summaryrefslogtreecommitdiffstats
Commit message (Collapse)AuthorAgeFilesLines
* procfs: mark thread stack correctly in proc/<pid>/mapsSiddhesh Poyarekar2012-03-217-63/+313
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Stack for a new thread is mapped by userspace code and passed via sys_clone. This memory is currently seen as anonymous in /proc/<pid>/maps, which makes it difficult to ascertain which mappings are being used for thread stacks. This patch uses the individual task stack pointers to determine which vmas are actually thread stacks. For a multithreaded program like the following: #include <pthread.h> void *thread_main(void *foo) { while(1); } int main() { pthread_t t; pthread_create(&t, NULL, thread_main, NULL); pthread_join(t, NULL); } proc/PID/maps looks like the following: 00400000-00401000 r-xp 00000000 fd:0a 3671804 /home/siddhesh/a.out 00600000-00601000 rw-p 00000000 fd:0a 3671804 /home/siddhesh/a.out 019ef000-01a10000 rw-p 00000000 00:00 0 [heap] 7f8a44491000-7f8a44492000 ---p 00000000 00:00 0 7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0 7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0 7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0 7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0 7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0 7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0 7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0 [stack] 7fff627ff000-7fff62800000 r-xp 00000000 00:00 0 [vdso] ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall] Here, one could guess that 7f8a44492000-7f8a44c92000 is a stack since the earlier vma that has no permissions (7f8a44e3d000-7f8a4503d000) but that is not always a reliable way to find out which vma is a thread stack. Also, /proc/PID/maps and /proc/PID/task/TID/maps has the same content. With this patch in place, /proc/PID/task/TID/maps are treated as 'maps as the task would see it' and hence, only the vma that that task uses as stack is marked as [stack]. All other 'stack' vmas are marked as anonymous memory. /proc/PID/maps acts as a thread group level view, where all thread stack vmas are marked as [stack:TID] where TID is the process ID of the task that uses that vma as stack, while the process stack is marked as [stack]. So /proc/PID/maps will look like this: 00400000-00401000 r-xp 00000000 fd:0a 3671804 /home/siddhesh/a.out 00600000-00601000 rw-p 00000000 fd:0a 3671804 /home/siddhesh/a.out 019ef000-01a10000 rw-p 00000000 00:00 0 [heap] 7f8a44491000-7f8a44492000 ---p 00000000 00:00 0 7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0 [stack:1442] 7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0 7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0 7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0 7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0 7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0 7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0 [stack] 7fff627ff000-7fff62800000 r-xp 00000000 00:00 0 [vdso] ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall] Thus marking all vmas that are used as stacks by the threads in the thread group along with the process stack. The task level maps will however like this: 00400000-00401000 r-xp 00000000 fd:0a 3671804 /home/siddhesh/a.out 00600000-00601000 rw-p 00000000 fd:0a 3671804 /home/siddhesh/a.out 019ef000-01a10000 rw-p 00000000 00:00 0 [heap] 7f8a44491000-7f8a44492000 ---p 00000000 00:00 0 7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0 [stack] 7f8a44c92000-7f8a44e3d000 r-xp 00000000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a44e3d000-7f8a4503d000 ---p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a4503d000-7f8a45041000 r--p 001ab000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45041000-7f8a45043000 rw-p 001af000 fd:00 2097482 /lib64/libc-2.14.90.so 7f8a45043000-7f8a45048000 rw-p 00000000 00:00 0 7f8a45048000-7f8a4505f000 r-xp 00000000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4505f000-7f8a4525e000 ---p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525e000-7f8a4525f000 r--p 00016000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a4525f000-7f8a45260000 rw-p 00017000 fd:00 2099938 /lib64/libpthread-2.14.90.so 7f8a45260000-7f8a45264000 rw-p 00000000 00:00 0 7f8a45264000-7f8a45286000 r-xp 00000000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45457000-7f8a4545a000 rw-p 00000000 00:00 0 7f8a45484000-7f8a45485000 rw-p 00000000 00:00 0 7f8a45485000-7f8a45486000 r--p 00021000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45486000-7f8a45487000 rw-p 00022000 fd:00 2097348 /lib64/ld-2.14.90.so 7f8a45487000-7f8a45488000 rw-p 00000000 00:00 0 7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0 7fff627ff000-7fff62800000 r-xp 00000000 00:00 0 [vdso] ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall] where only the vma that is being used as a stack by *that* task is marked as [stack]. Analogous changes have been made to /proc/PID/smaps, /proc/PID/numa_maps, /proc/PID/task/TID/smaps and /proc/PID/task/TID/numa_maps. Relevant snippets from smaps and numa_maps: [siddhesh@localhost ~ ]$ pgrep a.out 1441 [siddhesh@localhost ~ ]$ cat /proc/1441/smaps | grep "\[stack" 7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0 [stack:1442] 7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0 [stack] [siddhesh@localhost ~ ]$ cat /proc/1441/task/1442/smaps | grep "\[stack" 7f8a44492000-7f8a44c92000 rw-p 00000000 00:00 0 [stack] [siddhesh@localhost ~ ]$ cat /proc/1441/task/1441/smaps | grep "\[stack" 7fff6273b000-7fff6275c000 rw-p 00000000 00:00 0 [stack] [siddhesh@localhost ~ ]$ cat /proc/1441/numa_maps | grep "stack" 7f8a44492000 default stack:1442 anon=2 dirty=2 N0=2 7fff6273a000 default stack anon=3 dirty=3 N0=3 [siddhesh@localhost ~ ]$ cat /proc/1441/task/1442/numa_maps | grep "stack" 7f8a44492000 default stack anon=2 dirty=2 N0=2 [siddhesh@localhost ~ ]$ cat /proc/1441/task/1441/numa_maps | grep "stack" 7fff6273a000 default stack anon=3 dirty=3 N0=3 [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: fix build] Signed-off-by: Siddhesh Poyarekar <siddhesh.poyarekar@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Jamie Lokier <jamie@shareable.org> Cc: Mike Frysinger <vapier@gentoo.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Matt Mackall <mpm@selenic.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: hugetlb: bail out unmapping after serving reference pageHillf Danton2012-03-211-0/+4
| | | | | | | | | | | | When unmapping a given VM range, we could bail out if a reference page is supplied and is unmapped, which is a minor optimization. Signed-off-by: Hillf Danton <dhillf@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: documentation: 'transparent_hugepage=' can also be specified on cmdlineJiri Kosina2012-03-211-0/+7
| | | | | | | | | | | | The behavior of THP can either be toggled through sysfs in runtime or using a kernel cmdline parameter 'transparent_hugepage='. Document the latter in kernel-parameters.txt Signed-off-by: Jiri Kosina <jkosina@suse.cz> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan: handle isolated pages with lru lock releasedHillf Danton2012-03-211-11/+10
| | | | | | | | | | | | | | | | | | When shrinking inactive lru list, isolated pages are queued on locally private list, so the lock-hold time could be reduced if pages are counted without lock protection. To achieve that, firstly updating reclaim stat is delayed until the putback stage, after reacquiring the lru lock. Secondly, operations related to vm and zone stats are now proteced with preemption disabled as they are per-cpu operations. Signed-off-by: Hillf Danton <dhillf@gmail.com> Acked-by: Hugh Dickins <hughd@google.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* rmap: remove __anon_vma_link() declarationXiao Guangrong2012-03-211-1/+0
| | | | | | | | | This declaration is not used anymore, remove it. Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* rmap: anon_vma_prepare: Reduce code duplication by calling anon_vma_chain_linkKautuk Consul2012-03-211-19/+16
| | | | | | | | | | | | | | | | Reduce code duplication by calling anon_vma_chain_link() from anon_vma_prepare(). Also move anon_vmal_chain_link() to a more suitable location in the file. Signed-off-by: Kautuk Consul <consul.kautuk@gmail.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hughd@google.com> Reviewed-by: KAMEZWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: hugetlb: defer freeing pages when gathering surplus pagesHillf Danton2012-03-211-13/+17
| | | | | | | | | | | | | | | | | | | When gathering surplus pages, the number of needed pages is recomputed after reacquiring hugetlb lock to catch changes in resv_huge_pages and free_huge_pages. Plus it is recomputed with the number of newly allocated pages involved. Thus freeing pages can be deferred a bit to see if the final page request is satisfied, though pages could be allocated less than needed. Signed-off-by: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vmscan: forcibly scan highmem if there are too many buffer_heads pinning ↵Mel Gorman2012-03-211-13/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | highmem Stuart Foster reported on bugzilla that copying large amounts of data from NTFS caused an OOM kill on 32-bit X86 with 16G of memory. Andrew Morton correctly identified that the problem was NTFS was using 512 blocks meaning each page had 8 buffer_heads in low memory pinning it. In the past, direct reclaim used to scan highmem even if the allocating process did not specify __GFP_HIGHMEM but not any more. kswapd no longer will reclaim from zones that are above the high watermark. The intention in both cases was to minimise unnecessary reclaim. The downside is on machines with large amounts of highmem that lowmem can be fully consumed by buffer_heads with nothing trying to free them. The following patch is based on a suggestion by Andrew Morton to extend the buffer_heads_over_limit case to force kswapd and direct reclaim to scan the highmem zone regardless of the allocation request or watermarks. Addresses https://bugzilla.kernel.org/show_bug.cgi?id=42578 [hughd@google.com: move buffer_heads_over_limit check up] [akpm@linux-foundation.org: buffer_heads_over_limit is unlikely] Reported-by: Stuart Foster <smf.linux@ntlworld.com> Tested-by: Stuart Foster <smf.linux@ntlworld.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Rik van Riel <riel@redhat.com> Cc: Christoph Lameter <cl@linux.com> Cc: stable <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: replace PAGE_MIGRATION with IS_ENABLED(CONFIG_MIGRATION)Konstantin Khlebnikov2012-03-213-6/+5
| | | | | | | | | | Since commit 2a11c8ea20bf ("kconfig: Introduce IS_ENABLED(), IS_BUILTIN() and IS_MODULE()") there is a generic grep-friendly method for checking config options in C expressions. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* pagemap: introduce data structure for pagemap entryNaoya Horiguchi2012-03-211-31/+38
| | | | | | | | | | | | | | | | | | | Currently a local variable of pagemap entry in pagemap_pte_range() is named pfn and typed with u64, but it's not correct (pfn should be unsigned long.) This patch introduces special type for pagemap entries and replaces code with it. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Rientjes <rientjes@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* pagemap: document KPF_THP and make page-types aware of itNaoya Horiguchi2012-03-212-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | page-types, which is a common user of pagemap, gets aware of thp with this patch. This helps system admins and kernel hackers know about how thp works. Here is a sample output of page-types over a thp: $ page-types -p <pid> --raw --list voffset offset len flags ... 7f9d40200 3f8400 1 ___U_lA____Ma_bH______t____________ 7f9d40201 3f8401 1ff ________________T_____t____________ flags page-count MB symbolic-flags long-symbolic-flags 0x0000000000410000 511 1 ________________T_____t____________ compound_tail,thp 0x000000000040d868 1 0 ___U_lA____Ma_bH______t____________ uptodate,lru,active,mmap,anonymous,swapbacked,compound_head,thp Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* pagemap: export KPF_THPNaoya Horiguchi2012-03-212-0/+3
| | | | | | | | | | | | | | | This flag shows that a given page is a subpage of a transparent hugepage. It helps us debug and test the kernel by showing physical address of thp. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: optimize away unnecessary page table lockingNaoya Horiguchi2012-03-213-114/+101
| | | | | | | | | | | | | | | | | | | | | Currently when we check if we can handle thp as it is or we need to split it into regular sized pages, we hold page table lock prior to check whether a given pmd is mapping thp or not. Because of this, when it's not "huge pmd" we suffer from unnecessary lock/unlock overhead. To remove it, this patch introduces a optimized check function and replace several similar logics with it. [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Rientjes <rientjes@google.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Jiri Slaby <jslaby@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* pagemap: avoid splitting thp when reading /proc/pid/pagemapNaoya Horiguchi2012-03-211-4/+48
| | | | | | | | | | | | | | | | | Thp split is not necessary if we explicitly check whether pmds are mapping thps or not. This patch introduces this check and adds code to generate pagemap entries for pmds mapping thps, which results in less performance impact of pagemap on thp. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: search from free_area_cache for the bigger sizeXiao Guangrong2012-03-212-32/+38
| | | | | | | | | | | | | | | | | | | | If the required size is bigger than cached_hole_size it is better to search from free_area_cache - it is easier to get a free region, specifically for the 64 bit process whose address space is large enough Do it just as hugetlb_get_unmapped_area_topdown() in arch/x86/mm/hugetlbpage.c Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: do not reset cached_hole_size when vma is unmappedXiao Guangrong2012-03-211-3/+1
| | | | | | | | | | | | | | | | | | | | | In the current code, cached_hole_size is set to the maximum value if the unmapped vma is less that free_area_cache so the next search will search from the base address. Actually, we can keep cached_hole_size so that if the next required size is more than cached_hole_size, it can search from free_area_cache. Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlb: try to search again if it is really neededXiao Guangrong2012-03-211-4/+6
| | | | | | | | | | | | | | | | Search again only if some holes may be skipped in the first pass. [akpm@linux-foundation.org: clean up crazy compound definition] Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* hugetlbfs: fix hugetlb_get_unmapped_area()Xiao Guangrong2012-03-211-4/+11
| | | | | | | | | | | | | | | | Use/update cached_hole_size and free_area_cache properly to speedup finding of a free region. Signed-off-by: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Hillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: compaction: make compact_control order signedDan Carpenter2012-03-211-2/+2
| | | | | | | | | | | | | | | | | "order" is -1 when compacting via /proc/sys/vm/compact_memory. Making it unsigned causes a bug in __compact_pgdat() when we test: if (cc->order < 0 || !compaction_deferred(zone, cc->order)) compact_zone(zone, cc); [akpm@linux-foundation.org: make __compact_pgdat()'s comparison match other code sites] Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan@kernel.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* compact_pgdat: workaround lockdep warning in kswapdHugh Dickins2012-03-211-10/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I get this lockdep warning from swapping load on linux-next, due to "vmscan: kswapd carefully call compaction". ================================= [ INFO: inconsistent lock state ] 3.3.0-rc2-next-20120201 #5 Not tainted --------------------------------- inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage. kswapd0/28 [HC0[0]:SC0[0]:HE1:SE1] takes: (pcpu_alloc_mutex){+.+.?.}, at: [<ffffffff810d6684>] pcpu_alloc+0x67/0x325 {RECLAIM_FS-ON-W} state was registered at: [<ffffffff81099b75>] mark_held_locks+0xd7/0x103 [<ffffffff8109a13c>] lockdep_trace_alloc+0x85/0x9e [<ffffffff810f6bdc>] __kmalloc+0x6c/0x14b [<ffffffff810d57fd>] pcpu_mem_zalloc+0x59/0x62 [<ffffffff810d5d16>] pcpu_extend_area_map+0x26/0xb1 [<ffffffff810d679f>] pcpu_alloc+0x182/0x325 [<ffffffff810d694d>] __alloc_percpu+0xb/0xd [<ffffffff8142ebfd>] snmp_mib_init+0x1e/0x2e [<ffffffff8185cd8d>] ipv4_mib_init_net+0x7a/0x184 [<ffffffff813dc963>] ops_init.clone.0+0x6b/0x73 [<ffffffff813dc9cc>] register_pernet_operations+0x61/0xa0 [<ffffffff813dca8e>] register_pernet_subsys+0x29/0x42 [<ffffffff8185d044>] inet_init+0x1ad/0x252 [<ffffffff810002e3>] do_one_initcall+0x7a/0x12f [<ffffffff81832bc5>] kernel_init+0x9d/0x11e [<ffffffff814e51e4>] kernel_thread_helper+0x4/0x10 irq event stamp: 656613 hardirqs last enabled at (656613): [<ffffffff814e0ddc>] __mutex_unlock_slowpath+0x104/0x128 hardirqs last disabled at (656612): [<ffffffff814e0d34>] __mutex_unlock_slowpath+0x5c/0x128 softirqs last enabled at (655568): [<ffffffff8105b4a5>] __do_softirq+0x120/0x136 softirqs last disabled at (654757): [<ffffffff814e52dc>] call_softirq+0x1c/0x30 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(pcpu_alloc_mutex); <Interrupt> lock(pcpu_alloc_mutex); *** DEADLOCK *** no locks held by kswapd0/28. stack backtrace: Pid: 28, comm: kswapd0 Not tainted 3.3.0-rc2-next-20120201 #5 Call Trace: [<ffffffff810981f4>] print_usage_bug+0x1bf/0x1d0 [<ffffffff81096c3e>] ? print_irq_inversion_bug+0x1d9/0x1d9 [<ffffffff810982c0>] mark_lock_irq+0xbb/0x22e [<ffffffff810c5399>] ? free_hot_cold_page+0x13d/0x14f [<ffffffff81098684>] mark_lock+0x251/0x331 [<ffffffff81098893>] mark_irqflags+0x12f/0x141 [<ffffffff81098e32>] __lock_acquire+0x58d/0x753 [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325 [<ffffffff81099433>] lock_acquire+0x54/0x6a [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325 [<ffffffff8107a5b8>] ? add_preempt_count+0xa9/0xae [<ffffffff814e0a21>] mutex_lock_nested+0x5e/0x315 [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325 [<ffffffff81098f81>] ? __lock_acquire+0x6dc/0x753 [<ffffffff810c9fb0>] ? __pagevec_release+0x2c/0x2c [<ffffffff810d6684>] pcpu_alloc+0x67/0x325 [<ffffffff810c9fb0>] ? __pagevec_release+0x2c/0x2c [<ffffffff810d694d>] __alloc_percpu+0xb/0xd [<ffffffff8106c35e>] schedule_on_each_cpu+0x23/0x110 [<ffffffff810c9fcb>] lru_add_drain_all+0x10/0x12 [<ffffffff810f126f>] __compact_pgdat+0x20/0x182 [<ffffffff810f15c2>] compact_pgdat+0x27/0x29 [<ffffffff810c306b>] ? zone_watermark_ok+0x1a/0x1c [<ffffffff810cdf6f>] balance_pgdat+0x732/0x751 [<ffffffff810ce0ed>] kswapd+0x15f/0x178 [<ffffffff810cdf8e>] ? balance_pgdat+0x751/0x751 [<ffffffff8106fd11>] kthread+0x84/0x8c [<ffffffff814e51e4>] kernel_thread_helper+0x4/0x10 [<ffffffff810787ed>] ? finish_task_switch+0x85/0xea [<ffffffff814e3861>] ? retint_restore_args+0xe/0xe [<ffffffff8106fc8d>] ? __init_kthread_worker+0x56/0x56 [<ffffffff814e51e0>] ? gs_change+0xb/0xb The RECLAIM_FS notations indicate that it's doing the GFP_FS checking that Nick hacked into lockdep a while back: I think we're intended to read that "<Interrupt>" in the DEADLOCK scenario as "<Direct reclaim>". I'm hazy, I have not reached any conclusion as to whether it's right to complain or not; but I believe it's uneasy about kswapd now doing the mutex_lock(&pcpu_alloc_mutex) which lru_add_drain_all() entails. Nor have I reached any conclusion as to whether it's important for kswapd to do that draining or not. But so as not to get blocked on this, with lockdep disabled from giving further reports, here's a patch which removes the lru_add_drain_all() from kswapd's callpath (and calls it only once from compact_nodes(), instead of once per node). Signed-off-by: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan: only defer compaction for failed order and higherRik van Riel2012-03-215-8/+27
| | | | | | | | | | | | | | | | | | | | | Currently a failed order-9 (transparent hugepage) compaction can lead to memory compaction being temporarily disabled for a memory zone. Even if we only need compaction for an order 2 allocation, eg. for jumbo frames networking. The fix is relatively straightforward: keep track of the highest order at which compaction is succeeding, and only defer compaction for orders at which compaction is failing. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan: kswapd carefully call compactionRik van Riel2012-03-213-18/+51
| | | | | | | | | | | | | | | | | | | | | | | | With CONFIG_COMPACTION enabled, kswapd does not try to free contiguous free pages, even when it is woken for a higher order request. This could be bad for eg. jumbo frame network allocations, which are done from interrupt context and cannot compact memory themselves. Higher than before allocation failure rates in the network receive path have been observed in kernels with compaction enabled. Teach kswapd to defragment the memory zones in a node, but only if required and compaction is not deferred in a zone. [akpm@linux-foundation.org: reduce scope of zones_need_compaction] Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* vmscan: reclaim at order 0 when compaction is enabledRik van Riel2012-03-211-17/+30
| | | | | | | | | | | | | | | | | | | | | | | | | | When built with CONFIG_COMPACTION, kswapd should not try to free contiguous pages, because it is not trying hard enough to have a real chance at being successful, but still disrupts the LRU enough to break other things. Do not do higher order page isolation unless we really are in lumpy reclaim mode. Stop reclaiming pages once we have enough free pages that compaction can deal with things, and we hit the normal order 0 watermarks used by kswapd. Also remove a line of code that increments balanced right before exiting the function. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: make swapin readahead skip over holesRik van Riel2012-03-213-66/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ever since abandoning the virtual scan of processes, for scalability reasons, swap space has been a little more fragmented than before. This can lead to the situation where a large memory user is killed, swap space ends up full of "holes" and swapin readahead is totally ineffective. On my home system, after killing a leaky firefox it took over an hour to page just under 2GB of memory back in, slowing the virtual machines down to a crawl. This patch makes swapin readahead simply skip over holes, instead of stopping at them. This allows the system to swap things back in at rates of several MB/second, instead of a few hundred kB/second. The checks done in valid_swaphandles are already done in read_swap_cache_async as well, allowing us to remove a fair amount of code. [akpm@linux-foundation.org: fix it for page_cluster >= 32] Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Adrian Drzewiecki <z@drze.net> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vmscan: fix misused nr_reclaimed in shrink_mem_cgroup_zone()Hillf Danton2012-03-211-1/+6
| | | | | | | | | | | | | | | | | | | The value of nr_reclaimed is the number of pages reclaimed in the current round of the loop, whereas nr_to_reclaim should be compared with the number of pages reclaimed in all rounds. In each round of the loop, reclaimed pages are cut off from the reclaim goal, and the loop stops once the goal achieved. Signed-off-by: Hillf Danton <dhillf@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: make get_mm_counter static-inlineKonstantin Khlebnikov2012-03-212-28/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make get_mm_counter() always static inline, it is simple enough for that. And remove unused set_mm_counter() bloat-o-meter: add/remove: 0/1 grow/shrink: 4/12 up/down: 99/-341 (-242) function old new delta try_to_unmap_one 886 952 +66 sys_remap_file_pages 1214 1230 +16 dup_mm 1684 1700 +16 do_exit 2277 2278 +1 zap_page_range 208 205 -3 unmap_region 304 296 -8 static.oom_kill_process 554 546 -8 try_to_unmap_file 1716 1700 -16 getrusage 925 909 -16 flush_old_exec 1704 1688 -16 static.dump_header 416 390 -26 acct_update_integrals 218 187 -31 do_task_stat 2986 2954 -32 get_mm_counter 34 - -34 xacct_add_tsk 371 334 -37 task_statm 172 118 -54 task_mem 383 323 -60 try_to_unmap_one() grows because update_hiwater_rss() now completely inline. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/vmscan.c: cleanup with s/reclaim_mode/isolate_mode/Hillf Danton2012-03-211-9/+9
| | | | | | | | | | | | | | With tons of reclaim_mode (defined as one field of struct scan_control) already in the file, it is clearer to rename the local reclaim_mode when setting up the isolation mode. Signed-off-by: Hillf Danton <dhillf@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: add rss counters consistency checkKonstantin Khlebnikov2012-03-211-3/+18
| | | | | | | | | | | | | | | | | Warn about non-zero rss counters at final mmdrop. This check will prevent reoccurences of bugs such as that fixed in "mm: fix rss count leakage during migration". I didn't hide this check under CONFIG_VM_DEBUG because it rather small and rss counters cover whole page-table management, so this is a good invariant. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Hugh Dickins <hughd@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, oom: introduce independent oom killer ratelimit stateDavid Rientjes2012-03-211-1/+4
| | | | | | | | | | | | | | printk_ratelimit() uses the global ratelimit state for all printks. The oom killer should not be subjected to this state just because another subsystem or driver may be flooding the kernel log. This patch introduces printk ratelimiting specifically for the oom killer. Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, oom: do not emit oom killer warning if chosen thread is already exitingDavid Rientjes2012-03-211-3/+3
| | | | | | | | | | | | | | | | | | | | If a thread is chosen for oom kill and is already PF_EXITING, then the oom killer simply sets TIF_MEMDIE and returns. This allows the thread to have access to memory reserves so that it may quickly exit. This logic is preceeded with a comment saying there's no need to alarm the sysadmin. This patch adds truth to that statement. There's no need to emit any warning about the oom condition if the thread is already exiting since it will not be killed. In this condition, just silently return the oom killer since its only giving access to memory reserves and is otherwise a no-op. Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, oom: fold oom_kill_task() into oom_kill_process()David Rientjes2012-03-211-47/+38
| | | | | | | | | | | | | oom_kill_task() has a single caller, so fold it into its parent function, oom_kill_process(). Slightly reduces the number of lines in the oom killer. Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, oom: avoid looping when chosen thread detaches its mmDavid Rientjes2012-03-211-36/+20
| | | | | | | | | | | | | | | | | | | | | oom_kill_task() returns non-zero iff the chosen process does not have any threads with an attached ->mm. In such a case, it's better to just return to the page allocator and retry the allocation because memory could have been freed in the interim and the oom condition may no longer exist. It's unnecessary to loop in the oom killer and find another thread to kill. This allows both oom_kill_task() and oom_kill_process() to be converted to void functions. If the oom condition persists, the oom killer will be recalled. Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* sparc: use block_sigmask()Matt Fleming2012-03-213-17/+3
| | | | | | | | | | | | | | | Use the new helper function introduced in commit 5e6292c0f28f ("signal: add block_sigmask() for adding sigmask to current->blocked") which centralises the code for updating current->blocked after successfully delivering a signal and reduces the amount of duplicate code across architectures. In the past some architectures got this code wrong, so using this helper function should stop that from happening again. Acked-by: Oleg Nesterov <oleg@redhat.com> Acked-by: "David S. Miller" <davem@davemloft.net> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* xtensa: use set_current_blocked() and block_sigmask()Matt Fleming2012-03-211-14/+3
| | | | | | | | | | | | | | | | | | | | As described in commit e6fa16ab9c1e ("signal: sigprocmask() should do retarget_shared_pending()") the modification of current->blocked is incorrect as we need to check whether the signal we're about to block is pending in the shared queue. Also, use the new helper function introduced in commit 5e6292c0f28f ("signal: add block_sigmask() for adding sigmask to current->blocked") which centralises the code for updating current->blocked after successfully delivering a signal and reduces the amount of duplicate code across architectures. In the past some architectures got this code wrong, so using this helper function should stop that from happening again. Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Chris Zankel <chris@zankel.net> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* xtensa: don't mask signals if we fail to setup signal stackMatt Fleming2012-03-211-4/+7
| | | | | | | | | | | | setup_frame() needs to return an indication of whether it succeeded or failed in setting up the signal stack frame. If setup_frame() fails then we must not modify current->blocked. Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Chris Zankel <chris@zankel.net> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* xtensa: no need to reset handler if SA_ONESHOTMatt Fleming2012-03-211-3/+0
| | | | | | | | | | | | | | | | get_signal_to_deliver() already resets the signal handler if SA_ONESHOT is set in ka->sa.sa_flags, there's no need to do it again in handle_signal(). Furthermore, because we were modifying ka->sa.sa_handler (which is a copy of sighand->action[]) instead of sighand->action[] the original code actually had no effect on signal delivery. Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Chris Zankel <chris@zankel.net> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* xtensa: don't reimplement force_sigsegv()Matt Fleming2012-03-211-3/+1
| | | | | | | | | | | | | | | | Instead of open coding the sequence from force_sigsegv() just call it. This also fixes a bug because we were modifying ka->sa.sa_handler (which is a copy of sighand->action[]), whereas the intention of the code was to modify sighand->action[] directly. As the original code was working with a copy it had no effect on signal delivery. Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Chris Zankel <chris@zankel.net> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* seq_file: fix mishandling of consecutive pread() invocations.Earl Chew2012-03-211-13/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The following program illustrates the problem: char buf[8192]; int fd = open("/proc/self/maps", O_RDONLY); n = pread(fd, buf, sizeof(buf), 0); printf("%d\n", n); /* lseek(fd, 0, SEEK_CUR); */ /* Uncomment to work around */ n = pread(fd, buf, sizeof(buf), 0); printf("%d\n", n); The second printf() prints zero, but uncommenting the lseek() corrects its behaviour. To fix, make seq_read() mirror seq_lseek() when processing changes in *ppos. Restore m->version first, then if required traverse and update read_pos on success. Addresses https://bugzilla.kernel.org/show_bug.cgi?id=11856 Signed-off-by: Earl Chew <echew@ixiacom.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* drivers/idle/intel_idle.c: fix confusing code identationMarcos Paulo de Souza2012-03-211-4/+4
| | | | | | | | | | | | | Fix a code indentation in the function intel_idle_cpu_init that looks confusing.o Suggested-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com> Signed-off-by: Marcos Paulo de Souza <marcos.mage@gmail.com> Cc: "Brown, Len" <len.brown@intel.com> Cc: Len Brown <lenb@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* fs/namei.c: fix warnings on 32-bitAndrew Morton2012-03-211-0/+6
| | | | | | | | | | | | | | | i386 allnoconfig: fs/namei.c: In function 'has_zero': fs/namei.c:1617: warning: integer constant is too large for 'unsigned long' type fs/namei.c:1617: warning: integer constant is too large for 'unsigned long' type fs/namei.c: In function 'hash_name': fs/namei.c:1635: warning: integer constant is too large for 'unsigned long' type There must be a tidier way of doing this. Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: thp: fix pmd_bad() triggering in code paths holding mmap_sem read modeAndrea Arcangeli2012-03-219-10/+92
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In some cases it may happen that pmd_none_or_clear_bad() is called with the mmap_sem hold in read mode. In those cases the huge page faults can allocate hugepmds under pmd_none_or_clear_bad() and that can trigger a false positive from pmd_bad() that will not like to see a pmd materializing as trans huge. It's not khugepaged causing the problem, khugepaged holds the mmap_sem in write mode (and all those sites must hold the mmap_sem in read mode to prevent pagetables to go away from under them, during code review it seems vm86 mode on 32bit kernels requires that too unless it's restricted to 1 thread per process or UP builds). The race is only with the huge pagefaults that can convert a pmd_none() into a pmd_trans_huge(). Effectively all these pmd_none_or_clear_bad() sites running with mmap_sem in read mode are somewhat speculative with the page faults, and the result is always undefined when they run simultaneously. This is probably why it wasn't common to run into this. For example if the madvise(MADV_DONTNEED) runs zap_page_range() shortly before the page fault, the hugepage will not be zapped, if the page fault runs first it will be zapped. Altering pmd_bad() not to error out if it finds hugepmds won't be enough to fix this, because zap_pmd_range would then proceed to call zap_pte_range (which would be incorrect if the pmd become a pmd_trans_huge()). The simplest way to fix this is to read the pmd in the local stack (regardless of what we read, no need of actual CPU barriers, only compiler barrier needed), and be sure it is not changing under the code that computes its value. Even if the real pmd is changing under the value we hold on the stack, we don't care. If we actually end up in zap_pte_range it means the pmd was not none already and it was not huge, and it can't become huge from under us (khugepaged locking explained above). All we need is to enforce that there is no way anymore that in a code path like below, pmd_trans_huge can be false, but pmd_none_or_clear_bad can run into a hugepmd. The overhead of a barrier() is just a compiler tweak and should not be measurable (I only added it for THP builds). I don't exclude different compiler versions may have prevented the race too by caching the value of *pmd on the stack (that hasn't been verified, but it wouldn't be impossible considering pmd_none_or_clear_bad, pmd_bad, pmd_trans_huge, pmd_none are all inlines and there's no external function called in between pmd_trans_huge and pmd_none_or_clear_bad). if (pmd_trans_huge(*pmd)) { if (next-addr != HPAGE_PMD_SIZE) { VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); split_huge_page_pmd(vma->vm_mm, pmd); } else if (zap_huge_pmd(tlb, vma, pmd, addr)) continue; /* fall through */ } if (pmd_none_or_clear_bad(pmd)) Because this race condition could be exercised without special privileges this was reported in CVE-2012-1179. The race was identified and fully explained by Ulrich who debugged it. I'm quoting his accurate explanation below, for reference. ====== start quote ======= mapcount 0 page_mapcount 1 kernel BUG at mm/huge_memory.c:1384! At some point prior to the panic, a "bad pmd ..." message similar to the following is logged on the console: mm/memory.c:145: bad pmd ffff8800376e1f98(80000000314000e7). The "bad pmd ..." message is logged by pmd_clear_bad() before it clears the page's PMD table entry. 143 void pmd_clear_bad(pmd_t *pmd) 144 { -> 145 pmd_ERROR(*pmd); 146 pmd_clear(pmd); 147 } After the PMD table entry has been cleared, there is an inconsistency between the actual number of PMD table entries that are mapping the page and the page's map count (_mapcount field in struct page). When the page is subsequently reclaimed, __split_huge_page() detects this inconsistency. 1381 if (mapcount != page_mapcount(page)) 1382 printk(KERN_ERR "mapcount %d page_mapcount %d\n", 1383 mapcount, page_mapcount(page)); -> 1384 BUG_ON(mapcount != page_mapcount(page)); The root cause of the problem is a race of two threads in a multithreaded process. Thread B incurs a page fault on a virtual address that has never been accessed (PMD entry is zero) while Thread A is executing an madvise() system call on a virtual address within the same 2 MB (huge page) range. virtual address space .---------------------. | | | | .-|---------------------| | | | | | |<-- B(fault) | | | 2 MB | |/////////////////////|-. huge < |/////////////////////| > A(range) page | |/////////////////////|-' | | | | | | '-|---------------------| | | | | '---------------------' - Thread A is executing an madvise(..., MADV_DONTNEED) system call on the virtual address range "A(range)" shown in the picture. sys_madvise // Acquire the semaphore in shared mode. down_read(&current->mm->mmap_sem) ... madvise_vma switch (behavior) case MADV_DONTNEED: madvise_dontneed zap_page_range unmap_vmas unmap_page_range zap_pud_range zap_pmd_range // // Assume that this huge page has never been accessed. // I.e. content of the PMD entry is zero (not mapped). // if (pmd_trans_huge(*pmd)) { // We don't get here due to the above assumption. } // // Assume that Thread B incurred a page fault and .---------> // sneaks in here as shown below. | // | if (pmd_none_or_clear_bad(pmd)) | { | if (unlikely(pmd_bad(*pmd))) | pmd_clear_bad | { | pmd_ERROR | // Log "bad pmd ..." message here. | pmd_clear | // Clear the page's PMD entry. | // Thread B incremented the map count | // in page_add_new_anon_rmap(), but | // now the page is no longer mapped | // by a PMD entry (-> inconsistency). | } | } | v - Thread B is handling a page fault on virtual address "B(fault)" shown in the picture. ... do_page_fault __do_page_fault // Acquire the semaphore in shared mode. down_read_trylock(&mm->mmap_sem) ... handle_mm_fault if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) // We get here due to the above assumption (PMD entry is zero). do_huge_pmd_anonymous_page alloc_hugepage_vma // Allocate a new transparent huge page here. ... __do_huge_pmd_anonymous_page ... spin_lock(&mm->page_table_lock) ... page_add_new_anon_rmap // Here we increment the page's map count (starts at -1). atomic_set(&page->_mapcount, 0) set_pmd_at // Here we set the page's PMD entry which will be cleared // when Thread A calls pmd_clear_bad(). ... spin_unlock(&mm->page_table_lock) The mmap_sem does not prevent the race because both threads are acquiring it in shared mode (down_read). Thread B holds the page_table_lock while the page's map count and PMD table entry are updated. However, Thread A does not synchronize on that lock. ====== end quote ======= [akpm@linux-foundation.org: checkpatch fixes] Reported-by: Ulrich Obergfell <uobergfe@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: Dave Jones <davej@redhat.com> Acked-by: Larry Woodman <lwoodman@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: <stable@vger.kernel.org> [2.6.38+] Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'hwmon-for-linus' of ↵Linus Torvalds2012-03-21129-6219/+8581
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging Pull hwmon changes for v3.4 from Guenter Roeck: "Mostly cleanup. No new drivers this time around, but support for several chips added to existing drivers: TPS40400, TPS40422, MTD040, MAX34446, ZL9101M, ZL9117M, and LM96080. Also, added watchdog support for SCH56xx, and additional attributes for a couple of drivers." * tag 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck/linux-staging: (137 commits) hwmon: (sch56xx) Add support for the integrated watchdog (v2) hwmon: (w83627ehf) Add support for temperature offset registers hwmon: (jc42) Remove unnecessary device IDs hwmon: (zl6100) Add support for ZL9101M and ZL9117M hwmon: (adm1275) Add support for ADM1075 hwmon: (max34440) Add support for MAX34446 hwmon: (pmbus) Add more virtual registers hwmon: (pmbus) Add support for Lineage Power MDT040 hwmon: (pmbus) Add support for TI TPS40400 and TPS40422 hwmon: (max34440) Add support for 'lowest' output voltage attribute hwmon: (jc42) Convert to use devm_kzalloc hwmon: (max16065) Convert to use devm_kzalloc hwmon: (smm665) Convert to use devm_kzalloc hwmon: (ltc4261) Convert to use devm_kzalloc hwmon: (pmbus) Simplify remove functions hwmon: (pmbus) Convert pmbus drivers to use devm_kzalloc hwmon: (lineage-pem) Convert to use devm_kzalloc hwmon: (hwmon-vid) Fix checkpatch issues hwmon: (hwmon-vid) Add new entries to VRM model table hwmon: (lm80) Add detection of NatSemi/TI LM96080 ...
| * hwmon: (sch56xx) Add support for the integrated watchdog (v2)Hans de Goede2012-03-207-7/+558
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add support for the watchdog integrated into the SMSC SCH5627 and SCH5636 superio-s. Since the watchdog is part of the hwmon logical device and thus shares ioports with it, the watchdog driver is integrated into the existing hwmon drivers for these. Note that this version of the watchdog support for sch56xx superio-s implements the watchdog chardev interface itself, rather then relying on the recently added watchdog core / watchdog_dev. This is done because currently some needed functionality is missing from watchdog_dev, as soon as this functionality is added (which is being discussed on the linux-watchdog mailinglist), I'll convert this driver over to using watchdog_dev. Signed-off-by: Hans de Goede <hdegoede@redhat.com> [guenter.roeck@ericsson.com: Added missing linux/slab.h include] Signed-off-by: Guenter Roeck <guenter.roeck@ericsson.com>
| * hwmon: (w83627ehf) Add support for temperature offset registersGuenter Roeck2012-03-181-0/+73
| | | | | | | | | | | | | | | | Add support for temperature offset registers for CPUTIN, SYSTIN, and AUXTIN temperatures. Signed-off-by: Guenter Roeck <guenter.roeck@ericsson.com> Acked-by: Jean Delvare <khali@linux-fr.org>
| * hwmon: (jc42) Remove unnecessary device IDsGuenter Roeck2012-03-182-48/+9
| | | | | | | | | | | | | | | | | | | | We don't really use or need separate device IDs for the various JC42.4 compliant chips, so remove them and just stick with jc42. Also update a datasheet references for SE98A, STTS424, and STTS424E02. Signed-off-by: Guenter Roeck <linux@roeck-us.net> Acked-by: Jean Delvare <khali@linux-fr.org>
| * hwmon: (zl6100) Add support for ZL9101M and ZL9117MGuenter Roeck2012-03-183-4/+15
| | | | | | | | | | | | | | ZL9101M and ZL9117M are compatible to ZL6100. Add support to the zl6100 driver. Signed-off-by: Guenter Roeck <linux@roeck-us.net> Acked-by: Jean Delvare <khali@linux-fr.org>
| * hwmon: (adm1275) Add support for ADM1075Guenter Roeck2012-03-183-13/+109
| | | | | | | | Signed-off-by: Guenter Roeck <linux@roeck-us.net>
| * hwmon: (max34440) Add support for MAX34446Guenter Roeck2012-03-183-7/+138
| | | | | | | | Signed-off-by: Guenter Roeck <linux@roeck-us.net>
| * hwmon: (pmbus) Add more virtual registersGuenter Roeck2012-03-182-29/+54
| | | | | | | | | | | | | | | | | | | | Add PMBUS_VIRT_READ_TEMP_AVG, PMBUS_VIRT_READ_TEMP2_AVG, PMBUS_VIRT_READ_POUT_AVG, PMBUS_VIRT_READ_POUT_MAX, and PMBUS_VIRT_RESET_POUT_HISTORY. We'll need those for MAX34446. Signed-off-by: Guenter Roeck <linux@roeck-us.net>
| * hwmon: (pmbus) Add support for Lineage Power MDT040Guenter Roeck2012-03-183-2/+5
| | | | | | | | | | | | | | MDT040 is supported by the generic PMBus driver. Add device ID and reference to datasheet. Also mention Lineage Power device support in Kconfig. Signed-off-by: Guenter Roeck <linux@roeck-us.net>
OpenPOWER on IntegriCloud