| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ARM v7 architecture introduced the concept of cache levels and related
control registers. New processors like A7 and A15 embed an L2 unified cache
controller that becomes part of the cache level hierarchy. Some operations in
the kernel like cpu_suspend and __cpu_disable do not require a flush of the
entire cache hierarchy to DRAM but just the cache levels belonging to the
Level of Unification Inner Shareable (LoUIS), which in most of ARM v7 systems
correspond to L1.
The current cache flushing API used in cpu_suspend and __cpu_disable,
flush_cache_all(), ends up flushing the whole cache hierarchy since for
v7 it cleans and invalidates all cache levels up to Level of Coherency
(LoC) which cripples system performance when used in hot paths like hotplug
and cpuidle.
Therefore a new kernel cache maintenance API must be added to cope with
latest ARM system requirements.
This patch adds flush_cache_louis() to the ARM kernel cache maintenance API.
This function cleans and invalidates all data cache levels up to the
Level of Unification Inner Shareable (LoUIS) and invalidates the instruction
cache for processors that support it (> v7).
This patch also creates an alias of the cache LoUIS function to flush_kern_all
for all processor versions prior to v7, so that the current cache flushing
behaviour is unchanged for those processors.
v7 cache maintenance code implements a cache LoUIS function that cleans and
invalidates the D-cache up to LoUIS and invalidates the I-cache, according
to the new API.
Reviewed-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Reviewed-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The cacheflush syscall can fail for two reasons:
(1) The arguments are invalid (nonsensical address range or no VMA)
(2) The region generates a translation fault on a VIPT or PIPT cache
This patch allows do_cache_op to return an error code to userspace in
the case of the above. The various coherent_user_range implementations
are modified to return 0 in the case of VIVT caches or -EFAULT in the
case of an abort on v6/v7 cores.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
| |
The CPU reset functions disable the MMU and therefore must be executed
with an identity mapping in place.
This patch places the CPU reset functions into the .idmap.text section,
causing the idmap code to include them as part of the identity mapping.
Acked-by: Dave Martin <dave.martin@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
| |
Signed-off-by: Dave Martin <dave.martin@linaro.org>
|
|
|
|
|
|
| |
Fixes generated by 'codespell' and manually reviewed.
Signed-off-by: Lucas De Marchi <lucas.demarchi@profusion.mobi>
|
|
|
|
|
|
|
|
|
|
|
| |
This adds core support for saving and restoring CPU coprocessor
registers for suspend/resume support. This contains support for suspend
with ARM920, ARM926, SA11x0, PXA25x, PXA27x, PXA3xx, V6 and V7 CPUs.
Tested on Assabet and Tegra 2.
Tested-by: Colin Cross <ccross@android.com>
Tested-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 81d11955bf0 ("ARM: 6405/1: Handle __flush_icache_all for
CONFIG_SMP_ON_UP") added a new function to struct cpu_cache_fns:
flush_icache_all(). It also implemented this for v6 and v7 but not
for v5 and backwards. Without the function pointer in place, we
will be calling wrong cache functions.
For example with ep93xx we get following:
Unable to handle kernel paging request at virtual address ee070f38
pgd = c0004000
[ee070f38] *pgd=00000000
Internal error: Oops: 80000005 [#1] PREEMPT
last sysfs file:
Modules linked in:
CPU: 0 Not tainted (2.6.36+ #1)
PC is at 0xee070f38
LR is at __dma_alloc+0x11c/0x2d0
pc : [<ee070f38>] lr : [<c0032c8c>] psr: 60000013
sp : c581bde0 ip : 00000000 fp : c0472000
r10: c0472000 r9 : 000000d0 r8 : 00020000
r7 : 0001ffff r6 : 00000000 r5 : c0472400 r4 : c5980000
r3 : c03ab7e0 r2 : 00000000 r1 : c59a0000 r0 : c5980000
Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment kernel
Control: c000717f Table: c0004000 DAC: 00000017
Process swapper (pid: 1, stack limit = 0xc581a270)
[<c0032c8c>] (__dma_alloc+0x11c/0x2d0)
[<c0032e5c>] (dma_alloc_writecombine+0x1c/0x24)
[<c0204148>] (ep93xx_pcm_preallocate_dma_buffer+0x44/0x60)
[<c02041c0>] (ep93xx_pcm_new+0x5c/0x88)
[<c01ff188>] (snd_soc_instantiate_cards+0x8a8/0xbc0)
[<c01ff59c>] (soc_probe+0xfc/0x134)
[<c01adafc>] (platform_drv_probe+0x18/0x1c)
[<c01acca4>] (driver_probe_device+0xb0/0x16c)
[<c01ac284>] (bus_for_each_drv+0x48/0x84)
[<c01ace90>] (device_attach+0x50/0x68)
[<c01ac0f8>] (bus_probe_device+0x24/0x44)
[<c01aad7c>] (device_add+0x2fc/0x44c)
[<c01adfa8>] (platform_device_add+0x104/0x15c)
[<c0015eb8>] (simone_init+0x60/0x94)
[<c0021410>] (do_one_initcall+0xd0/0x1a4)
__dma_alloc() calls (inlined) __dma_alloc_buffer() which ends up
calling dmac_flush_range(). Now since the entries in the
arm920_cache_fns are shifted by one, we jump into address 0xee070f38
which is actually next instruction after the arm920_cache_fns
structure.
So implement flush_icache_all() for the rest of the supported CPUs
using a generic 'invalidate I cache' instruction.
Signed-off-by: Mika Westerberg <mika.westerberg@iki.fi>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
| |
__lookup_processor_type
When hotplug CPU is enabled, we need to keep the list of supported CPUs,
their setup functions, and __lookup_processor_type in place so that we
can find and initialize secondary CPUs. Move these into the __CPUINIT
section.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
All implementations of cpu_proc_fin() start by disabling interrupts
and then flush caches. Rather than have every processors proc_fin()
implementation do this, move it out into generic code - and move the
cache flush past setup_mm_for_reboot() (so it can benefit from having
caches still enabled.)
This allows cpu_proc_fin() to become independent of the L1/L2 cache
types, and eventually move the L2 cache flushing into the L2 support
code.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
| |
These are now unused, and so can be removed.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
|
|
|
|
|
| |
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
|
|
|
|
|
|
|
| |
... and rename the function since it no longer operates on just
pages.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instruction fault status register, IFSR, was introduced on ARMv6 to
provide status information about the last insturction fault. It
needed for proper prefetch abort handling.
Now we have three prefetch abort model:
* legacy - for CPUs before ARMv6. They doesn't provide neither
IFSR nor IFAR. We simulate IFSR with section translation fault
status for them to generalize code;
* ARMv6 - provides IFSR, but not IFAR;
* ARMv7 - provides both IFSR and IFAR.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
| |
asm code really wants asm/hwcap.h, so include that instead.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
| |
There are actually only four separate implementations of set_pte_ext.
Use assembler macros to insert code for these into the proc-*.S files.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
| |
The proc-*.S files have the _prefetch_abort pointer placed at the end
of the processor structure but the cpu-multi32.h defines it in the
second position. The patch also fixes the support for XSC3 and the
MMU-less CPUs (740, 7tdmi, 940, 946 and 9tdmi).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
| |
This patch adds a prefetch abort handler similar to the data abort one
and renames the latter for consistency. Initial implementation by Paul
Brook with some renaming by Catalin Marinas.
Signed-off-by: Paul Brook <paul@codesourcery.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
|
| |
L_PTE_ASID is not really required to be stored in every PTE, since we
can identify it via the address passed to set_pte_at(). So, create
set_pte_ext() which takes the address of the PTE to set, the Linux
PTE value, and the additional CPU PTE bits which aren't encoded in
the Linux PTE value.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
| |
These files want to provide/access ELF hwcap information, so should
be including asm/elf.h rather than asm/procinfo.h
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
| |
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (44 commits)
[ARM] 3541/2: workaround for PXA27x erratum E7
[ARM] nommu: provide a way for correct control register value selection
[ARM] 3705/1: add supersection support to ioremap()
[ARM] 3707/1: iwmmxt: use the generic thread notifier infrastructure
[ARM] 3706/2: ep93xx: add cirrus logic edb9315a support
[ARM] 3704/1: format IOP Kconfig with tabs, create more consistency
[ARM] 3703/1: Add help description for ARCH_EP80219
[ARM] 3678/1: MMC: Make OMAP MMC work
[ARM] 3677/1: OMAP: Update H2 defconfig
[ARM] 3676/1: ARM: OMAP: Fix dmtimers and timer32k to compile on OMAP1
[ARM] Add section support to ioremap
[ARM] Fix sa11x0 SDRAM selection
[ARM] Set bit 4 on section mappings correctly depending on CPU
[ARM] 3666/1: TRIZEPS4 [1/5] core
ARM: OMAP: Multiplexing for 24xx GPMC wait pin monitoring
ARM: OMAP: Fix SRAM to use MT_MEMORY instead of MT_DEVICE
ARM: OMAP: Update dmtimers
ARM: OMAP: Make clock variables static
ARM: OMAP: Fix GPMC compilation when DEBUG is defined
ARM: OMAP: Mux updates for external DMA and GPIO
...
|
| |\ |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Most MMU-based CPUs have a restriction on the setting of the data cache
enable and mmu enable bits in the control register, whereby if the data
cache is enabled, the MMU must also be enabled. Enabling the data
cache without the MMU is an invalid combination.
However, there are CPUs where the data cache can be enabled without the
MMU.
In order to allow these CPUs to take advantage of that, provide a
method whereby each proc-*.S file defines the control regsiter value
for use with nommu (with the MMU disabled.) Later on, when we add
support for enabling the MMU on these devices, we can adjust the
"crval" macro to also enable the data cache for nommu.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
On some CPUs, bit 4 of section mappings means "update the
cache when written to". On others, this bit is required to
be one, and others it's required to be zero. Finally, on
ARMv6 and above, setting it turns on "no execute" and prevents
speculative prefetches.
With all these combinations, no one value fits all CPUs, so we
have to pick a value depending on the CPU type, and the area
we're mapping.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|/
|
|
|
| |
Signed-off-by: Jörn Engel <joern@wohnheim.fh-wedel.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
|
|
|
|
|
|
|
|
|
|
| |
In noMMU mode, various of functions which are defined in mm/proc-*.S
is not valid or needed to be avoided. i.g. switch_mm is not needed,
just returns and this makes the I & D caches are valid which shows
great improvement of performance including task switching and IPC.
Signed-off-by: Hyok S. Choi <hyok.choi@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|\
| |
| |
| |
| |
| | |
Fix merge conflict in arch/arm/mm/proc-xscale.S
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| | |
Move the hardware PMD and PTE page table definitions from pgtable.h
into pgtable-hwdef.h, and include pgtable-hwdef.h as necessary.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|/
|
|
|
|
|
|
|
| |
asm/hardware.h is not required for the majority of processor support
files, ioremap support, mm initialisation, acorn IO support, nor
the debug code (which picks up its machine specific includes via
debug-macros.S)
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
|
| |
Patch from Ben Dooks
The `make buildcheck` is erroneously reporting that the .proc.info
list is referencing items in the .init section as it is not itself
postfixed with .init
Signed-off-by: Ben Dooks <ben-linux@fluff.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
| |
Delete obsoleted stuff from arch Makefile and rename
constants.h to asm-offsets.h
Signed-off-by: Sam Ravnborg <sam@ravnborg.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Patch from Catalin Marinas
This patch fixes the V bit setting for the ARM1020x processors. At
reset, this bit is automatically set to the value of the HIVECSINIT
input signal which just happened to be 1 but it is not mandatory.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
|
|
|
|
|
|
|
|
| |
Patch from Catalin Marinas
This patch fixes a broken comment in the proc-arm1020.S file which
prevents the file compilation
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|