summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm
Commit message (Collapse)AuthorAgeFilesLines
* arm/arm64: KVM: Add PSCI version selection APIMarc Zyngier2018-04-201-1/+13
| | | | | | | | | | | | | | | | | | | | | Although we've implemented PSCI 0.1, 0.2 and 1.0, we expose either 0.1 or 1.0 to a guest, defaulting to the latest version of the PSCI implementation that is compatible with the requested version. This is no different from doing a firmware upgrade on KVM. But in order to give a chance to hypothetical badly implemented guests that would have a fit by discovering something other than PSCI 0.2, let's provide a new API that allows userspace to pick one particular version of the API. This is implemented as a new class of "firmware" registers, where we expose the PSCI version. This allows the PSCI version to be save/restored as part of a guest migration, and also set to any supported version if the guest requires it. Cc: stable@vger.kernel.org #4.16 Reviewed-by: Christoffer Dall <cdall@kernel.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm64: KVM: Demote SVE and LORegion warnings to debug onlyMarc Zyngier2018-04-171-4/+2
| | | | | | | | | | | | | While generating a message about guests probing for SVE/LORegions is a useful debugging tool, considering it an error is slightly over the top, as this is the only way the guest can find out about the presence of the feature. Let's turn these message into kvm_debug so that they can only be seen if CONFIG_DYNAMIC_DEBUG, and kept quiet otherwise. Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm64: Move the content of bpi.S to hyp-entry.SMarc Zyngier2018-04-111-1/+63
| | | | | | | | | | | | bpi.S was introduced as we were starting to build the Spectre v2 mitigation framework, and it was rather unclear that it would become strictly KVM specific. Now that the picture is a lot clearer, let's move the content of that file to hyp-entry.S, where it actually belong. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
* arm64: KVM: Use SMCCC_ARCH_WORKAROUND_1 for Falkor BP hardeningShanker Donthineni2018-04-112-22/+0
| | | | | | | | | | | | | The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead of Silicon provider service ID 0xC2001700. Cc: <stable@vger.kernel.org> # 4.14+ Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org> [maz: reworked errata framework integration] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
* Revert "arm64: KVM: Use SMCCC_ARCH_WORKAROUND_1 for Falkor BP hardening"Marc Zyngier2018-03-282-0/+22
| | | | | | | | | Creates far too many conflicts with arm64/for-next/core, to be resent post -rc1. This reverts commit f9f5dc19509bbef6f5e675346f1a7d7b846bdb12. Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm64: KVM: Use SMCCC_ARCH_WORKAROUND_1 for Falkor BP hardeningShanker Donthineni2018-03-192-22/+0
| | | | | | | | | | | The function SMCCC_ARCH_WORKAROUND_1 was introduced as part of SMC V1.1 Calling Convention to mitigate CVE-2017-5715. This patch uses the standard call SMCCC_ARCH_WORKAROUND_1 for Falkor chips instead of Silicon provider service ID 0xC2001700. Cc: <stable@vger.kernel.org> # 4.14+ Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm64: KVM: Allow mapping of vectors outside of the RAM regionMarc Zyngier2018-03-192-1/+4
| | | | | | | | | | | | | | We're now ready to map our vectors in weird and wonderful locations. On enabling ARM64_HARDEN_EL2_VECTORS, a vector slot gets allocated if this hasn't been already done via ARM64_HARDEN_BRANCH_PREDICTOR and gets mapped outside of the normal RAM region, next to the idmap. That way, being able to obtain VBAR_EL2 doesn't reveal the mapping of the rest of the hypervisor code. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm64: KVM: Allow far branches from vector slots to the main vectorsMarc Zyngier2018-03-192-0/+74
| | | | | | | | | | | | | | | | | | | | So far, the branch from the vector slots to the main vectors can at most be 4GB from the main vectors (the reach of ADRP), and this distance is known at compile time. If we were to remap the slots to an unrelated VA, things would break badly. A way to achieve VA independence would be to load the absolute address of the vectors (__kvm_hyp_vector), either using a constant pool or a series of movs, followed by an indirect branch. This patches implements the latter solution, using another instance of a patching callback. Note that since we have to save a register pair on the stack, we branch to the *second* instruction in the vectors in order to compensate for it. This also results in having to adjust this balance in the invalid vector entry point. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm64: KVM: Move BP hardening vectors into .hyp.text sectionMarc Zyngier2018-03-191-0/+3
| | | | | | | | | | | | There is no reason why the BP hardening vectors shouldn't be part of the HYP text at compile time, rather than being mapped at runtime. Also introduce a new config symbol that controls the compilation of bpi.S. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm64: KVM: Move stashing of x0/x1 into the vector code itselfMarc Zyngier2018-03-191-24/+32
| | | | | | | | | | | | | | | All our useful entry points into the hypervisor are starting by saving x0 and x1 on the stack. Let's move those into the vectors by introducing macros that annotate whether a vector is valid or not, thus indicating whether we want to stash registers or not. The only drawback is that we now also stash registers for el2_error, but this should never happen, and we pop them back right at the start of the handling sequence. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm64: KVM: Move vector offsetting from hyp-init.S to kvm_get_hyp_vectorMarc Zyngier2018-03-191-1/+0
| | | | | | | | | | | | We currently provide the hyp-init code with a kernel VA, and expect it to turn it into a HYP va by itself. As we're about to provide the hypervisor with mappings that are not necessarily in the memory range, let's move the kern_hyp_va macro to kvm_get_hyp_vector. No functionnal change. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm64: KVM: Introduce EL2 VA randomisationMarc Zyngier2018-03-191-5/+71
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The main idea behind randomising the EL2 VA is that we usually have a few spare bits between the most significant bit of the VA mask and the most significant bit of the linear mapping. Those bits could be a bunch of zeroes, and could be useful to move things around a bit. Of course, the more memory you have, the less randomisation you get... Alternatively, these bits could be the result of KASLR, in which case they are already random. But it would be nice to have a *different* randomization, just to make the job of a potential attacker a bit more difficult. Inserting these random bits is a bit involved. We don't have a spare register (short of rewriting all the kern_hyp_va call sites), and the immediate we want to insert is too random to be used with the ORR instruction. The best option I could come up with is the following sequence: and x0, x0, #va_mask ror x0, x0, #first_random_bit add x0, x0, #(random & 0xfff) add x0, x0, #(random >> 12), lsl #12 ror x0, x0, #(63 - first_random_bit) making it a fairly long sequence, but one that a decent CPU should be able to execute without breaking a sweat. It is of course NOPed out on VHE. The last 4 instructions can also be turned into NOPs if it appears that there is no free bits to use. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm64: KVM: Dynamically compute the HYP VA maskMarc Zyngier2018-03-191-11/+6
| | | | | | | | | | | | | | | As we're moving towards a much more dynamic way to compute our HYP VA, let's express the mask in a slightly different way. Instead of comparing the idmap position to the "low" VA mask, we directly compute the mask by taking into account the idmap's (VA_BIT-1) bit. No functionnal change. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Keep GICv2 HYP VAs in kvm_vgic_global_stateMarc Zyngier2018-03-191-1/+1
| | | | | | | | | | | | | | | | As we're about to change the way we map devices at HYP, we need to move away from kern_hyp_va on an IO address. One way of achieving this is to store the VAs in kvm_vgic_global_state, and use that directly from the HYP code. This requires a small change to create_hyp_io_mappings so that it can also return a HYP VA. We take this opportunity to nuke the vctrl_base field in the emulated distributor, as it is not used anymore. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Do not use kern_hyp_va() with kvm_vgic_global_stateMarc Zyngier2018-03-191-1/+1
| | | | | | | | | | | | | | | | kvm_vgic_global_state is part of the read-only section, and is usually accessed using a PC-relative address generation (adrp + add). It is thus useless to use kern_hyp_va() on it, and actively problematic if kern_hyp_va() becomes non-idempotent. On the other hand, there is no way that the compiler is going to guarantee that such access is always PC relative. So let's bite the bullet and provide our own accessor. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* arm64: KVM: Dynamically patch the kernel/hyp VA maskMarc Zyngier2018-03-192-1/+92
| | | | | | | | | | | | | | | | | So far, we're using a complicated sequence of alternatives to patch the kernel/hyp VA mask on non-VHE, and NOP out the masking altogether when on VHE. The newly introduced dynamic patching gives us the opportunity to simplify that code by patching a single instruction with the correct mask (instead of the mind bending cumulative masking we have at the moment) or even a single NOP on VHE. This also adds some initial code that will allow the patching callback to switch to a more complex patching. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Avoid VGICv3 save/restore on VHE with no IRQsChristoffer Dall2018-03-191-2/+6
| | | | | | | | | | | | | | | | | | | | | | | | We can finally get completely rid of any calls to the VGICv3 save/restore functions when the AP lists are empty on VHE systems. This requires carefully factoring out trap configuration from saving and restoring state, and carefully choosing what to do on the VHE and non-VHE path. One of the challenges is that we cannot save/restore the VMCR lazily because we can only write the VMCR when ICC_SRE_EL1.SRE is cleared when emulating a GICv2-on-GICv3, since otherwise all Group-0 interrupts end up being delivered as FIQ. To solve this problem, and still provide fast performance in the fast path of exiting a VM when no interrupts are pending (which also optimized the latency for actually delivering virtual interrupts coming from physical interrupts), we orchestrate a dance of only doing the activate/deactivate traps in vgic load/put for VHE systems (which can have ICC_SRE_EL1.SRE cleared when running in the host), and doing the configuration on every round-trip on non-VHE systems. Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Handle VGICv3 save/restore from the main VGIC code on VHEChristoffer Dall2018-03-191-7/+6
| | | | | | | | | | | | | | | | | | | | Just like we can program the GICv2 hypervisor control interface directly from the core vgic code, we can do the same for the GICv3 hypervisor control interface on VHE systems. We do this by simply calling the save/restore functions when we have VHE and we can then get rid of the save/restore function calls from the VHE world switch function. One caveat is that we now write GICv3 system register state before the potential early exit path in the run loop, and because we sync back state in the early exit path, we have to ensure that we read a consistent GIC state from the sync path, even though we have never actually run the guest with the newly written GIC state. We solve this by inserting an ISB in the early exit path. Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Move arm64-only vgic-v2-sr.c file to arm64Christoffer Dall2018-03-192-1/+79
| | | | | | | | | | | | | | | | The vgic-v2-sr.c file now only contains the logic to replay unaligned accesses to the virtual CPU interface on 16K and 64K page systems, which is only relevant on 64-bit platforms. Therefore move this file to the arm64 KVM tree, remove the compile directive from the 32-bit side makefile, and remove the ifdef in the C file. Since this file also no longer saves/restores anything, rename the file to vgic-v2-cpuif-proxy.c to more accurately describe the logic in this file. Reviewed-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Handle VGICv2 save/restore from the main VGIC codeChristoffer Dall2018-03-191-4/+0
| | | | | | | | | | We can program the GICv2 hypervisor control interface logic directly from the core vgic code and can instead do the save/restore directly from the flush/sync functions, which can lead to a number of future optimizations. Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Cleanup __activate_traps and __deactive_traps for VHE and non-VHEChristoffer Dall2018-03-191-12/+10
| | | | | | | | | | | | To make the code more readable and to avoid the overhead of a function call, let's get rid of a pair of the alternative function selectors and explicitly call the VHE and non-VHE functions using the has_vhe() static key based selector instead, telling the compiler to try to inline the static function if it can. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Configure c15, PMU, and debug register traps on cpu load/put for VHEChristoffer Dall2018-03-192-9/+26
| | | | | | | | | | | | | | | We do not have to change the c15 trap setting on each switch to/from the guest on VHE systems, because this setting only affects guest EL1/EL0 (and therefore not the VHE host). The PMU and debug trap configuration can also be done on vcpu load/put instead, because they don't affect how the VHE host kernel can access the debug registers while executing KVM kernel code. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Directly call VHE and non-VHE FPSIMD enabled functionsChristoffer Dall2018-03-191-12/+3
| | | | | | | | | | | | There is no longer a need for an alternative to choose the right function to tell us whether or not FPSIMD was enabled for the VM, because we can simply can the appropriate functions directly from within the _vhe and _nvhe run functions. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Move common VHE/non-VHE trap config in separate functionsChristoffer Dall2018-03-191-31/+46
| | | | | | | | | | | | As we are about to be more lazy with some of the trap configuration register read/writes for VHE systems, move the logic that is currently shared between VHE and non-VHE into a separate function which can be called from either the world-switch path or from vcpu_load/vcpu_put. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Defer saving/restoring 32-bit sysregs to vcpu load/putChristoffer Dall2018-03-193-11/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | When running a 32-bit VM (EL1 in AArch32), the AArch32 system registers can be deferred to vcpu load/put on VHE systems because neither the host kernel nor host userspace uses these registers. Note that we can't save DBGVCR32_EL2 conditionally based on the state of the debug dirty flag on VHE after this change, because during vcpu_load() we haven't calculated a valid debug flag yet, and when we've restored the register during vcpu_load() we also have to save it during vcpu_put(). This means that we'll always restore/save the register for VHE on load/put, but luckily vcpu load/put are called rarely, so saving an extra register unconditionally shouldn't significantly hurt performance. We can also not defer saving FPEXC32_32 because this register only holds a guest-valid value for 32-bit guests during the exit path when the guest has used FPSIMD registers and restored the register in the early assembly handler from taking the EL2 fault, and therefore we have to check if fpsimd is enabled for the guest in the exit path and save the register then, for both VHE and non-VHE guests. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Prepare to handle deferred save/restore of 32-bit registersChristoffer Dall2018-03-191-17/+50
| | | | | | | | | | | | 32-bit registers are not used by a 64-bit host kernel and can be deferred, but we need to rework the accesses to these register to access the latest values depending on whether or not guest system registers are loaded on the CPU or only reside in memory. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Defer saving/restoring 64-bit sysregs to vcpu load/put on VHEChristoffer Dall2018-03-192-8/+80
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Some system registers do not affect the host kernel's execution and can therefore be loaded when we are about to run a VCPU and we don't have to restore the host state to the hardware before the time when we are actually about to return to userspace or schedule out the VCPU thread. The EL1 system registers and the userspace state registers only affecting EL0 execution do not need to be saved and restored on every switch between the VM and the host, because they don't affect the host kernel's execution. We mark all registers which are now deffered as such in the vcpu_{read,write}_sys_reg accessors in sys-regs.c to ensure the most up-to-date copy is always accessed. Note MPIDR_EL1 (controlled via VMPIDR_EL2) is accessed from other vcpu threads, for example via the GIC emulation, and therefore must be declared as immediate, which is fine as the guest cannot modify this value. The 32-bit sysregs can also be deferred but we do this in a separate patch as it requires a bit more infrastructure. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Prepare to handle deferred save/restore of ELR_EL1Christoffer Dall2018-03-191-2/+2
| | | | | | | | | | | | ELR_EL1 is not used by a VHE host kernel and can be deferred, but we need to rework the accesses to this register to access the latest value depending on whether or not guest system registers are loaded on the CPU or only reside in memory. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Prepare to handle deferred save/restore of SPSR_EL1Christoffer Dall2018-03-191-2/+2
| | | | | | | | | | | | | | | | | SPSR_EL1 is not used by a VHE host kernel and can be deferred, but we need to rework the accesses to this register to access the latest value depending on whether or not guest system registers are loaded on the CPU or only reside in memory. The handling of accessing the various banked SPSRs for 32-bit VMs is a bit clunky, but this will be improved in following patches which will first prepare and subsequently implement deferred save/restore of the 32-bit registers, including the 32-bit SPSRs. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Introduce framework for accessing deferred sysregsChristoffer Dall2018-03-191-0/+33
| | | | | | | | | | | | | | | | | | | | | | | | | We are about to defer saving and restoring some groups of system registers to vcpu_put and vcpu_load on supported systems. This means that we need some infrastructure to access system registes which supports either accessing the memory backing of the register or directly accessing the system registers, depending on the state of the system when we access the register. We do this by defining read/write accessor functions, which can handle both "immediate" and "deferrable" system registers. Immediate registers are always saved/restored in the world-switch path, but deferrable registers are only saved/restored in vcpu_put/vcpu_load when supported and sysregs_loaded_on_cpu will be set in that case. Note that we don't use the deferred mechanism yet in this patch, but only introduce infrastructure. This is to improve convenience of review in the subsequent patches where it is clear which registers become deferred. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Rewrite system register accessors to read/write functionsChristoffer Dall2018-03-195-51/+62
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently we access the system registers array via the vcpu_sys_reg() macro. However, we are about to change the behavior to some times modify the register file directly, so let's change this to two primitives: * Accessor macros vcpu_write_sys_reg() and vcpu_read_sys_reg() * Direct array access macro __vcpu_sys_reg() The accessor macros should be used in places where the code needs to access the currently loaded VCPU's state as observed by the guest. For example, when trapping on cache related registers, a write to a system register should go directly to the VCPU version of the register. The direct array access macro can be used in places where the VCPU is known to never be running (for example userspace access) or for registers which are never context switched (for example all the PMU system registers). This rewrites all users of vcpu_sys_regs to one of the macros described above. No functional change. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <cdall@cs.columbia.edu> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Change 32-bit handling of VM system registersChristoffer Dall2018-03-191-5/+15
| | | | | | | | | | | | | | | | | | | | | | We currently handle 32-bit accesses to trapped VM system registers using the 32-bit index into the coproc array on the vcpu structure, which is a union of the coproc array and the sysreg array. Since all the 32-bit coproc indices are created to correspond to the architectural mapping between 64-bit system registers and 32-bit coprocessor registers, and because the AArch64 system registers are the double in size of the AArch32 coprocessor registers, we can always find the system register entry that we must update by dividing the 32-bit coproc index by 2. This is going to make our lives much easier when we have to start accessing system registers that use deferred save/restore and might have to be read directly from the physical CPU. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Don't save the host ELR_EL2 and SPSR_EL2 on VHE systemsChristoffer Dall2018-03-191-0/+13
| | | | | | | | | | | | | | | | On non-VHE systems we need to save the ELR_EL2 and SPSR_EL2 so that we can return to the host in EL1 in the same state and location where we issued a hypercall to EL2, but on VHE ELR_EL2 and SPSR_EL2 are not useful because we never enter a guest as a result of an exception entry that would be directly handled by KVM. The kernel entry code already saves ELR_EL1/SPSR_EL1 on exception entry, which is enough. Therefore, factor out these registers into separate save/restore functions, making it easy to exclude them from the VHE world-switch path later on. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Unify non-VHE host/guest sysreg save and restore functionsChristoffer Dall2018-03-192-21/+7
| | | | | | | | | | | | | There is no need to have multiple identical functions with different names for saving host and guest state. When saving and restoring state for the host and guest, the state is the same for both contexts, and that's why we have the kvm_cpu_context structure. Delete one version and rename the other into simply save/restore. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Remove leftover comment from kvm_vcpu_run_vheChristoffer Dall2018-03-191-4/+0
| | | | | | | | | | | The comment only applied to SPE on non-VHE systems, so we simply remove it. Suggested-by: Andrew Jones <drjones@redhat.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Introduce separate VHE/non-VHE sysreg save/restore functionsChristoffer Dall2018-03-192-18/+42
| | | | | | | | | | | | | | | As we are about to handle system registers quite differently between VHE and non-VHE systems. In preparation for that, we need to split some of the handling functions between VHE and non-VHE functionality. For now, we simply copy the non-VHE functions, but we do change the use of static keys for VHE and non-VHE functionality now that we have separate functions. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Rewrite sysreg alternatives to static keysChristoffer Dall2018-03-191-13/+4
| | | | | | | | | | | As we are about to move calls around in the sysreg save/restore logic, let's first rewrite the alternative function callers, because it is going to make the next patches much easier to read. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Move userspace system registers into separate functionChristoffer Dall2018-03-191-13/+35
| | | | | | | | | | | | | | | | | | | | | There's a semantic difference between the EL1 registers that control operation of a kernel running in EL1 and EL1 registers that only control userspace execution in EL0. Since we can defer saving/restoring the latter, move them into their own function. The ARMv8 ARM (ARM DDI 0487C.a) Section D10.2.1 recommends that ACTLR_EL1 has no effect on the processor when running the VHE host, and we can therefore move this register into the EL1 state which is only saved/restored on vcpu_put/load for a VHE host. We also take this chance to rename the function saving/restoring the remaining system register to make it clear this function deals with the EL1 system registers. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Remove noop calls to timer save/restore from VHE switchChristoffer Dall2018-03-191-2/+0
| | | | | | | | | | | | | The VHE switch function calls __timer_enable_traps and __timer_disable_traps which don't do anything on VHE systems. Therefore, simply remove these calls from the VHE switch function and make the functions non-conditional as they are now only called from the non-VHE switch path. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Don't deactivate VM on VHE systemsChristoffer Dall2018-03-191-5/+3
| | | | | | | | | | | There is no need to reset the VTTBR to zero when exiting the guest on VHE systems. VHE systems don't use stage 2 translations for the EL2&0 translation regime used by the host. Reviewed-by: Andrew Jones <drjones@redhat.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Remove kern_hyp_va() use in VHE switch functionChristoffer Dall2018-03-191-3/+1
| | | | | | | | | | | VHE kernels run completely in EL2 and therefore don't have a notion of kernel and hyp addresses, they are all just kernel addresses. Therefore don't call kern_hyp_va() in the VHE switch function. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Introduce VHE-specific kvm_vcpu_runChristoffer Dall2018-03-191-1/+65
| | | | | | | | | | | | | | | | So far this is mostly (see below) a copy of the legacy non-VHE switch function, but we will start reworking these functions in separate directions to work on VHE and non-VHE in the most optimal way in later patches. The only difference after this patch between the VHE and non-VHE run functions is that we omit the branch-predictor variant-2 hardening for QC Falkor CPUs, because this workaround is specific to a series of non-VHE ARMv8.0 CPUs. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Factor out fault info population and gic workaroundsChristoffer Dall2018-03-191-47/+57
| | | | | | | | | | | | | | | | | | | | | | The current world-switch function has functionality to detect a number of cases where we need to fixup some part of the exit condition and possibly run the guest again, before having restored the host state. This includes populating missing fault info, emulating GICv2 CPU interface accesses when mapped at unaligned addresses, and emulating the GICv3 CPU interface on systems that need it. As we are about to have an alternative switch function for VHE systems, but VHE systems still need the same early fixup logic, factor out this logic into a separate function that can be shared by both switch functions. No functional change. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Improve debug register save/restore flowChristoffer Dall2018-03-192-22/+40
| | | | | | | | | | | | | | | | Instead of having multiple calls from the world switch path to the debug logic, each figuring out if the dirty bit is set and if we should save/restore the debug registers, let's just provide two hooks to the debug save/restore functionality, one for switching to the guest context, and one for switching to the host context, and we get the benefit of only having to evaluate the dirty flag once on each path, plus we give the compiler some more room to inline some of this functionality. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Slightly improve debug save/restore functionsChristoffer Dall2018-03-191-14/+12
| | | | | | | | | | | | | | | | | | | The debug save/restore functions can be improved by using the has_vhe() static key instead of the instruction alternative. Using the static key uses the same paradigm as we're going to use elsewhere, it makes the code more readable, and it generates slightly better code (no stack setups and function calls unless necessary). We also use a static key on the restore path, because it will be marginally faster than loading a value from memory. Finally, we don't have to conditionally clear the debug dirty flag if it's set, we can just clear it. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Move debug dirty flag calculation out of world switchChristoffer Dall2018-03-192-6/+5
| | | | | | | | | | | | | There is no need to figure out inside the world-switch if we should save/restore the debug registers or not, we might as well do that in the higher level debug setup code, making it easier to optimize down the line. Reviewed-by: Julien Thierry <julien.thierry@arm.com> Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Introduce vcpu_el1_is_32bitChristoffer Dall2018-03-193-11/+11
| | | | | | | | | | | | | | | | | | We have numerous checks around that checks if the HCR_EL2 has the RW bit set to figure out if we're running an AArch64 or AArch32 VM. In some cases, directly checking the RW bit (given its unintuitive name), is a bit confusing, and that's not going to improve as we move logic around for the following patches that optimize KVM on AArch64 hosts with VHE. Therefore, introduce a helper, vcpu_el1_is_32bit, and replace existing direct checks of HCR_EL2.RW with the helper. Reviewed-by: Julien Grall <julien.grall@arm.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Add kvm_vcpu_load_sysregs and kvm_vcpu_put_sysregsChristoffer Dall2018-03-191-0/+30
| | | | | | | | | | As we are about to move a bunch of save/restore logic for VHE kernels to the load and put functions, we need some infrastructure to do this. Reviewed-by: Andrew Jones <drjones@redhat.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm/arm64: Get rid of vcpu->arch.irq_linesChristoffer Dall2018-03-192-7/+1
| | | | | | | | | | | | | | | We currently have a separate read-modify-write of the HCR_EL2 on entry to the guest for the sole purpose of setting the VF and VI bits, if set. Since this is most rarely the case (only when using userspace IRQ chip and interrupts are in flight), let's get rid of this operation and instead modify the bits in the vcpu->arch.hcr[_el2] directly when needed. Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
* KVM: arm64: Move HCR_INT_OVERRIDE to default HCR_EL2 guest flagShih-Wei Li2018-03-191-3/+0
| | | | | | | | | | | | | | | | | | | We always set the IMO and FMO bits in the HCR_EL2 when running the guest, regardless if we use the vgic or not. By moving these flags to HCR_GUEST_FLAGS we can avoid one of the extra save/restore operations of HCR_EL2 in the world switch code, and we can also soon get rid of the other one. This is safe, because even though the IMO and FMO bits control both taking the interrupts to EL2 and remapping ICC_*_EL1 to ICV_*_EL1 when executed at EL1, as long as we ensure that these bits are clear when running the EL1 host, we're OK, because we reset the HCR_EL2 to only have the HCR_RW bit set when returning to EL1 on non-VHE systems. Reviewed-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Shih-Wei Li <shihwei@cs.columbia.edu> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
OpenPOWER on IntegriCloud