| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before:
testing speed of ecb(aes) decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 223 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 230 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 325 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 719 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 4266 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 211 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 234 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 353 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 808 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 5344 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 214 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 243 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 393 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 939 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 6039 cycles (8192 bytes)
After:
testing speed of ecb(aes) decryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 226 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 231 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 313 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 681 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 3964 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 205 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 240 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 341 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 770 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 5050 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 216 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 250 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 371 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 869 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 5494 cycles (8192 bytes)
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The AES opcodes have a 3 cycle latency, so by doing 32-bytes at a
time we avoid a pipeline bubble in between every round.
For the 256-bit key case, it looks like we're doing more work in
order to reload the KEY registers during the loop to make space
for scarce temporaries. But the load dual issues with the AES
operations so we get the KEY reloads essentially for free.
Before:
testing speed of ecb(aes) encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 264 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 231 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 329 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 715 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 4248 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 221 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 234 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 359 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 803 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 5366 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 209 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 255 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 379 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 938 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 6041 cycles (8192 bytes)
After:
testing speed of ecb(aes) encryption
test 0 (128 bit key, 16 byte blocks): 1 operation in 266 cycles (16 bytes)
test 1 (128 bit key, 64 byte blocks): 1 operation in 256 cycles (64 bytes)
test 2 (128 bit key, 256 byte blocks): 1 operation in 305 cycles (256 bytes)
test 3 (128 bit key, 1024 byte blocks): 1 operation in 676 cycles (1024 bytes)
test 4 (128 bit key, 8192 byte blocks): 1 operation in 3981 cycles (8192 bytes)
test 5 (192 bit key, 16 byte blocks): 1 operation in 210 cycles (16 bytes)
test 6 (192 bit key, 64 byte blocks): 1 operation in 233 cycles (64 bytes)
test 7 (192 bit key, 256 byte blocks): 1 operation in 340 cycles (256 bytes)
test 8 (192 bit key, 1024 byte blocks): 1 operation in 766 cycles (1024 bytes)
test 9 (192 bit key, 8192 byte blocks): 1 operation in 5136 cycles (8192 bytes)
test 10 (256 bit key, 16 byte blocks): 1 operation in 206 cycles (16 bytes)
test 11 (256 bit key, 64 byte blocks): 1 operation in 268 cycles (64 bytes)
test 12 (256 bit key, 256 byte blocks): 1 operation in 368 cycles (256 bytes)
test 13 (256 bit key, 1024 byte blocks): 1 operation in 890 cycles (1024 bytes)
test 14 (256 bit key, 8192 byte blocks): 1 operation in 5718 cycles (8192 bytes)
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of testing and branching off of the key size on every
encrypt/decrypt call, use method ops assigned at key set time.
Reverse the order of float registers used for decryption to make
future changes easier.
Align all assembler routines on a 32-byte boundary.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
| |
On SPARC-T4 fsrc2 has 1 cycle of latency, whereas fsrc1 has 11 cycles.
True story.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
|
|
|
|
|
|
|
| |
Describe how we support two types of PMU setups, one with a single control
register and two counters stored in a single register, and another with
one control register per counter and each counter living in it's own
register.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
| |
When cpuc->n_events is zero, we actually don't do anything and we just
write the cpuc->pcr[0] value as-is without any modifications.
The "pcr = 0;" assignment there was just useless and confusing.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
| |
Make the per-cpu pcr save area an array instead of one u64.
Describe how many PCR and PIC registers the chip has in the sparc_pmu
descriptor.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
| |
Now specified in sparc_pmu descriptor.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
| |
Starting with SPARC-T4 we have a seperate PCR control register
for each performance counter, and there are absolutely no
restrictions on what events can run on which counters.
Add flags that we can use to elide the conflict and dependency
logic used to handle older chips.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
| |
This is enough to get the NMIs working, more work is needed
for perf events.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
| |
We assumed PCR_PIC_PRIV can always be used to disable it, but that
won't be true for SPARC-T4.
This allows us also to get rid of some messy defines used in only
one location.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
| |
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
| |
And, like for the PCR, allow indexing of different PIC register
numbers.
This also removes all of the non-__KERNEL__ bits from asm/perfctr.h,
nothing kernel side should include it any more.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
| |
SPARC-T4 and later have multiple PCR registers, one for each
PIC counter.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
| |
Unlike for previous chips, access to the perf-counter control
registers are all hyper-privileged. Therefore, access to them must go
through a hypervisor interface.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Compare and branch, pause, and the various new cryptographic opcodes.
We advertise the crypto opcodes to userspace using one hwcap bit,
HWCAP_SPARC_CRYPTO.
This essentially indicates that the %cfr register can be interrograted
and used to determine exactly which crypto opcodes are available on
the current cpu.
We use the %cfr register to report all of the crypto opcodes available
in the bootup CPU caps log message, and via /proc/cpuinfo.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull ARM fixes from Russell King:
"The largest thing in this set of changes is bringing back some of the
ARMv3 code to fix a compile problem noticed on RiscPC, which we still
support, even though we only support ARMv4 there.
(The reason is that the system bus doesn't support ARMv4 half-word
accesses, so we need the ARMv3 library code for this platform.)
The rest are all quite minor fixes."
* 'fixes' of git://git.linaro.org/people/rmk/linux-arm:
ARM: 7490/1: Drop duplicate select for GENERIC_IRQ_PROBE
ARM: Bring back ARMv3 IO and user access code
ARM: 7489/1: errata: fix workaround for erratum #720789 on UP systems
ARM: 7488/1: mm: use 5 bits for swapfile type encoding
ARM: 7487/1: mm: avoid setting nG bit for user mappings that aren't present
ARM: 7486/1: sched_clock: update epoch_cyc on resume
ARM: 7484/1: Don't enable GENERIC_LOCKBREAK with ticket spinlocks
ARM: 7483/1: vfp: only advertise VFPv4 in hwcaps if CONFIG_VFPv3 is enabled
ARM: 7482/1: topology: fix section mismatch warning for init_cpu_topology
|
| |
| |
| |
| |
| |
| |
| |
| | |
Seems that Thomas' and my patches collided during the last merge
window.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This partially reverts 357c9c1f07d4546bc3fbc0fd1044d96b114d14ed
(ARM: Remove support for ARMv3 ARM610 and ARM710 CPUs).
Although we only support StrongARM on the RiscPC, we need to keep the
ARMv3 user access code for this platform because the bus does not
understand half-word load/stores.
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit 5a783cbc4836 ("ARM: 7478/1: errata: extend workaround for erratum
#720789") added workarounds for erratum #720789 to the range TLB
invalidation functions with the observation that the erratum only
affects SMP platforms. However, when running an SMP_ON_UP kernel on a
uniprocessor platform we must take care to preserve the ASID as the
workaround is not required.
This patch ensures that we don't set the ASID to 0 when flushing the TLB
on such a system, preserving the original behaviour with the workaround
disabled.
Cc: <stable@vger.kernel.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Page migration encodes the pfn in the offset field of a swp_entry_t.
For LPAE, we support physical addresses of up to 36 bits (due to
sparsemem limitations with the size of page flags), requiring 24 bits
to represent a pfn. A further 3 bits are used to encode a swp_entry into
a pte, leaving 5 bits for the type field. Furthermore, the core code
defines MAX_SWAPFILES_SHIFT as 5, so the additional type bit does not
get used.
This patch reduces the width of the type field to 5 bits, allowing us
to create up to 31 swapfiles of 64GB each.
Cc: <stable@vger.kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Swap entries are encoding in ptes such that !pte_present(pte) and
pte_file(pte). The remaining bits of the descriptor are used to identify
the swapfile and offset within it to the swap entry.
When writing such a pte for a user virtual address, set_pte_at
unconditionally sets the nG bit, which (in the case of LPAE) will
corrupt the swapfile offset and lead to a BUG:
[ 140.494067] swap_free: Unused swap offset entry 000763b4
[ 140.509989] BUG: Bad page map in process rs:main Q:Reg pte:0ec76800 pmd:8f92e003
This patch fixes the problem by only setting the nG bit for user
mappings that are actually present.
Cc: <stable@vger.kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Many clocks that are used to provide sched_clock will reset during
suspend. If read_sched_clock returns 0 after suspend, sched_clock will
appear to jump forward. This patch resets cd.epoch_cyc to the current
value of read_sched_clock during resume, which causes sched_clock() just
after suspend to return the same value as sched_clock() just before
suspend.
In addition, during the window where epoch_ns has been updated before
suspend, but epoch_cyc has not been updated after suspend, it is unknown
whether the clock has reset or not, and sched_clock() could return a
bogus value. Add a suspended flag, and return the pre-suspend epoch_ns
value during this period.
The new behavior is triggered by calling setup_sched_clock_needs_suspend
instead of setup_sched_clock.
Signed-off-by: Colin Cross <ccross@android.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that ARM has implemented its spinlocks with tickets we don't
need to use the generic lockbreak algorithm. Remove the Kconfig
from ARM so that we use the arch_spin_is_contended() definition
from the asm header. This also saves a word in each lock because
we don't need the break_lock member anymore.
Signed-off-by: Stephen Boyd <sboyd@codeaurora.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
VFPv4 support depends on the VFPv3 context save/restore code, so only
advertise support in the hwcaps if the kernel can actually handle it.
Cc: <stable@vger.kernel.org> # 3.1+
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Get rid of this warning..
arch/arm/kernel/built-in.o(.text+0xac78): Section mismatch in reference
from the function init_cpu_topology() to the function
.init.text:parse_dt_topology()
The function init_cpu_topology() references
the function __init parse_dt_topology().
This is often because init_cpu_topology lacks a __init
annotation or the annotation of parse_dt_topology is wrong.
Signed-off-by: Venkatraman S <svenkatr@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management fixes from Rafael J. Wysocki:
- Fixes for three obscure problems in the runtime PM core code found
recently.
- Two fixes for the new "coupled" cpuidle code from Colin Cross and Jon
Medhurst.
- intel_idle driver fix from Konrad Rzeszutek Wilk.
* tag 'pm-for-3.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
intel_idle: Check cpu_idle_get_driver() for NULL before dereferencing it.
cpuidle: Prevent null pointer dereference in cpuidle_coupled_cpu_notify
cpuidle: coupled: fix sleeping while atomic in cpu notifier
PM / Runtime: Check device PM QoS setting before "no callbacks" check
PM / Runtime: Clear power.deferred_resume on success in rpm_suspend()
PM / Runtime: Fix rpm_resume() return value for power.no_callbacks set
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
If the machine is booted without any cpu_idle driver set
(b/c disable_cpuidle() has been called) we should follow
other users of cpu_idle API and check the return value
for NULL before using it.
Reported-and-tested-by: Mark van Dijk <mark@internecto.net>
Suggested-by: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When a kernel is built to support multiple hardware types it's possible
that CONFIG_ARCH_NEEDS_CPU_IDLE_COUPLED is set but the hardware the
kernel is run on doesn't support cpuidle and therefore doesn't load a
driver for it. In this case, when the system is shut down,
cpuidle_coupled_cpu_notify() gets called with cpuidle_devices set to
NULL. There are quite possibly other circumstances where this
situation can also occur and we should check for it.
Signed-off-by: Jon Medhurst <tixy@linaro.org>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The cpu hotplug notifier gets called in both atomic and non-atomic
contexts, it is not always safe to lock a mutex. Filter out all events
except the six necessary ones, which are all sleepable, before taking
the mutex.
Signed-off-by: Colin Cross <ccross@android.com>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
If __dev_pm_qos_read_value(dev) returns a negative value,
rpm_suspend() should return -EPERM for dev even if its
power.no_callbacks flag is set. For this to happen, the device's
power.no_callbacks flag has to be checked after the PM QoS check,
so move the PM QoS check to rpm_check_suspend_allowed() (this will
make it cover idle notifications as well as runtime suspend too).
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Cc: stable@vger.kernel.org
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The power.deferred_resume can only be set if the runtime PM status
of device is RPM_SUSPENDING and it should be cleared after its
status has been changed, regardless of whether or not the runtime
suspend has been successful. However, it only is cleared on
suspend failure, while it may remain set on successful suspend and
is happily leaked to rpm_resume() executed in that case.
That shouldn't happen, so if power.deferred_resume is set in
rpm_suspend() after the status has been changed to RPM_SUSPENDED,
clear it before calling rpm_resume(). Then, it doesn't need to be
cleared before changing the status to RPM_SUSPENDING any more,
because it's always cleared after the status has been changed to
either RPM_SUSPENDED (on success) or RPM_ACTIVE (on failure).
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Cc: stable@vger.kernel.org
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
For devices whose power.no_callbacks flag is set, rpm_resume()
should return 1 if the device's parent is already active, so that
the callers of pm_runtime_get() don't think that they have to wait
for the device to resume (asynchronously) in that case (the core
won't queue up an asynchronous resume in that case, so there's
nothing to wait for anyway).
Modify the code accordingly (and make sure that an idle notification
will be queued up on success, even if 1 is to be returned).
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Alan Stern <stern@rowland.harvard.edu>
Cc: stable@vger.kernel.org
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
Pull vfs fixes from Miklos Szeredi.
This mainly fixes some confusion about whether the open 'mode' variable
passed around should contain the full file type (S_IFREG etc)
information or just the permission mode. In particular, the lack of
proper file type information had confused fuse.
* 'vfs-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs:
vfs: fix propagation of atomic_open create error on negative dentry
fuse: check create mode in atomic open
vfs: pass right create mode to may_o_create()
vfs: atomic_open(): fix create mode usage
vfs: canonicalize create mode in build_open_flags()
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
If ->atomic_open() returns -ENOENT, we take care to return the create
error (e.g., EACCES), if any. Do the same when ->atomic_open() returns 1
and provides a negative dentry.
This fixes a regression where an unprivileged open O_CREAT fails with
ENOENT instead of EACCES, introduced with the new atomic_open code. It
is tested by the open/08.t test in the pjd posix test suite, and was
observed on top of fuse (backed by ceph-fuse).
Signed-off-by: Sage Weil <sage@inktank.com>
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
|