summaryrefslogtreecommitdiffstats
path: root/sound/soc/fsl
diff options
context:
space:
mode:
Diffstat (limited to 'sound/soc/fsl')
-rw-r--r--sound/soc/fsl/Kconfig20
-rw-r--r--sound/soc/fsl/Makefile6
-rw-r--r--sound/soc/fsl/fsl_dma.c839
-rw-r--r--sound/soc/fsl/fsl_dma.h149
-rw-r--r--sound/soc/fsl/fsl_ssi.c644
-rw-r--r--sound/soc/fsl/fsl_ssi.h224
-rw-r--r--sound/soc/fsl/mpc8610_hpcd.c631
7 files changed, 2513 insertions, 0 deletions
diff --git a/sound/soc/fsl/Kconfig b/sound/soc/fsl/Kconfig
new file mode 100644
index 0000000..257101f
--- /dev/null
+++ b/sound/soc/fsl/Kconfig
@@ -0,0 +1,20 @@
+menu "ALSA SoC audio for Freescale SOCs"
+
+config SND_SOC_MPC8610
+ bool "ALSA SoC support for the MPC8610 SOC"
+ depends on SND_SOC && MPC8610_HPCD
+ default y if MPC8610
+ help
+ Say Y if you want to add support for codecs attached to the SSI
+ device on an MPC8610.
+
+config SND_SOC_MPC8610_HPCD
+ bool "ALSA SoC support for the Freescale MPC8610 HPCD board"
+ depends on SND_SOC_MPC8610
+ select SND_SOC_CS4270
+ select SND_SOC_CS4270_VD33_ERRATA
+ default y if MPC8610_HPCD
+ help
+ Say Y if you want to enable audio on the Freescale MPC8610 HPCD.
+
+endmenu
diff --git a/sound/soc/fsl/Makefile b/sound/soc/fsl/Makefile
new file mode 100644
index 0000000..62f680a
--- /dev/null
+++ b/sound/soc/fsl/Makefile
@@ -0,0 +1,6 @@
+# MPC8610 HPCD Machine Support
+obj-$(CONFIG_SND_SOC_MPC8610_HPCD) += mpc8610_hpcd.o
+
+# MPC8610 Platform Support
+obj-$(CONFIG_SND_SOC_MPC8610) += fsl_ssi.o fsl_dma.o
+
diff --git a/sound/soc/fsl/fsl_dma.c b/sound/soc/fsl/fsl_dma.c
new file mode 100644
index 0000000..2173203
--- /dev/null
+++ b/sound/soc/fsl/fsl_dma.c
@@ -0,0 +1,839 @@
+/*
+ * Freescale DMA ALSA SoC PCM driver
+ *
+ * Author: Timur Tabi <timur@freescale.com>
+ *
+ * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
+ * under the terms of the GNU General Public License version 2. This
+ * program is licensed "as is" without any warranty of any kind, whether
+ * express or implied.
+ *
+ * This driver implements ASoC support for the Elo DMA controller, which is
+ * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
+ * the PCM driver is what handles the DMA buffer.
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+
+#include <sound/driver.h>
+#include <sound/core.h>
+#include <sound/pcm.h>
+#include <sound/pcm_params.h>
+#include <sound/soc.h>
+
+#include <asm/io.h>
+
+#include "fsl_dma.h"
+
+/*
+ * The formats that the DMA controller supports, which is anything
+ * that is 8, 16, or 32 bits.
+ */
+#define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
+ SNDRV_PCM_FMTBIT_U8 | \
+ SNDRV_PCM_FMTBIT_S16_LE | \
+ SNDRV_PCM_FMTBIT_S16_BE | \
+ SNDRV_PCM_FMTBIT_U16_LE | \
+ SNDRV_PCM_FMTBIT_U16_BE | \
+ SNDRV_PCM_FMTBIT_S24_LE | \
+ SNDRV_PCM_FMTBIT_S24_BE | \
+ SNDRV_PCM_FMTBIT_U24_LE | \
+ SNDRV_PCM_FMTBIT_U24_BE | \
+ SNDRV_PCM_FMTBIT_S32_LE | \
+ SNDRV_PCM_FMTBIT_S32_BE | \
+ SNDRV_PCM_FMTBIT_U32_LE | \
+ SNDRV_PCM_FMTBIT_U32_BE)
+
+#define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
+ SNDRV_PCM_RATE_CONTINUOUS)
+
+/* DMA global data. This structure is used by fsl_dma_open() to determine
+ * which DMA channels to assign to a substream. Unfortunately, ASoC V1 does
+ * not allow the machine driver to provide this information to the PCM
+ * driver in advance, and there's no way to differentiate between the two
+ * DMA controllers. So for now, this driver only supports one SSI device
+ * using two DMA channels. We cannot support multiple DMA devices.
+ *
+ * ssi_stx_phys: bus address of SSI STX register
+ * ssi_srx_phys: bus address of SSI SRX register
+ * dma_channel: pointer to the DMA channel's registers
+ * irq: IRQ for this DMA channel
+ * assigned: set to 1 if that DMA channel is assigned to a substream
+ */
+static struct {
+ dma_addr_t ssi_stx_phys;
+ dma_addr_t ssi_srx_phys;
+ struct ccsr_dma_channel __iomem *dma_channel[2];
+ unsigned int irq[2];
+ unsigned int assigned[2];
+} dma_global_data;
+
+/*
+ * The number of DMA links to use. Two is the bare minimum, but if you
+ * have really small links you might need more.
+ */
+#define NUM_DMA_LINKS 2
+
+/** fsl_dma_private: p-substream DMA data
+ *
+ * Each substream has a 1-to-1 association with a DMA channel.
+ *
+ * The link[] array is first because it needs to be aligned on a 32-byte
+ * boundary, so putting it first will ensure alignment without padding the
+ * structure.
+ *
+ * @link[]: array of link descriptors
+ * @controller_id: which DMA controller (0, 1, ...)
+ * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
+ * @dma_channel: pointer to the DMA channel's registers
+ * @irq: IRQ for this DMA channel
+ * @substream: pointer to the substream object, needed by the ISR
+ * @ssi_sxx_phys: bus address of the STX or SRX register to use
+ * @ld_buf_phys: physical address of the LD buffer
+ * @current_link: index into link[] of the link currently being processed
+ * @dma_buf_phys: physical address of the DMA buffer
+ * @dma_buf_next: physical address of the next period to process
+ * @dma_buf_end: physical address of the byte after the end of the DMA
+ * @buffer period_size: the size of a single period
+ * @num_periods: the number of periods in the DMA buffer
+ */
+struct fsl_dma_private {
+ struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
+ unsigned int controller_id;
+ unsigned int channel_id;
+ struct ccsr_dma_channel __iomem *dma_channel;
+ unsigned int irq;
+ struct snd_pcm_substream *substream;
+ dma_addr_t ssi_sxx_phys;
+ dma_addr_t ld_buf_phys;
+ unsigned int current_link;
+ dma_addr_t dma_buf_phys;
+ dma_addr_t dma_buf_next;
+ dma_addr_t dma_buf_end;
+ size_t period_size;
+ unsigned int num_periods;
+};
+
+/**
+ * fsl_dma_hardare: define characteristics of the PCM hardware.
+ *
+ * The PCM hardware is the Freescale DMA controller. This structure defines
+ * the capabilities of that hardware.
+ *
+ * Since the sampling rate and data format are not controlled by the DMA
+ * controller, we specify no limits for those values. The only exception is
+ * period_bytes_min, which is set to a reasonably low value to prevent the
+ * DMA controller from generating too many interrupts per second.
+ *
+ * Since each link descriptor has a 32-bit byte count field, we set
+ * period_bytes_max to the largest 32-bit number. We also have no maximum
+ * number of periods.
+ */
+static const struct snd_pcm_hardware fsl_dma_hardware = {
+
+ .info = SNDRV_PCM_INFO_INTERLEAVED,
+ .formats = FSLDMA_PCM_FORMATS,
+ .rates = FSLDMA_PCM_RATES,
+ .rate_min = 5512,
+ .rate_max = 192000,
+ .period_bytes_min = 512, /* A reasonable limit */
+ .period_bytes_max = (u32) -1,
+ .periods_min = NUM_DMA_LINKS,
+ .periods_max = (unsigned int) -1,
+ .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
+};
+
+/**
+ * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
+ *
+ * This function should be called by the ISR whenever the DMA controller
+ * halts data transfer.
+ */
+static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
+{
+ unsigned long flags;
+
+ snd_pcm_stream_lock_irqsave(substream, flags);
+
+ if (snd_pcm_running(substream))
+ snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
+
+ snd_pcm_stream_unlock_irqrestore(substream, flags);
+}
+
+/**
+ * fsl_dma_update_pointers - update LD pointers to point to the next period
+ *
+ * As each period is completed, this function changes the the link
+ * descriptor pointers for that period to point to the next period.
+ */
+static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
+{
+ struct fsl_dma_link_descriptor *link =
+ &dma_private->link[dma_private->current_link];
+
+ /* Update our link descriptors to point to the next period */
+ if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ link->source_addr =
+ cpu_to_be32(dma_private->dma_buf_next);
+ else
+ link->dest_addr =
+ cpu_to_be32(dma_private->dma_buf_next);
+
+ /* Update our variables for next time */
+ dma_private->dma_buf_next += dma_private->period_size;
+
+ if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
+ dma_private->dma_buf_next = dma_private->dma_buf_phys;
+
+ if (++dma_private->current_link >= NUM_DMA_LINKS)
+ dma_private->current_link = 0;
+}
+
+/**
+ * fsl_dma_isr: interrupt handler for the DMA controller
+ *
+ * @irq: IRQ of the DMA channel
+ * @dev_id: pointer to the dma_private structure for this DMA channel
+ */
+static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
+{
+ struct fsl_dma_private *dma_private = dev_id;
+ struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
+ irqreturn_t ret = IRQ_NONE;
+ u32 sr, sr2 = 0;
+
+ /* We got an interrupt, so read the status register to see what we
+ were interrupted for.
+ */
+ sr = in_be32(&dma_channel->sr);
+
+ if (sr & CCSR_DMA_SR_TE) {
+ dev_err(dma_private->substream->pcm->card->dev,
+ "DMA transmit error (controller=%u channel=%u irq=%u\n",
+ dma_private->controller_id,
+ dma_private->channel_id, irq);
+ fsl_dma_abort_stream(dma_private->substream);
+ sr2 |= CCSR_DMA_SR_TE;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sr & CCSR_DMA_SR_CH)
+ ret = IRQ_HANDLED;
+
+ if (sr & CCSR_DMA_SR_PE) {
+ dev_err(dma_private->substream->pcm->card->dev,
+ "DMA%u programming error (channel=%u irq=%u)\n",
+ dma_private->controller_id,
+ dma_private->channel_id, irq);
+ fsl_dma_abort_stream(dma_private->substream);
+ sr2 |= CCSR_DMA_SR_PE;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sr & CCSR_DMA_SR_EOLNI) {
+ sr2 |= CCSR_DMA_SR_EOLNI;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sr & CCSR_DMA_SR_CB)
+ ret = IRQ_HANDLED;
+
+ if (sr & CCSR_DMA_SR_EOSI) {
+ struct snd_pcm_substream *substream = dma_private->substream;
+
+ /* Tell ALSA we completed a period. */
+ snd_pcm_period_elapsed(substream);
+
+ /*
+ * Update our link descriptors to point to the next period. We
+ * only need to do this if the number of periods is not equal to
+ * the number of links.
+ */
+ if (dma_private->num_periods != NUM_DMA_LINKS)
+ fsl_dma_update_pointers(dma_private);
+
+ sr2 |= CCSR_DMA_SR_EOSI;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sr & CCSR_DMA_SR_EOLSI) {
+ sr2 |= CCSR_DMA_SR_EOLSI;
+ ret = IRQ_HANDLED;
+ }
+
+ /* Clear the bits that we set */
+ if (sr2)
+ out_be32(&dma_channel->sr, sr2);
+
+ return ret;
+}
+
+/**
+ * fsl_dma_new: initialize this PCM driver.
+ *
+ * This function is called when the codec driver calls snd_soc_new_pcms(),
+ * once for each .dai_link in the machine driver's snd_soc_machine
+ * structure.
+ */
+static int fsl_dma_new(struct snd_card *card, struct snd_soc_codec_dai *dai,
+ struct snd_pcm *pcm)
+{
+ static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
+ int ret;
+
+ if (!card->dev->dma_mask)
+ card->dev->dma_mask = &fsl_dma_dmamask;
+
+ if (!card->dev->coherent_dma_mask)
+ card->dev->coherent_dma_mask = fsl_dma_dmamask;
+
+ ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
+ fsl_dma_hardware.buffer_bytes_max,
+ &pcm->streams[0].substream->dma_buffer);
+ if (ret) {
+ dev_err(card->dev,
+ "Can't allocate playback DMA buffer (size=%u)\n",
+ fsl_dma_hardware.buffer_bytes_max);
+ return -ENOMEM;
+ }
+
+ ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, pcm->dev,
+ fsl_dma_hardware.buffer_bytes_max,
+ &pcm->streams[1].substream->dma_buffer);
+ if (ret) {
+ snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
+ dev_err(card->dev,
+ "Can't allocate capture DMA buffer (size=%u)\n",
+ fsl_dma_hardware.buffer_bytes_max);
+ return -ENOMEM;
+ }
+
+ return 0;
+}
+
+/**
+ * fsl_dma_open: open a new substream.
+ *
+ * Each substream has its own DMA buffer.
+ */
+static int fsl_dma_open(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct fsl_dma_private *dma_private;
+ dma_addr_t ld_buf_phys;
+ unsigned int channel;
+ int ret = 0;
+
+ /*
+ * Reject any DMA buffer whose size is not a multiple of the period
+ * size. We need to make sure that the DMA buffer can be evenly divided
+ * into periods.
+ */
+ ret = snd_pcm_hw_constraint_integer(runtime,
+ SNDRV_PCM_HW_PARAM_PERIODS);
+ if (ret < 0) {
+ dev_err(substream->pcm->card->dev, "invalid buffer size\n");
+ return ret;
+ }
+
+ channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
+
+ if (dma_global_data.assigned[channel]) {
+ dev_err(substream->pcm->card->dev,
+ "DMA channel already assigned\n");
+ return -EBUSY;
+ }
+
+ dma_private = dma_alloc_coherent(substream->pcm->dev,
+ sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
+ if (!dma_private) {
+ dev_err(substream->pcm->card->dev,
+ "can't allocate DMA private data\n");
+ return -ENOMEM;
+ }
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
+ else
+ dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
+
+ dma_private->dma_channel = dma_global_data.dma_channel[channel];
+ dma_private->irq = dma_global_data.irq[channel];
+ dma_private->substream = substream;
+ dma_private->ld_buf_phys = ld_buf_phys;
+ dma_private->dma_buf_phys = substream->dma_buffer.addr;
+
+ /* We only support one DMA controller for now */
+ dma_private->controller_id = 0;
+ dma_private->channel_id = channel;
+
+ ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
+ if (ret) {
+ dev_err(substream->pcm->card->dev,
+ "can't register ISR for IRQ %u (ret=%i)\n",
+ dma_private->irq, ret);
+ dma_free_coherent(substream->pcm->dev,
+ sizeof(struct fsl_dma_private),
+ dma_private, dma_private->ld_buf_phys);
+ return ret;
+ }
+
+ dma_global_data.assigned[channel] = 1;
+
+ snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
+ snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
+ runtime->private_data = dma_private;
+
+ return 0;
+}
+
+/**
+ * fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors.
+ *
+ * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
+ * descriptors that ping-pong from one period to the next. For example, if
+ * there are six periods and two link descriptors, this is how they look
+ * before playback starts:
+ *
+ * The last link descriptor
+ * ____________ points back to the first
+ * | |
+ * V |
+ * ___ ___ |
+ * | |->| |->|
+ * |___| |___|
+ * | |
+ * | |
+ * V V
+ * _________________________________________
+ * | | | | | | | The DMA buffer is
+ * | | | | | | | divided into 6 parts
+ * |______|______|______|______|______|______|
+ *
+ * and here's how they look after the first period is finished playing:
+ *
+ * ____________
+ * | |
+ * V |
+ * ___ ___ |
+ * | |->| |->|
+ * |___| |___|
+ * | |
+ * |______________
+ * | |
+ * V V
+ * _________________________________________
+ * | | | | | | |
+ * | | | | | | |
+ * |______|______|______|______|______|______|
+ *
+ * The first link descriptor now points to the third period. The DMA
+ * controller is currently playing the second period. When it finishes, it
+ * will jump back to the first descriptor and play the third period.
+ *
+ * There are four reasons we do this:
+ *
+ * 1. The only way to get the DMA controller to automatically restart the
+ * transfer when it gets to the end of the buffer is to use chaining
+ * mode. Basic direct mode doesn't offer that feature.
+ * 2. We need to receive an interrupt at the end of every period. The DMA
+ * controller can generate an interrupt at the end of every link transfer
+ * (aka segment). Making each period into a DMA segment will give us the
+ * interrupts we need.
+ * 3. By creating only two link descriptors, regardless of the number of
+ * periods, we do not need to reallocate the link descriptors if the
+ * number of periods changes.
+ * 4. All of the audio data is still stored in a single, contiguous DMA
+ * buffer, which is what ALSA expects. We're just dividing it into
+ * contiguous parts, and creating a link descriptor for each one.
+ *
+ * Note that due to a quirk of the SSI's STX register, the target address
+ * for the DMA operations depends on the sample size. So we don't program
+ * the dest_addr (for playback -- source_addr for capture) fields in the
+ * link descriptors here. We do that in fsl_dma_prepare()
+ */
+static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
+ struct snd_pcm_hw_params *hw_params)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct fsl_dma_private *dma_private = runtime->private_data;
+ struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
+
+ dma_addr_t temp_addr; /* Pointer to next period */
+ u64 temp_link; /* Pointer to next link descriptor */
+ u32 mr; /* Temporary variable for MR register */
+
+ unsigned int i;
+
+ /* Get all the parameters we need */
+ size_t buffer_size = params_buffer_bytes(hw_params);
+ size_t period_size = params_period_bytes(hw_params);
+
+ /* Initialize our DMA tracking variables */
+ dma_private->period_size = period_size;
+ dma_private->num_periods = params_periods(hw_params);
+ dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
+ dma_private->dma_buf_next = dma_private->dma_buf_phys +
+ (NUM_DMA_LINKS * period_size);
+ if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
+ dma_private->dma_buf_next = dma_private->dma_buf_phys;
+
+ /*
+ * Initialize each link descriptor.
+ *
+ * The actual address in STX0 (destination for playback, source for
+ * capture) is based on the sample size, but we don't know the sample
+ * size in this function, so we'll have to adjust that later. See
+ * comments in fsl_dma_prepare().
+ *
+ * The DMA controller does not have a cache, so the CPU does not
+ * need to tell it to flush its cache. However, the DMA
+ * controller does need to tell the CPU to flush its cache.
+ * That's what the SNOOP bit does.
+ *
+ * Also, even though the DMA controller supports 36-bit addressing, for
+ * simplicity we currently support only 32-bit addresses for the audio
+ * buffer itself.
+ */
+ temp_addr = substream->dma_buffer.addr;
+ temp_link = dma_private->ld_buf_phys +
+ sizeof(struct fsl_dma_link_descriptor);
+
+ for (i = 0; i < NUM_DMA_LINKS; i++) {
+ struct fsl_dma_link_descriptor *link = &dma_private->link[i];
+
+ link->count = cpu_to_be32(period_size);
+ link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
+ link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
+ link->next = cpu_to_be64(temp_link);
+
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ link->source_addr = cpu_to_be32(temp_addr);
+ else
+ link->dest_addr = cpu_to_be32(temp_addr);
+
+ temp_addr += period_size;
+ temp_link += sizeof(struct fsl_dma_link_descriptor);
+ }
+ /* The last link descriptor points to the first */
+ dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
+
+ /* Tell the DMA controller where the first link descriptor is */
+ out_be32(&dma_channel->clndar,
+ CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
+ out_be32(&dma_channel->eclndar,
+ CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
+
+ /* The manual says the BCR must be clear before enabling EMP */
+ out_be32(&dma_channel->bcr, 0);
+
+ /*
+ * Program the mode register for interrupts, external master control,
+ * and source/destination hold. Also clear the Channel Abort bit.
+ */
+ mr = in_be32(&dma_channel->mr) &
+ ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
+
+ /*
+ * We want External Master Start and External Master Pause enabled,
+ * because the SSI is controlling the DMA controller. We want the DMA
+ * controller to be set up in advance, and then we signal only the SSI
+ * to start transfering.
+ *
+ * We want End-Of-Segment Interrupts enabled, because this will generate
+ * an interrupt at the end of each segment (each link descriptor
+ * represents one segment). Each DMA segment is the same thing as an
+ * ALSA period, so this is how we get an interrupt at the end of every
+ * period.
+ *
+ * We want Error Interrupt enabled, so that we can get an error if
+ * the DMA controller is mis-programmed somehow.
+ */
+ mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
+ CCSR_DMA_MR_EMS_EN;
+
+ /* For playback, we want the destination address to be held. For
+ capture, set the source address to be held. */
+ mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
+ CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
+
+ out_be32(&dma_channel->mr, mr);
+
+ return 0;
+}
+
+/**
+ * fsl_dma_prepare - prepare the DMA registers for playback.
+ *
+ * This function is called after the specifics of the audio data are known,
+ * i.e. snd_pcm_runtime is initialized.
+ *
+ * In this function, we finish programming the registers of the DMA
+ * controller that are dependent on the sample size.
+ *
+ * One of the drawbacks with big-endian is that when copying integers of
+ * different sizes to a fixed-sized register, the address to which the
+ * integer must be copied is dependent on the size of the integer.
+ *
+ * For example, if P is the address of a 32-bit register, and X is a 32-bit
+ * integer, then X should be copied to address P. However, if X is a 16-bit
+ * integer, then it should be copied to P+2. If X is an 8-bit register,
+ * then it should be copied to P+3.
+ *
+ * So for playback of 8-bit samples, the DMA controller must transfer single
+ * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
+ * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
+ *
+ * For 24-bit samples, the offset is 1 byte. However, the DMA controller
+ * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
+ * and 8 bytes at a time). So we do not support packed 24-bit samples.
+ * 24-bit data must be padded to 32 bits.
+ */
+static int fsl_dma_prepare(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct fsl_dma_private *dma_private = runtime->private_data;
+ struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
+ u32 mr;
+ unsigned int i;
+ dma_addr_t ssi_sxx_phys; /* Bus address of SSI STX register */
+ unsigned int frame_size; /* Number of bytes per frame */
+
+ ssi_sxx_phys = dma_private->ssi_sxx_phys;
+
+ mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
+ CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
+
+ switch (runtime->sample_bits) {
+ case 8:
+ mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
+ ssi_sxx_phys += 3;
+ break;
+ case 16:
+ mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
+ ssi_sxx_phys += 2;
+ break;
+ case 32:
+ mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
+ break;
+ default:
+ dev_err(substream->pcm->card->dev,
+ "unsupported sample size %u\n", runtime->sample_bits);
+ return -EINVAL;
+ }
+
+ frame_size = runtime->frame_bits / 8;
+ /*
+ * BWC should always be a multiple of the frame size. BWC determines
+ * how many bytes are sent/received before the DMA controller checks the
+ * SSI to see if it needs to stop. For playback, the transmit FIFO can
+ * hold three frames, so we want to send two frames at a time. For
+ * capture, the receive FIFO is triggered when it contains one frame, so
+ * we want to receive one frame at a time.
+ */
+
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ mr |= CCSR_DMA_MR_BWC(2 * frame_size);
+ else
+ mr |= CCSR_DMA_MR_BWC(frame_size);
+
+ out_be32(&dma_channel->mr, mr);
+
+ /*
+ * Program the address of the DMA transfer to/from the SSI.
+ */
+ for (i = 0; i < NUM_DMA_LINKS; i++) {
+ struct fsl_dma_link_descriptor *link = &dma_private->link[i];
+
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ link->dest_addr = cpu_to_be32(ssi_sxx_phys);
+ else
+ link->source_addr = cpu_to_be32(ssi_sxx_phys);
+ }
+
+ return 0;
+}
+
+/**
+ * fsl_dma_pointer: determine the current position of the DMA transfer
+ *
+ * This function is called by ALSA when ALSA wants to know where in the
+ * stream buffer the hardware currently is.
+ *
+ * For playback, the SAR register contains the physical address of the most
+ * recent DMA transfer. For capture, the value is in the DAR register.
+ *
+ * The base address of the buffer is stored in the source_addr field of the
+ * first link descriptor.
+ */
+static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct fsl_dma_private *dma_private = runtime->private_data;
+ struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
+ dma_addr_t position;
+ snd_pcm_uframes_t frames;
+
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ position = in_be32(&dma_channel->sar);
+ else
+ position = in_be32(&dma_channel->dar);
+
+ frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
+
+ /*
+ * If the current address is just past the end of the buffer, wrap it
+ * around.
+ */
+ if (frames == runtime->buffer_size)
+ frames = 0;
+
+ return frames;
+}
+
+/**
+ * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
+ *
+ * Release the resources allocated in fsl_dma_hw_params() and de-program the
+ * registers.
+ *
+ * This function can be called multiple times.
+ */
+static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct fsl_dma_private *dma_private = runtime->private_data;
+
+ if (dma_private) {
+ struct ccsr_dma_channel __iomem *dma_channel;
+
+ dma_channel = dma_private->dma_channel;
+
+ /* Stop the DMA */
+ out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
+ out_be32(&dma_channel->mr, 0);
+
+ /* Reset all the other registers */
+ out_be32(&dma_channel->sr, -1);
+ out_be32(&dma_channel->clndar, 0);
+ out_be32(&dma_channel->eclndar, 0);
+ out_be32(&dma_channel->satr, 0);
+ out_be32(&dma_channel->sar, 0);
+ out_be32(&dma_channel->datr, 0);
+ out_be32(&dma_channel->dar, 0);
+ out_be32(&dma_channel->bcr, 0);
+ out_be32(&dma_channel->nlndar, 0);
+ out_be32(&dma_channel->enlndar, 0);
+ }
+
+ return 0;
+}
+
+/**
+ * fsl_dma_close: close the stream.
+ */
+static int fsl_dma_close(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct fsl_dma_private *dma_private = runtime->private_data;
+ int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
+
+ if (dma_private) {
+ if (dma_private->irq)
+ free_irq(dma_private->irq, dma_private);
+
+ if (dma_private->ld_buf_phys) {
+ dma_unmap_single(substream->pcm->dev,
+ dma_private->ld_buf_phys,
+ sizeof(dma_private->link), DMA_TO_DEVICE);
+ }
+
+ /* Deallocate the fsl_dma_private structure */
+ dma_free_coherent(substream->pcm->dev,
+ sizeof(struct fsl_dma_private),
+ dma_private, dma_private->ld_buf_phys);
+ substream->runtime->private_data = NULL;
+ }
+
+ dma_global_data.assigned[dir] = 0;
+
+ return 0;
+}
+
+/*
+ * Remove this PCM driver.
+ */
+static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
+{
+ struct snd_pcm_substream *substream;
+ unsigned int i;
+
+ for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
+ substream = pcm->streams[i].substream;
+ if (substream) {
+ snd_dma_free_pages(&substream->dma_buffer);
+ substream->dma_buffer.area = NULL;
+ substream->dma_buffer.addr = 0;
+ }
+ }
+}
+
+static struct snd_pcm_ops fsl_dma_ops = {
+ .open = fsl_dma_open,
+ .close = fsl_dma_close,
+ .ioctl = snd_pcm_lib_ioctl,
+ .hw_params = fsl_dma_hw_params,
+ .hw_free = fsl_dma_hw_free,
+ .prepare = fsl_dma_prepare,
+ .pointer = fsl_dma_pointer,
+};
+
+struct snd_soc_platform fsl_soc_platform = {
+ .name = "fsl-dma",
+ .pcm_ops = &fsl_dma_ops,
+ .pcm_new = fsl_dma_new,
+ .pcm_free = fsl_dma_free_dma_buffers,
+};
+EXPORT_SYMBOL_GPL(fsl_soc_platform);
+
+/**
+ * fsl_dma_configure: store the DMA parameters from the fabric driver.
+ *
+ * This function is called by the ASoC fabric driver to give us the DMA and
+ * SSI channel information.
+ *
+ * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
+ * data when a substream is created, so for now we need to store this data
+ * into a global variable. This means that we can only support one DMA
+ * controller, and hence only one SSI.
+ */
+int fsl_dma_configure(struct fsl_dma_info *dma_info)
+{
+ static int initialized;
+
+ /* We only support one DMA controller for now */
+ if (initialized)
+ return 0;
+
+ dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
+ dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
+ dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
+ dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
+ dma_global_data.irq[0] = dma_info->dma_irq[0];
+ dma_global_data.irq[1] = dma_info->dma_irq[1];
+ dma_global_data.assigned[0] = 0;
+ dma_global_data.assigned[1] = 0;
+
+ initialized = 1;
+ return 1;
+}
+EXPORT_SYMBOL_GPL(fsl_dma_configure);
+
+MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
+MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
+MODULE_LICENSE("GPL");
diff --git a/sound/soc/fsl/fsl_dma.h b/sound/soc/fsl/fsl_dma.h
new file mode 100644
index 0000000..430a6ce
--- /dev/null
+++ b/sound/soc/fsl/fsl_dma.h
@@ -0,0 +1,149 @@
+/*
+ * mpc8610-pcm.h - ALSA PCM interface for the Freescale MPC8610 SoC
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#ifndef _MPC8610_PCM_H
+#define _MPC8610_PCM_H
+
+struct ccsr_dma {
+ u8 res0[0x100];
+ struct ccsr_dma_channel {
+ __be32 mr; /* Mode register */
+ __be32 sr; /* Status register */
+ __be32 eclndar; /* Current link descriptor extended addr reg */
+ __be32 clndar; /* Current link descriptor address register */
+ __be32 satr; /* Source attributes register */
+ __be32 sar; /* Source address register */
+ __be32 datr; /* Destination attributes register */
+ __be32 dar; /* Destination address register */
+ __be32 bcr; /* Byte count register */
+ __be32 enlndar; /* Next link descriptor extended address reg */
+ __be32 nlndar; /* Next link descriptor address register */
+ u8 res1[4];
+ __be32 eclsdar; /* Current list descriptor extended addr reg */
+ __be32 clsdar; /* Current list descriptor address register */
+ __be32 enlsdar; /* Next list descriptor extended address reg */
+ __be32 nlsdar; /* Next list descriptor address register */
+ __be32 ssr; /* Source stride register */
+ __be32 dsr; /* Destination stride register */
+ u8 res2[0x38];
+ } channel[4];
+ __be32 dgsr;
+};
+
+#define CCSR_DMA_MR_BWC_DISABLED 0x0F000000
+#define CCSR_DMA_MR_BWC_SHIFT 24
+#define CCSR_DMA_MR_BWC_MASK 0x0F000000
+#define CCSR_DMA_MR_BWC(x) \
+ ((ilog2(x) << CCSR_DMA_MR_BWC_SHIFT) & CCSR_DMA_MR_BWC_MASK)
+#define CCSR_DMA_MR_EMP_EN 0x00200000
+#define CCSR_DMA_MR_EMS_EN 0x00040000
+#define CCSR_DMA_MR_DAHTS_MASK 0x00030000
+#define CCSR_DMA_MR_DAHTS_1 0x00000000
+#define CCSR_DMA_MR_DAHTS_2 0x00010000
+#define CCSR_DMA_MR_DAHTS_4 0x00020000
+#define CCSR_DMA_MR_DAHTS_8 0x00030000
+#define CCSR_DMA_MR_SAHTS_MASK 0x0000C000
+#define CCSR_DMA_MR_SAHTS_1 0x00000000
+#define CCSR_DMA_MR_SAHTS_2 0x00004000
+#define CCSR_DMA_MR_SAHTS_4 0x00008000
+#define CCSR_DMA_MR_SAHTS_8 0x0000C000
+#define CCSR_DMA_MR_DAHE 0x00002000
+#define CCSR_DMA_MR_SAHE 0x00001000
+#define CCSR_DMA_MR_SRW 0x00000400
+#define CCSR_DMA_MR_EOSIE 0x00000200
+#define CCSR_DMA_MR_EOLNIE 0x00000100
+#define CCSR_DMA_MR_EOLSIE 0x00000080
+#define CCSR_DMA_MR_EIE 0x00000040
+#define CCSR_DMA_MR_XFE 0x00000020
+#define CCSR_DMA_MR_CDSM_SWSM 0x00000010
+#define CCSR_DMA_MR_CA 0x00000008
+#define CCSR_DMA_MR_CTM 0x00000004
+#define CCSR_DMA_MR_CC 0x00000002
+#define CCSR_DMA_MR_CS 0x00000001
+
+#define CCSR_DMA_SR_TE 0x00000080
+#define CCSR_DMA_SR_CH 0x00000020
+#define CCSR_DMA_SR_PE 0x00000010
+#define CCSR_DMA_SR_EOLNI 0x00000008
+#define CCSR_DMA_SR_CB 0x00000004
+#define CCSR_DMA_SR_EOSI 0x00000002
+#define CCSR_DMA_SR_EOLSI 0x00000001
+
+/* ECLNDAR takes bits 32-36 of the CLNDAR register */
+static inline u32 CCSR_DMA_ECLNDAR_ADDR(u64 x)
+{
+ return (x >> 32) & 0xf;
+}
+
+#define CCSR_DMA_CLNDAR_ADDR(x) ((x) & 0xFFFFFFFE)
+#define CCSR_DMA_CLNDAR_EOSIE 0x00000008
+
+/* SATR and DATR, combined */
+#define CCSR_DMA_ATR_PBATMU 0x20000000
+#define CCSR_DMA_ATR_TFLOWLVL_0 0x00000000
+#define CCSR_DMA_ATR_TFLOWLVL_1 0x06000000
+#define CCSR_DMA_ATR_TFLOWLVL_2 0x08000000
+#define CCSR_DMA_ATR_TFLOWLVL_3 0x0C000000
+#define CCSR_DMA_ATR_PCIORDER 0x02000000
+#define CCSR_DMA_ATR_SME 0x01000000
+#define CCSR_DMA_ATR_NOSNOOP 0x00040000
+#define CCSR_DMA_ATR_SNOOP 0x00050000
+#define CCSR_DMA_ATR_ESAD_MASK 0x0000000F
+
+/**
+ * List Descriptor for extended chaining mode DMA operations.
+ *
+ * The CLSDAR register points to the first (in a linked-list) List
+ * Descriptor. Each object must be aligned on a 32-byte boundary. Each
+ * list descriptor points to a linked-list of link Descriptors.
+ */
+struct fsl_dma_list_descriptor {
+ __be64 next; /* Address of next list descriptor */
+ __be64 first_link; /* Address of first link descriptor */
+ __be32 source; /* Source stride */
+ __be32 dest; /* Destination stride */
+ u8 res[8]; /* Reserved */
+} __attribute__ ((aligned(32), packed));
+
+/**
+ * Link Descriptor for basic and extended chaining mode DMA operations.
+ *
+ * A Link Descriptor points to a single DMA buffer. Each link descriptor
+ * must be aligned on a 32-byte boundary.
+ */
+struct fsl_dma_link_descriptor {
+ __be32 source_attr; /* Programmed into SATR register */
+ __be32 source_addr; /* Programmed into SAR register */
+ __be32 dest_attr; /* Programmed into DATR register */
+ __be32 dest_addr; /* Programmed into DAR register */
+ __be64 next; /* Address of next link descriptor */
+ __be32 count; /* Byte count */
+ u8 res[4]; /* Reserved */
+} __attribute__ ((aligned(32), packed));
+
+/* DMA information needed to create a snd_soc_cpu_dai object
+ *
+ * ssi_stx_phys: bus address of SSI STX register to use
+ * ssi_srx_phys: bus address of SSI SRX register to use
+ * dma[0]: points to the DMA channel to use for playback
+ * dma[1]: points to the DMA channel to use for capture
+ * dma_irq[0]: IRQ of the DMA channel to use for playback
+ * dma_irq[1]: IRQ of the DMA channel to use for capture
+ */
+struct fsl_dma_info {
+ dma_addr_t ssi_stx_phys;
+ dma_addr_t ssi_srx_phys;
+ struct ccsr_dma_channel __iomem *dma_channel[2];
+ unsigned int dma_irq[2];
+};
+
+extern struct snd_soc_platform fsl_soc_platform;
+
+int fsl_dma_configure(struct fsl_dma_info *dma_info);
+
+#endif
diff --git a/sound/soc/fsl/fsl_ssi.c b/sound/soc/fsl/fsl_ssi.c
new file mode 100644
index 0000000..145ad13
--- /dev/null
+++ b/sound/soc/fsl/fsl_ssi.c
@@ -0,0 +1,644 @@
+/*
+ * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
+ *
+ * Author: Timur Tabi <timur@freescale.com>
+ *
+ * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
+ * under the terms of the GNU General Public License version 2. This
+ * program is licensed "as is" without any warranty of any kind, whether
+ * express or implied.
+ */
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/device.h>
+#include <linux/delay.h>
+
+#include <sound/driver.h>
+#include <sound/core.h>
+#include <sound/pcm.h>
+#include <sound/pcm_params.h>
+#include <sound/initval.h>
+#include <sound/soc.h>
+
+#include <asm/immap_86xx.h>
+
+#include "fsl_ssi.h"
+
+/**
+ * FSLSSI_I2S_RATES: sample rates supported by the I2S
+ *
+ * This driver currently only supports the SSI running in I2S slave mode,
+ * which means the codec determines the sample rate. Therefore, we tell
+ * ALSA that we support all rates and let the codec driver decide what rates
+ * are really supported.
+ */
+#define FSLSSI_I2S_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
+ SNDRV_PCM_RATE_CONTINUOUS)
+
+/**
+ * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
+ *
+ * This driver currently only supports the SSI running in I2S slave mode.
+ *
+ * The SSI has a limitation in that the samples must be in the same byte
+ * order as the host CPU. This is because when multiple bytes are written
+ * to the STX register, the bytes and bits must be written in the same
+ * order. The STX is a shift register, so all the bits need to be aligned
+ * (bit-endianness must match byte-endianness). Processors typically write
+ * the bits within a byte in the same order that the bytes of a word are
+ * written in. So if the host CPU is big-endian, then only big-endian
+ * samples will be written to STX properly.
+ */
+#ifdef __BIG_ENDIAN
+#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
+ SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
+ SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
+#else
+#define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
+ SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
+ SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
+#endif
+
+/**
+ * fsl_ssi_private: per-SSI private data
+ *
+ * @name: short name for this device ("SSI0", "SSI1", etc)
+ * @ssi: pointer to the SSI's registers
+ * @ssi_phys: physical address of the SSI registers
+ * @irq: IRQ of this SSI
+ * @dev: struct device pointer
+ * @playback: the number of playback streams opened
+ * @capture: the number of capture streams opened
+ * @cpu_dai: the CPU DAI for this device
+ * @dev_attr: the sysfs device attribute structure
+ * @stats: SSI statistics
+ */
+struct fsl_ssi_private {
+ char name[8];
+ struct ccsr_ssi __iomem *ssi;
+ dma_addr_t ssi_phys;
+ unsigned int irq;
+ struct device *dev;
+ unsigned int playback;
+ unsigned int capture;
+ struct snd_soc_cpu_dai cpu_dai;
+ struct device_attribute dev_attr;
+
+ struct {
+ unsigned int rfrc;
+ unsigned int tfrc;
+ unsigned int cmdau;
+ unsigned int cmddu;
+ unsigned int rxt;
+ unsigned int rdr1;
+ unsigned int rdr0;
+ unsigned int tde1;
+ unsigned int tde0;
+ unsigned int roe1;
+ unsigned int roe0;
+ unsigned int tue1;
+ unsigned int tue0;
+ unsigned int tfs;
+ unsigned int rfs;
+ unsigned int tls;
+ unsigned int rls;
+ unsigned int rff1;
+ unsigned int rff0;
+ unsigned int tfe1;
+ unsigned int tfe0;
+ } stats;
+};
+
+/**
+ * fsl_ssi_isr: SSI interrupt handler
+ *
+ * Although it's possible to use the interrupt handler to send and receive
+ * data to/from the SSI, we use the DMA instead. Programming is more
+ * complicated, but the performance is much better.
+ *
+ * This interrupt handler is used only to gather statistics.
+ *
+ * @irq: IRQ of the SSI device
+ * @dev_id: pointer to the ssi_private structure for this SSI device
+ */
+static irqreturn_t fsl_ssi_isr(int irq, void *dev_id)
+{
+ struct fsl_ssi_private *ssi_private = dev_id;
+ struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
+ irqreturn_t ret = IRQ_NONE;
+ __be32 sisr;
+ __be32 sisr2 = 0;
+
+ /* We got an interrupt, so read the status register to see what we
+ were interrupted for. We mask it with the Interrupt Enable register
+ so that we only check for events that we're interested in.
+ */
+ sisr = in_be32(&ssi->sisr) & in_be32(&ssi->sier);
+
+ if (sisr & CCSR_SSI_SISR_RFRC) {
+ ssi_private->stats.rfrc++;
+ sisr2 |= CCSR_SSI_SISR_RFRC;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_TFRC) {
+ ssi_private->stats.tfrc++;
+ sisr2 |= CCSR_SSI_SISR_TFRC;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_CMDAU) {
+ ssi_private->stats.cmdau++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_CMDDU) {
+ ssi_private->stats.cmddu++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_RXT) {
+ ssi_private->stats.rxt++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_RDR1) {
+ ssi_private->stats.rdr1++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_RDR0) {
+ ssi_private->stats.rdr0++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_TDE1) {
+ ssi_private->stats.tde1++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_TDE0) {
+ ssi_private->stats.tde0++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_ROE1) {
+ ssi_private->stats.roe1++;
+ sisr2 |= CCSR_SSI_SISR_ROE1;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_ROE0) {
+ ssi_private->stats.roe0++;
+ sisr2 |= CCSR_SSI_SISR_ROE0;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_TUE1) {
+ ssi_private->stats.tue1++;
+ sisr2 |= CCSR_SSI_SISR_TUE1;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_TUE0) {
+ ssi_private->stats.tue0++;
+ sisr2 |= CCSR_SSI_SISR_TUE0;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_TFS) {
+ ssi_private->stats.tfs++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_RFS) {
+ ssi_private->stats.rfs++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_TLS) {
+ ssi_private->stats.tls++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_RLS) {
+ ssi_private->stats.rls++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_RFF1) {
+ ssi_private->stats.rff1++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_RFF0) {
+ ssi_private->stats.rff0++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_TFE1) {
+ ssi_private->stats.tfe1++;
+ ret = IRQ_HANDLED;
+ }
+
+ if (sisr & CCSR_SSI_SISR_TFE0) {
+ ssi_private->stats.tfe0++;
+ ret = IRQ_HANDLED;
+ }
+
+ /* Clear the bits that we set */
+ if (sisr2)
+ out_be32(&ssi->sisr, sisr2);
+
+ return ret;
+}
+
+/**
+ * fsl_ssi_startup: create a new substream
+ *
+ * This is the first function called when a stream is opened.
+ *
+ * If this is the first stream open, then grab the IRQ and program most of
+ * the SSI registers.
+ */
+static int fsl_ssi_startup(struct snd_pcm_substream *substream)
+{
+ struct snd_soc_pcm_runtime *rtd = substream->private_data;
+ struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
+
+ /*
+ * If this is the first stream opened, then request the IRQ
+ * and initialize the SSI registers.
+ */
+ if (!ssi_private->playback && !ssi_private->capture) {
+ struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
+ int ret;
+
+ ret = request_irq(ssi_private->irq, fsl_ssi_isr, 0,
+ ssi_private->name, ssi_private);
+ if (ret < 0) {
+ dev_err(substream->pcm->card->dev,
+ "could not claim irq %u\n", ssi_private->irq);
+ return ret;
+ }
+
+ /*
+ * Section 16.5 of the MPC8610 reference manual says that the
+ * SSI needs to be disabled before updating the registers we set
+ * here.
+ */
+ clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
+
+ /*
+ * Program the SSI into I2S Slave Non-Network Synchronous mode.
+ * Also enable the transmit and receive FIFO.
+ *
+ * FIXME: Little-endian samples require a different shift dir
+ */
+ clrsetbits_be32(&ssi->scr, CCSR_SSI_SCR_I2S_MODE_MASK,
+ CCSR_SSI_SCR_TFR_CLK_DIS |
+ CCSR_SSI_SCR_I2S_MODE_SLAVE | CCSR_SSI_SCR_SYN);
+
+ out_be32(&ssi->stcr,
+ CCSR_SSI_STCR_TXBIT0 | CCSR_SSI_STCR_TFEN0 |
+ CCSR_SSI_STCR_TFSI | CCSR_SSI_STCR_TEFS |
+ CCSR_SSI_STCR_TSCKP);
+
+ out_be32(&ssi->srcr,
+ CCSR_SSI_SRCR_RXBIT0 | CCSR_SSI_SRCR_RFEN0 |
+ CCSR_SSI_SRCR_RFSI | CCSR_SSI_SRCR_REFS |
+ CCSR_SSI_SRCR_RSCKP);
+
+ /*
+ * The DC and PM bits are only used if the SSI is the clock
+ * master.
+ */
+
+ /* 4. Enable the interrupts and DMA requests */
+ out_be32(&ssi->sier,
+ CCSR_SSI_SIER_TFRC_EN | CCSR_SSI_SIER_TDMAE |
+ CCSR_SSI_SIER_TIE | CCSR_SSI_SIER_TUE0_EN |
+ CCSR_SSI_SIER_TUE1_EN | CCSR_SSI_SIER_RFRC_EN |
+ CCSR_SSI_SIER_RDMAE | CCSR_SSI_SIER_RIE |
+ CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_ROE1_EN);
+
+ /*
+ * Set the watermark for transmit FIFI 0 and receive FIFO 0. We
+ * don't use FIFO 1. Since the SSI only supports stereo, the
+ * watermark should never be an odd number.
+ */
+ out_be32(&ssi->sfcsr,
+ CCSR_SSI_SFCSR_TFWM0(6) | CCSR_SSI_SFCSR_RFWM0(2));
+
+ /*
+ * We keep the SSI disabled because if we enable it, then the
+ * DMA controller will start. It's not supposed to start until
+ * the SCR.TE (or SCR.RE) bit is set, but it does anyway. The
+ * DMA controller will transfer one "BWC" of data (i.e. the
+ * amount of data that the MR.BWC bits are set to). The reason
+ * this is bad is because at this point, the PCM driver has not
+ * finished initializing the DMA controller.
+ */
+ }
+
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ ssi_private->playback++;
+
+ if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
+ ssi_private->capture++;
+
+ return 0;
+}
+
+/**
+ * fsl_ssi_prepare: prepare the SSI.
+ *
+ * Most of the SSI registers have been programmed in the startup function,
+ * but the word length must be programmed here. Unfortunately, programming
+ * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
+ * cause a problem with supporting simultaneous playback and capture. If
+ * the SSI is already playing a stream, then that stream may be temporarily
+ * stopped when you start capture.
+ *
+ * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
+ * clock master.
+ */
+static int fsl_ssi_prepare(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct snd_soc_pcm_runtime *rtd = substream->private_data;
+ struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
+
+ struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
+ u32 wl;
+
+ wl = CCSR_SSI_SxCCR_WL(snd_pcm_format_width(runtime->format));
+
+ clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
+
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ clrsetbits_be32(&ssi->stccr, CCSR_SSI_SxCCR_WL_MASK, wl);
+ else
+ clrsetbits_be32(&ssi->srccr, CCSR_SSI_SxCCR_WL_MASK, wl);
+
+ setbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
+
+ return 0;
+}
+
+/**
+ * fsl_ssi_trigger: start and stop the DMA transfer.
+ *
+ * This function is called by ALSA to start, stop, pause, and resume the DMA
+ * transfer of data.
+ *
+ * The DMA channel is in external master start and pause mode, which
+ * means the SSI completely controls the flow of data.
+ */
+static int fsl_ssi_trigger(struct snd_pcm_substream *substream, int cmd)
+{
+ struct snd_soc_pcm_runtime *rtd = substream->private_data;
+ struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
+ struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
+
+ switch (cmd) {
+ case SNDRV_PCM_TRIGGER_START:
+ case SNDRV_PCM_TRIGGER_RESUME:
+ case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
+ setbits32(&ssi->scr, CCSR_SSI_SCR_TE);
+ } else {
+ setbits32(&ssi->scr, CCSR_SSI_SCR_RE);
+
+ /*
+ * I think we need this delay to allow time for the SSI
+ * to put data into its FIFO. Without it, ALSA starts
+ * to complain about overruns.
+ */
+ msleep(1);
+ }
+ break;
+
+ case SNDRV_PCM_TRIGGER_STOP:
+ case SNDRV_PCM_TRIGGER_SUSPEND:
+ case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ clrbits32(&ssi->scr, CCSR_SSI_SCR_TE);
+ else
+ clrbits32(&ssi->scr, CCSR_SSI_SCR_RE);
+ break;
+
+ default:
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * fsl_ssi_shutdown: shutdown the SSI
+ *
+ * Shutdown the SSI if there are no other substreams open.
+ */
+static void fsl_ssi_shutdown(struct snd_pcm_substream *substream)
+{
+ struct snd_soc_pcm_runtime *rtd = substream->private_data;
+ struct fsl_ssi_private *ssi_private = rtd->dai->cpu_dai->private_data;
+
+ if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
+ ssi_private->playback--;
+
+ if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
+ ssi_private->capture--;
+
+ /*
+ * If this is the last active substream, disable the SSI and release
+ * the IRQ.
+ */
+ if (!ssi_private->playback && !ssi_private->capture) {
+ struct ccsr_ssi __iomem *ssi = ssi_private->ssi;
+
+ clrbits32(&ssi->scr, CCSR_SSI_SCR_SSIEN);
+
+ free_irq(ssi_private->irq, ssi_private);
+ }
+}
+
+/**
+ * fsl_ssi_set_sysclk: set the clock frequency and direction
+ *
+ * This function is called by the machine driver to tell us what the clock
+ * frequency and direction are.
+ *
+ * Currently, we only support operating as a clock slave (SND_SOC_CLOCK_IN),
+ * and we don't care about the frequency. Return an error if the direction
+ * is not SND_SOC_CLOCK_IN.
+ *
+ * @clk_id: reserved, should be zero
+ * @freq: the frequency of the given clock ID, currently ignored
+ * @dir: SND_SOC_CLOCK_IN (clock slave) or SND_SOC_CLOCK_OUT (clock master)
+ */
+static int fsl_ssi_set_sysclk(struct snd_soc_cpu_dai *cpu_dai,
+ int clk_id, unsigned int freq, int dir)
+{
+
+ return (dir == SND_SOC_CLOCK_IN) ? 0 : -EINVAL;
+}
+
+/**
+ * fsl_ssi_set_fmt: set the serial format.
+ *
+ * This function is called by the machine driver to tell us what serial
+ * format to use.
+ *
+ * Currently, we only support I2S mode. Return an error if the format is
+ * not SND_SOC_DAIFMT_I2S.
+ *
+ * @format: one of SND_SOC_DAIFMT_xxx
+ */
+static int fsl_ssi_set_fmt(struct snd_soc_cpu_dai *cpu_dai, unsigned int format)
+{
+ return (format == SND_SOC_DAIFMT_I2S) ? 0 : -EINVAL;
+}
+
+/**
+ * fsl_ssi_dai_template: template CPU DAI for the SSI
+ */
+static struct snd_soc_cpu_dai fsl_ssi_dai_template = {
+ .playback = {
+ /* The SSI does not support monaural audio. */
+ .channels_min = 2,
+ .channels_max = 2,
+ .rates = FSLSSI_I2S_RATES,
+ .formats = FSLSSI_I2S_FORMATS,
+ },
+ .capture = {
+ .channels_min = 2,
+ .channels_max = 2,
+ .rates = FSLSSI_I2S_RATES,
+ .formats = FSLSSI_I2S_FORMATS,
+ },
+ .ops = {
+ .startup = fsl_ssi_startup,
+ .prepare = fsl_ssi_prepare,
+ .shutdown = fsl_ssi_shutdown,
+ .trigger = fsl_ssi_trigger,
+ },
+ .dai_ops = {
+ .set_sysclk = fsl_ssi_set_sysclk,
+ .set_fmt = fsl_ssi_set_fmt,
+ },
+};
+
+/**
+ * fsl_sysfs_ssi_show: display SSI statistics
+ *
+ * Display the statistics for the current SSI device.
+ */
+static ssize_t fsl_sysfs_ssi_show(struct device *dev,
+ struct device_attribute *attr, char *buf)
+{
+ struct fsl_ssi_private *ssi_private =
+ container_of(attr, struct fsl_ssi_private, dev_attr);
+ ssize_t length;
+
+ length = sprintf(buf, "rfrc=%u", ssi_private->stats.rfrc);
+ length += sprintf(buf + length, "\ttfrc=%u", ssi_private->stats.tfrc);
+ length += sprintf(buf + length, "\tcmdau=%u", ssi_private->stats.cmdau);
+ length += sprintf(buf + length, "\tcmddu=%u", ssi_private->stats.cmddu);
+ length += sprintf(buf + length, "\trxt=%u", ssi_private->stats.rxt);
+ length += sprintf(buf + length, "\trdr1=%u", ssi_private->stats.rdr1);
+ length += sprintf(buf + length, "\trdr0=%u", ssi_private->stats.rdr0);
+ length += sprintf(buf + length, "\ttde1=%u", ssi_private->stats.tde1);
+ length += sprintf(buf + length, "\ttde0=%u", ssi_private->stats.tde0);
+ length += sprintf(buf + length, "\troe1=%u", ssi_private->stats.roe1);
+ length += sprintf(buf + length, "\troe0=%u", ssi_private->stats.roe0);
+ length += sprintf(buf + length, "\ttue1=%u", ssi_private->stats.tue1);
+ length += sprintf(buf + length, "\ttue0=%u", ssi_private->stats.tue0);
+ length += sprintf(buf + length, "\ttfs=%u", ssi_private->stats.tfs);
+ length += sprintf(buf + length, "\trfs=%u", ssi_private->stats.rfs);
+ length += sprintf(buf + length, "\ttls=%u", ssi_private->stats.tls);
+ length += sprintf(buf + length, "\trls=%u", ssi_private->stats.rls);
+ length += sprintf(buf + length, "\trff1=%u", ssi_private->stats.rff1);
+ length += sprintf(buf + length, "\trff0=%u", ssi_private->stats.rff0);
+ length += sprintf(buf + length, "\ttfe1=%u", ssi_private->stats.tfe1);
+ length += sprintf(buf + length, "\ttfe0=%u\n", ssi_private->stats.tfe0);
+
+ return length;
+}
+
+/**
+ * fsl_ssi_create_dai: create a snd_soc_cpu_dai structure
+ *
+ * This function is called by the machine driver to create a snd_soc_cpu_dai
+ * structure. The function creates an ssi_private object, which contains
+ * the snd_soc_cpu_dai. It also creates the sysfs statistics device.
+ */
+struct snd_soc_cpu_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info)
+{
+ struct snd_soc_cpu_dai *fsl_ssi_dai;
+ struct fsl_ssi_private *ssi_private;
+ int ret = 0;
+ struct device_attribute *dev_attr;
+
+ ssi_private = kzalloc(sizeof(struct fsl_ssi_private), GFP_KERNEL);
+ if (!ssi_private) {
+ dev_err(ssi_info->dev, "could not allocate DAI object\n");
+ return NULL;
+ }
+ memcpy(&ssi_private->cpu_dai, &fsl_ssi_dai_template,
+ sizeof(struct snd_soc_cpu_dai));
+
+ fsl_ssi_dai = &ssi_private->cpu_dai;
+ dev_attr = &ssi_private->dev_attr;
+
+ sprintf(ssi_private->name, "ssi%u", (u8) ssi_info->id);
+ ssi_private->ssi = ssi_info->ssi;
+ ssi_private->ssi_phys = ssi_info->ssi_phys;
+ ssi_private->irq = ssi_info->irq;
+ ssi_private->dev = ssi_info->dev;
+
+ ssi_private->dev->driver_data = fsl_ssi_dai;
+
+ /* Initialize the the device_attribute structure */
+ dev_attr->attr.name = "ssi-stats";
+ dev_attr->attr.mode = S_IRUGO;
+ dev_attr->show = fsl_sysfs_ssi_show;
+
+ ret = device_create_file(ssi_private->dev, dev_attr);
+ if (ret) {
+ dev_err(ssi_info->dev, "could not create sysfs %s file\n",
+ ssi_private->dev_attr.attr.name);
+ kfree(fsl_ssi_dai);
+ return NULL;
+ }
+
+ fsl_ssi_dai->private_data = ssi_private;
+ fsl_ssi_dai->name = ssi_private->name;
+ fsl_ssi_dai->id = ssi_info->id;
+
+ return fsl_ssi_dai;
+}
+EXPORT_SYMBOL_GPL(fsl_ssi_create_dai);
+
+/**
+ * fsl_ssi_destroy_dai: destroy the snd_soc_cpu_dai object
+ *
+ * This function undoes the operations of fsl_ssi_create_dai()
+ */
+void fsl_ssi_destroy_dai(struct snd_soc_cpu_dai *fsl_ssi_dai)
+{
+ struct fsl_ssi_private *ssi_private =
+ container_of(fsl_ssi_dai, struct fsl_ssi_private, cpu_dai);
+
+ device_remove_file(ssi_private->dev, &ssi_private->dev_attr);
+
+ kfree(ssi_private);
+}
+EXPORT_SYMBOL_GPL(fsl_ssi_destroy_dai);
+
+MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
+MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
+MODULE_LICENSE("GPL");
diff --git a/sound/soc/fsl/fsl_ssi.h b/sound/soc/fsl/fsl_ssi.h
new file mode 100644
index 0000000..c5ce88e
--- /dev/null
+++ b/sound/soc/fsl/fsl_ssi.h
@@ -0,0 +1,224 @@
+/*
+ * fsl_ssi.h - ALSA SSI interface for the Freescale MPC8610 SoC
+ *
+ * Author: Timur Tabi <timur@freescale.com>
+ *
+ * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
+ * under the terms of the GNU General Public License version 2. This
+ * program is licensed "as is" without any warranty of any kind, whether
+ * express or implied.
+ */
+
+#ifndef _MPC8610_I2S_H
+#define _MPC8610_I2S_H
+
+/* SSI Register Map */
+struct ccsr_ssi {
+ __be32 stx0; /* 0x.0000 - SSI Transmit Data Register 0 */
+ __be32 stx1; /* 0x.0004 - SSI Transmit Data Register 1 */
+ __be32 srx0; /* 0x.0008 - SSI Receive Data Register 0 */
+ __be32 srx1; /* 0x.000C - SSI Receive Data Register 1 */
+ __be32 scr; /* 0x.0010 - SSI Control Register */
+ __be32 sisr; /* 0x.0014 - SSI Interrupt Status Register Mixed */
+ __be32 sier; /* 0x.0018 - SSI Interrupt Enable Register */
+ __be32 stcr; /* 0x.001C - SSI Transmit Configuration Register */
+ __be32 srcr; /* 0x.0020 - SSI Receive Configuration Register */
+ __be32 stccr; /* 0x.0024 - SSI Transmit Clock Control Register */
+ __be32 srccr; /* 0x.0028 - SSI Receive Clock Control Register */
+ __be32 sfcsr; /* 0x.002C - SSI FIFO Control/Status Register */
+ __be32 str; /* 0x.0030 - SSI Test Register */
+ __be32 sor; /* 0x.0034 - SSI Option Register */
+ __be32 sacnt; /* 0x.0038 - SSI AC97 Control Register */
+ __be32 sacadd; /* 0x.003C - SSI AC97 Command Address Register */
+ __be32 sacdat; /* 0x.0040 - SSI AC97 Command Data Register */
+ __be32 satag; /* 0x.0044 - SSI AC97 Tag Register */
+ __be32 stmsk; /* 0x.0048 - SSI Transmit Time Slot Mask Register */
+ __be32 srmsk; /* 0x.004C - SSI Receive Time Slot Mask Register */
+ __be32 saccst; /* 0x.0050 - SSI AC97 Channel Status Register */
+ __be32 saccen; /* 0x.0054 - SSI AC97 Channel Enable Register */
+ __be32 saccdis; /* 0x.0058 - SSI AC97 Channel Disable Register */
+};
+
+#define CCSR_SSI_SCR_RFR_CLK_DIS 0x00000800
+#define CCSR_SSI_SCR_TFR_CLK_DIS 0x00000400
+#define CCSR_SSI_SCR_TCH_EN 0x00000100
+#define CCSR_SSI_SCR_SYS_CLK_EN 0x00000080
+#define CCSR_SSI_SCR_I2S_MODE_MASK 0x00000060
+#define CCSR_SSI_SCR_I2S_MODE_NORMAL 0x00000000
+#define CCSR_SSI_SCR_I2S_MODE_MASTER 0x00000020
+#define CCSR_SSI_SCR_I2S_MODE_SLAVE 0x00000040
+#define CCSR_SSI_SCR_SYN 0x00000010
+#define CCSR_SSI_SCR_NET 0x00000008
+#define CCSR_SSI_SCR_RE 0x00000004
+#define CCSR_SSI_SCR_TE 0x00000002
+#define CCSR_SSI_SCR_SSIEN 0x00000001
+
+#define CCSR_SSI_SISR_RFRC 0x01000000
+#define CCSR_SSI_SISR_TFRC 0x00800000
+#define CCSR_SSI_SISR_CMDAU 0x00040000
+#define CCSR_SSI_SISR_CMDDU 0x00020000
+#define CCSR_SSI_SISR_RXT 0x00010000
+#define CCSR_SSI_SISR_RDR1 0x00008000
+#define CCSR_SSI_SISR_RDR0 0x00004000
+#define CCSR_SSI_SISR_TDE1 0x00002000
+#define CCSR_SSI_SISR_TDE0 0x00001000
+#define CCSR_SSI_SISR_ROE1 0x00000800
+#define CCSR_SSI_SISR_ROE0 0x00000400
+#define CCSR_SSI_SISR_TUE1 0x00000200
+#define CCSR_SSI_SISR_TUE0 0x00000100
+#define CCSR_SSI_SISR_TFS 0x00000080
+#define CCSR_SSI_SISR_RFS 0x00000040
+#define CCSR_SSI_SISR_TLS 0x00000020
+#define CCSR_SSI_SISR_RLS 0x00000010
+#define CCSR_SSI_SISR_RFF1 0x00000008
+#define CCSR_SSI_SISR_RFF0 0x00000004
+#define CCSR_SSI_SISR_TFE1 0x00000002
+#define CCSR_SSI_SISR_TFE0 0x00000001
+
+#define CCSR_SSI_SIER_RFRC_EN 0x01000000
+#define CCSR_SSI_SIER_TFRC_EN 0x00800000
+#define CCSR_SSI_SIER_RDMAE 0x00400000
+#define CCSR_SSI_SIER_RIE 0x00200000
+#define CCSR_SSI_SIER_TDMAE 0x00100000
+#define CCSR_SSI_SIER_TIE 0x00080000
+#define CCSR_SSI_SIER_CMDAU_EN 0x00040000
+#define CCSR_SSI_SIER_CMDDU_EN 0x00020000
+#define CCSR_SSI_SIER_RXT_EN 0x00010000
+#define CCSR_SSI_SIER_RDR1_EN 0x00008000
+#define CCSR_SSI_SIER_RDR0_EN 0x00004000
+#define CCSR_SSI_SIER_TDE1_EN 0x00002000
+#define CCSR_SSI_SIER_TDE0_EN 0x00001000
+#define CCSR_SSI_SIER_ROE1_EN 0x00000800
+#define CCSR_SSI_SIER_ROE0_EN 0x00000400
+#define CCSR_SSI_SIER_TUE1_EN 0x00000200
+#define CCSR_SSI_SIER_TUE0_EN 0x00000100
+#define CCSR_SSI_SIER_TFS_EN 0x00000080
+#define CCSR_SSI_SIER_RFS_EN 0x00000040
+#define CCSR_SSI_SIER_TLS_EN 0x00000020
+#define CCSR_SSI_SIER_RLS_EN 0x00000010
+#define CCSR_SSI_SIER_RFF1_EN 0x00000008
+#define CCSR_SSI_SIER_RFF0_EN 0x00000004
+#define CCSR_SSI_SIER_TFE1_EN 0x00000002
+#define CCSR_SSI_SIER_TFE0_EN 0x00000001
+
+#define CCSR_SSI_STCR_TXBIT0 0x00000200
+#define CCSR_SSI_STCR_TFEN1 0x00000100
+#define CCSR_SSI_STCR_TFEN0 0x00000080
+#define CCSR_SSI_STCR_TFDIR 0x00000040
+#define CCSR_SSI_STCR_TXDIR 0x00000020
+#define CCSR_SSI_STCR_TSHFD 0x00000010
+#define CCSR_SSI_STCR_TSCKP 0x00000008
+#define CCSR_SSI_STCR_TFSI 0x00000004
+#define CCSR_SSI_STCR_TFSL 0x00000002
+#define CCSR_SSI_STCR_TEFS 0x00000001
+
+#define CCSR_SSI_SRCR_RXEXT 0x00000400
+#define CCSR_SSI_SRCR_RXBIT0 0x00000200
+#define CCSR_SSI_SRCR_RFEN1 0x00000100
+#define CCSR_SSI_SRCR_RFEN0 0x00000080
+#define CCSR_SSI_SRCR_RFDIR 0x00000040
+#define CCSR_SSI_SRCR_RXDIR 0x00000020
+#define CCSR_SSI_SRCR_RSHFD 0x00000010
+#define CCSR_SSI_SRCR_RSCKP 0x00000008
+#define CCSR_SSI_SRCR_RFSI 0x00000004
+#define CCSR_SSI_SRCR_RFSL 0x00000002
+#define CCSR_SSI_SRCR_REFS 0x00000001
+
+/* STCCR and SRCCR */
+#define CCSR_SSI_SxCCR_DIV2 0x00040000
+#define CCSR_SSI_SxCCR_PSR 0x00020000
+#define CCSR_SSI_SxCCR_WL_SHIFT 13
+#define CCSR_SSI_SxCCR_WL_MASK 0x0001E000
+#define CCSR_SSI_SxCCR_WL(x) \
+ (((((x) / 2) - 1) << CCSR_SSI_SxCCR_WL_SHIFT) & CCSR_SSI_SxCCR_WL_MASK)
+#define CCSR_SSI_SxCCR_DC_SHIFT 8
+#define CCSR_SSI_SxCCR_DC_MASK 0x00001F00
+#define CCSR_SSI_SxCCR_DC(x) \
+ ((((x) - 1) << CCSR_SSI_SxCCR_DC_SHIFT) & CCSR_SSI_SxCCR_DC_MASK)
+#define CCSR_SSI_SxCCR_PM_SHIFT 0
+#define CCSR_SSI_SxCCR_PM_MASK 0x000000FF
+#define CCSR_SSI_SxCCR_PM(x) \
+ ((((x) - 1) << CCSR_SSI_SxCCR_PM_SHIFT) & CCSR_SSI_SxCCR_PM_MASK)
+
+/*
+ * The xFCNT bits are read-only, and the xFWM bits are read/write. Use the
+ * CCSR_SSI_SFCSR_xFCNTy() macros to read the FIFO counters, and use the
+ * CCSR_SSI_SFCSR_xFWMy() macros to set the watermarks.
+ */
+#define CCSR_SSI_SFCSR_RFCNT1_SHIFT 28
+#define CCSR_SSI_SFCSR_RFCNT1_MASK 0xF0000000
+#define CCSR_SSI_SFCSR_RFCNT1(x) \
+ (((x) & CCSR_SSI_SFCSR_RFCNT1_MASK) >> CCSR_SSI_SFCSR_RFCNT1_SHIFT)
+#define CCSR_SSI_SFCSR_TFCNT1_SHIFT 24
+#define CCSR_SSI_SFCSR_TFCNT1_MASK 0x0F000000
+#define CCSR_SSI_SFCSR_TFCNT1(x) \
+ (((x) & CCSR_SSI_SFCSR_TFCNT1_MASK) >> CCSR_SSI_SFCSR_TFCNT1_SHIFT)
+#define CCSR_SSI_SFCSR_RFWM1_SHIFT 20
+#define CCSR_SSI_SFCSR_RFWM1_MASK 0x00F00000
+#define CCSR_SSI_SFCSR_RFWM1(x) \
+ (((x) << CCSR_SSI_SFCSR_RFWM1_SHIFT) & CCSR_SSI_SFCSR_RFWM1_MASK)
+#define CCSR_SSI_SFCSR_TFWM1_SHIFT 16
+#define CCSR_SSI_SFCSR_TFWM1_MASK 0x000F0000
+#define CCSR_SSI_SFCSR_TFWM1(x) \
+ (((x) << CCSR_SSI_SFCSR_TFWM1_SHIFT) & CCSR_SSI_SFCSR_TFWM1_MASK)
+#define CCSR_SSI_SFCSR_RFCNT0_SHIFT 12
+#define CCSR_SSI_SFCSR_RFCNT0_MASK 0x0000F000
+#define CCSR_SSI_SFCSR_RFCNT0(x) \
+ (((x) & CCSR_SSI_SFCSR_RFCNT0_MASK) >> CCSR_SSI_SFCSR_RFCNT0_SHIFT)
+#define CCSR_SSI_SFCSR_TFCNT0_SHIFT 8
+#define CCSR_SSI_SFCSR_TFCNT0_MASK 0x00000F00
+#define CCSR_SSI_SFCSR_TFCNT0(x) \
+ (((x) & CCSR_SSI_SFCSR_TFCNT0_MASK) >> CCSR_SSI_SFCSR_TFCNT0_SHIFT)
+#define CCSR_SSI_SFCSR_RFWM0_SHIFT 4
+#define CCSR_SSI_SFCSR_RFWM0_MASK 0x000000F0
+#define CCSR_SSI_SFCSR_RFWM0(x) \
+ (((x) << CCSR_SSI_SFCSR_RFWM0_SHIFT) & CCSR_SSI_SFCSR_RFWM0_MASK)
+#define CCSR_SSI_SFCSR_TFWM0_SHIFT 0
+#define CCSR_SSI_SFCSR_TFWM0_MASK 0x0000000F
+#define CCSR_SSI_SFCSR_TFWM0(x) \
+ (((x) << CCSR_SSI_SFCSR_TFWM0_SHIFT) & CCSR_SSI_SFCSR_TFWM0_MASK)
+
+#define CCSR_SSI_STR_TEST 0x00008000
+#define CCSR_SSI_STR_RCK2TCK 0x00004000
+#define CCSR_SSI_STR_RFS2TFS 0x00002000
+#define CCSR_SSI_STR_RXSTATE(x) (((x) >> 8) & 0x1F)
+#define CCSR_SSI_STR_TXD2RXD 0x00000080
+#define CCSR_SSI_STR_TCK2RCK 0x00000040
+#define CCSR_SSI_STR_TFS2RFS 0x00000020
+#define CCSR_SSI_STR_TXSTATE(x) ((x) & 0x1F)
+
+#define CCSR_SSI_SOR_CLKOFF 0x00000040
+#define CCSR_SSI_SOR_RX_CLR 0x00000020
+#define CCSR_SSI_SOR_TX_CLR 0x00000010
+#define CCSR_SSI_SOR_INIT 0x00000008
+#define CCSR_SSI_SOR_WAIT_SHIFT 1
+#define CCSR_SSI_SOR_WAIT_MASK 0x00000006
+#define CCSR_SSI_SOR_WAIT(x) (((x) & 3) << CCSR_SSI_SOR_WAIT_SHIFT)
+#define CCSR_SSI_SOR_SYNRST 0x00000001
+
+/* Instantiation data for an SSI interface
+ *
+ * This structure contains all the information that the the SSI driver needs
+ * to instantiate an SSI interface with ALSA. The machine driver should
+ * create this structure, fill it in, call fsl_ssi_create_dai(), and then
+ * delete the structure.
+ *
+ * id: which SSI this is (0, 1, etc. )
+ * ssi: pointer to the SSI's registers
+ * ssi_phys: physical address of the SSI registers
+ * irq: IRQ of this SSI
+ * dev: struct device, used to create the sysfs statistics file
+*/
+struct fsl_ssi_info {
+ unsigned int id;
+ struct ccsr_ssi __iomem *ssi;
+ dma_addr_t ssi_phys;
+ unsigned int irq;
+ struct device *dev;
+};
+
+struct snd_soc_cpu_dai *fsl_ssi_create_dai(struct fsl_ssi_info *ssi_info);
+void fsl_ssi_destroy_dai(struct snd_soc_cpu_dai *fsl_ssi_dai);
+
+#endif
+
diff --git a/sound/soc/fsl/mpc8610_hpcd.c b/sound/soc/fsl/mpc8610_hpcd.c
new file mode 100644
index 0000000..f26c4b2
--- /dev/null
+++ b/sound/soc/fsl/mpc8610_hpcd.c
@@ -0,0 +1,631 @@
+/**
+ * Freescale MPC8610HPCD ALSA SoC Fabric driver
+ *
+ * Author: Timur Tabi <timur@freescale.com>
+ *
+ * Copyright 2007-2008 Freescale Semiconductor, Inc. This file is licensed
+ * under the terms of the GNU General Public License version 2. This
+ * program is licensed "as is" without any warranty of any kind, whether
+ * express or implied.
+ */
+
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/of_device.h>
+#include <linux/of_platform.h>
+#include <sound/soc.h>
+#include <asm/immap_86xx.h>
+
+#include "../codecs/cs4270.h"
+#include "fsl_dma.h"
+#include "fsl_ssi.h"
+
+/**
+ * mpc8610_hpcd_data: fabric-specific ASoC device data
+ *
+ * This structure contains data for a single sound platform device on an
+ * MPC8610 HPCD. Some of the data is taken from the device tree.
+ */
+struct mpc8610_hpcd_data {
+ struct snd_soc_device sound_devdata;
+ struct snd_soc_dai_link dai;
+ struct snd_soc_machine machine;
+ unsigned int dai_format;
+ unsigned int codec_clk_direction;
+ unsigned int cpu_clk_direction;
+ unsigned int clk_frequency;
+ struct ccsr_guts __iomem *guts;
+ struct ccsr_ssi __iomem *ssi;
+ unsigned int ssi_id; /* 0 = SSI1, 1 = SSI2, etc */
+ unsigned int ssi_irq;
+ unsigned int dma_id; /* 0 = DMA1, 1 = DMA2, etc */
+ unsigned int dma_irq[2];
+ struct ccsr_dma_channel __iomem *dma[2];
+ unsigned int dma_channel_id[2]; /* 0 = ch 0, 1 = ch 1, etc*/
+};
+
+/**
+ * mpc8610_hpcd_machine_probe: initalize the board
+ *
+ * This function is called when platform_device_add() is called. It is used
+ * to initialize the board-specific hardware.
+ *
+ * Here we program the DMACR and PMUXCR registers.
+ */
+static int mpc8610_hpcd_machine_probe(struct platform_device *sound_device)
+{
+ struct mpc8610_hpcd_data *machine_data =
+ sound_device->dev.platform_data;
+
+ /* Program the signal routing between the SSI and the DMA */
+ guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1,
+ machine_data->dma_channel_id[0], CCSR_GUTS_DMACR_DEV_SSI);
+ guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1,
+ machine_data->dma_channel_id[1], CCSR_GUTS_DMACR_DEV_SSI);
+
+ guts_set_pmuxcr_dma(machine_data->guts, machine_data->dma_id,
+ machine_data->dma_channel_id[0], 0);
+ guts_set_pmuxcr_dma(machine_data->guts, machine_data->dma_id,
+ machine_data->dma_channel_id[1], 0);
+
+ guts_set_pmuxcr_dma(machine_data->guts, 1, 0, 0);
+ guts_set_pmuxcr_dma(machine_data->guts, 1, 3, 0);
+ guts_set_pmuxcr_dma(machine_data->guts, 0, 3, 0);
+
+ switch (machine_data->ssi_id) {
+ case 0:
+ clrsetbits_be32(&machine_data->guts->pmuxcr,
+ CCSR_GUTS_PMUXCR_SSI1_MASK, CCSR_GUTS_PMUXCR_SSI1_SSI);
+ break;
+ case 1:
+ clrsetbits_be32(&machine_data->guts->pmuxcr,
+ CCSR_GUTS_PMUXCR_SSI2_MASK, CCSR_GUTS_PMUXCR_SSI2_SSI);
+ break;
+ }
+
+ return 0;
+}
+
+/**
+ * mpc8610_hpcd_startup: program the board with various hardware parameters
+ *
+ * This function takes board-specific information, like clock frequencies
+ * and serial data formats, and passes that information to the codec and
+ * transport drivers.
+ */
+static int mpc8610_hpcd_startup(struct snd_pcm_substream *substream)
+{
+ struct snd_soc_pcm_runtime *rtd = substream->private_data;
+ struct snd_soc_codec_dai *codec_dai = rtd->dai->codec_dai;
+ struct snd_soc_cpu_dai *cpu_dai = rtd->dai->cpu_dai;
+ struct mpc8610_hpcd_data *machine_data =
+ rtd->socdev->dev->platform_data;
+ int ret = 0;
+
+ /* Tell the CPU driver what the serial protocol is. */
+ if (cpu_dai->dai_ops.set_fmt) {
+ ret = cpu_dai->dai_ops.set_fmt(cpu_dai,
+ machine_data->dai_format);
+ if (ret < 0) {
+ dev_err(substream->pcm->card->dev,
+ "could not set CPU driver audio format\n");
+ return ret;
+ }
+ }
+
+ /* Tell the codec driver what the serial protocol is. */
+ if (codec_dai->dai_ops.set_fmt) {
+ ret = codec_dai->dai_ops.set_fmt(codec_dai,
+ machine_data->dai_format);
+ if (ret < 0) {
+ dev_err(substream->pcm->card->dev,
+ "could not set codec driver audio format\n");
+ return ret;
+ }
+ }
+
+ /*
+ * Tell the CPU driver what the clock frequency is, and whether it's a
+ * slave or master.
+ */
+ if (cpu_dai->dai_ops.set_sysclk) {
+ ret = cpu_dai->dai_ops.set_sysclk(cpu_dai, 0,
+ machine_data->clk_frequency,
+ machine_data->cpu_clk_direction);
+ if (ret < 0) {
+ dev_err(substream->pcm->card->dev,
+ "could not set CPU driver clock parameters\n");
+ return ret;
+ }
+ }
+
+ /*
+ * Tell the codec driver what the MCLK frequency is, and whether it's
+ * a slave or master.
+ */
+ if (codec_dai->dai_ops.set_sysclk) {
+ ret = codec_dai->dai_ops.set_sysclk(codec_dai, 0,
+ machine_data->clk_frequency,
+ machine_data->codec_clk_direction);
+ if (ret < 0) {
+ dev_err(substream->pcm->card->dev,
+ "could not set codec driver clock params\n");
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * mpc8610_hpcd_machine_remove: Remove the sound device
+ *
+ * This function is called to remove the sound device for one SSI. We
+ * de-program the DMACR and PMUXCR register.
+ */
+int mpc8610_hpcd_machine_remove(struct platform_device *sound_device)
+{
+ struct mpc8610_hpcd_data *machine_data =
+ sound_device->dev.platform_data;
+
+ /* Restore the signal routing */
+
+ guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1,
+ machine_data->dma_channel_id[0], 0);
+ guts_set_dmacr(machine_data->guts, machine_data->dma_id + 1,
+ machine_data->dma_channel_id[1], 0);
+
+ switch (machine_data->ssi_id) {
+ case 0:
+ clrsetbits_be32(&machine_data->guts->pmuxcr,
+ CCSR_GUTS_PMUXCR_SSI1_MASK, CCSR_GUTS_PMUXCR_SSI1_LA);
+ break;
+ case 1:
+ clrsetbits_be32(&machine_data->guts->pmuxcr,
+ CCSR_GUTS_PMUXCR_SSI2_MASK, CCSR_GUTS_PMUXCR_SSI1_LA);
+ break;
+ }
+
+ return 0;
+}
+
+/**
+ * mpc8610_hpcd_ops: ASoC fabric driver operations
+ */
+static struct snd_soc_ops mpc8610_hpcd_ops = {
+ .startup = mpc8610_hpcd_startup,
+};
+
+/**
+ * mpc8610_hpcd_machine: ASoC machine data
+ */
+static struct snd_soc_machine mpc8610_hpcd_machine = {
+ .probe = mpc8610_hpcd_machine_probe,
+ .remove = mpc8610_hpcd_machine_remove,
+ .name = "MPC8610 HPCD",
+ .num_links = 1,
+};
+
+/**
+ * mpc8610_hpcd_probe: OF probe function for the fabric driver
+ *
+ * This function gets called when an SSI node is found in the device tree.
+ *
+ * Although this is a fabric driver, the SSI node is the "master" node with
+ * respect to audio hardware connections. Therefore, we create a new ASoC
+ * device for each new SSI node that has a codec attached.
+ *
+ * FIXME: Currently, we only support one DMA controller, so if there are
+ * multiple SSI nodes with codecs, only the first will be supported.
+ *
+ * FIXME: Even if we did support multiple DMA controllers, we have no
+ * mechanism for assigning DMA controllers and channels to the individual
+ * SSI devices. We also probably aren't compatible with the generic Elo DMA
+ * device driver.
+ */
+static int mpc8610_hpcd_probe(struct of_device *ofdev,
+ const struct of_device_id *match)
+{
+ struct device_node *np = ofdev->node;
+ struct device_node *codec_np = NULL;
+ struct device_node *guts_np = NULL;
+ struct device_node *dma_np = NULL;
+ struct device_node *dma_channel_np = NULL;
+ const phandle *codec_ph;
+ const char *sprop;
+ const u32 *iprop;
+ struct resource res;
+ struct platform_device *sound_device = NULL;
+ struct mpc8610_hpcd_data *machine_data;
+ struct fsl_ssi_info ssi_info;
+ struct fsl_dma_info dma_info;
+ int ret = -ENODEV;
+
+ machine_data = kzalloc(sizeof(struct mpc8610_hpcd_data), GFP_KERNEL);
+ if (!machine_data)
+ return -ENOMEM;
+
+ memset(&ssi_info, 0, sizeof(ssi_info));
+ memset(&dma_info, 0, sizeof(dma_info));
+
+ ssi_info.dev = &ofdev->dev;
+
+ /*
+ * We are only interested in SSIs with a codec phandle in them, so let's
+ * make sure this SSI has one.
+ */
+ codec_ph = of_get_property(np, "codec-handle", NULL);
+ if (!codec_ph)
+ goto error;
+
+ codec_np = of_find_node_by_phandle(*codec_ph);
+ if (!codec_np)
+ goto error;
+
+ /* The MPC8610 HPCD only knows about the CS4270 codec, so reject
+ anything else. */
+ if (!of_device_is_compatible(codec_np, "cirrus,cs4270"))
+ goto error;
+
+ /* Get the device ID */
+ iprop = of_get_property(np, "cell-index", NULL);
+ if (!iprop) {
+ dev_err(&ofdev->dev, "cell-index property not found\n");
+ ret = -EINVAL;
+ goto error;
+ }
+ machine_data->ssi_id = *iprop;
+ ssi_info.id = *iprop;
+
+ /* Get the serial format and clock direction. */
+ sprop = of_get_property(np, "fsl,mode", NULL);
+ if (!sprop) {
+ dev_err(&ofdev->dev, "fsl,mode property not found\n");
+ ret = -EINVAL;
+ goto error;
+ }
+
+ if (strcasecmp(sprop, "i2s-slave") == 0) {
+ machine_data->dai_format = SND_SOC_DAIFMT_I2S;
+ machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT;
+ machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN;
+
+ /*
+ * In i2s-slave mode, the codec has its own clock source, so we
+ * need to get the frequency from the device tree and pass it to
+ * the codec driver.
+ */
+ iprop = of_get_property(codec_np, "clock-frequency", NULL);
+ if (!iprop || !*iprop) {
+ dev_err(&ofdev->dev, "codec bus-frequency property "
+ "is missing or invalid\n");
+ ret = -EINVAL;
+ goto error;
+ }
+ machine_data->clk_frequency = *iprop;
+ } else if (strcasecmp(sprop, "i2s-master") == 0) {
+ machine_data->dai_format = SND_SOC_DAIFMT_I2S;
+ machine_data->codec_clk_direction = SND_SOC_CLOCK_IN;
+ machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT;
+ } else if (strcasecmp(sprop, "lj-slave") == 0) {
+ machine_data->dai_format = SND_SOC_DAIFMT_LEFT_J;
+ machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT;
+ machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN;
+ } else if (strcasecmp(sprop, "lj-master") == 0) {
+ machine_data->dai_format = SND_SOC_DAIFMT_LEFT_J;
+ machine_data->codec_clk_direction = SND_SOC_CLOCK_IN;
+ machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT;
+ } else if (strcasecmp(sprop, "rj-master") == 0) {
+ machine_data->dai_format = SND_SOC_DAIFMT_RIGHT_J;
+ machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT;
+ machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN;
+ } else if (strcasecmp(sprop, "rj-master") == 0) {
+ machine_data->dai_format = SND_SOC_DAIFMT_RIGHT_J;
+ machine_data->codec_clk_direction = SND_SOC_CLOCK_IN;
+ machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT;
+ } else if (strcasecmp(sprop, "ac97-slave") == 0) {
+ machine_data->dai_format = SND_SOC_DAIFMT_AC97;
+ machine_data->codec_clk_direction = SND_SOC_CLOCK_OUT;
+ machine_data->cpu_clk_direction = SND_SOC_CLOCK_IN;
+ } else if (strcasecmp(sprop, "ac97-master") == 0) {
+ machine_data->dai_format = SND_SOC_DAIFMT_AC97;
+ machine_data->codec_clk_direction = SND_SOC_CLOCK_IN;
+ machine_data->cpu_clk_direction = SND_SOC_CLOCK_OUT;
+ } else {
+ dev_err(&ofdev->dev,
+ "unrecognized fsl,mode property \"%s\"\n", sprop);
+ ret = -EINVAL;
+ goto error;
+ }
+
+ if (!machine_data->clk_frequency) {
+ dev_err(&ofdev->dev, "unknown clock frequency\n");
+ ret = -EINVAL;
+ goto error;
+ }
+
+ /* Read the SSI information from the device tree */
+ ret = of_address_to_resource(np, 0, &res);
+ if (ret) {
+ dev_err(&ofdev->dev, "could not obtain SSI address\n");
+ goto error;
+ }
+ if (!res.start) {
+ dev_err(&ofdev->dev, "invalid SSI address\n");
+ goto error;
+ }
+ ssi_info.ssi_phys = res.start;
+
+ machine_data->ssi = ioremap(ssi_info.ssi_phys, sizeof(struct ccsr_ssi));
+ if (!machine_data->ssi) {
+ dev_err(&ofdev->dev, "could not map SSI address %x\n",
+ ssi_info.ssi_phys);
+ ret = -EINVAL;
+ goto error;
+ }
+ ssi_info.ssi = machine_data->ssi;
+
+
+ /* Get the IRQ of the SSI */
+ machine_data->ssi_irq = irq_of_parse_and_map(np, 0);
+ if (!machine_data->ssi_irq) {
+ dev_err(&ofdev->dev, "could not get SSI IRQ\n");
+ ret = -EINVAL;
+ goto error;
+ }
+ ssi_info.irq = machine_data->ssi_irq;
+
+
+ /* Map the global utilities registers. */
+ guts_np = of_find_compatible_node(NULL, NULL, "fsl,mpc8610-guts");
+ if (!guts_np) {
+ dev_err(&ofdev->dev, "could not obtain address of GUTS\n");
+ ret = -EINVAL;
+ goto error;
+ }
+ machine_data->guts = of_iomap(guts_np, 0);
+ of_node_put(guts_np);
+ if (!machine_data->guts) {
+ dev_err(&ofdev->dev, "could not map GUTS\n");
+ ret = -EINVAL;
+ goto error;
+ }
+
+ /* Find the DMA channels to use. For now, we always use the first DMA
+ controller. */
+ for_each_compatible_node(dma_np, NULL, "fsl,mpc8610-dma") {
+ iprop = of_get_property(dma_np, "cell-index", NULL);
+ if (iprop && (*iprop == 0)) {
+ of_node_put(dma_np);
+ break;
+ }
+ }
+ if (!dma_np) {
+ dev_err(&ofdev->dev, "could not find DMA node\n");
+ ret = -EINVAL;
+ goto error;
+ }
+ machine_data->dma_id = *iprop;
+
+ /*
+ * Find the DMA channels to use. For now, we always use DMA channel 0
+ * for playback, and DMA channel 1 for capture.
+ */
+ while ((dma_channel_np = of_get_next_child(dma_np, dma_channel_np))) {
+ iprop = of_get_property(dma_channel_np, "cell-index", NULL);
+ /* Is it DMA channel 0? */
+ if (iprop && (*iprop == 0)) {
+ /* dma_channel[0] and dma_irq[0] are for playback */
+ dma_info.dma_channel[0] = of_iomap(dma_channel_np, 0);
+ dma_info.dma_irq[0] =
+ irq_of_parse_and_map(dma_channel_np, 0);
+ machine_data->dma_channel_id[0] = *iprop;
+ continue;
+ }
+ if (iprop && (*iprop == 1)) {
+ /* dma_channel[1] and dma_irq[1] are for capture */
+ dma_info.dma_channel[1] = of_iomap(dma_channel_np, 0);
+ dma_info.dma_irq[1] =
+ irq_of_parse_and_map(dma_channel_np, 0);
+ machine_data->dma_channel_id[1] = *iprop;
+ continue;
+ }
+ }
+ if (!dma_info.dma_channel[0] || !dma_info.dma_channel[1] ||
+ !dma_info.dma_irq[0] || !dma_info.dma_irq[1]) {
+ dev_err(&ofdev->dev, "could not find DMA channels\n");
+ ret = -EINVAL;
+ goto error;
+ }
+
+ dma_info.ssi_stx_phys = ssi_info.ssi_phys +
+ offsetof(struct ccsr_ssi, stx0);
+ dma_info.ssi_srx_phys = ssi_info.ssi_phys +
+ offsetof(struct ccsr_ssi, srx0);
+
+ /* We have the DMA information, so tell the DMA driver what it is */
+ if (!fsl_dma_configure(&dma_info)) {
+ dev_err(&ofdev->dev, "could not instantiate DMA device\n");
+ ret = -EBUSY;
+ goto error;
+ }
+
+ /*
+ * Initialize our DAI data structure. We should probably get this
+ * information from the device tree.
+ */
+ machine_data->dai.name = "CS4270";
+ machine_data->dai.stream_name = "CS4270";
+
+ machine_data->dai.cpu_dai = fsl_ssi_create_dai(&ssi_info);
+ machine_data->dai.codec_dai = &cs4270_dai; /* The codec_dai we want */
+ machine_data->dai.ops = &mpc8610_hpcd_ops;
+
+ mpc8610_hpcd_machine.dai_link = &machine_data->dai;
+
+ /* Allocate a new audio platform device structure */
+ sound_device = platform_device_alloc("soc-audio", -1);
+ if (!sound_device) {
+ dev_err(&ofdev->dev, "platform device allocation failed\n");
+ ret = -ENOMEM;
+ goto error;
+ }
+
+ machine_data->sound_devdata.machine = &mpc8610_hpcd_machine;
+ machine_data->sound_devdata.codec_dev = &soc_codec_device_cs4270;
+ machine_data->sound_devdata.platform = &fsl_soc_platform;
+
+ sound_device->dev.platform_data = machine_data;
+
+
+ /* Set the platform device and ASoC device to point to each other */
+ platform_set_drvdata(sound_device, &machine_data->sound_devdata);
+
+ machine_data->sound_devdata.dev = &sound_device->dev;
+
+
+ /* Tell ASoC to probe us. This will call mpc8610_hpcd_machine.probe(),
+ if it exists. */
+ ret = platform_device_add(sound_device);
+
+ if (ret) {
+ dev_err(&ofdev->dev, "platform device add failed\n");
+ goto error;
+ }
+
+ dev_set_drvdata(&ofdev->dev, sound_device);
+
+ return 0;
+
+error:
+ of_node_put(codec_np);
+ of_node_put(guts_np);
+ of_node_put(dma_np);
+ of_node_put(dma_channel_np);
+
+ if (sound_device)
+ platform_device_unregister(sound_device);
+
+ if (machine_data->dai.cpu_dai)
+ fsl_ssi_destroy_dai(machine_data->dai.cpu_dai);
+
+ if (ssi_info.ssi)
+ iounmap(ssi_info.ssi);
+
+ if (ssi_info.irq)
+ irq_dispose_mapping(ssi_info.irq);
+
+ if (dma_info.dma_channel[0])
+ iounmap(dma_info.dma_channel[0]);
+
+ if (dma_info.dma_channel[1])
+ iounmap(dma_info.dma_channel[1]);
+
+ if (dma_info.dma_irq[0])
+ irq_dispose_mapping(dma_info.dma_irq[0]);
+
+ if (dma_info.dma_irq[1])
+ irq_dispose_mapping(dma_info.dma_irq[1]);
+
+ if (machine_data->guts)
+ iounmap(machine_data->guts);
+
+ kfree(machine_data);
+
+ return ret;
+}
+
+/**
+ * mpc8610_hpcd_remove: remove the OF device
+ *
+ * This function is called when the OF device is removed.
+ */
+static int mpc8610_hpcd_remove(struct of_device *ofdev)
+{
+ struct platform_device *sound_device = dev_get_drvdata(&ofdev->dev);
+ struct mpc8610_hpcd_data *machine_data =
+ sound_device->dev.platform_data;
+
+ platform_device_unregister(sound_device);
+
+ if (machine_data->dai.cpu_dai)
+ fsl_ssi_destroy_dai(machine_data->dai.cpu_dai);
+
+ if (machine_data->ssi)
+ iounmap(machine_data->ssi);
+
+ if (machine_data->dma[0])
+ iounmap(machine_data->dma[0]);
+
+ if (machine_data->dma[1])
+ iounmap(machine_data->dma[1]);
+
+ if (machine_data->dma_irq[0])
+ irq_dispose_mapping(machine_data->dma_irq[0]);
+
+ if (machine_data->dma_irq[1])
+ irq_dispose_mapping(machine_data->dma_irq[1]);
+
+ if (machine_data->guts)
+ iounmap(machine_data->guts);
+
+ kfree(machine_data);
+ sound_device->dev.platform_data = NULL;
+
+ dev_set_drvdata(&ofdev->dev, NULL);
+
+ return 0;
+}
+
+static struct of_device_id mpc8610_hpcd_match[] = {
+ {
+ .compatible = "fsl,mpc8610-ssi",
+ },
+ {}
+};
+MODULE_DEVICE_TABLE(of, mpc8610_hpcd_match);
+
+static struct of_platform_driver mpc8610_hpcd_of_driver = {
+ .owner = THIS_MODULE,
+ .name = "mpc8610_hpcd",
+ .match_table = mpc8610_hpcd_match,
+ .probe = mpc8610_hpcd_probe,
+ .remove = mpc8610_hpcd_remove,
+};
+
+/**
+ * mpc8610_hpcd_init: fabric driver initialization.
+ *
+ * This function is called when this module is loaded.
+ */
+static int __init mpc8610_hpcd_init(void)
+{
+ int ret;
+
+ printk(KERN_INFO "Freescale MPC8610 HPCD ALSA SoC fabric driver\n");
+
+ ret = of_register_platform_driver(&mpc8610_hpcd_of_driver);
+
+ if (ret)
+ printk(KERN_ERR
+ "mpc8610-hpcd: failed to register platform driver\n");
+
+ return ret;
+}
+
+/**
+ * mpc8610_hpcd_exit: fabric driver exit
+ *
+ * This function is called when this driver is unloaded.
+ */
+static void __exit mpc8610_hpcd_exit(void)
+{
+ of_unregister_platform_driver(&mpc8610_hpcd_of_driver);
+}
+
+module_init(mpc8610_hpcd_init);
+module_exit(mpc8610_hpcd_exit);
+
+MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
+MODULE_DESCRIPTION("Freescale MPC8610 HPCD ALSA SoC fabric driver");
+MODULE_LICENSE("GPL");
OpenPOWER on IntegriCloud