summaryrefslogtreecommitdiffstats
path: root/net/sched
diff options
context:
space:
mode:
Diffstat (limited to 'net/sched')
-rw-r--r--net/sched/sch_api.c41
-rw-r--r--net/sched/sch_atm.c1
-rw-r--r--net/sched/sch_cbq.c1
-rw-r--r--net/sched/sch_generic.c8
-rw-r--r--net/sched/sch_htb.c15
-rw-r--r--net/sched/sch_qfq.c212
6 files changed, 183 insertions, 95 deletions
diff --git a/net/sched/sch_api.c b/net/sched/sch_api.c
index 281c1bd..51b968d 100644
--- a/net/sched/sch_api.c
+++ b/net/sched/sch_api.c
@@ -285,6 +285,45 @@ static struct Qdisc_ops *qdisc_lookup_ops(struct nlattr *kind)
return q;
}
+/* The linklayer setting were not transferred from iproute2, in older
+ * versions, and the rate tables lookup systems have been dropped in
+ * the kernel. To keep backward compatible with older iproute2 tc
+ * utils, we detect the linklayer setting by detecting if the rate
+ * table were modified.
+ *
+ * For linklayer ATM table entries, the rate table will be aligned to
+ * 48 bytes, thus some table entries will contain the same value. The
+ * mpu (min packet unit) is also encoded into the old rate table, thus
+ * starting from the mpu, we find low and high table entries for
+ * mapping this cell. If these entries contain the same value, when
+ * the rate tables have been modified for linklayer ATM.
+ *
+ * This is done by rounding mpu to the nearest 48 bytes cell/entry,
+ * and then roundup to the next cell, calc the table entry one below,
+ * and compare.
+ */
+static __u8 __detect_linklayer(struct tc_ratespec *r, __u32 *rtab)
+{
+ int low = roundup(r->mpu, 48);
+ int high = roundup(low+1, 48);
+ int cell_low = low >> r->cell_log;
+ int cell_high = (high >> r->cell_log) - 1;
+
+ /* rtab is too inaccurate at rates > 100Mbit/s */
+ if ((r->rate > (100000000/8)) || (rtab[0] == 0)) {
+ pr_debug("TC linklayer: Giving up ATM detection\n");
+ return TC_LINKLAYER_ETHERNET;
+ }
+
+ if ((cell_high > cell_low) && (cell_high < 256)
+ && (rtab[cell_low] == rtab[cell_high])) {
+ pr_debug("TC linklayer: Detected ATM, low(%d)=high(%d)=%u\n",
+ cell_low, cell_high, rtab[cell_high]);
+ return TC_LINKLAYER_ATM;
+ }
+ return TC_LINKLAYER_ETHERNET;
+}
+
static struct qdisc_rate_table *qdisc_rtab_list;
struct qdisc_rate_table *qdisc_get_rtab(struct tc_ratespec *r, struct nlattr *tab)
@@ -308,6 +347,8 @@ struct qdisc_rate_table *qdisc_get_rtab(struct tc_ratespec *r, struct nlattr *ta
rtab->rate = *r;
rtab->refcnt = 1;
memcpy(rtab->data, nla_data(tab), 1024);
+ if (r->linklayer == TC_LINKLAYER_UNAWARE)
+ r->linklayer = __detect_linklayer(r, rtab->data);
rtab->next = qdisc_rtab_list;
qdisc_rtab_list = rtab;
}
diff --git a/net/sched/sch_atm.c b/net/sched/sch_atm.c
index ca8e0a5..1f9c314 100644
--- a/net/sched/sch_atm.c
+++ b/net/sched/sch_atm.c
@@ -605,6 +605,7 @@ static int atm_tc_dump_class(struct Qdisc *sch, unsigned long cl,
struct sockaddr_atmpvc pvc;
int state;
+ memset(&pvc, 0, sizeof(pvc));
pvc.sap_family = AF_ATMPVC;
pvc.sap_addr.itf = flow->vcc->dev ? flow->vcc->dev->number : -1;
pvc.sap_addr.vpi = flow->vcc->vpi;
diff --git a/net/sched/sch_cbq.c b/net/sched/sch_cbq.c
index 71a5688..7a42c81 100644
--- a/net/sched/sch_cbq.c
+++ b/net/sched/sch_cbq.c
@@ -1465,6 +1465,7 @@ static int cbq_dump_wrr(struct sk_buff *skb, struct cbq_class *cl)
unsigned char *b = skb_tail_pointer(skb);
struct tc_cbq_wrropt opt;
+ memset(&opt, 0, sizeof(opt));
opt.flags = 0;
opt.allot = cl->allot;
opt.priority = cl->priority + 1;
diff --git a/net/sched/sch_generic.c b/net/sched/sch_generic.c
index 4626cef..48be3d5 100644
--- a/net/sched/sch_generic.c
+++ b/net/sched/sch_generic.c
@@ -25,6 +25,7 @@
#include <linux/rcupdate.h>
#include <linux/list.h>
#include <linux/slab.h>
+#include <linux/if_vlan.h>
#include <net/sch_generic.h>
#include <net/pkt_sched.h>
#include <net/dst.h>
@@ -207,15 +208,19 @@ void __qdisc_run(struct Qdisc *q)
unsigned long dev_trans_start(struct net_device *dev)
{
- unsigned long val, res = dev->trans_start;
+ unsigned long val, res;
unsigned int i;
+ if (is_vlan_dev(dev))
+ dev = vlan_dev_real_dev(dev);
+ res = dev->trans_start;
for (i = 0; i < dev->num_tx_queues; i++) {
val = netdev_get_tx_queue(dev, i)->trans_start;
if (val && time_after(val, res))
res = val;
}
dev->trans_start = res;
+
return res;
}
EXPORT_SYMBOL(dev_trans_start);
@@ -904,6 +909,7 @@ void psched_ratecfg_precompute(struct psched_ratecfg *r,
memset(r, 0, sizeof(*r));
r->overhead = conf->overhead;
r->rate_bytes_ps = conf->rate;
+ r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
r->mult = 1;
/*
* The deal here is to replace a divide by a reciprocal one
diff --git a/net/sched/sch_htb.c b/net/sched/sch_htb.c
index c2124ea..c2178b1 100644
--- a/net/sched/sch_htb.c
+++ b/net/sched/sch_htb.c
@@ -100,7 +100,7 @@ struct htb_class {
struct psched_ratecfg ceil;
s64 buffer, cbuffer;/* token bucket depth/rate */
s64 mbuffer; /* max wait time */
- int prio; /* these two are used only by leaves... */
+ u32 prio; /* these two are used only by leaves... */
int quantum; /* but stored for parent-to-leaf return */
struct tcf_proto *filter_list; /* class attached filters */
@@ -1329,6 +1329,7 @@ static int htb_change_class(struct Qdisc *sch, u32 classid,
struct htb_sched *q = qdisc_priv(sch);
struct htb_class *cl = (struct htb_class *)*arg, *parent;
struct nlattr *opt = tca[TCA_OPTIONS];
+ struct qdisc_rate_table *rtab = NULL, *ctab = NULL;
struct nlattr *tb[TCA_HTB_MAX + 1];
struct tc_htb_opt *hopt;
@@ -1350,6 +1351,18 @@ static int htb_change_class(struct Qdisc *sch, u32 classid,
if (!hopt->rate.rate || !hopt->ceil.rate)
goto failure;
+ /* Keeping backward compatible with rate_table based iproute2 tc */
+ if (hopt->rate.linklayer == TC_LINKLAYER_UNAWARE) {
+ rtab = qdisc_get_rtab(&hopt->rate, tb[TCA_HTB_RTAB]);
+ if (rtab)
+ qdisc_put_rtab(rtab);
+ }
+ if (hopt->ceil.linklayer == TC_LINKLAYER_UNAWARE) {
+ ctab = qdisc_get_rtab(&hopt->ceil, tb[TCA_HTB_CTAB]);
+ if (ctab)
+ qdisc_put_rtab(ctab);
+ }
+
if (!cl) { /* new class */
struct Qdisc *new_q;
int prio;
diff --git a/net/sched/sch_qfq.c b/net/sched/sch_qfq.c
index 7c195d9..8056fb4 100644
--- a/net/sched/sch_qfq.c
+++ b/net/sched/sch_qfq.c
@@ -113,7 +113,6 @@
#define FRAC_BITS 30 /* fixed point arithmetic */
#define ONE_FP (1UL << FRAC_BITS)
-#define IWSUM (ONE_FP/QFQ_MAX_WSUM)
#define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
#define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
@@ -189,6 +188,7 @@ struct qfq_sched {
struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
u32 num_active_agg; /* Num. of active aggregates */
u32 wsum; /* weight sum */
+ u32 iwsum; /* inverse weight sum */
unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
@@ -314,6 +314,7 @@ static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
q->wsum +=
(int) agg->class_weight * (new_num_classes - agg->num_classes);
+ q->iwsum = ONE_FP / q->wsum;
agg->num_classes = new_num_classes;
}
@@ -340,6 +341,10 @@ static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
{
if (!hlist_unhashed(&agg->nonfull_next))
hlist_del_init(&agg->nonfull_next);
+ q->wsum -= agg->class_weight;
+ if (q->wsum != 0)
+ q->iwsum = ONE_FP / q->wsum;
+
if (q->in_serv_agg == agg)
q->in_serv_agg = qfq_choose_next_agg(q);
kfree(agg);
@@ -821,44 +826,73 @@ static void qfq_make_eligible(struct qfq_sched *q)
unsigned long old_vslot = q->oldV >> q->min_slot_shift;
if (vslot != old_vslot) {
- unsigned long mask = (1ULL << fls(vslot ^ old_vslot)) - 1;
+ unsigned long mask;
+ int last_flip_pos = fls(vslot ^ old_vslot);
+
+ if (last_flip_pos > 31) /* higher than the number of groups */
+ mask = ~0UL; /* make all groups eligible */
+ else
+ mask = (1UL << last_flip_pos) - 1;
+
qfq_move_groups(q, mask, IR, ER);
qfq_move_groups(q, mask, IB, EB);
}
}
-
/*
- * The index of the slot in which the aggregate is to be inserted must
- * not be higher than QFQ_MAX_SLOTS-2. There is a '-2' and not a '-1'
- * because the start time of the group may be moved backward by one
- * slot after the aggregate has been inserted, and this would cause
- * non-empty slots to be right-shifted by one position.
+ * The index of the slot in which the input aggregate agg is to be
+ * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
+ * and not a '-1' because the start time of the group may be moved
+ * backward by one slot after the aggregate has been inserted, and
+ * this would cause non-empty slots to be right-shifted by one
+ * position.
*
- * If the weight and lmax (max_pkt_size) of the classes do not change,
- * then QFQ+ does meet the above contraint according to the current
- * values of its parameters. In fact, if the weight and lmax of the
- * classes do not change, then, from the theory, QFQ+ guarantees that
- * the slot index is never higher than
- * 2 + QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
- * (QFQ_MAX_WEIGHT/QFQ_MAX_WSUM) = 2 + 8 * 128 * (1 / 64) = 18
+ * QFQ+ fully satisfies this bound to the slot index if the parameters
+ * of the classes are not changed dynamically, and if QFQ+ never
+ * happens to postpone the service of agg unjustly, i.e., it never
+ * happens that the aggregate becomes backlogged and eligible, or just
+ * eligible, while an aggregate with a higher approximated finish time
+ * is being served. In particular, in this case QFQ+ guarantees that
+ * the timestamps of agg are low enough that the slot index is never
+ * higher than 2. Unfortunately, QFQ+ cannot provide the same
+ * guarantee if it happens to unjustly postpone the service of agg, or
+ * if the parameters of some class are changed.
*
- * When the weight of a class is increased or the lmax of the class is
- * decreased, a new aggregate with smaller slot size than the original
- * parent aggregate of the class may happen to be activated. The
- * activation of this aggregate should be properly delayed to when the
- * service of the class has finished in the ideal system tracked by
- * QFQ+. If the activation of the aggregate is not delayed to this
- * reference time instant, then this aggregate may be unjustly served
- * before other aggregates waiting for service. This may cause the
- * above bound to the slot index to be violated for some of these
- * unlucky aggregates.
+ * As for the first event, i.e., an out-of-order service, the
+ * upper bound to the slot index guaranteed by QFQ+ grows to
+ * 2 +
+ * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
+ * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
+ *
+ * The following function deals with this problem by backward-shifting
+ * the timestamps of agg, if needed, so as to guarantee that the slot
+ * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
+ * cause the service of other aggregates to be postponed, yet the
+ * worst-case guarantees of these aggregates are not violated. In
+ * fact, in case of no out-of-order service, the timestamps of agg
+ * would have been even lower than they are after the backward shift,
+ * because QFQ+ would have guaranteed a maximum value equal to 2 for
+ * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
+ * service is postponed because of the backward-shift would have
+ * however waited for the service of agg before being served.
+ *
+ * The other event that may cause the slot index to be higher than 2
+ * for agg is a recent change of the parameters of some class. If the
+ * weight of a class is increased or the lmax (max_pkt_size) of the
+ * class is decreased, then a new aggregate with smaller slot size
+ * than the original parent aggregate of the class may happen to be
+ * activated. The activation of this aggregate should be properly
+ * delayed to when the service of the class has finished in the ideal
+ * system tracked by QFQ+. If the activation of the aggregate is not
+ * delayed to this reference time instant, then this aggregate may be
+ * unjustly served before other aggregates waiting for service. This
+ * may cause the above bound to the slot index to be violated for some
+ * of these unlucky aggregates.
*
* Instead of delaying the activation of the new aggregate, which is
- * quite complex, the following inaccurate but simple solution is used:
- * if the slot index is higher than QFQ_MAX_SLOTS-2, then the
- * timestamps of the aggregate are shifted backward so as to let the
- * slot index become equal to QFQ_MAX_SLOTS-2.
+ * quite complex, the above-discussed capping of the slot index is
+ * used to handle also the consequences of a change of the parameters
+ * of a class.
*/
static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
u64 roundedS)
@@ -1003,9 +1037,61 @@ static inline void charge_actual_service(struct qfq_aggregate *agg)
agg->F = agg->S + (u64)service_received * agg->inv_w;
}
-static inline void qfq_update_agg_ts(struct qfq_sched *q,
- struct qfq_aggregate *agg,
- enum update_reason reason);
+/* Assign a reasonable start time for a new aggregate in group i.
+ * Admissible values for \hat(F) are multiples of \sigma_i
+ * no greater than V+\sigma_i . Larger values mean that
+ * we had a wraparound so we consider the timestamp to be stale.
+ *
+ * If F is not stale and F >= V then we set S = F.
+ * Otherwise we should assign S = V, but this may violate
+ * the ordering in EB (see [2]). So, if we have groups in ER,
+ * set S to the F_j of the first group j which would be blocking us.
+ * We are guaranteed not to move S backward because
+ * otherwise our group i would still be blocked.
+ */
+static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
+{
+ unsigned long mask;
+ u64 limit, roundedF;
+ int slot_shift = agg->grp->slot_shift;
+
+ roundedF = qfq_round_down(agg->F, slot_shift);
+ limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
+
+ if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
+ /* timestamp was stale */
+ mask = mask_from(q->bitmaps[ER], agg->grp->index);
+ if (mask) {
+ struct qfq_group *next = qfq_ffs(q, mask);
+ if (qfq_gt(roundedF, next->F)) {
+ if (qfq_gt(limit, next->F))
+ agg->S = next->F;
+ else /* preserve timestamp correctness */
+ agg->S = limit;
+ return;
+ }
+ }
+ agg->S = q->V;
+ } else /* timestamp is not stale */
+ agg->S = agg->F;
+}
+
+/* Update the timestamps of agg before scheduling/rescheduling it for
+ * service. In particular, assign to agg->F its maximum possible
+ * value, i.e., the virtual finish time with which the aggregate
+ * should be labeled if it used all its budget once in service.
+ */
+static inline void
+qfq_update_agg_ts(struct qfq_sched *q,
+ struct qfq_aggregate *agg, enum update_reason reason)
+{
+ if (reason != requeue)
+ qfq_update_start(q, agg);
+ else /* just charge agg for the service received */
+ agg->S = agg->F;
+
+ agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
+}
static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
@@ -1077,7 +1163,7 @@ static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
else
in_serv_agg->budget -= len;
- q->V += (u64)len * IWSUM;
+ q->V += (u64)len * q->iwsum;
pr_debug("qfq dequeue: len %u F %lld now %lld\n",
len, (unsigned long long) in_serv_agg->F,
(unsigned long long) q->V);
@@ -1128,66 +1214,6 @@ static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
return agg;
}
-/*
- * Assign a reasonable start time for a new aggregate in group i.
- * Admissible values for \hat(F) are multiples of \sigma_i
- * no greater than V+\sigma_i . Larger values mean that
- * we had a wraparound so we consider the timestamp to be stale.
- *
- * If F is not stale and F >= V then we set S = F.
- * Otherwise we should assign S = V, but this may violate
- * the ordering in EB (see [2]). So, if we have groups in ER,
- * set S to the F_j of the first group j which would be blocking us.
- * We are guaranteed not to move S backward because
- * otherwise our group i would still be blocked.
- */
-static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
-{
- unsigned long mask;
- u64 limit, roundedF;
- int slot_shift = agg->grp->slot_shift;
-
- roundedF = qfq_round_down(agg->F, slot_shift);
- limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
-
- if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
- /* timestamp was stale */
- mask = mask_from(q->bitmaps[ER], agg->grp->index);
- if (mask) {
- struct qfq_group *next = qfq_ffs(q, mask);
- if (qfq_gt(roundedF, next->F)) {
- if (qfq_gt(limit, next->F))
- agg->S = next->F;
- else /* preserve timestamp correctness */
- agg->S = limit;
- return;
- }
- }
- agg->S = q->V;
- } else /* timestamp is not stale */
- agg->S = agg->F;
-}
-
-/*
- * Update the timestamps of agg before scheduling/rescheduling it for
- * service. In particular, assign to agg->F its maximum possible
- * value, i.e., the virtual finish time with which the aggregate
- * should be labeled if it used all its budget once in service.
- */
-static inline void
-qfq_update_agg_ts(struct qfq_sched *q,
- struct qfq_aggregate *agg, enum update_reason reason)
-{
- if (reason != requeue)
- qfq_update_start(q, agg);
- else /* just charge agg for the service received */
- agg->S = agg->F;
-
- agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
-}
-
-static void qfq_schedule_agg(struct qfq_sched *, struct qfq_aggregate *);
-
static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
{
struct qfq_sched *q = qdisc_priv(sch);
OpenPOWER on IntegriCloud