| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While we are reading trace_stat/functionX and someone just
disabled function_profile at that time, we can trigger this:
divide error: 0000 [#1] PREEMPT SMP
...
EIP is at function_stat_show+0x90/0x230
...
This fix just takes the ftrace_profile_lock and checks if
rec->counter is 0. If it's 0, we know the profile buffer
has been reset.
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: stable@kernel.org
LKML-Reference: <4C723644.4040708@cn.fujitsu.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Per-thread events with a cpu filter, i.e., cpu != -1, were not
reporting correct timings when the thread never ran on the
monitored cpu. The time enabled was reported as a negative
value.
This patch fixes the problem by updating tstamp_stopped,
tstamp_running in event_sched_out() for events with filters and
which are marked as INACTIVE.
The function group_sched_out() is modified to systematically
call into event_sched_out() to avoid duplicating the timing
adjustment code twice.
With the patch, I now get:
$ task_cpu -i -e unhalted_core_cycles,unhalted_core_cycles
noploop 2 noploop for 2 seconds
CPU0 0 unhalted_core_cycles (ena=1,991,136,594, run=0)
CPU0 0 unhalted_core_cycles (ena=1,991,136,594, run=0)
CPU1 0 unhalted_core_cycles (ena=1,991,136,594, run=0)
CPU1 0 unhalted_core_cycles (ena=1,991,136,594, run=0)
CPU2 0 unhalted_core_cycles (ena=1,991,136,594, run=0)
CPU2 0 unhalted_core_cycles (ena=1,991,136,594, run=0)
CPU3 4,747,990,931 unhalted_core_cycles (ena=1,991,136,594, run=1,991,136,594)
CPU3 4,747,990,931 unhalted_core_cycles (ena=1,991,136,594, run=1,991,136,594)
Signed-off-by: Stephane Eranian <eranian@gmail.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus@samba.org
Cc: davem@davemloft.net
Cc: fweisbec@gmail.com
Cc: perfmon2-devel@lists.sf.net
Cc: eranian@google.com
LKML-Reference: <4c76802d.aae9d80a.115d.70fe@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Each histogram entry has a callchain root that stores the
callchain samples. However we forgot to initialize the
tracking of children hits of these roots, which then got
random values on their creation.
The root children hits is multiplied by the minimum percentage
of hits provided by the user, and the result becomes the minimum
hits expected from children branches. If the random value due
to the uninitialization is big enough, then this minimum number
of hits can be huge and eventually filter every children branches.
The end result was invisible callchains. All we need to
fix this is to initialize the children hits of the root.
Reported-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: 2.6.32.x-2.6.35.y <stable@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If on Pentium4 CPUs the FORCE_OVF flag is set then an NMI happens
on every event, which can generate a flood of NMIs. Clear it.
Reported-by: Vince Weaver <vweaver1@eecs.utk.edu>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
save_stack_trace() stores the instruction pointer, not the
function descriptor. On ppc64 the trace stack code currently
dereferences the instruction pointer and shows 8 bytes of
instructions in our backtraces:
# cat /sys/kernel/debug/tracing/stack_trace
Depth Size Location (26 entries)
----- ---- --------
0) 5424 112 0x6000000048000004
1) 5312 160 0x60000000ebad01b0
2) 5152 160 0x2c23000041c20030
3) 4992 240 0x600000007c781b79
4) 4752 160 0xe84100284800000c
5) 4592 192 0x600000002fa30000
6) 4400 256 0x7f1800347b7407e0
7) 4144 208 0xe89f0108f87f0070
8) 3936 272 0xe84100282fa30000
Since we aren't dealing with function descriptors, use %pS
instead of %pF to fix it:
# cat /sys/kernel/debug/tracing/stack_trace
Depth Size Location (26 entries)
----- ---- --------
0) 5424 112 ftrace_call+0x4/0x8
1) 5312 160 .current_io_context+0x28/0x74
2) 5152 160 .get_io_context+0x48/0xa0
3) 4992 240 .cfq_set_request+0x94/0x4c4
4) 4752 160 .elv_set_request+0x60/0x84
5) 4592 192 .get_request+0x2d4/0x468
6) 4400 256 .get_request_wait+0x7c/0x258
7) 4144 208 .__make_request+0x49c/0x610
8) 3936 272 .generic_make_request+0x390/0x434
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: rostedt@goodmis.org
Cc: fweisbec@gmail.com
LKML-Reference: <20100825013238.GE28360@kryten>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
watchdog: Don't throttle the watchdog
tracing: Fix timer tracing
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Stephane reported that when the machine locks up, the regular ticks,
which are responsible to resetting the throttle count, stop too.
Hence the NMI watchdog can end up being throttled before it reports on
the locked up state, and we end up being sad..
Cure this by having the watchdog overflow reset its own throttle count.
Reported-by: Stephane Eranian <eranian@google.com>
Tested-by: Stephane Eranian <eranian@google.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1282215916.1926.4696.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
PowerTOP would like to be able to trace timers.
Unfortunately, the current timer tracing is not very useful: the
actual timer function is not recorded in the trace at the start
of timer execution.
Although this is recorded for timer "start" time (when it gets
armed), this is not useful; most timers get started early, and a
tracer like PowerTOP will never see this event, but will only
see the actual running of the timer.
This patch just adds the function to the timer tracing; I've
verified with PowerTOP that now it can get useful information
about timers.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Cc: xiaoguangrong@cn.fujitsu.com
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@kernel.org> # .35.x, .34.x, .33.x
LKML-Reference: <4C6C5FA9.3000405@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
mutex: Improve the scalability of optimistic spinning
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
There is a scalability issue for current implementation of optimistic
mutex spin in the kernel. It is found on a 8 node 64 core Nehalem-EX
system (HT mode).
The intention of the optimistic mutex spin is to busy wait and spin on a
mutex if the owner of the mutex is running, in the hope that the mutex
will be released soon and be acquired, without the thread trying to
acquire mutex going to sleep. However, when we have a large number of
threads, contending for the mutex, we could have the mutex grabbed by
other thread, and then another ……, and we will keep spinning, wasting cpu
cycles and adding to the contention. One possible fix is to quit
spinning and put the current thread on wait-list if mutex lock switch to
a new owner while we spin, indicating heavy contention (see the patch
included).
I did some testing on a 8 socket Nehalem-EX system with a total of 64
cores. Using Ingo's test-mutex program that creates/delete files with 256
threads (http://lkml.org/lkml/2006/1/8/50) , I see the following speed up
after putting in the mutex spin fix:
./mutex-test V 256 10
Ops/sec
2.6.34 62864
With fix 197200
Repeating the test with Aim7 fserver workload, again there is a speed up
with the fix:
Jobs/min
2.6.34 91657
With fix 149325
To look at the impact on the distribution of mutex acquisition time, I
collected the mutex acquisition time on Aim7 fserver workload with some
instrumentation. The average acquisition time is reduced by 48% and
number of contentions reduced by 32%.
#contentions Time to acquire mutex (cycles)
2.6.34 72973 44765791
With fix 49210 23067129
The histogram of mutex acquisition time is listed below. The acquisition
time is in 2^bin cycles. We see that without the fix, the acquisition
time is mostly around 2^26 cycles. With the fix, we the distribution get
spread out a lot more towards the lower cycles, starting from 2^13.
However, there is an increase of the tail distribution with the fix at
2^28 and 2^29 cycles. It seems a small price to pay for the reduced
average acquisition time and also getting the cpu to do useful work.
Mutex acquisition time distribution (acq time = 2^bin cycles):
2.6.34 With Fix
bin #occurrence % #occurrence %
11 2 0.00% 120 0.24%
12 10 0.01% 790 1.61%
13 14 0.02% 2058 4.18%
14 86 0.12% 3378 6.86%
15 393 0.54% 4831 9.82%
16 710 0.97% 4893 9.94%
17 815 1.12% 4667 9.48%
18 790 1.08% 5147 10.46%
19 580 0.80% 6250 12.70%
20 429 0.59% 6870 13.96%
21 311 0.43% 1809 3.68%
22 255 0.35% 2305 4.68%
23 317 0.44% 916 1.86%
24 610 0.84% 233 0.47%
25 3128 4.29% 95 0.19%
26 63902 87.69% 122 0.25%
27 619 0.85% 286 0.58%
28 0 0.00% 3536 7.19%
29 0 0.00% 903 1.83%
30 0 0.00% 0 0.00%
I've done similar experiments with 2.6.35 kernel on smaller boxes as
well. One is on a dual-socket Westmere box (12 cores total, with HT).
Another experiment is on an old dual-socket Core 2 box (4 cores total, no
HT)
On the 12-core Westmere box, I see a 250% increase for Ingo's mutex-test
program with my mutex patch but no significant difference in aim7's
fserver workload.
On the 4-core Core 2 box, I see the difference with the patch for both
mutex-test and aim7 fserver are negligible.
So far, it seems like the patch has not caused regression on smaller
systems.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: <stable@kernel.org> # .35.x
LKML-Reference: <1282168827.9542.72.camel@schen9-DESK>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
pa-risc and ia64 have stacks that grow upwards. Check that
they do not run into other mappings. By making VM_GROWSUP
0x0 on architectures that do not ever use it, we can avoid
some unpleasant #ifdefs in check_stack_guard_page().
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When converting this to the new wait_for macro I inverted the wait
condition, which causes all sorts of problems. So correct it to fix
several failures caused by the bad wait (flickering, bad output
detection, tearing, etc.).
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Tested-by: Sitsofe Wheeler <sitsofe@yahoo.com>
Signed-off-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | | |
* 'for-linus' of git://git390.marist.edu/pub/scm/linux-2.6:
[S390] fix tlb flushing vs. concurrent /proc accesses
[S390] s390: fix build error (sys_execve)
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The tlb flushing code uses the mm_users field of the mm_struct to
decide if each page table entry needs to be flushed individually with
IPTE or if a global flush for the mm_struct is sufficient after all page
table updates have been done. The comment for mm_users says "How many
users with user space?" but the /proc code increases mm_users after it
found the process structure by pid without creating a new user process.
Which makes mm_users useless for the decision between the two tlb
flusing methods. The current code can be confused to not flush tlb
entries by a concurrent access to /proc files if e.g. a fork is in
progres. The solution for this problem is to make the tlb flushing
logic independent from the mm_users field.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
fix this build error:
arch/s390/kernel/process.c:272: error: conflicting types for 'sys_execve'
arch/s390/kernel/entry.h:45: error: previous declaration of 'sys_execve' was here
make[1]: *** [arch/s390/kernel/process.o] Error 1
make: *** [arch/s390/kernel] Error 2
introduced by d7627467b7a8dd6944885290a03a07ceb28c10eb
Signed-off-by: Sebastian Ott <sebott@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
We should pass the data to the data register.
Signed-off-by: Jianwei Yang <jianwei.yang@intel.com>
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
It looks like there is an off-by-one error in one of your changes to
drivers/staging/rar_register/rar_register.c:
Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This build bug triggers:
drivers/built-in.o: In function `mantis_exit':
(.text+0x377413): undefined reference to `ir_input_unregister'
drivers/built-in.o: In function `mantis_input_init':
(.text+0x3774ff): undefined reference to `__ir_input_register'
If MANTIS_CORE is enabled but IR_CORE is not. Add the correct
dependency.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6:
sparc64: Get rid of indirect p1275 PROM call buffer.
sparc64: Fill a missing delay slot.
sparc64: Make lock backoff really a NOP on UP builds.
sparc64: simple microoptimizations for atomic functions
sparc64: Make rwsems 64-bit.
sparc64: Really fix atomic64_t interface types.
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This is based upon a report by Meelis Roos showing that it's possible
that we'll try to fetch a property that is 32K in size with some
devices. With the current fixed 3K buffer we use for moving data in
and out of the firmware during PROM calls, that simply won't work.
In fact, it will scramble random kernel data during bootup.
The reasoning behind the temporary buffer is entirely historical. It
used to be the case that we had problems referencing dynamic kernel
memory (including the stack) early in the boot process before we
explicitly told the firwmare to switch us over to the kernel trap
table.
So what we did was always give the firmware buffers that were locked
into the main kernel image.
But we no longer have problems like that, so get rid of all of this
indirect bounce buffering.
Besides fixing Meelis's bug, this also makes the kernel data about 3K
smaller.
It was also discovered during these conversions that the
implementation of prom_retain() was completely wrong, so that was
fixed here as well. Currently that interface is not in use.
Reported-by: Meelis Roos <mroos@linux.ee>
Tested-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
If the code were already aligned to 64 bytes, wr instruction would be executed
twice --- once in delay slot and once in the jump target.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
As noticed by Mikulas Patocka, the backoff macros don't
completely nop out for UP builds, we still get a
branch always and a delay slot nop.
Fix this by making the branch to the backoff spin loop
selective, then we can nop out the spin loop completely.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Simple microoptimizations for sparc64 atomic functions:
Save one instruction by using a delay slot.
Use %g1 instead of %g7, because %g1 is written earlier.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Basically tip-off the powerpc code, use a 64-bit type and atomic64_t
interfaces for the implementation.
This gets us off of the by-hand asm code I wrote, which frankly I
think probably ruins I-cache hit rates.
The idea was the keep the call chains less deep, but anything taking
the rw-semaphores probably is also calling other stuff and therefore
already has allocated a stack-frame. So no real stack frame savings
ever.
Ben H. has posted patches to make powerpc use 64-bit too and with some
abstractions we can probably use a shared header file somewhere.
With suggestions from Sam Ravnborg.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Linus noticed that some of the interface arguments
didn't get "int" --> "long" conversion, as needed.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|\ \ \ \ \
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
* git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (25 commits)
powerpc: Fix config dependency problem with MPIC_U3_HT_IRQS
via-pmu: Add compat_pmu_ioctl
powerpc: Wire up fanotify_init, fanotify_mark, prlimit64 syscalls
powerpc/pci: Fix checking for child bridges in PCI code.
powerpc: Fix typo in uImage target
powerpc: Initialise paca->kstack before early_setup_secondary
powerpc: Fix bogus it_blocksize in VIO iommu code
powerpc: Inline ppc64_runlatch_off
powerpc: Correct smt_enabled=X boot option for > 2 threads per core
powerpc: Silence xics_migrate_irqs_away() during cpu offline
powerpc: Silence __cpu_up() under normal operation
powerpc: Re-enable preemption before cpu_die()
powerpc/pci: Drop unnecessary null test
powerpc/powermac: Drop unnecessary null test
powerpc/powermac: Drop unnecessary of_node_put
powerpc/kdump: Stop all other CPUs before running crash handlers
powerpc/mm: Fix vsid_scrample typo
powerpc: Use is_32bit_task() helper to test 32 bit binary
powerpc: Export memstart_addr and kernstart_addr on ppc64
powerpc: Make rwsem use "long" type
...
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
MPIC_U3_HT_IRQS is selected both by PPC_PMAC64 and PPC_MAPLE, but depends
on PPC_MAPLE, so a PPC_PMAC64-only config gets this warning:
warning: (PPC_PMAC64 && PPC_PMAC && POWER4 || PPC_MAPLE && PPC64 && PPC_BOOK3S) selects MPIC_U3_HT_IRQS which has unmet direct dependencies (PPC_MAPLE)
Fix that by removing the dependency on PPC_MAPLE.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The ioctls are actually compatible, but due to historical mistake the
numbers differ between 32bit and 64bit.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
pci_device_to_OF_node() can return null, and list_for_each_entry will
never enter the loop when dev is NULL, so it looks like this test is
a typo.
Reported-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Commit e32e78c5ee8aadef020fbaecbe6fb741ed9029fd
(powerpc: fix build with make 3.82) introduced a
typo in uImage target and broke building uImage:
make: *** No rule to make target `uImage'. Stop.
Signed-off-by: Anatolij Gustschin <agust@denx.de>
Cc: stable <stable@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
As early setup calls down to slb_initialize(), we must have kstack
initialised before checking "should we add a bolted SLB entry for our kstack?"
Failing to do so means stack access requires an SLB miss exception to refill
an entry dynamically, if the stack isn't accessible via SLB(0) (kernel text
& static data). It's not always allowable to take such a miss, and
intermittent crashes will result.
Primary CPUs don't have this issue; an SLB entry is not bolted for their
stack anyway (as that lives within SLB(0)). This patch therefore only
affects the init of secondaries.
Signed-off-by: Matt Evans <matt@ozlabs.org>
Cc: stable <stable@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
When looking at some issues with the virtual ethernet driver I noticed
that TCE allocation was following a very strange pattern:
address 00e9000 length 2048
address 0409000 length 2048 <-----
address 0429000 length 2048
address 0449000 length 2048
address 0469000 length 2048
address 0489000 length 2048
address 04a9000 length 2048
address 04c9000 length 2048
address 04e9000 length 2048
address 4009000 length 2048 <-----
address 4029000 length 2048
Huge unexplained gaps in what should be an empty TCE table. It turns out
it_blocksize, the amount we want to align the next allocation to, was
c0000000fe903b20. Completely bogus.
Initialise it to something reasonable in the VIO IOMMU code, and use kzalloc
everywhere to protect against this when we next add a non compulsary
field to iommu code and forget to initialise it.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
I'm sick of seeing ppc64_runlatch_off in our profiles, so inline it
into the callers. To avoid a mess of circular includes I didn't add
it as an inline function.
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The 'smt_enabled=X' boot option does not handle values of X > 2.
For Power 7 processors with smt modes of 0,1,2,3, and 4 this does
not work. This patch allows the smt_enabled option to be set to
any value limited to a max equal to the number of threads per
core.
Signed-off-by: Nathan Fontenot <nfont@austin.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
All IRQs are migrated away from a CPU that is being offlined so the
following messages suggest a problem when the system is behaving as
designed:
IRQ 262 affinity broken off cpu 1
IRQ 17 affinity broken off cpu 0
IRQ 18 affinity broken off cpu 0
IRQ 19 affinity broken off cpu 0
IRQ 256 affinity broken off cpu 0
IRQ 261 affinity broken off cpu 0
IRQ 262 affinity broken off cpu 0
Don't print these messages when the CPU is not online.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Will Schmidt <will_schmidt@vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Nathan Fontenot <nfont@austin.ibm.com>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
During CPU offline/online tests __cpu_up would flood the logs with
the following message:
Processor 0 found.
This provides no useful information to the user as there is no context
provided, and since the operation was a success (to this point) it is expected
that the CPU will come back online, providing all the feedback necessary.
Change the "Processor found" message to DBG() similar to other such messages in
the same function. Also, add an appropriate log level for the "Processor is
stuck" message.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Will Schmidt <will_schmidt@vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Nathan Fontenot <nfont@austin.ibm.com>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
start_secondary() is called shortly after _start and also via
cpu_idle()->cpu_die()->pseries_mach_cpu_die()
start_secondary() expects a preempt_count() of 0. pseries_mach_cpu_die() is
called via the cpu_idle() routine with preemption disabled, resulting in the
following repeating message during rapid cpu offline/online tests
with CONFIG_PREEMPT=y:
BUG: scheduling while atomic: swapper/0/0x00000002
Modules linked in: autofs4 binfmt_misc dm_mirror dm_region_hash dm_log [last unloaded: scsi_wait_scan]
Call Trace:
[c00000010e7079c0] [c0000000000133ec] .show_stack+0xd8/0x218 (unreliable)
[c00000010e707aa0] [c0000000006a47f0] .dump_stack+0x28/0x3c
[c00000010e707b20] [c00000000006e7a4] .__schedule_bug+0x7c/0x9c
[c00000010e707bb0] [c000000000699d9c] .schedule+0x104/0x800
[c00000010e707cd0] [c000000000015b24] .cpu_idle+0x1c4/0x1d8
[c00000010e707d70] [c0000000006aa1b4] .start_secondary+0x398/0x3d4
[c00000010e707e30] [c000000000008278] .start_secondary_resume+0x10/0x14
Move the cpu_die() call inside the existing preemption enabled block of
cpu_idle(). This is safe as the idle task is affined to a single CPU so the
debug_smp_processor_id() tests (from cpu_should_die()) won't trigger as we are
in a "migration disabled" region.
Signed-off-by: Darren Hart <dvhltc@us.ibm.com>
Acked-by: Will Schmidt <will_schmidt@vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Nathan Fontenot <nfont@austin.ibm.com>
Cc: Robert Jennings <rcj@linux.vnet.ibm.com>
Cc: Brian King <brking@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
list_for_each_entry binds its first argument to a non-null value, and thus
any null test on the value of that argument is superfluous.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
iterator I;
expression x,E,E1,E2;
statement S,S1,S2;
@@
I(x,...) { <...
- if (x != NULL || ...)
S
...> }
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
for_each_node_by_name binds its first argument to a non-null value, and
thus any null test on the value of that argument is superfluous.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
iterator I;
expression x,E;
@@
I(x,...) { <...
(
- (x != NULL) &&
E
...> }
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
for_each_node_by_name only exits when its first argument is NULL, and a
subsequent call to of_node_put on that argument is unnecessary.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
iterator name for_each_node_by_name;
expression np,E;
identifier l;
@@
for_each_node_by_name(np,...) {
... when != break;
when != goto l;
}
... when != np = E
- of_node_put(np);
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Reviewed-by: Grant Likely <grant.likely@secretlab.ca>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
During kdump we run the crash handlers first then stop all other CPUs.
We really want to stop all CPUs as close to the fail as possible and also
have a very controlled environment for running the crash handlers, so it
makes sense to reverse the order.
Signed-off-by: Anton Blanchard <anton@samba.org>
Acked-by: Matt Evans <matt@ozlabs.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The code is wrapped in an #if 0, but it's wrong so we may as well fix it.
Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Use is_32bit_task() helper to test 32 bit binary.
Signed-off-by: Denis Kirjanov <dkirjanov@kernel.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Some modules (like eHCA) want to map all of kernel memory, for this to
work with a relocated kernel, we need to export kernstart_addr so
modules can use PHYSICAL_START and memstart_addr so they could use
MEMORY_START. Note that the 32bit code already exports these symbols.
Signed-off-By: Sonny Rao <sonnyrao@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
This makes the 64-bit kernel use 64-bit signed integers for the counter
(effectively supporting 32-bit of active count in the semaphore), thus
avoiding things like overflow of the mmap_sem if you use a really crazy
number of threads
Note: Ideally the type in the structure should be atomic_long_t rather
than "long". However, there's some nasty issues with that. It needs to
be initialized statically -and- lib/rwsem.c does things like
sem->count = RWSEM_UNLOCKED_VALUE;
Now, if you mix in the fact that atomic_* types are actually structures
with one member and note typedefs of a scalar, it makes its really nasty.
So I stuck to what we did before using a long and casts for now.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
|
| |\ \ \ \ \
| | |_|/ / /
| |/| | | | |
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The interrupt stacks need to be indexed by the physical cpu since the
critical, debug and machine check handlers use the contents of SPRN_PIR to
index the critirq_ctx, dbgirq_ctx, and mcheckirq_ctx arrays.
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
There are two entries for .cpu_user_features in
arch/powerpc/kernel/cputable.c. Remove the one that doesn't belong
Signed-off-by: Dave Kleikamp <shaggy@linux.vnet.ibm.com>
Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
|