here as the current hash_page() assumes current in a few places. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Signed-off-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* powerpc/cell: Move data segment faulting code out of cell platformIan Munsie2014-10-081-0/+7
| | | | | | | | | | | | | | | | | | __spu_trap_data_seg() currently contains code to determine the VSID and ESID required for a particular EA and mm struct. This code is generically useful for other co-processors. This moves the code of the cell platform so it can be used by other powerpc code. It also adds 1TB segment handling which Cell didn't support. The new function is called copro_calculate_slb(). This also moves the internal struct spu_slb to a generic struct copro_slb which is now used in the Cell and copro code. We use this new struct instead of passing around esid and vsid parameters. Signed-off-by: Ian Munsie <imunsie@au1.ibm.com> Signed-off-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* powerpc: Move htab_remove_mapping function prototype into header fileAnton Blanchard2014-09-251-0/+2
| | | | | | | | A recent patch added a function prototype for htab_remove_mapping in c code. Fix it. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* powerpc: Remove STAB codeMichael Ellerman2014-07-281-22/+0
| | | | | | | | | Old cpus didn't have a Segment Lookaside Buffer (SLB), instead they had a Segment Table (STAB). Now that we've dropped support for those cpus, we can remove the STAB support entirely. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: subpage_protect: Increase the array size to take care of 64TBAneesh Kumar K.V2014-07-221-1/+2
| | | | | | | | | | | | | | | | | | | | | | | We now support TASK_SIZE of 16TB, hence the array should be 8. Fixes the below crash: Unable to handle kernel paging request for data at address 0x000100bd Faulting instruction address: 0xc00000000004f914 cpu 0x13: Vector: 300 (Data Access) at [c000000fea75fa90] pc: c00000000004f914: .sys_subpage_prot+0x2d4/0x5c0 lr: c00000000004fb5c: .sys_subpage_prot+0x51c/0x5c0 sp: c000000fea75fd10 msr: 9000000000009032 dar: 100bd dsisr: 40000000 current = 0xc000000fea6ae490 paca = 0xc00000000fb8ab00 softe: 0 irq_happened: 0x00 pid = 8237, comm = a.out enter ? for help [c000000fea75fe30] c00000000000a164 syscall_exit+0x0/0x98 Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Book 3S MMU little endian supportAnton Blanchard2013-10-111-2/+2
| | | | | Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Fix build warnings with CONFIG_TRANSPARENT_HUGEPAGE disabledNathan Fontenot2013-06-251-0/+1
| | | | | | | | | | | | | | | Building with CONFIG_TRANSPARENT_HUGEPAGE disabled causes the following build wearnings; powerpc/arch/powerpc/include/asm/mmu-hash64.h: In function ‘__hash_page_thp’: powerpc/arch/powerpc/include/asm/mmu-hash64.h:354: warning: no return statement in function returning non-void This patch adds a return -1 to the static inline for __hash_page_thp() to correct the warnings. Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/THP: Add code to handle HPTE faults for hugepagesAneesh Kumar K.V2013-06-211-0/+13
| | | | | | | | | | The deposted PTE page in the second half of the PMD table is used to track the state on hash PTEs. After updating the HPTE, we mark the coresponding slot in the deposted PTE page valid. Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: print both base and actual page size on hash failureAneesh Kumar K.V2013-04-301-1/+2
| | | | | | Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Decode the pte-lp-encoding bits correctly.Aneesh Kumar K.V2013-04-301-14/+19
| | | | | | | | | | | | | | | | We look at both the segment base page size and actual page size and store the pte-lp-encodings in an array per base page size. We also update all relevant functions to take actual page size argument so that we can use the correct PTE LP encoding in HPTE. This should also get the basic Multiple Page Size per Segment (MPSS) support. This is needed to enable THP on ppc64. [Fixed PR KVM build --BenH] Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Reduce PTE table memory wastageAneesh Kumar K.V2013-04-301-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | We allocate one page for the last level of linux page table. With THP and large page size of 16MB, that would mean we are wasting large part of that page. To map 16MB area, we only need a PTE space of 2K with 64K page size. This patch reduce the space wastage by sharing the page allocated for the last level of linux page table with multiple pmd entries. We call these smaller chunks PTE page fragments and allocated page, PTE page. In order to support systems which doesn't have 64K HPTE support, we also add another 2K to PTE page fragment. The second half of the PTE fragments is used for storing slot and secondary bit information of an HPTE. With this we now have a 4K PTE fragment. We use a simple approach to share the PTE page. On allocation, we bump the PTE page refcount to 16 and share the PTE page with the next 16 pte alloc request. This should help in the node locality of the PTE page fragment, assuming that the immediate pte alloc request will mostly come from the same NUMA node. We don't try to reuse the freed PTE page fragment. Hence we could be waisting some space. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: New hugepage directory formatAneesh Kumar K.V2013-04-301-1/+19
| | | | | | | | | | | | | | | | | Change the hugepage directory format so that we can have leaf ptes directly at page directory avoiding the allocation of hugepage directory. With the new table format we have 3 cases for pgds and pmds: (1) invalid (all zeroes) (2) pointer to next table, as normal; bottom 6 bits == 0 (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table Instead of storing shift value in hugepd pointer we use mmu_psize_def index so that we can fit all the supported hugepage size in 4 bits Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Rename USER_ESID_BITS* to ESID_BITS*Aneesh Kumar K.V2013-03-171-8/+8
| | | | | | | | | | Now we use ESID_BITS of kernel address to build proto vsid. So rename USER_ESIT_BITS to ESID_BITS Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: <stable@vger.kernel.org> [v3.8]
* powerpc: Update kernel VSID rangeAneesh Kumar K.V2013-03-171-56/+59
| | | | | | | | | | | | | | | | | | | | | | | | This patch change the kernel VSID range so that we limit VSID_BITS to 37. This enables us to support 64TB with 65 bit VA (37+28). Without this patch we have boot hangs on platforms that only support 65 bit VA. With this patch we now have proto vsid generated as below: We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated from mmu context id and effective segment id of the address. For user processes max context id is limited to ((1ul << 19) - 5) for kernel space, we use the top 4 context ids to map address as below 0x7fffc - [ 0xc000000000000000 - 0xc0003fffffffffff ] 0x7fffd - [ 0xd000000000000000 - 0xd0003fffffffffff ] 0x7fffe - [ 0xe000000000000000 - 0xe0003fffffffffff ] 0x7ffff - [ 0xf000000000000000 - 0xf0003fffffffffff ] Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Tested-by: Geoff Levand <geoff@infradead.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: <stable@vger.kernel.org> [v3.8]
* powerpc: Make VSID_BITS* dependency explicitAneesh Kumar K.V2013-03-171-5/+6
| | | | | | | | | | VSID_BITS and VSID_BITS_1T depends on the context bits and user esid bits. Make the dependency explicit Acked-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> CC: <stable@vger.kernel.org> [v3.8]
* KVM: PPC: Book3S HV: Handle guest-caused machine checks on POWER7 without ↵Paul Mackerras2012-12-061-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | panicking Currently, if a machine check interrupt happens while we are in the guest, we exit the guest and call the host's machine check handler, which tends to cause the host to panic. Some machine checks can be triggered by the guest; for example, if the guest creates two entries in the SLB that map the same effective address, and then accesses that effective address, the CPU will take a machine check interrupt. To handle this better, when a machine check happens inside the guest, we call a new function, kvmppc_realmode_machine_check(), while still in real mode before exiting the guest. On POWER7, it handles the cases that the guest can trigger, either by flushing and reloading the SLB, or by flushing the TLB, and then it delivers the machine check interrupt directly to the guest without going back to the host. On POWER7, the OPAL firmware patches the machine check interrupt vector so that it gets control first, and it leaves behind its analysis of the situation in a structure pointed to by the opal_mc_evt field of the paca. The kvmppc_realmode_machine_check() function looks at this, and if OPAL reports that there was no error, or that it has handled the error, we also go straight back to the guest with a machine check. We have to deliver a machine check to the guest since the machine check interrupt might have trashed valid values in SRR0/1. If the machine check is one we can't handle in real mode, and one that OPAL hasn't already handled, or on PPC970, we exit the guest and call the host's machine check handler. We do this by jumping to the machine_check_fwnmi label, rather than absolute address 0x200, because we don't want to re-execute OPAL's handler on POWER7. On PPC970, the two are equivalent because address 0x200 just contains a branch. Then, if the host machine check handler decides that the system can continue executing, kvmppc_handle_exit() delivers a machine check interrupt to the guest -- once again to let the guest know that SRR0/1 have been modified. Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: fix checkpatch warnings] Signed-off-by: Alexander Graf <agraf@suse.de>
* powerpc/mm: Make some of the PGTABLE_RANGE dependency explicitAneesh Kumar K.V2012-09-171-5/+10
| | | | | | | | slice array size and slice mask size depend on PGTABLE_RANGE. Reviewed-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Update VSID allocation documentationAneesh Kumar K.V2012-09-171-23/+17
| | | | | | | | | This update the proto-VSID and VSID scramble related information to be more generic by using names instead of current values. Reviewed-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Add 64TB supportAneesh Kumar K.V2012-09-171-9/+33
| | | | | | | | | Increase max addressable range to 64TB. This is not tested on real hardware yet. Reviewed-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Increase the slice range to 64TBAneesh Kumar K.V2012-09-171-1/+5
| | | | | | | | | | This patch makes the high psizes mask as an unsigned char array so that we can have more than 16TB. Currently we support upto 64TB Reviewed-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Convert virtual address to vpnAneesh Kumar K.V2012-09-171-17/+61
| | | | | | | | | | | This patch convert different functions to take virtual page number instead of virtual address. Virtual page number is virtual address shifted right by VPN_SHIFT (12) bits. This enable us to have an address range of upto 76 bits. Reviewed-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* Merge branch 'next' of ↵Linus Torvalds2012-03-281-12/+0
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc Pull a few more things for powerpc by Benjamin Herrenschmidt: - Anton's did some recent improvements to EPOW event reporting on pSeries (power supply failures and such). The patches are self contained enough and replace really nasty code so I felt it should still go in - I did the vio driver registration change Greg requested, I don't see the point of leaving that til the next merge window - The remaining EEH changes I said were still pending to get rid of the EEH references from the generic struct device_node - A few more iSeries removal bits - A perf bug fix on 970 * 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: powerpc/perf: Fix instruction address sampling on 970 and Power4 powerpc+sparc/vio: Modernize driver registration powerpc: Random little legacy iSeries removal tidy ups powerpc: Remove NO_IRQ_IGNORE powerpc/pseries: Cut down on enthusiastic use of defines in RAS code powerpc/pseries: Clean up ras_error_interrupt code powerpc/pseries: Remove RTAS_POWERMGM_EVENTS powerpc/pseries: Use rtas_get_sensor in RAS code powerpc/pseries: Parse and handle EPOW interrupts powerpc: Make function that parses RTAS error logs global powerpc/eeh: Retrieve PHB from global list powerpc/eeh: Remove eeh information from pci_dn powerpc/eeh: Remove eeh device from OF node
| * powerpc: Random little legacy iSeries removal tidy upsStephen Rothwell2012-03-281-12/+0
| | | | | | | | | | Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* | KVM: PPC: Implement MMIO emulation support for Book3S HV guestsPaul Mackerras2012-03-051-1/+1
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | This provides the low-level support for MMIO emulation in Book3S HV guests. When the guest tries to map a page which is not covered by any memslot, that page is taken to be an MMIO emulation page. Instead of inserting a valid HPTE, we insert an HPTE that has the valid bit clear but another hypervisor software-use bit set, which we call HPTE_V_ABSENT, to indicate that this is an absent page. An absent page is treated much like a valid page as far as guest hcalls (H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that an absent HPTE doesn't need to be invalidated with tlbie since it was never valid as far as the hardware is concerned. When the guest accesses a page for which there is an absent HPTE, it will take a hypervisor data storage interrupt (HDSI) since we now set the VPM1 bit in the LPCR. Our HDSI handler for HPTE-not-present faults looks up the hash table and if it finds an absent HPTE mapping the requested virtual address, will switch to kernel mode and handle the fault in kvmppc_book3s_hv_page_fault(), which at present just calls kvmppc_hv_emulate_mmio() to set up the MMIO emulation. This is based on an earlier patch by Benjamin Herrenschmidt, but since heavily reworked. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Avi Kivity <avi@redhat.com>
* powerpc: Fix comment explaining our VSID layoutAnton Blanchard2011-12-191-4/+3
| | | | | | | | We support 16TB of user address space and half a million contexts so update the comment to reflect this. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Hugetlb for BookEBecky Bruce2011-09-201-2/+1
| | | | | | | | | | | | | | | | | | | | | Enable hugepages on Freescale BookE processors. This allows the kernel to use huge TLB entries to map pages, which can greatly reduce the number of TLB misses and the amount of TLB thrashing experienced by applications with large memory footprints. Care should be taken when using this on FSL processors, as the number of large TLB entries supported by the core is low (16-64) on current processors. The supported set of hugepage sizes include 4m, 16m, 64m, 256m, and 1g. Page sizes larger than the max zone size are called "gigantic" pages and must be allocated on the command line (and cannot be deallocated). This is currently only fully implemented for Freescale 32-bit BookE processors, but there is some infrastructure in the code for 64-bit BooKE. Signed-off-by: Becky Bruce <beckyb@kernel.crashing.org> Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* KVM: PPC: Add support for Book3S processors in hypervisor modePaul Mackerras2011-07-121-2/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
* powerpc: Add Initiate Coprocessor Store Word (icswx) supportTseng-Hui (Frank) Lin2011-05-041-0/+6
| | | | | | | | | | | | | | | | | | | | | Icswx is a PowerPC instruction to send data to a co-processor. On Book-S processors the LPAR_ID and process ID (PID) of the owning process are registered in the window context of the co-processor at initialization time. When the icswx instruction is executed the L2 generates a cop-reg transaction on PowerBus. The transaction has no address and the processor does not perform an MMU access to authenticate the transaction. The co-processor compares the LPAR_ID and the PID included in the transaction and the LPAR_ID and PID held in the window context to determine if the process is authorized to generate the transaction. The OS needs to assign a 16-bit PID for the process. This cop-PID needs to be updated during context switch. The cop-PID needs to be destroyed when the context is destroyed. Signed-off-by: Sonny Rao <sonnyrao@linux.vnet.ibm.com> Signed-off-by: Tseng-Hui (Frank) Lin <thlin@linux.vnet.ibm.com> Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Move the STAB0 location to 0x8000 to make room in low memoryBenjamin Herrenschmidt2011-03-301-1/+1
| | | | | | | | Recent upstream builds with allmodconfig fail due to lack of space between 0x3000 and 0x6000. We have a hard block at 0x7000 but we can spare a page by moving the STAB0 from 0x6000 to 0x8000. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Fix vsid_scrample typoAnton Blanchard2010-08-241-1/+1
| | | | | | | The code is wrapped in an #if 0, but it's wrong so we may as well fix it. Signed-off-by: Anton Blanchard <anton@samba.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Add some debug output when hash insertion failsBenjamin Herrenschmidt2010-07-231-1/+3
| | | | | | | | | This adds some debug output to our MMU hash code to print out some useful debug data if the hypervisor refuses the insertion (which should normally never happen). Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> ---
* powerpc/mm: Fix pgtable cache cleanup with CONFIG_PPC_SUBPAGE_PROTDavid Gibson2009-12-081-0/+35
| | | | | | | | | | | | | | | | | Commit a0668cdc154e54bf0c85182e0535eea237d53146 cleans up the handling of kmem_caches for allocating various levels of pagetables. Unfortunately, it conflicts badly with CONFIG_PPC_SUBPAGE_PROT, due to the latter's cleverly hidden technique of adding some extra allocation space to the top level page directory to store the extra information it needs. Since that extra allocation really doesn't fit into the cleaned up page directory allocating scheme, this patch alters CONFIG_PPC_SUBPAGE_PROT to instead allocate its struct subpage_prot_table as part of the mm_context_t. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* Revert "powerpc/mm: Fix bug in pagetable cache cleanup with ↵Benjamin Herrenschmidt2009-12-021-35/+0
| | | | | | | | | | | CONFIG_PPC_SUBPAGE_PROT" This reverts commit c045256d146800ea1d741a8e9e377dada6b7e195. It breaks build when CONFIG_PPC_SUBPAGE_PROT is not set. I will commit a fixed version separately Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Fix bug in pagetable cache cleanup with CONFIG_PPC_SUBPAGE_PROTDavid Gibson2009-11-271-0/+35
| | | | | | | | | | | | | | | | | Commit a0668cdc154e54bf0c85182e0535eea237d53146 cleans up the handling of kmem_caches for allocating various levels of pagetables. Unfortunately, it conflicts badly with CONFIG_PPC_SUBPAGE_PROT, due to the latter's cleverly hidden technique of adding some extra allocation space to the top level page directory to store the extra information it needs. Since that extra allocation really doesn't fit into the cleaned up page directory allocating scheme, this patch alters CONFIG_PPC_SUBPAGE_PROT to instead allocate its struct subpage_prot_table as part of the mm_context_t. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Bring hugepage PTE accessor functions back into sync with normal ↵David Gibson2009-10-301-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | accessors The hugepage arch code provides a number of hook functions/macros which mirror the functionality of various normal page pte access functions. Various changes in the normal page accessors (in particular BenH's recent changes to the handling of lazy icache flushing and PAGE_EXEC) have caused the hugepage versions to get out of sync with the originals. In some cases, this is a bug, at least on some MMU types. One of the reasons that some hooks were not identical to the normal page versions, is that the fact we're dealing with a hugepage needed to be passed down do use the correct dcache-icache flush function. This patch makes the main flush_dcache_icache_page() function hugepage aware (by checking for the PageCompound flag). That in turn means we can make set_huge_pte_at() just a call to set_pte_at() bringing it back into sync. As a bonus, this lets us remove the hash_huge_page_do_lazy_icache() function, replacing it with a call to the hash_page_do_lazy_icache() function it was based on. Some other hugepage pte access hooks - huge_ptep_get_and_clear() and huge_ptep_clear_flush() - are not so easily unified, but this patch at least brings them back into sync with the current versions of the corresponding normal page functions. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Allow more flexible layouts for hugepage pagetablesDavid Gibson2009-10-301-11/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/pseries: Fix to handle slb resize across migrationBrian King2009-09-021-0/+2
| | | | | | | | | | | | | | | | | | | The SLB can change sizes across a live migration, which was not being handled, resulting in possible machine crashes during migration if migrating to a machine which has a smaller max SLB size than the source machine. Fix this by first reducing the SLB size to the minimum possible value, which is 32, prior to migration. Then during the device tree update which occurs after migration, we make the call to ensure the SLB gets updated. Also add the slb_size to the lparcfg output so that the migration tools can check to make sure the kernel has this capability before allowing migration in scenarios where the SLB size will change. BenH: Fixed #include <asm/mmu-hash64.h> -> <asm/mmu.h> to avoid breaking ppc32 build Signed-off-by: Brian King <brking@linux.vnet.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc: Add memory management headers for new 64-bit BookEBenjamin Herrenschmidt2009-08-201-20/+0
| | | | | | | | | | | | | This adds the PTE and pgtable format definitions, along with changes to the kernel memory map and other definitions related to implementing support for 64-bit Book3E. This also shields some asm-offset bits that are currently only relevant on 32-bit We also move the definition of the "linux" page size constants to the common mmu.h file and add a few sizes that are relevant to embedded processors. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc/mm: Introduce early_init_mmu() on 64-bitBenjamin Herrenschmidt2009-03-241-2/+0
| | | | | | | | This moves some MMU related init code out of setup_64.c into hash_utils_64.c and calls it early_init_mmu() and early_init_mmu_secondary(). This will make it easier to plug in a new MMU type. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* powerpc set_huge_psize() false positiveAl Viro2008-11-301-1/+0
| | | | | | | | called only from __init, calls __init. Incidentally, it ought to be static in file. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* powerpc: Make the 64-bit kernel as a position-independent executablePaul Mackerras2008-09-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | This implements CONFIG_RELOCATABLE for 64-bit by making the kernel as a position-independent executable (PIE) when it is set. This involves processing the dynamic relocations in the image in the early stages of booting, even if the kernel is being run at the address it is linked at, since the linker does not necessarily fill in words in the image for which there are dynamic relocations. (In fact the linker does fill in such words for 64-bit executables, though not for 32-bit executables, so in principle we could avoid calling relocate() entirely when we're running a 64-bit kernel at the linked address.) The dynamic relocations are processed by a new function relocate(addr), where the addr parameter is the virtual address where the image will be run. In fact we call it twice; once before calling prom_init, and again when starting the main kernel. This means that reloc_offset() returns 0 in prom_init (since it has been relocated to the address it is running at), which necessitated a few adjustments. This also changes __va and __pa to use an equivalent definition that is simpler. With the relocatable kernel, PAGE_OFFSET and MEMORY_START are constants (for 64-bit) whereas PHYSICAL_START is a variable (and KERNELBASE ideally should be too, but isn't yet). With this, relocatable kernels still copy themselves down to physical address 0 and run there. Signed-off-by: Paul Mackerras <paulus@samba.org>
* powerpc/mm: Fix attribute confusion with htab_bolt_mapping()Benjamin Herrenschmidt2008-08-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | The function htab_bolt_mapping() is used to create permanent mappings in the MMU hash table, for example, in order to create the linear mapping of vmemmap. It's also used by early boot ioremap (before mem_init_done). However, the way ioremap uses it is incorrect as it passes it the protection flags in the "linux PTE" form while htab_bolt_mapping() expects them in the hash table format. This is made more confusing by the fact that some of those flags are actually in the same position in both cases. This fixes it all by making htab_bolt_mapping() take normal linux protection flags instead, and use a little helper to convert them to htab flags. Callers can now use the usual PAGE_* definitions safely. Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> arch/powerpc/include/asm/mmu-hash64.h | 2 - arch/powerpc/mm/hash_utils_64.c | 65 ++++++++++++++++++++-------------- arch/powerpc/mm/init_64.c | 9 +--- 3 files changed, 44 insertions(+), 32 deletions(-) Signed-off-by: Paul Mackerras <paulus@samba.org>
OpenPOWER on IntegriCloud