summaryrefslogtreecommitdiffstats
path: root/net/rds
diff options
context:
space:
mode:
Diffstat (limited to 'net/rds')
-rw-r--r--net/rds/ib_recv.c869
1 files changed, 869 insertions, 0 deletions
diff --git a/net/rds/ib_recv.c b/net/rds/ib_recv.c
new file mode 100644
index 0000000..5061b550
--- /dev/null
+++ b/net/rds/ib_recv.c
@@ -0,0 +1,869 @@
+/*
+ * Copyright (c) 2006 Oracle. All rights reserved.
+ *
+ * This software is available to you under a choice of one of two
+ * licenses. You may choose to be licensed under the terms of the GNU
+ * General Public License (GPL) Version 2, available from the file
+ * COPYING in the main directory of this source tree, or the
+ * OpenIB.org BSD license below:
+ *
+ * Redistribution and use in source and binary forms, with or
+ * without modification, are permitted provided that the following
+ * conditions are met:
+ *
+ * - Redistributions of source code must retain the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer.
+ *
+ * - Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following
+ * disclaimer in the documentation and/or other materials
+ * provided with the distribution.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ *
+ */
+#include <linux/kernel.h>
+#include <linux/pci.h>
+#include <linux/dma-mapping.h>
+#include <rdma/rdma_cm.h>
+
+#include "rds.h"
+#include "ib.h"
+
+static struct kmem_cache *rds_ib_incoming_slab;
+static struct kmem_cache *rds_ib_frag_slab;
+static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
+
+static void rds_ib_frag_drop_page(struct rds_page_frag *frag)
+{
+ rdsdebug("frag %p page %p\n", frag, frag->f_page);
+ __free_page(frag->f_page);
+ frag->f_page = NULL;
+}
+
+static void rds_ib_frag_free(struct rds_page_frag *frag)
+{
+ rdsdebug("frag %p page %p\n", frag, frag->f_page);
+ BUG_ON(frag->f_page != NULL);
+ kmem_cache_free(rds_ib_frag_slab, frag);
+}
+
+/*
+ * We map a page at a time. Its fragments are posted in order. This
+ * is called in fragment order as the fragments get send completion events.
+ * Only the last frag in the page performs the unmapping.
+ *
+ * It's OK for ring cleanup to call this in whatever order it likes because
+ * DMA is not in flight and so we can unmap while other ring entries still
+ * hold page references in their frags.
+ */
+static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic,
+ struct rds_ib_recv_work *recv)
+{
+ struct rds_page_frag *frag = recv->r_frag;
+
+ rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
+ if (frag->f_mapped)
+ ib_dma_unmap_page(ic->i_cm_id->device,
+ frag->f_mapped,
+ RDS_FRAG_SIZE, DMA_FROM_DEVICE);
+ frag->f_mapped = 0;
+}
+
+void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
+{
+ struct rds_ib_recv_work *recv;
+ u32 i;
+
+ for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
+ struct ib_sge *sge;
+
+ recv->r_ibinc = NULL;
+ recv->r_frag = NULL;
+
+ recv->r_wr.next = NULL;
+ recv->r_wr.wr_id = i;
+ recv->r_wr.sg_list = recv->r_sge;
+ recv->r_wr.num_sge = RDS_IB_RECV_SGE;
+
+ sge = rds_ib_data_sge(ic, recv->r_sge);
+ sge->addr = 0;
+ sge->length = RDS_FRAG_SIZE;
+ sge->lkey = ic->i_mr->lkey;
+
+ sge = rds_ib_header_sge(ic, recv->r_sge);
+ sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
+ sge->length = sizeof(struct rds_header);
+ sge->lkey = ic->i_mr->lkey;
+ }
+}
+
+static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
+ struct rds_ib_recv_work *recv)
+{
+ if (recv->r_ibinc) {
+ rds_inc_put(&recv->r_ibinc->ii_inc);
+ recv->r_ibinc = NULL;
+ }
+ if (recv->r_frag) {
+ rds_ib_recv_unmap_page(ic, recv);
+ if (recv->r_frag->f_page)
+ rds_ib_frag_drop_page(recv->r_frag);
+ rds_ib_frag_free(recv->r_frag);
+ recv->r_frag = NULL;
+ }
+}
+
+void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
+{
+ u32 i;
+
+ for (i = 0; i < ic->i_recv_ring.w_nr; i++)
+ rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
+
+ if (ic->i_frag.f_page)
+ rds_ib_frag_drop_page(&ic->i_frag);
+}
+
+static int rds_ib_recv_refill_one(struct rds_connection *conn,
+ struct rds_ib_recv_work *recv,
+ gfp_t kptr_gfp, gfp_t page_gfp)
+{
+ struct rds_ib_connection *ic = conn->c_transport_data;
+ dma_addr_t dma_addr;
+ struct ib_sge *sge;
+ int ret = -ENOMEM;
+
+ if (recv->r_ibinc == NULL) {
+ if (atomic_read(&rds_ib_allocation) >= rds_ib_sysctl_max_recv_allocation) {
+ rds_ib_stats_inc(s_ib_rx_alloc_limit);
+ goto out;
+ }
+ recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab,
+ kptr_gfp);
+ if (recv->r_ibinc == NULL)
+ goto out;
+ atomic_inc(&rds_ib_allocation);
+ INIT_LIST_HEAD(&recv->r_ibinc->ii_frags);
+ rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr);
+ }
+
+ if (recv->r_frag == NULL) {
+ recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp);
+ if (recv->r_frag == NULL)
+ goto out;
+ INIT_LIST_HEAD(&recv->r_frag->f_item);
+ recv->r_frag->f_page = NULL;
+ }
+
+ if (ic->i_frag.f_page == NULL) {
+ ic->i_frag.f_page = alloc_page(page_gfp);
+ if (ic->i_frag.f_page == NULL)
+ goto out;
+ ic->i_frag.f_offset = 0;
+ }
+
+ dma_addr = ib_dma_map_page(ic->i_cm_id->device,
+ ic->i_frag.f_page,
+ ic->i_frag.f_offset,
+ RDS_FRAG_SIZE,
+ DMA_FROM_DEVICE);
+ if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
+ goto out;
+
+ /*
+ * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap()
+ * must be called on this recv. This happens as completions hit
+ * in order or on connection shutdown.
+ */
+ recv->r_frag->f_page = ic->i_frag.f_page;
+ recv->r_frag->f_offset = ic->i_frag.f_offset;
+ recv->r_frag->f_mapped = dma_addr;
+
+ sge = rds_ib_data_sge(ic, recv->r_sge);
+ sge->addr = dma_addr;
+ sge->length = RDS_FRAG_SIZE;
+
+ sge = rds_ib_header_sge(ic, recv->r_sge);
+ sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
+ sge->length = sizeof(struct rds_header);
+
+ get_page(recv->r_frag->f_page);
+
+ if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
+ ic->i_frag.f_offset += RDS_FRAG_SIZE;
+ } else {
+ put_page(ic->i_frag.f_page);
+ ic->i_frag.f_page = NULL;
+ ic->i_frag.f_offset = 0;
+ }
+
+ ret = 0;
+out:
+ return ret;
+}
+
+/*
+ * This tries to allocate and post unused work requests after making sure that
+ * they have all the allocations they need to queue received fragments into
+ * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc
+ * pairs don't go unmatched.
+ *
+ * -1 is returned if posting fails due to temporary resource exhaustion.
+ */
+int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
+ gfp_t page_gfp, int prefill)
+{
+ struct rds_ib_connection *ic = conn->c_transport_data;
+ struct rds_ib_recv_work *recv;
+ struct ib_recv_wr *failed_wr;
+ unsigned int posted = 0;
+ int ret = 0;
+ u32 pos;
+
+ while ((prefill || rds_conn_up(conn))
+ && rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
+ if (pos >= ic->i_recv_ring.w_nr) {
+ printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
+ pos);
+ ret = -EINVAL;
+ break;
+ }
+
+ recv = &ic->i_recvs[pos];
+ ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
+ if (ret) {
+ ret = -1;
+ break;
+ }
+
+ /* XXX when can this fail? */
+ ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
+ rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
+ recv->r_ibinc, recv->r_frag->f_page,
+ (long) recv->r_frag->f_mapped, ret);
+ if (ret) {
+ rds_ib_conn_error(conn, "recv post on "
+ "%pI4 returned %d, disconnecting and "
+ "reconnecting\n", &conn->c_faddr,
+ ret);
+ ret = -1;
+ break;
+ }
+
+ posted++;
+ }
+
+ /* We're doing flow control - update the window. */
+ if (ic->i_flowctl && posted)
+ rds_ib_advertise_credits(conn, posted);
+
+ if (ret)
+ rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
+ return ret;
+}
+
+void rds_ib_inc_purge(struct rds_incoming *inc)
+{
+ struct rds_ib_incoming *ibinc;
+ struct rds_page_frag *frag;
+ struct rds_page_frag *pos;
+
+ ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
+ rdsdebug("purging ibinc %p inc %p\n", ibinc, inc);
+
+ list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
+ list_del_init(&frag->f_item);
+ rds_ib_frag_drop_page(frag);
+ rds_ib_frag_free(frag);
+ }
+}
+
+void rds_ib_inc_free(struct rds_incoming *inc)
+{
+ struct rds_ib_incoming *ibinc;
+
+ ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
+
+ rds_ib_inc_purge(inc);
+ rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
+ BUG_ON(!list_empty(&ibinc->ii_frags));
+ kmem_cache_free(rds_ib_incoming_slab, ibinc);
+ atomic_dec(&rds_ib_allocation);
+ BUG_ON(atomic_read(&rds_ib_allocation) < 0);
+}
+
+int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
+ size_t size)
+{
+ struct rds_ib_incoming *ibinc;
+ struct rds_page_frag *frag;
+ struct iovec *iov = first_iov;
+ unsigned long to_copy;
+ unsigned long frag_off = 0;
+ unsigned long iov_off = 0;
+ int copied = 0;
+ int ret;
+ u32 len;
+
+ ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
+ frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
+ len = be32_to_cpu(inc->i_hdr.h_len);
+
+ while (copied < size && copied < len) {
+ if (frag_off == RDS_FRAG_SIZE) {
+ frag = list_entry(frag->f_item.next,
+ struct rds_page_frag, f_item);
+ frag_off = 0;
+ }
+ while (iov_off == iov->iov_len) {
+ iov_off = 0;
+ iov++;
+ }
+
+ to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
+ to_copy = min_t(size_t, to_copy, size - copied);
+ to_copy = min_t(unsigned long, to_copy, len - copied);
+
+ rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
+ "[%p, %lu] + %lu\n",
+ to_copy, iov->iov_base, iov->iov_len, iov_off,
+ frag->f_page, frag->f_offset, frag_off);
+
+ /* XXX needs + offset for multiple recvs per page */
+ ret = rds_page_copy_to_user(frag->f_page,
+ frag->f_offset + frag_off,
+ iov->iov_base + iov_off,
+ to_copy);
+ if (ret) {
+ copied = ret;
+ break;
+ }
+
+ iov_off += to_copy;
+ frag_off += to_copy;
+ copied += to_copy;
+ }
+
+ return copied;
+}
+
+/* ic starts out kzalloc()ed */
+void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
+{
+ struct ib_send_wr *wr = &ic->i_ack_wr;
+ struct ib_sge *sge = &ic->i_ack_sge;
+
+ sge->addr = ic->i_ack_dma;
+ sge->length = sizeof(struct rds_header);
+ sge->lkey = ic->i_mr->lkey;
+
+ wr->sg_list = sge;
+ wr->num_sge = 1;
+ wr->opcode = IB_WR_SEND;
+ wr->wr_id = RDS_IB_ACK_WR_ID;
+ wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
+}
+
+/*
+ * You'd think that with reliable IB connections you wouldn't need to ack
+ * messages that have been received. The problem is that IB hardware generates
+ * an ack message before it has DMAed the message into memory. This creates a
+ * potential message loss if the HCA is disabled for any reason between when it
+ * sends the ack and before the message is DMAed and processed. This is only a
+ * potential issue if another HCA is available for fail-over.
+ *
+ * When the remote host receives our ack they'll free the sent message from
+ * their send queue. To decrease the latency of this we always send an ack
+ * immediately after we've received messages.
+ *
+ * For simplicity, we only have one ack in flight at a time. This puts
+ * pressure on senders to have deep enough send queues to absorb the latency of
+ * a single ack frame being in flight. This might not be good enough.
+ *
+ * This is implemented by have a long-lived send_wr and sge which point to a
+ * statically allocated ack frame. This ack wr does not fall under the ring
+ * accounting that the tx and rx wrs do. The QP attribute specifically makes
+ * room for it beyond the ring size. Send completion notices its special
+ * wr_id and avoids working with the ring in that case.
+ */
+static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
+ int ack_required)
+{
+ rds_ib_set_64bit(&ic->i_ack_next, seq);
+ if (ack_required) {
+ smp_mb__before_clear_bit();
+ set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
+ }
+}
+
+static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
+{
+ clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
+ smp_mb__after_clear_bit();
+
+ return ic->i_ack_next;
+}
+
+static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
+{
+ struct rds_header *hdr = ic->i_ack;
+ struct ib_send_wr *failed_wr;
+ u64 seq;
+ int ret;
+
+ seq = rds_ib_get_ack(ic);
+
+ rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
+ rds_message_populate_header(hdr, 0, 0, 0);
+ hdr->h_ack = cpu_to_be64(seq);
+ hdr->h_credit = adv_credits;
+ rds_message_make_checksum(hdr);
+ ic->i_ack_queued = jiffies;
+
+ ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
+ if (unlikely(ret)) {
+ /* Failed to send. Release the WR, and
+ * force another ACK.
+ */
+ clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
+ set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
+
+ rds_ib_stats_inc(s_ib_ack_send_failure);
+ /* Need to finesse this later. */
+ BUG();
+ } else
+ rds_ib_stats_inc(s_ib_ack_sent);
+}
+
+/*
+ * There are 3 ways of getting acknowledgements to the peer:
+ * 1. We call rds_ib_attempt_ack from the recv completion handler
+ * to send an ACK-only frame.
+ * However, there can be only one such frame in the send queue
+ * at any time, so we may have to postpone it.
+ * 2. When another (data) packet is transmitted while there's
+ * an ACK in the queue, we piggyback the ACK sequence number
+ * on the data packet.
+ * 3. If the ACK WR is done sending, we get called from the
+ * send queue completion handler, and check whether there's
+ * another ACK pending (postponed because the WR was on the
+ * queue). If so, we transmit it.
+ *
+ * We maintain 2 variables:
+ * - i_ack_flags, which keeps track of whether the ACK WR
+ * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
+ * - i_ack_next, which is the last sequence number we received
+ *
+ * Potentially, send queue and receive queue handlers can run concurrently.
+ *
+ * Reconnecting complicates this picture just slightly. When we
+ * reconnect, we may be seeing duplicate packets. The peer
+ * is retransmitting them, because it hasn't seen an ACK for
+ * them. It is important that we ACK these.
+ *
+ * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
+ * this flag set *MUST* be acknowledged immediately.
+ */
+
+/*
+ * When we get here, we're called from the recv queue handler.
+ * Check whether we ought to transmit an ACK.
+ */
+void rds_ib_attempt_ack(struct rds_ib_connection *ic)
+{
+ unsigned int adv_credits;
+
+ if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
+ return;
+
+ if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
+ rds_ib_stats_inc(s_ib_ack_send_delayed);
+ return;
+ }
+
+ /* Can we get a send credit? */
+ if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0)) {
+ rds_ib_stats_inc(s_ib_tx_throttle);
+ clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
+ return;
+ }
+
+ clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
+ rds_ib_send_ack(ic, adv_credits);
+}
+
+/*
+ * We get here from the send completion handler, when the
+ * adapter tells us the ACK frame was sent.
+ */
+void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
+{
+ clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
+ rds_ib_attempt_ack(ic);
+}
+
+/*
+ * This is called by the regular xmit code when it wants to piggyback
+ * an ACK on an outgoing frame.
+ */
+u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
+{
+ if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
+ rds_ib_stats_inc(s_ib_ack_send_piggybacked);
+ return rds_ib_get_ack(ic);
+}
+
+/*
+ * It's kind of lame that we're copying from the posted receive pages into
+ * long-lived bitmaps. We could have posted the bitmaps and rdma written into
+ * them. But receiving new congestion bitmaps should be a *rare* event, so
+ * hopefully we won't need to invest that complexity in making it more
+ * efficient. By copying we can share a simpler core with TCP which has to
+ * copy.
+ */
+static void rds_ib_cong_recv(struct rds_connection *conn,
+ struct rds_ib_incoming *ibinc)
+{
+ struct rds_cong_map *map;
+ unsigned int map_off;
+ unsigned int map_page;
+ struct rds_page_frag *frag;
+ unsigned long frag_off;
+ unsigned long to_copy;
+ unsigned long copied;
+ uint64_t uncongested = 0;
+ void *addr;
+
+ /* catch completely corrupt packets */
+ if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
+ return;
+
+ map = conn->c_fcong;
+ map_page = 0;
+ map_off = 0;
+
+ frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
+ frag_off = 0;
+
+ copied = 0;
+
+ while (copied < RDS_CONG_MAP_BYTES) {
+ uint64_t *src, *dst;
+ unsigned int k;
+
+ to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
+ BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
+
+ addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0);
+
+ src = addr + frag_off;
+ dst = (void *)map->m_page_addrs[map_page] + map_off;
+ for (k = 0; k < to_copy; k += 8) {
+ /* Record ports that became uncongested, ie
+ * bits that changed from 0 to 1. */
+ uncongested |= ~(*src) & *dst;
+ *dst++ = *src++;
+ }
+ kunmap_atomic(addr, KM_SOFTIRQ0);
+
+ copied += to_copy;
+
+ map_off += to_copy;
+ if (map_off == PAGE_SIZE) {
+ map_off = 0;
+ map_page++;
+ }
+
+ frag_off += to_copy;
+ if (frag_off == RDS_FRAG_SIZE) {
+ frag = list_entry(frag->f_item.next,
+ struct rds_page_frag, f_item);
+ frag_off = 0;
+ }
+ }
+
+ /* the congestion map is in little endian order */
+ uncongested = le64_to_cpu(uncongested);
+
+ rds_cong_map_updated(map, uncongested);
+}
+
+/*
+ * Rings are posted with all the allocations they'll need to queue the
+ * incoming message to the receiving socket so this can't fail.
+ * All fragments start with a header, so we can make sure we're not receiving
+ * garbage, and we can tell a small 8 byte fragment from an ACK frame.
+ */
+struct rds_ib_ack_state {
+ u64 ack_next;
+ u64 ack_recv;
+ unsigned int ack_required:1;
+ unsigned int ack_next_valid:1;
+ unsigned int ack_recv_valid:1;
+};
+
+static void rds_ib_process_recv(struct rds_connection *conn,
+ struct rds_ib_recv_work *recv, u32 byte_len,
+ struct rds_ib_ack_state *state)
+{
+ struct rds_ib_connection *ic = conn->c_transport_data;
+ struct rds_ib_incoming *ibinc = ic->i_ibinc;
+ struct rds_header *ihdr, *hdr;
+
+ /* XXX shut down the connection if port 0,0 are seen? */
+
+ rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
+ byte_len);
+
+ if (byte_len < sizeof(struct rds_header)) {
+ rds_ib_conn_error(conn, "incoming message "
+ "from %pI4 didn't inclue a "
+ "header, disconnecting and "
+ "reconnecting\n",
+ &conn->c_faddr);
+ return;
+ }
+ byte_len -= sizeof(struct rds_header);
+
+ ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
+
+ /* Validate the checksum. */
+ if (!rds_message_verify_checksum(ihdr)) {
+ rds_ib_conn_error(conn, "incoming message "
+ "from %pI4 has corrupted header - "
+ "forcing a reconnect\n",
+ &conn->c_faddr);
+ rds_stats_inc(s_recv_drop_bad_checksum);
+ return;
+ }
+
+ /* Process the ACK sequence which comes with every packet */
+ state->ack_recv = be64_to_cpu(ihdr->h_ack);
+ state->ack_recv_valid = 1;
+
+ /* Process the credits update if there was one */
+ if (ihdr->h_credit)
+ rds_ib_send_add_credits(conn, ihdr->h_credit);
+
+ if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && byte_len == 0) {
+ /* This is an ACK-only packet. The fact that it gets
+ * special treatment here is that historically, ACKs
+ * were rather special beasts.
+ */
+ rds_ib_stats_inc(s_ib_ack_received);
+
+ /*
+ * Usually the frags make their way on to incs and are then freed as
+ * the inc is freed. We don't go that route, so we have to drop the
+ * page ref ourselves. We can't just leave the page on the recv
+ * because that confuses the dma mapping of pages and each recv's use
+ * of a partial page. We can leave the frag, though, it will be
+ * reused.
+ *
+ * FIXME: Fold this into the code path below.
+ */
+ rds_ib_frag_drop_page(recv->r_frag);
+ return;
+ }
+
+ /*
+ * If we don't already have an inc on the connection then this
+ * fragment has a header and starts a message.. copy its header
+ * into the inc and save the inc so we can hang upcoming fragments
+ * off its list.
+ */
+ if (ibinc == NULL) {
+ ibinc = recv->r_ibinc;
+ recv->r_ibinc = NULL;
+ ic->i_ibinc = ibinc;
+
+ hdr = &ibinc->ii_inc.i_hdr;
+ memcpy(hdr, ihdr, sizeof(*hdr));
+ ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
+
+ rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
+ ic->i_recv_data_rem, hdr->h_flags);
+ } else {
+ hdr = &ibinc->ii_inc.i_hdr;
+ /* We can't just use memcmp here; fragments of a
+ * single message may carry different ACKs */
+ if (hdr->h_sequence != ihdr->h_sequence
+ || hdr->h_len != ihdr->h_len
+ || hdr->h_sport != ihdr->h_sport
+ || hdr->h_dport != ihdr->h_dport) {
+ rds_ib_conn_error(conn,
+ "fragment header mismatch; forcing reconnect\n");
+ return;
+ }
+ }
+
+ list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
+ recv->r_frag = NULL;
+
+ if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
+ ic->i_recv_data_rem -= RDS_FRAG_SIZE;
+ else {
+ ic->i_recv_data_rem = 0;
+ ic->i_ibinc = NULL;
+
+ if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
+ rds_ib_cong_recv(conn, ibinc);
+ else {
+ rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
+ &ibinc->ii_inc, GFP_ATOMIC,
+ KM_SOFTIRQ0);
+ state->ack_next = be64_to_cpu(hdr->h_sequence);
+ state->ack_next_valid = 1;
+ }
+
+ /* Evaluate the ACK_REQUIRED flag *after* we received
+ * the complete frame, and after bumping the next_rx
+ * sequence. */
+ if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
+ rds_stats_inc(s_recv_ack_required);
+ state->ack_required = 1;
+ }
+
+ rds_inc_put(&ibinc->ii_inc);
+ }
+}
+
+/*
+ * Plucking the oldest entry from the ring can be done concurrently with
+ * the thread refilling the ring. Each ring operation is protected by
+ * spinlocks and the transient state of refilling doesn't change the
+ * recording of which entry is oldest.
+ *
+ * This relies on IB only calling one cq comp_handler for each cq so that
+ * there will only be one caller of rds_recv_incoming() per RDS connection.
+ */
+void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
+{
+ struct rds_connection *conn = context;
+ struct rds_ib_connection *ic = conn->c_transport_data;
+ struct ib_wc wc;
+ struct rds_ib_ack_state state = { 0, };
+ struct rds_ib_recv_work *recv;
+
+ rdsdebug("conn %p cq %p\n", conn, cq);
+
+ rds_ib_stats_inc(s_ib_rx_cq_call);
+
+ ib_req_notify_cq(cq, IB_CQ_SOLICITED);
+
+ while (ib_poll_cq(cq, 1, &wc) > 0) {
+ rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
+ (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
+ be32_to_cpu(wc.ex.imm_data));
+ rds_ib_stats_inc(s_ib_rx_cq_event);
+
+ recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
+
+ rds_ib_recv_unmap_page(ic, recv);
+
+ /*
+ * Also process recvs in connecting state because it is possible
+ * to get a recv completion _before_ the rdmacm ESTABLISHED
+ * event is processed.
+ */
+ if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
+ /* We expect errors as the qp is drained during shutdown */
+ if (wc.status == IB_WC_SUCCESS) {
+ rds_ib_process_recv(conn, recv, wc.byte_len, &state);
+ } else {
+ rds_ib_conn_error(conn, "recv completion on "
+ "%pI4 had status %u, disconnecting and "
+ "reconnecting\n", &conn->c_faddr,
+ wc.status);
+ }
+ }
+
+ rds_ib_ring_free(&ic->i_recv_ring, 1);
+ }
+
+ if (state.ack_next_valid)
+ rds_ib_set_ack(ic, state.ack_next, state.ack_required);
+ if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
+ rds_send_drop_acked(conn, state.ack_recv, NULL);
+ ic->i_ack_recv = state.ack_recv;
+ }
+ if (rds_conn_up(conn))
+ rds_ib_attempt_ack(ic);
+
+ /* If we ever end up with a really empty receive ring, we're
+ * in deep trouble, as the sender will definitely see RNR
+ * timeouts. */
+ if (rds_ib_ring_empty(&ic->i_recv_ring))
+ rds_ib_stats_inc(s_ib_rx_ring_empty);
+
+ /*
+ * If the ring is running low, then schedule the thread to refill.
+ */
+ if (rds_ib_ring_low(&ic->i_recv_ring))
+ queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
+}
+
+int rds_ib_recv(struct rds_connection *conn)
+{
+ struct rds_ib_connection *ic = conn->c_transport_data;
+ int ret = 0;
+
+ rdsdebug("conn %p\n", conn);
+
+ /*
+ * If we get a temporary posting failure in this context then
+ * we're really low and we want the caller to back off for a bit.
+ */
+ mutex_lock(&ic->i_recv_mutex);
+ if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
+ ret = -ENOMEM;
+ else
+ rds_ib_stats_inc(s_ib_rx_refill_from_thread);
+ mutex_unlock(&ic->i_recv_mutex);
+
+ if (rds_conn_up(conn))
+ rds_ib_attempt_ack(ic);
+
+ return ret;
+}
+
+int __init rds_ib_recv_init(void)
+{
+ struct sysinfo si;
+ int ret = -ENOMEM;
+
+ /* Default to 30% of all available RAM for recv memory */
+ si_meminfo(&si);
+ rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
+
+ rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
+ sizeof(struct rds_ib_incoming),
+ 0, 0, NULL);
+ if (rds_ib_incoming_slab == NULL)
+ goto out;
+
+ rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
+ sizeof(struct rds_page_frag),
+ 0, 0, NULL);
+ if (rds_ib_frag_slab == NULL)
+ kmem_cache_destroy(rds_ib_incoming_slab);
+ else
+ ret = 0;
+out:
+ return ret;
+}
+
+void rds_ib_recv_exit(void)
+{
+ kmem_cache_destroy(rds_ib_incoming_slab);
+ kmem_cache_destroy(rds_ib_frag_slab);
+}
OpenPOWER on IntegriCloud