summaryrefslogtreecommitdiffstats
path: root/mm
diff options
context:
space:
mode:
Diffstat (limited to 'mm')
-rw-r--r--mm/Makefile2
-rw-r--r--mm/allocpercpu.c15
-rw-r--r--mm/filemap.c23
-rw-r--r--mm/hugetlb.c56
-rw-r--r--mm/memcontrol.c365
-rw-r--r--mm/memory.c13
-rw-r--r--mm/mempolicy.c7
-rw-r--r--mm/migrate.c19
-rw-r--r--mm/oom_kill.c2
-rw-r--r--mm/page_alloc.c21
-rw-r--r--mm/rmap.c4
-rw-r--r--mm/shmem.c9
-rw-r--r--mm/slab.c9
-rw-r--r--mm/slub.c217
-rw-r--r--mm/swap.c2
-rw-r--r--mm/truncate.c3
-rw-r--r--mm/vmscan.c9
17 files changed, 364 insertions, 412 deletions
diff --git a/mm/Makefile b/mm/Makefile
index 9f117ba..a5b0dd9 100644
--- a/mm/Makefile
+++ b/mm/Makefile
@@ -32,5 +32,5 @@ obj-$(CONFIG_FS_XIP) += filemap_xip.o
obj-$(CONFIG_MIGRATION) += migrate.o
obj-$(CONFIG_SMP) += allocpercpu.o
obj-$(CONFIG_QUICKLIST) += quicklist.o
-obj-$(CONFIG_CGROUP_MEM_CONT) += memcontrol.o
+obj-$(CONFIG_CGROUP_MEM_RES_CTLR) += memcontrol.o
diff --git a/mm/allocpercpu.c b/mm/allocpercpu.c
index 7e58322..b0012e2 100644
--- a/mm/allocpercpu.c
+++ b/mm/allocpercpu.c
@@ -6,6 +6,10 @@
#include <linux/mm.h>
#include <linux/module.h>
+#ifndef cache_line_size
+#define cache_line_size() L1_CACHE_BYTES
+#endif
+
/**
* percpu_depopulate - depopulate per-cpu data for given cpu
* @__pdata: per-cpu data to depopulate
@@ -52,6 +56,11 @@ void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
struct percpu_data *pdata = __percpu_disguise(__pdata);
int node = cpu_to_node(cpu);
+ /*
+ * We should make sure each CPU gets private memory.
+ */
+ size = roundup(size, cache_line_size());
+
BUG_ON(pdata->ptrs[cpu]);
if (node_online(node))
pdata->ptrs[cpu] = kmalloc_node(size, gfp|__GFP_ZERO, node);
@@ -98,7 +107,11 @@ EXPORT_SYMBOL_GPL(__percpu_populate_mask);
*/
void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask)
{
- void *pdata = kzalloc(nr_cpu_ids * sizeof(void *), gfp);
+ /*
+ * We allocate whole cache lines to avoid false sharing
+ */
+ size_t sz = roundup(nr_cpu_ids * sizeof(void *), cache_line_size());
+ void *pdata = kzalloc(sz, gfp);
void *__pdata = __percpu_disguise(pdata);
if (unlikely(!pdata))
diff --git a/mm/filemap.c b/mm/filemap.c
index 5c74b68..df343d1e 100644
--- a/mm/filemap.c
+++ b/mm/filemap.c
@@ -28,7 +28,6 @@
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
-#include <linux/backing-dev.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/cpuset.h>
@@ -1743,21 +1742,27 @@ size_t iov_iter_copy_from_user(struct page *page,
}
EXPORT_SYMBOL(iov_iter_copy_from_user);
-static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
+void iov_iter_advance(struct iov_iter *i, size_t bytes)
{
+ BUG_ON(i->count < bytes);
+
if (likely(i->nr_segs == 1)) {
i->iov_offset += bytes;
+ i->count -= bytes;
} else {
const struct iovec *iov = i->iov;
size_t base = i->iov_offset;
/*
* The !iov->iov_len check ensures we skip over unlikely
- * zero-length segments.
+ * zero-length segments (without overruning the iovec).
*/
- while (bytes || !iov->iov_len) {
- int copy = min(bytes, iov->iov_len - base);
+ while (bytes || unlikely(!iov->iov_len && i->count)) {
+ int copy;
+ copy = min(bytes, iov->iov_len - base);
+ BUG_ON(!i->count || i->count < copy);
+ i->count -= copy;
bytes -= copy;
base += copy;
if (iov->iov_len == base) {
@@ -1769,14 +1774,6 @@ static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
i->iov_offset = base;
}
}
-
-void iov_iter_advance(struct iov_iter *i, size_t bytes)
-{
- BUG_ON(i->count < bytes);
-
- __iov_iter_advance_iov(i, bytes);
- i->count -= bytes;
-}
EXPORT_SYMBOL(iov_iter_advance);
/*
diff --git a/mm/hugetlb.c b/mm/hugetlb.c
index 89e6286..74c1b6b 100644
--- a/mm/hugetlb.c
+++ b/mm/hugetlb.c
@@ -71,7 +71,25 @@ static void enqueue_huge_page(struct page *page)
free_huge_pages_node[nid]++;
}
-static struct page *dequeue_huge_page(struct vm_area_struct *vma,
+static struct page *dequeue_huge_page(void)
+{
+ int nid;
+ struct page *page = NULL;
+
+ for (nid = 0; nid < MAX_NUMNODES; ++nid) {
+ if (!list_empty(&hugepage_freelists[nid])) {
+ page = list_entry(hugepage_freelists[nid].next,
+ struct page, lru);
+ list_del(&page->lru);
+ free_huge_pages--;
+ free_huge_pages_node[nid]--;
+ break;
+ }
+ }
+ return page;
+}
+
+static struct page *dequeue_huge_page_vma(struct vm_area_struct *vma,
unsigned long address)
{
int nid;
@@ -268,6 +286,12 @@ static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
spin_lock(&hugetlb_lock);
if (page) {
+ /*
+ * This page is now managed by the hugetlb allocator and has
+ * no users -- drop the buddy allocator's reference.
+ */
+ put_page_testzero(page);
+ VM_BUG_ON(page_count(page));
nid = page_to_nid(page);
set_compound_page_dtor(page, free_huge_page);
/*
@@ -296,8 +320,10 @@ static int gather_surplus_pages(int delta)
int needed, allocated;
needed = (resv_huge_pages + delta) - free_huge_pages;
- if (needed <= 0)
+ if (needed <= 0) {
+ resv_huge_pages += delta;
return 0;
+ }
allocated = 0;
INIT_LIST_HEAD(&surplus_list);
@@ -335,9 +361,12 @@ retry:
* The surplus_list now contains _at_least_ the number of extra pages
* needed to accomodate the reservation. Add the appropriate number
* of pages to the hugetlb pool and free the extras back to the buddy
- * allocator.
+ * allocator. Commit the entire reservation here to prevent another
+ * process from stealing the pages as they are added to the pool but
+ * before they are reserved.
*/
needed += allocated;
+ resv_huge_pages += delta;
ret = 0;
free:
list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
@@ -346,13 +375,14 @@ free:
enqueue_huge_page(page);
else {
/*
- * Decrement the refcount and free the page using its
- * destructor. This must be done with hugetlb_lock
+ * The page has a reference count of zero already, so
+ * call free_huge_page directly instead of using
+ * put_page. This must be done with hugetlb_lock
* unlocked which is safe because free_huge_page takes
* hugetlb_lock before deciding how to free the page.
*/
spin_unlock(&hugetlb_lock);
- put_page(page);
+ free_huge_page(page);
spin_lock(&hugetlb_lock);
}
}
@@ -371,6 +401,9 @@ static void return_unused_surplus_pages(unsigned long unused_resv_pages)
struct page *page;
unsigned long nr_pages;
+ /* Uncommit the reservation */
+ resv_huge_pages -= unused_resv_pages;
+
nr_pages = min(unused_resv_pages, surplus_huge_pages);
while (nr_pages) {
@@ -402,7 +435,7 @@ static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
struct page *page;
spin_lock(&hugetlb_lock);
- page = dequeue_huge_page(vma, addr);
+ page = dequeue_huge_page_vma(vma, addr);
spin_unlock(&hugetlb_lock);
return page ? page : ERR_PTR(-VM_FAULT_OOM);
}
@@ -417,7 +450,7 @@ static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
spin_lock(&hugetlb_lock);
if (free_huge_pages > resv_huge_pages)
- page = dequeue_huge_page(vma, addr);
+ page = dequeue_huge_page_vma(vma, addr);
spin_unlock(&hugetlb_lock);
if (!page) {
page = alloc_buddy_huge_page(vma, addr);
@@ -570,7 +603,7 @@ static unsigned long set_max_huge_pages(unsigned long count)
min_count = max(count, min_count);
try_to_free_low(min_count);
while (min_count < persistent_huge_pages) {
- struct page *page = dequeue_huge_page(NULL, 0);
+ struct page *page = dequeue_huge_page();
if (!page)
break;
update_and_free_page(page);
@@ -1205,12 +1238,13 @@ static int hugetlb_acct_memory(long delta)
if (gather_surplus_pages(delta) < 0)
goto out;
- if (delta > cpuset_mems_nr(free_huge_pages_node))
+ if (delta > cpuset_mems_nr(free_huge_pages_node)) {
+ return_unused_surplus_pages(delta);
goto out;
+ }
}
ret = 0;
- resv_huge_pages += delta;
if (delta < 0)
return_unused_surplus_pages((unsigned long) -delta);
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 631002d..8b9f6ca 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -137,14 +137,21 @@ struct mem_cgroup {
*/
struct mem_cgroup_stat stat;
};
+static struct mem_cgroup init_mem_cgroup;
/*
* We use the lower bit of the page->page_cgroup pointer as a bit spin
- * lock. We need to ensure that page->page_cgroup is atleast two
- * byte aligned (based on comments from Nick Piggin)
+ * lock. We need to ensure that page->page_cgroup is at least two
+ * byte aligned (based on comments from Nick Piggin). But since
+ * bit_spin_lock doesn't actually set that lock bit in a non-debug
+ * uniprocessor kernel, we should avoid setting it here too.
*/
#define PAGE_CGROUP_LOCK_BIT 0x0
-#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
+#if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
+#define PAGE_CGROUP_LOCK (1 << PAGE_CGROUP_LOCK_BIT)
+#else
+#define PAGE_CGROUP_LOCK 0x0
+#endif
/*
* A page_cgroup page is associated with every page descriptor. The
@@ -154,37 +161,27 @@ struct page_cgroup {
struct list_head lru; /* per cgroup LRU list */
struct page *page;
struct mem_cgroup *mem_cgroup;
- atomic_t ref_cnt; /* Helpful when pages move b/w */
- /* mapped and cached states */
- int flags;
+ int ref_cnt; /* cached, mapped, migrating */
+ int flags;
};
#define PAGE_CGROUP_FLAG_CACHE (0x1) /* charged as cache */
#define PAGE_CGROUP_FLAG_ACTIVE (0x2) /* page is active in this cgroup */
-static inline int page_cgroup_nid(struct page_cgroup *pc)
+static int page_cgroup_nid(struct page_cgroup *pc)
{
return page_to_nid(pc->page);
}
-static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
+static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
{
return page_zonenum(pc->page);
}
-enum {
- MEM_CGROUP_TYPE_UNSPEC = 0,
- MEM_CGROUP_TYPE_MAPPED,
- MEM_CGROUP_TYPE_CACHED,
- MEM_CGROUP_TYPE_ALL,
- MEM_CGROUP_TYPE_MAX,
-};
-
enum charge_type {
MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
MEM_CGROUP_CHARGE_TYPE_MAPPED,
};
-
/*
* Always modified under lru lock. Then, not necessary to preempt_disable()
*/
@@ -193,23 +190,21 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
{
int val = (charge)? 1 : -1;
struct mem_cgroup_stat *stat = &mem->stat;
- VM_BUG_ON(!irqs_disabled());
+ VM_BUG_ON(!irqs_disabled());
if (flags & PAGE_CGROUP_FLAG_CACHE)
- __mem_cgroup_stat_add_safe(stat,
- MEM_CGROUP_STAT_CACHE, val);
+ __mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
else
__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
}
-static inline struct mem_cgroup_per_zone *
+static struct mem_cgroup_per_zone *
mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
{
- BUG_ON(!mem->info.nodeinfo[nid]);
return &mem->info.nodeinfo[nid]->zoneinfo[zid];
}
-static inline struct mem_cgroup_per_zone *
+static struct mem_cgroup_per_zone *
page_cgroup_zoneinfo(struct page_cgroup *pc)
{
struct mem_cgroup *mem = pc->mem_cgroup;
@@ -234,18 +229,14 @@ static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
return total;
}
-static struct mem_cgroup init_mem_cgroup;
-
-static inline
-struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
+static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
{
return container_of(cgroup_subsys_state(cont,
mem_cgroup_subsys_id), struct mem_cgroup,
css);
}
-static inline
-struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
+static struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
{
return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
struct mem_cgroup, css);
@@ -267,81 +258,33 @@ void mm_free_cgroup(struct mm_struct *mm)
static inline int page_cgroup_locked(struct page *page)
{
- return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT,
- &page->page_cgroup);
+ return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}
-void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
+static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
{
- int locked;
-
- /*
- * While resetting the page_cgroup we might not hold the
- * page_cgroup lock. free_hot_cold_page() is an example
- * of such a scenario
- */
- if (pc)
- VM_BUG_ON(!page_cgroup_locked(page));
- locked = (page->page_cgroup & PAGE_CGROUP_LOCK);
- page->page_cgroup = ((unsigned long)pc | locked);
+ VM_BUG_ON(!page_cgroup_locked(page));
+ page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
}
struct page_cgroup *page_get_page_cgroup(struct page *page)
{
- return (struct page_cgroup *)
- (page->page_cgroup & ~PAGE_CGROUP_LOCK);
+ return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
}
-static void __always_inline lock_page_cgroup(struct page *page)
+static void lock_page_cgroup(struct page *page)
{
bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
- VM_BUG_ON(!page_cgroup_locked(page));
-}
-
-static void __always_inline unlock_page_cgroup(struct page *page)
-{
- bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}
-/*
- * Tie new page_cgroup to struct page under lock_page_cgroup()
- * This can fail if the page has been tied to a page_cgroup.
- * If success, returns 0.
- */
-static int page_cgroup_assign_new_page_cgroup(struct page *page,
- struct page_cgroup *pc)
+static int try_lock_page_cgroup(struct page *page)
{
- int ret = 0;
-
- lock_page_cgroup(page);
- if (!page_get_page_cgroup(page))
- page_assign_page_cgroup(page, pc);
- else /* A page is tied to other pc. */
- ret = 1;
- unlock_page_cgroup(page);
- return ret;
+ return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}
-/*
- * Clear page->page_cgroup member under lock_page_cgroup().
- * If given "pc" value is different from one page->page_cgroup,
- * page->cgroup is not cleared.
- * Returns a value of page->page_cgroup at lock taken.
- * A can can detect failure of clearing by following
- * clear_page_cgroup(page, pc) == pc
- */
-
-static struct page_cgroup *clear_page_cgroup(struct page *page,
- struct page_cgroup *pc)
+static void unlock_page_cgroup(struct page *page)
{
- struct page_cgroup *ret;
- /* lock and clear */
- lock_page_cgroup(page);
- ret = page_get_page_cgroup(page);
- if (likely(ret == pc))
- page_assign_page_cgroup(page, NULL);
- unlock_page_cgroup(page);
- return ret;
+ bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
}
static void __mem_cgroup_remove_list(struct page_cgroup *pc)
@@ -399,7 +342,7 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
int ret;
task_lock(task);
- ret = task->mm && vm_match_cgroup(task->mm, mem);
+ ret = task->mm && mm_match_cgroup(task->mm, mem);
task_unlock(task);
return ret;
}
@@ -407,18 +350,30 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
/*
* This routine assumes that the appropriate zone's lru lock is already held
*/
-void mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
+void mem_cgroup_move_lists(struct page *page, bool active)
{
+ struct page_cgroup *pc;
struct mem_cgroup_per_zone *mz;
unsigned long flags;
- if (!pc)
+ /*
+ * We cannot lock_page_cgroup while holding zone's lru_lock,
+ * because other holders of lock_page_cgroup can be interrupted
+ * with an attempt to rotate_reclaimable_page. But we cannot
+ * safely get to page_cgroup without it, so just try_lock it:
+ * mem_cgroup_isolate_pages allows for page left on wrong list.
+ */
+ if (!try_lock_page_cgroup(page))
return;
- mz = page_cgroup_zoneinfo(pc);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_move_lists(pc, active);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
+ pc = page_get_page_cgroup(page);
+ if (pc) {
+ mz = page_cgroup_zoneinfo(pc);
+ spin_lock_irqsave(&mz->lru_lock, flags);
+ __mem_cgroup_move_lists(pc, active);
+ spin_unlock_irqrestore(&mz->lru_lock, flags);
+ }
+ unlock_page_cgroup(page);
}
/*
@@ -437,6 +392,7 @@ int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
return (int)((rss * 100L) / total);
}
+
/*
* This function is called from vmscan.c. In page reclaiming loop. balance
* between active and inactive list is calculated. For memory controller
@@ -500,7 +456,6 @@ long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
-
return (nr_inactive >> priority);
}
@@ -586,26 +541,21 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
* with it
*/
retry:
- if (page) {
- lock_page_cgroup(page);
- pc = page_get_page_cgroup(page);
- /*
- * The page_cgroup exists and
- * the page has already been accounted.
- */
- if (pc) {
- if (unlikely(!atomic_inc_not_zero(&pc->ref_cnt))) {
- /* this page is under being uncharged ? */
- unlock_page_cgroup(page);
- cpu_relax();
- goto retry;
- } else {
- unlock_page_cgroup(page);
- goto done;
- }
- }
+ lock_page_cgroup(page);
+ pc = page_get_page_cgroup(page);
+ /*
+ * The page_cgroup exists and
+ * the page has already been accounted.
+ */
+ if (pc) {
+ VM_BUG_ON(pc->page != page);
+ VM_BUG_ON(pc->ref_cnt <= 0);
+
+ pc->ref_cnt++;
unlock_page_cgroup(page);
+ goto done;
}
+ unlock_page_cgroup(page);
pc = kzalloc(sizeof(struct page_cgroup), gfp_mask);
if (pc == NULL)
@@ -623,16 +573,11 @@ retry:
rcu_read_lock();
mem = rcu_dereference(mm->mem_cgroup);
/*
- * For every charge from the cgroup, increment reference
- * count
+ * For every charge from the cgroup, increment reference count
*/
css_get(&mem->css);
rcu_read_unlock();
- /*
- * If we created the page_cgroup, we should free it on exceeding
- * the cgroup limit.
- */
while (res_counter_charge(&mem->res, PAGE_SIZE)) {
if (!(gfp_mask & __GFP_WAIT))
goto out;
@@ -641,12 +586,12 @@ retry:
continue;
/*
- * try_to_free_mem_cgroup_pages() might not give us a full
- * picture of reclaim. Some pages are reclaimed and might be
- * moved to swap cache or just unmapped from the cgroup.
- * Check the limit again to see if the reclaim reduced the
- * current usage of the cgroup before giving up
- */
+ * try_to_free_mem_cgroup_pages() might not give us a full
+ * picture of reclaim. Some pages are reclaimed and might be
+ * moved to swap cache or just unmapped from the cgroup.
+ * Check the limit again to see if the reclaim reduced the
+ * current usage of the cgroup before giving up
+ */
if (res_counter_check_under_limit(&mem->res))
continue;
@@ -657,14 +602,16 @@ retry:
congestion_wait(WRITE, HZ/10);
}
- atomic_set(&pc->ref_cnt, 1);
+ pc->ref_cnt = 1;
pc->mem_cgroup = mem;
pc->page = page;
pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
pc->flags |= PAGE_CGROUP_FLAG_CACHE;
- if (!page || page_cgroup_assign_new_page_cgroup(page, pc)) {
+ lock_page_cgroup(page);
+ if (page_get_page_cgroup(page)) {
+ unlock_page_cgroup(page);
/*
* Another charge has been added to this page already.
* We take lock_page_cgroup(page) again and read
@@ -673,17 +620,16 @@ retry:
res_counter_uncharge(&mem->res, PAGE_SIZE);
css_put(&mem->css);
kfree(pc);
- if (!page)
- goto done;
goto retry;
}
+ page_assign_page_cgroup(page, pc);
mz = page_cgroup_zoneinfo(pc);
spin_lock_irqsave(&mz->lru_lock, flags);
- /* Update statistics vector */
__mem_cgroup_add_list(pc);
spin_unlock_irqrestore(&mz->lru_lock, flags);
+ unlock_page_cgroup(page);
done:
return 0;
out:
@@ -693,70 +639,61 @@ err:
return -ENOMEM;
}
-int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
- gfp_t gfp_mask)
+int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
{
return mem_cgroup_charge_common(page, mm, gfp_mask,
- MEM_CGROUP_CHARGE_TYPE_MAPPED);
+ MEM_CGROUP_CHARGE_TYPE_MAPPED);
}
-/*
- * See if the cached pages should be charged at all?
- */
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask)
{
- int ret = 0;
if (!mm)
mm = &init_mm;
-
- ret = mem_cgroup_charge_common(page, mm, gfp_mask,
+ return mem_cgroup_charge_common(page, mm, gfp_mask,
MEM_CGROUP_CHARGE_TYPE_CACHE);
- return ret;
}
/*
* Uncharging is always a welcome operation, we never complain, simply
- * uncharge. This routine should be called with lock_page_cgroup held
+ * uncharge.
*/
-void mem_cgroup_uncharge(struct page_cgroup *pc)
+void mem_cgroup_uncharge_page(struct page *page)
{
+ struct page_cgroup *pc;
struct mem_cgroup *mem;
struct mem_cgroup_per_zone *mz;
- struct page *page;
unsigned long flags;
/*
* Check if our page_cgroup is valid
*/
+ lock_page_cgroup(page);
+ pc = page_get_page_cgroup(page);
if (!pc)
- return;
+ goto unlock;
- if (atomic_dec_and_test(&pc->ref_cnt)) {
- page = pc->page;
+ VM_BUG_ON(pc->page != page);
+ VM_BUG_ON(pc->ref_cnt <= 0);
+
+ if (--(pc->ref_cnt) == 0) {
mz = page_cgroup_zoneinfo(pc);
- /*
- * get page->cgroup and clear it under lock.
- * force_empty can drop page->cgroup without checking refcnt.
- */
+ spin_lock_irqsave(&mz->lru_lock, flags);
+ __mem_cgroup_remove_list(pc);
+ spin_unlock_irqrestore(&mz->lru_lock, flags);
+
+ page_assign_page_cgroup(page, NULL);
unlock_page_cgroup(page);
- if (clear_page_cgroup(page, pc) == pc) {
- mem = pc->mem_cgroup;
- css_put(&mem->css);
- res_counter_uncharge(&mem->res, PAGE_SIZE);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_remove_list(pc);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
- kfree(pc);
- }
- lock_page_cgroup(page);
+
+ mem = pc->mem_cgroup;
+ res_counter_uncharge(&mem->res, PAGE_SIZE);
+ css_put(&mem->css);
+
+ kfree(pc);
+ return;
}
-}
-void mem_cgroup_uncharge_page(struct page *page)
-{
- lock_page_cgroup(page);
- mem_cgroup_uncharge(page_get_page_cgroup(page));
+unlock:
unlock_page_cgroup(page);
}
@@ -764,63 +701,59 @@ void mem_cgroup_uncharge_page(struct page *page)
* Returns non-zero if a page (under migration) has valid page_cgroup member.
* Refcnt of page_cgroup is incremented.
*/
-
int mem_cgroup_prepare_migration(struct page *page)
{
struct page_cgroup *pc;
- int ret = 0;
+
lock_page_cgroup(page);
pc = page_get_page_cgroup(page);
- if (pc && atomic_inc_not_zero(&pc->ref_cnt))
- ret = 1;
+ if (pc)
+ pc->ref_cnt++;
unlock_page_cgroup(page);
- return ret;
+ return pc != NULL;
}
void mem_cgroup_end_migration(struct page *page)
{
- struct page_cgroup *pc;
-
- lock_page_cgroup(page);
- pc = page_get_page_cgroup(page);
- mem_cgroup_uncharge(pc);
- unlock_page_cgroup(page);
+ mem_cgroup_uncharge_page(page);
}
+
/*
- * We know both *page* and *newpage* are now not-on-LRU and Pg_locked.
+ * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
* And no race with uncharge() routines because page_cgroup for *page*
* has extra one reference by mem_cgroup_prepare_migration.
*/
-
void mem_cgroup_page_migration(struct page *page, struct page *newpage)
{
struct page_cgroup *pc;
- struct mem_cgroup *mem;
- unsigned long flags;
struct mem_cgroup_per_zone *mz;
-retry:
+ unsigned long flags;
+
+ lock_page_cgroup(page);
pc = page_get_page_cgroup(page);
- if (!pc)
+ if (!pc) {
+ unlock_page_cgroup(page);
return;
- mem = pc->mem_cgroup;
+ }
+
mz = page_cgroup_zoneinfo(pc);
- if (clear_page_cgroup(page, pc) != pc)
- goto retry;
spin_lock_irqsave(&mz->lru_lock, flags);
-
__mem_cgroup_remove_list(pc);
spin_unlock_irqrestore(&mz->lru_lock, flags);
+ page_assign_page_cgroup(page, NULL);
+ unlock_page_cgroup(page);
+
pc->page = newpage;
lock_page_cgroup(newpage);
page_assign_page_cgroup(newpage, pc);
- unlock_page_cgroup(newpage);
mz = page_cgroup_zoneinfo(pc);
spin_lock_irqsave(&mz->lru_lock, flags);
__mem_cgroup_add_list(pc);
spin_unlock_irqrestore(&mz->lru_lock, flags);
- return;
+
+ unlock_page_cgroup(newpage);
}
/*
@@ -829,14 +762,13 @@ retry:
* *And* this routine doesn't reclaim page itself, just removes page_cgroup.
*/
#define FORCE_UNCHARGE_BATCH (128)
-static void
-mem_cgroup_force_empty_list(struct mem_cgroup *mem,
+static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
struct mem_cgroup_per_zone *mz,
int active)
{
struct page_cgroup *pc;
struct page *page;
- int count;
+ int count = FORCE_UNCHARGE_BATCH;
unsigned long flags;
struct list_head *list;
@@ -845,46 +777,36 @@ mem_cgroup_force_empty_list(struct mem_cgroup *mem,
else
list = &mz->inactive_list;
- if (list_empty(list))
- return;
-retry:
- count = FORCE_UNCHARGE_BATCH;
spin_lock_irqsave(&mz->lru_lock, flags);
-
- while (--count && !list_empty(list)) {
+ while (!list_empty(list)) {
pc = list_entry(list->prev, struct page_cgroup, lru);
page = pc->page;
- /* Avoid race with charge */
- atomic_set(&pc->ref_cnt, 0);
- if (clear_page_cgroup(page, pc) == pc) {
- css_put(&mem->css);
- res_counter_uncharge(&mem->res, PAGE_SIZE);
- __mem_cgroup_remove_list(pc);
- kfree(pc);
- } else /* being uncharged ? ...do relax */
- break;
+ get_page(page);
+ spin_unlock_irqrestore(&mz->lru_lock, flags);
+ mem_cgroup_uncharge_page(page);
+ put_page(page);
+ if (--count <= 0) {
+ count = FORCE_UNCHARGE_BATCH;
+ cond_resched();
+ }
+ spin_lock_irqsave(&mz->lru_lock, flags);
}
spin_unlock_irqrestore(&mz->lru_lock, flags);
- if (!list_empty(list)) {
- cond_resched();
- goto retry;
- }
- return;
}
/*
* make mem_cgroup's charge to be 0 if there is no task.
* This enables deleting this mem_cgroup.
*/
-
-int mem_cgroup_force_empty(struct mem_cgroup *mem)
+static int mem_cgroup_force_empty(struct mem_cgroup *mem)
{
int ret = -EBUSY;
int node, zid;
+
css_get(&mem->css);
/*
* page reclaim code (kswapd etc..) will move pages between
-` * active_list <-> inactive_list while we don't take a lock.
+ * active_list <-> inactive_list while we don't take a lock.
* So, we have to do loop here until all lists are empty.
*/
while (mem->res.usage > 0) {
@@ -906,9 +828,7 @@ out:
return ret;
}
-
-
-int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
+static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
{
*tmp = memparse(buf, &buf);
if (*buf != '\0')
@@ -945,8 +865,7 @@ static ssize_t mem_force_empty_write(struct cgroup *cont,
size_t nbytes, loff_t *ppos)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
- int ret;
- ret = mem_cgroup_force_empty(mem);
+ int ret = mem_cgroup_force_empty(mem);
if (!ret)
ret = nbytes;
return ret;
@@ -955,7 +874,6 @@ static ssize_t mem_force_empty_write(struct cgroup *cont,
/*
* Note: This should be removed if cgroup supports write-only file.
*/
-
static ssize_t mem_force_empty_read(struct cgroup *cont,
struct cftype *cft,
struct file *file, char __user *userbuf,
@@ -964,7 +882,6 @@ static ssize_t mem_force_empty_read(struct cgroup *cont,
return -EINVAL;
}
-
static const struct mem_cgroup_stat_desc {
const char *msg;
u64 unit;
@@ -1017,8 +934,6 @@ static int mem_control_stat_open(struct inode *unused, struct file *file)
return single_open(file, mem_control_stat_show, cont);
}
-
-
static struct cftype mem_cgroup_files[] = {
{
.name = "usage_in_bytes",
@@ -1084,9 +999,6 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
kfree(mem->info.nodeinfo[node]);
}
-
-static struct mem_cgroup init_mem_cgroup;
-
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
@@ -1176,7 +1088,6 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss,
out:
mmput(mm);
- return;
}
struct cgroup_subsys mem_cgroup_subsys = {
diff --git a/mm/memory.c b/mm/memory.c
index ce3c9e4..0d14d1e 100644
--- a/mm/memory.c
+++ b/mm/memory.c
@@ -1711,7 +1711,7 @@ unlock:
}
return ret;
oom_free_new:
- __free_page(new_page);
+ page_cache_release(new_page);
oom:
if (old_page)
page_cache_release(old_page);
@@ -2093,12 +2093,9 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
unlock_page(page);
if (write_access) {
- /* XXX: We could OR the do_wp_page code with this one? */
- if (do_wp_page(mm, vma, address,
- page_table, pmd, ptl, pte) & VM_FAULT_OOM) {
- mem_cgroup_uncharge_page(page);
- ret = VM_FAULT_OOM;
- }
+ ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
+ if (ret & VM_FAULT_ERROR)
+ ret &= VM_FAULT_ERROR;
goto out;
}
@@ -2163,7 +2160,7 @@ release:
page_cache_release(page);
goto unlock;
oom_free_page:
- __free_page(page);
+ page_cache_release(page);
oom:
return VM_FAULT_OOM;
}
diff --git a/mm/mempolicy.c b/mm/mempolicy.c
index 6c7ba1a..3c36011 100644
--- a/mm/mempolicy.c
+++ b/mm/mempolicy.c
@@ -1296,7 +1296,9 @@ struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
unsigned nid;
nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
- __mpol_free(pol); /* finished with pol */
+ if (unlikely(pol != &default_policy &&
+ pol != current->mempolicy))
+ __mpol_free(pol); /* finished with pol */
return NODE_DATA(nid)->node_zonelists + gfp_zone(gfp_flags);
}
@@ -1360,6 +1362,9 @@ alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
unsigned nid;
nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
+ if (unlikely(pol != &default_policy &&
+ pol != current->mempolicy))
+ __mpol_free(pol); /* finished with pol */
return alloc_page_interleave(gfp, 0, nid);
}
zl = zonelist_policy(gfp, pol);
diff --git a/mm/migrate.c b/mm/migrate.c
index a73504f..4e0eccc 100644
--- a/mm/migrate.c
+++ b/mm/migrate.c
@@ -153,11 +153,6 @@ static void remove_migration_pte(struct vm_area_struct *vma,
return;
}
- if (mem_cgroup_charge(new, mm, GFP_KERNEL)) {
- pte_unmap(ptep);
- return;
- }
-
ptl = pte_lockptr(mm, pmd);
spin_lock(ptl);
pte = *ptep;
@@ -169,6 +164,20 @@ static void remove_migration_pte(struct vm_area_struct *vma,
if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
goto out;
+ /*
+ * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
+ * Failure is not an option here: we're now expected to remove every
+ * migration pte, and will cause crashes otherwise. Normally this
+ * is not an issue: mem_cgroup_prepare_migration bumped up the old
+ * page_cgroup count for safety, that's now attached to the new page,
+ * so this charge should just be another incrementation of the count,
+ * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
+ * there's been a force_empty, those reference counts may no longer
+ * be reliable, and this charge can actually fail: oh well, we don't
+ * make the situation any worse by proceeding as if it had succeeded.
+ */
+ mem_cgroup_charge(new, mm, GFP_ATOMIC);
+
get_page(new);
pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
if (is_write_migration_entry(entry))
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
index 4194b9d..44b2da1 100644
--- a/mm/oom_kill.c
+++ b/mm/oom_kill.c
@@ -412,7 +412,7 @@ static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
return oom_kill_task(p);
}
-#ifdef CONFIG_CGROUP_MEM_CONT
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR
void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
{
unsigned long points = 0;
diff --git a/mm/page_alloc.c b/mm/page_alloc.c
index 8896e87..402a504 100644
--- a/mm/page_alloc.c
+++ b/mm/page_alloc.c
@@ -19,6 +19,7 @@
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
+#include <linux/jiffies.h>
#include <linux/bootmem.h>
#include <linux/compiler.h>
#include <linux/kernel.h>
@@ -221,13 +222,19 @@ static inline int bad_range(struct zone *zone, struct page *page)
static void bad_page(struct page *page)
{
- printk(KERN_EMERG "Bad page state in process '%s'\n"
- KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
- KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
- KERN_EMERG "Backtrace:\n",
+ void *pc = page_get_page_cgroup(page);
+
+ printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
+ "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
current->comm, page, (int)(2*sizeof(unsigned long)),
(unsigned long)page->flags, page->mapping,
page_mapcount(page), page_count(page));
+ if (pc) {
+ printk(KERN_EMERG "cgroup:%p\n", pc);
+ page_reset_bad_cgroup(page);
+ }
+ printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
+ KERN_EMERG "Backtrace:\n");
dump_stack();
page->flags &= ~(1 << PG_lru |
1 << PG_private |
@@ -453,6 +460,7 @@ static inline int free_pages_check(struct page *page)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
+ (page_get_page_cgroup(page) != NULL) |
(page_count(page) != 0) |
(page->flags & (
1 << PG_lru |
@@ -602,6 +610,7 @@ static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
{
if (unlikely(page_mapcount(page) |
(page->mapping != NULL) |
+ (page_get_page_cgroup(page) != NULL) |
(page_count(page) != 0) |
(page->flags & (
1 << PG_lru |
@@ -988,7 +997,6 @@ static void free_hot_cold_page(struct page *page, int cold)
if (!PageHighMem(page))
debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
- VM_BUG_ON(page_get_page_cgroup(page));
arch_free_page(page, 0);
kernel_map_pages(page, 1, 0);
@@ -1276,7 +1284,7 @@ static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
if (!zlc)
return NULL;
- if (jiffies - zlc->last_full_zap > 1 * HZ) {
+ if (time_after(jiffies, zlc->last_full_zap + HZ)) {
bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
zlc->last_full_zap = jiffies;
}
@@ -2527,7 +2535,6 @@ void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
set_page_links(page, zone, nid, pfn);
init_page_count(page);
reset_page_mapcount(page);
- page_assign_page_cgroup(page, NULL);
SetPageReserved(page);
/*
diff --git a/mm/rmap.c b/mm/rmap.c
index 8fd527c..0c9a2df 100644
--- a/mm/rmap.c
+++ b/mm/rmap.c
@@ -321,7 +321,7 @@ static int page_referenced_anon(struct page *page,
* counting on behalf of references from different
* cgroups
*/
- if (mem_cont && !vm_match_cgroup(vma->vm_mm, mem_cont))
+ if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
continue;
referenced += page_referenced_one(page, vma, &mapcount);
if (!mapcount)
@@ -382,7 +382,7 @@ static int page_referenced_file(struct page *page,
* counting on behalf of references from different
* cgroups
*/
- if (mem_cont && !vm_match_cgroup(vma->vm_mm, mem_cont))
+ if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
continue;
if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
== (VM_LOCKED|VM_MAYSHARE)) {
diff --git a/mm/shmem.c b/mm/shmem.c
index 90b576c..3372bc5 100644
--- a/mm/shmem.c
+++ b/mm/shmem.c
@@ -1370,14 +1370,17 @@ repeat:
shmem_swp_unmap(entry);
spin_unlock(&info->lock);
unlock_page(swappage);
- page_cache_release(swappage);
if (error == -ENOMEM) {
/* allow reclaim from this memory cgroup */
- error = mem_cgroup_cache_charge(NULL,
+ error = mem_cgroup_cache_charge(swappage,
current->mm, gfp & ~__GFP_HIGHMEM);
- if (error)
+ if (error) {
+ page_cache_release(swappage);
goto failed;
+ }
+ mem_cgroup_uncharge_page(swappage);
}
+ page_cache_release(swappage);
goto repeat;
}
} else if (sgp == SGP_READ && !filepage) {
diff --git a/mm/slab.c b/mm/slab.c
index 473e6c2..e6c698f 100644
--- a/mm/slab.c
+++ b/mm/slab.c
@@ -333,7 +333,7 @@ static __always_inline int index_of(const size_t size)
return i; \
else \
i++;
-#include "linux/kmalloc_sizes.h"
+#include <linux/kmalloc_sizes.h>
#undef CACHE
__bad_size();
} else
@@ -2964,11 +2964,10 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
struct array_cache *ac;
int node;
- node = numa_node_id();
-
+retry:
check_irq_off();
+ node = numa_node_id();
ac = cpu_cache_get(cachep);
-retry:
batchcount = ac->batchcount;
if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
/*
@@ -3280,7 +3279,7 @@ retry:
if (local_flags & __GFP_WAIT)
local_irq_enable();
kmem_flagcheck(cache, flags);
- obj = kmem_getpages(cache, flags, -1);
+ obj = kmem_getpages(cache, local_flags, -1);
if (local_flags & __GFP_WAIT)
local_irq_disable();
if (obj) {
diff --git a/mm/slub.c b/mm/slub.c
index 74c65af..96d63eb 100644
--- a/mm/slub.c
+++ b/mm/slub.c
@@ -291,32 +291,16 @@ static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
#endif
}
-/*
- * The end pointer in a slab is special. It points to the first object in the
- * slab but has bit 0 set to mark it.
- *
- * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
- * in the mapping set.
- */
-static inline int is_end(void *addr)
-{
- return (unsigned long)addr & PAGE_MAPPING_ANON;
-}
-
-static void *slab_address(struct page *page)
-{
- return page->end - PAGE_MAPPING_ANON;
-}
-
+/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
struct page *page, const void *object)
{
void *base;
- if (object == page->end)
+ if (!object)
return 1;
- base = slab_address(page);
+ base = page_address(page);
if (object < base || object >= base + s->objects * s->size ||
(object - base) % s->size) {
return 0;
@@ -349,8 +333,7 @@ static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
/* Scan freelist */
#define for_each_free_object(__p, __s, __free) \
- for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
- __p))
+ for (__p = (__free); __p; __p = get_freepointer((__s), __p))
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
@@ -502,7 +485,7 @@ static void slab_fix(struct kmem_cache *s, char *fmt, ...)
static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
{
unsigned int off; /* Offset of last byte */
- u8 *addr = slab_address(page);
+ u8 *addr = page_address(page);
print_tracking(s, p);
@@ -637,7 +620,7 @@ static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
* A. Free pointer (if we cannot overwrite object on free)
* B. Tracking data for SLAB_STORE_USER
* C. Padding to reach required alignment boundary or at mininum
- * one word if debuggin is on to be able to detect writes
+ * one word if debugging is on to be able to detect writes
* before the word boundary.
*
* Padding is done using 0x5a (POISON_INUSE)
@@ -680,7 +663,7 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
if (!(s->flags & SLAB_POISON))
return 1;
- start = slab_address(page);
+ start = page_address(page);
end = start + (PAGE_SIZE << s->order);
length = s->objects * s->size;
remainder = end - (start + length);
@@ -748,7 +731,7 @@ static int check_object(struct kmem_cache *s, struct page *page,
* of the free objects in this slab. May cause
* another error because the object count is now wrong.
*/
- set_freepointer(s, p, page->end);
+ set_freepointer(s, p, NULL);
return 0;
}
return 1;
@@ -782,18 +765,18 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
void *fp = page->freelist;
void *object = NULL;
- while (fp != page->end && nr <= s->objects) {
+ while (fp && nr <= s->objects) {
if (fp == search)
return 1;
if (!check_valid_pointer(s, page, fp)) {
if (object) {
object_err(s, page, object,
"Freechain corrupt");
- set_freepointer(s, object, page->end);
+ set_freepointer(s, object, NULL);
break;
} else {
slab_err(s, page, "Freepointer corrupt");
- page->freelist = page->end;
+ page->freelist = NULL;
page->inuse = s->objects;
slab_fix(s, "Freelist cleared");
return 0;
@@ -870,7 +853,7 @@ static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
if (!check_slab(s, page))
goto bad;
- if (object && !on_freelist(s, page, object)) {
+ if (!on_freelist(s, page, object)) {
object_err(s, page, object, "Object already allocated");
goto bad;
}
@@ -880,7 +863,7 @@ static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
goto bad;
}
- if (object && !check_object(s, page, object, 0))
+ if (!check_object(s, page, object, 0))
goto bad;
/* Success perform special debug activities for allocs */
@@ -899,7 +882,7 @@ bad:
*/
slab_fix(s, "Marking all objects used");
page->inuse = s->objects;
- page->freelist = page->end;
+ page->freelist = NULL;
}
return 0;
}
@@ -939,7 +922,7 @@ static int free_debug_processing(struct kmem_cache *s, struct page *page,
}
/* Special debug activities for freeing objects */
- if (!SlabFrozen(page) && page->freelist == page->end)
+ if (!SlabFrozen(page) && !page->freelist)
remove_full(s, page);
if (s->flags & SLAB_STORE_USER)
set_track(s, object, TRACK_FREE, addr);
@@ -1015,30 +998,11 @@ static unsigned long kmem_cache_flags(unsigned long objsize,
void (*ctor)(struct kmem_cache *, void *))
{
/*
- * The page->offset field is only 16 bit wide. This is an offset
- * in units of words from the beginning of an object. If the slab
- * size is bigger then we cannot move the free pointer behind the
- * object anymore.
- *
- * On 32 bit platforms the limit is 256k. On 64bit platforms
- * the limit is 512k.
- *
- * Debugging or ctor may create a need to move the free
- * pointer. Fail if this happens.
+ * Enable debugging if selected on the kernel commandline.
*/
- if (objsize >= 65535 * sizeof(void *)) {
- BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
- SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
- BUG_ON(ctor);
- } else {
- /*
- * Enable debugging if selected on the kernel commandline.
- */
- if (slub_debug && (!slub_debug_slabs ||
- strncmp(slub_debug_slabs, name,
- strlen(slub_debug_slabs)) == 0))
- flags |= slub_debug;
- }
+ if (slub_debug && (!slub_debug_slabs ||
+ strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
+ flags |= slub_debug;
return flags;
}
@@ -1124,7 +1088,6 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
SetSlabDebug(page);
start = page_address(page);
- page->end = start + 1;
if (unlikely(s->flags & SLAB_POISON))
memset(start, POISON_INUSE, PAGE_SIZE << s->order);
@@ -1136,7 +1099,7 @@ static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
last = p;
}
setup_object(s, page, last);
- set_freepointer(s, last, page->end);
+ set_freepointer(s, last, NULL);
page->freelist = start;
page->inuse = 0;
@@ -1152,7 +1115,7 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
void *p;
slab_pad_check(s, page);
- for_each_object(p, s, slab_address(page))
+ for_each_object(p, s, page_address(page))
check_object(s, page, p, 0);
ClearSlabDebug(page);
}
@@ -1162,7 +1125,6 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
-pages);
- page->mapping = NULL;
__free_pages(page, s->order);
}
@@ -1307,7 +1269,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
* may return off node objects because partial slabs are obtained
* from other nodes and filled up.
*
- * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
+ * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
* defrag_ratio = 1000) then every (well almost) allocation will
* first attempt to defrag slab caches on other nodes. This means
* scanning over all nodes to look for partial slabs which may be
@@ -1366,7 +1328,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
ClearSlabFrozen(page);
if (page->inuse) {
- if (page->freelist != page->end) {
+ if (page->freelist) {
add_partial(n, page, tail);
stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
} else {
@@ -1382,9 +1344,11 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
* Adding an empty slab to the partial slabs in order
* to avoid page allocator overhead. This slab needs
* to come after the other slabs with objects in
- * order to fill them up. That way the size of the
- * partial list stays small. kmem_cache_shrink can
- * reclaim empty slabs from the partial list.
+ * so that the others get filled first. That way the
+ * size of the partial list stays small.
+ *
+ * kmem_cache_shrink can reclaim any empty slabs from the
+ * partial list.
*/
add_partial(n, page, 1);
slab_unlock(page);
@@ -1404,18 +1368,14 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
struct page *page = c->page;
int tail = 1;
- if (c->freelist)
+ if (page->freelist)
stat(c, DEACTIVATE_REMOTE_FREES);
/*
- * Merge cpu freelist into freelist. Typically we get here
+ * Merge cpu freelist into slab freelist. Typically we get here
* because both freelists are empty. So this is unlikely
* to occur.
- *
- * We need to use _is_end here because deactivate slab may
- * be called for a debug slab. Then c->freelist may contain
- * a dummy pointer.
*/
- while (unlikely(!is_end(c->freelist))) {
+ while (unlikely(c->freelist)) {
void **object;
tail = 0; /* Hot objects. Put the slab first */
@@ -1442,6 +1402,7 @@ static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
/*
* Flush cpu slab.
+ *
* Called from IPI handler with interrupts disabled.
*/
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
@@ -1500,7 +1461,8 @@ static inline int node_match(struct kmem_cache_cpu *c, int node)
* rest of the freelist to the lockless freelist.
*
* And if we were unable to get a new slab from the partial slab lists then
- * we need to allocate a new slab. This is slowest path since we may sleep.
+ * we need to allocate a new slab. This is the slowest path since it involves
+ * a call to the page allocator and the setup of a new slab.
*/
static void *__slab_alloc(struct kmem_cache *s,
gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
@@ -1514,18 +1476,19 @@ static void *__slab_alloc(struct kmem_cache *s,
slab_lock(c->page);
if (unlikely(!node_match(c, node)))
goto another_slab;
+
stat(c, ALLOC_REFILL);
+
load_freelist:
object = c->page->freelist;
- if (unlikely(object == c->page->end))
+ if (unlikely(!object))
goto another_slab;
if (unlikely(SlabDebug(c->page)))
goto debug;
- object = c->page->freelist;
c->freelist = object[c->offset];
c->page->inuse = s->objects;
- c->page->freelist = c->page->end;
+ c->page->freelist = NULL;
c->node = page_to_nid(c->page);
unlock_out:
slab_unlock(c->page);
@@ -1578,7 +1541,6 @@ new_slab:
return NULL;
debug:
- object = c->page->freelist;
if (!alloc_debug_processing(s, c->page, object, addr))
goto another_slab;
@@ -1607,7 +1569,7 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
local_irq_save(flags);
c = get_cpu_slab(s, smp_processor_id());
- if (unlikely(is_end(c->freelist) || !node_match(c, node)))
+ if (unlikely(!c->freelist || !node_match(c, node)))
object = __slab_alloc(s, gfpflags, node, addr, c);
@@ -1659,6 +1621,7 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
if (unlikely(SlabDebug(page)))
goto debug;
+
checks_ok:
prior = object[offset] = page->freelist;
page->freelist = object;
@@ -1673,11 +1636,10 @@ checks_ok:
goto slab_empty;
/*
- * Objects left in the slab. If it
- * was not on the partial list before
+ * Objects left in the slab. If it was not on the partial list before
* then add it.
*/
- if (unlikely(prior == page->end)) {
+ if (unlikely(!prior)) {
add_partial(get_node(s, page_to_nid(page)), page, 1);
stat(c, FREE_ADD_PARTIAL);
}
@@ -1687,7 +1649,7 @@ out_unlock:
return;
slab_empty:
- if (prior != page->end) {
+ if (prior) {
/*
* Slab still on the partial list.
*/
@@ -1724,8 +1686,8 @@ static __always_inline void slab_free(struct kmem_cache *s,
unsigned long flags;
local_irq_save(flags);
- debug_check_no_locks_freed(object, s->objsize);
c = get_cpu_slab(s, smp_processor_id());
+ debug_check_no_locks_freed(object, c->objsize);
if (likely(page == c->page && c->node >= 0)) {
object[c->offset] = c->freelist;
c->freelist = object;
@@ -1888,20 +1850,21 @@ static unsigned long calculate_alignment(unsigned long flags,
unsigned long align, unsigned long size)
{
/*
- * If the user wants hardware cache aligned objects then
- * follow that suggestion if the object is sufficiently
- * large.
+ * If the user wants hardware cache aligned objects then follow that
+ * suggestion if the object is sufficiently large.
*
- * The hardware cache alignment cannot override the
- * specified alignment though. If that is greater
- * then use it.
+ * The hardware cache alignment cannot override the specified
+ * alignment though. If that is greater then use it.
*/
- if ((flags & SLAB_HWCACHE_ALIGN) &&
- size > cache_line_size() / 2)
- return max_t(unsigned long, align, cache_line_size());
+ if (flags & SLAB_HWCACHE_ALIGN) {
+ unsigned long ralign = cache_line_size();
+ while (size <= ralign / 2)
+ ralign /= 2;
+ align = max(align, ralign);
+ }
if (align < ARCH_SLAB_MINALIGN)
- return ARCH_SLAB_MINALIGN;
+ align = ARCH_SLAB_MINALIGN;
return ALIGN(align, sizeof(void *));
}
@@ -1910,7 +1873,7 @@ static void init_kmem_cache_cpu(struct kmem_cache *s,
struct kmem_cache_cpu *c)
{
c->page = NULL;
- c->freelist = (void *)PAGE_MAPPING_ANON;
+ c->freelist = NULL;
c->node = 0;
c->offset = s->offset / sizeof(void *);
c->objsize = s->objsize;
@@ -2092,6 +2055,7 @@ static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
#endif
init_kmem_cache_node(n);
atomic_long_inc(&n->nr_slabs);
+
/*
* lockdep requires consistent irq usage for each lock
* so even though there cannot be a race this early in
@@ -2173,6 +2137,14 @@ static int calculate_sizes(struct kmem_cache *s)
unsigned long align = s->align;
/*
+ * Round up object size to the next word boundary. We can only
+ * place the free pointer at word boundaries and this determines
+ * the possible location of the free pointer.
+ */
+ size = ALIGN(size, sizeof(void *));
+
+#ifdef CONFIG_SLUB_DEBUG
+ /*
* Determine if we can poison the object itself. If the user of
* the slab may touch the object after free or before allocation
* then we should never poison the object itself.
@@ -2183,14 +2155,7 @@ static int calculate_sizes(struct kmem_cache *s)
else
s->flags &= ~__OBJECT_POISON;
- /*
- * Round up object size to the next word boundary. We can only
- * place the free pointer at word boundaries and this determines
- * the possible location of the free pointer.
- */
- size = ALIGN(size, sizeof(void *));
-#ifdef CONFIG_SLUB_DEBUG
/*
* If we are Redzoning then check if there is some space between the
* end of the object and the free pointer. If not then add an
@@ -2343,7 +2308,7 @@ int kmem_ptr_validate(struct kmem_cache *s, const void *object)
/*
* We could also check if the object is on the slabs freelist.
* But this would be too expensive and it seems that the main
- * purpose of kmem_ptr_valid is to check if the object belongs
+ * purpose of kmem_ptr_valid() is to check if the object belongs
* to a certain slab.
*/
return 1;
@@ -2630,13 +2595,24 @@ void *__kmalloc(size_t size, gfp_t flags)
}
EXPORT_SYMBOL(__kmalloc);
+static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
+{
+ struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
+ get_order(size));
+
+ if (page)
+ return page_address(page);
+ else
+ return NULL;
+}
+
#ifdef CONFIG_NUMA
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
struct kmem_cache *s;
if (unlikely(size > PAGE_SIZE))
- return kmalloc_large(size, flags);
+ return kmalloc_large_node(size, flags, node);
s = get_slab(size, flags);
@@ -2653,19 +2629,17 @@ size_t ksize(const void *object)
struct page *page;
struct kmem_cache *s;
- BUG_ON(!object);
if (unlikely(object == ZERO_SIZE_PTR))
return 0;
page = virt_to_head_page(object);
- BUG_ON(!page);
if (unlikely(!PageSlab(page)))
return PAGE_SIZE << compound_order(page);
s = page->slab;
- BUG_ON(!s);
+#ifdef CONFIG_SLUB_DEBUG
/*
* Debugging requires use of the padding between object
* and whatever may come after it.
@@ -2673,6 +2647,7 @@ size_t ksize(const void *object)
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
return s->objsize;
+#endif
/*
* If we have the need to store the freelist pointer
* back there or track user information then we can
@@ -2680,7 +2655,6 @@ size_t ksize(const void *object)
*/
if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
return s->inuse;
-
/*
* Else we can use all the padding etc for the allocation
*/
@@ -2957,7 +2931,7 @@ void __init kmem_cache_init(void)
/*
* Patch up the size_index table if we have strange large alignment
* requirements for the kmalloc array. This is only the case for
- * mips it seems. The standard arches will not generate any code here.
+ * MIPS it seems. The standard arches will not generate any code here.
*
* Largest permitted alignment is 256 bytes due to the way we
* handle the index determination for the smaller caches.
@@ -2986,7 +2960,6 @@ void __init kmem_cache_init(void)
kmem_size = sizeof(struct kmem_cache);
#endif
-
printk(KERN_INFO
"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
" CPUs=%d, Nodes=%d\n",
@@ -3083,12 +3056,15 @@ struct kmem_cache *kmem_cache_create(const char *name, size_t size,
*/
for_each_online_cpu(cpu)
get_cpu_slab(s, cpu)->objsize = s->objsize;
+
s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
up_write(&slub_lock);
+
if (sysfs_slab_alias(s, name))
goto err;
return s;
}
+
s = kmalloc(kmem_size, GFP_KERNEL);
if (s) {
if (kmem_cache_open(s, GFP_KERNEL, name,
@@ -3184,7 +3160,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
struct kmem_cache *s;
if (unlikely(size > PAGE_SIZE))
- return kmalloc_large(size, gfpflags);
+ return kmalloc_large_node(size, gfpflags, node);
s = get_slab(size, gfpflags);
@@ -3199,7 +3175,7 @@ static int validate_slab(struct kmem_cache *s, struct page *page,
unsigned long *map)
{
void *p;
- void *addr = slab_address(page);
+ void *addr = page_address(page);
if (!check_slab(s, page) ||
!on_freelist(s, page, NULL))
@@ -3482,7 +3458,7 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
static void process_slab(struct loc_track *t, struct kmem_cache *s,
struct page *page, enum track_item alloc)
{
- void *addr = slab_address(page);
+ void *addr = page_address(page);
DECLARE_BITMAP(map, s->objects);
void *p;
@@ -3591,8 +3567,8 @@ enum slab_stat_type {
#define SO_CPU (1 << SL_CPU)
#define SO_OBJECTS (1 << SL_OBJECTS)
-static unsigned long slab_objects(struct kmem_cache *s,
- char *buf, unsigned long flags)
+static ssize_t show_slab_objects(struct kmem_cache *s,
+ char *buf, unsigned long flags)
{
unsigned long total = 0;
int cpu;
@@ -3602,6 +3578,8 @@ static unsigned long slab_objects(struct kmem_cache *s,
unsigned long *per_cpu;
nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
+ if (!nodes)
+ return -ENOMEM;
per_cpu = nodes + nr_node_ids;
for_each_possible_cpu(cpu) {
@@ -3754,25 +3732,25 @@ SLAB_ATTR_RO(aliases);
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
- return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
+ return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
}
SLAB_ATTR_RO(slabs);
static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
- return slab_objects(s, buf, SO_PARTIAL);
+ return show_slab_objects(s, buf, SO_PARTIAL);
}
SLAB_ATTR_RO(partial);
static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
- return slab_objects(s, buf, SO_CPU);
+ return show_slab_objects(s, buf, SO_CPU);
}
SLAB_ATTR_RO(cpu_slabs);
static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
- return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
+ return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
}
SLAB_ATTR_RO(objects);
@@ -3971,7 +3949,6 @@ SLAB_ATTR(remote_node_defrag_ratio);
#endif
#ifdef CONFIG_SLUB_STATS
-
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
unsigned long sum = 0;
@@ -4155,8 +4132,8 @@ static struct kset *slab_kset;
#define ID_STR_LENGTH 64
/* Create a unique string id for a slab cache:
- * format
- * :[flags-]size:[memory address of kmemcache]
+ *
+ * Format :[flags-]size
*/
static char *create_unique_id(struct kmem_cache *s)
{
diff --git a/mm/swap.c b/mm/swap.c
index 710a20b..d4ec59a 100644
--- a/mm/swap.c
+++ b/mm/swap.c
@@ -176,7 +176,7 @@ void activate_page(struct page *page)
SetPageActive(page);
add_page_to_active_list(zone, page);
__count_vm_event(PGACTIVATE);
- mem_cgroup_move_lists(page_get_page_cgroup(page), true);
+ mem_cgroup_move_lists(page, true);
}
spin_unlock_irq(&zone->lru_lock);
}
diff --git a/mm/truncate.c b/mm/truncate.c
index c35c49e..7d20ce4 100644
--- a/mm/truncate.c
+++ b/mm/truncate.c
@@ -134,8 +134,7 @@ invalidate_complete_page(struct address_space *mapping, struct page *page)
}
/**
- * truncate_inode_pages - truncate range of pages specified by start and
- * end byte offsets
+ * truncate_inode_pages - truncate range of pages specified by start & end byte offsets
* @mapping: mapping to truncate
* @lstart: offset from which to truncate
* @lend: offset to which to truncate
diff --git a/mm/vmscan.c b/mm/vmscan.c
index a26dabd..4571158 100644
--- a/mm/vmscan.c
+++ b/mm/vmscan.c
@@ -126,7 +126,7 @@ long vm_total_pages; /* The total number of pages which the VM controls */
static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);
-#ifdef CONFIG_CGROUP_MEM_CONT
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR
#define scan_global_lru(sc) (!(sc)->mem_cgroup)
#else
#define scan_global_lru(sc) (1)
@@ -1128,7 +1128,7 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
ClearPageActive(page);
list_move(&page->lru, &zone->inactive_list);
- mem_cgroup_move_lists(page_get_page_cgroup(page), false);
+ mem_cgroup_move_lists(page, false);
pgmoved++;
if (!pagevec_add(&pvec, page)) {
__mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
@@ -1156,8 +1156,9 @@ static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
VM_BUG_ON(PageLRU(page));
SetPageLRU(page);
VM_BUG_ON(!PageActive(page));
+
list_move(&page->lru, &zone->active_list);
- mem_cgroup_move_lists(page_get_page_cgroup(page), true);
+ mem_cgroup_move_lists(page, true);
pgmoved++;
if (!pagevec_add(&pvec, page)) {
__mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
@@ -1427,7 +1428,7 @@ unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
return do_try_to_free_pages(zones, gfp_mask, &sc);
}
-#ifdef CONFIG_CGROUP_MEM_CONT
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR
unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
gfp_t gfp_mask)
OpenPOWER on IntegriCloud