diff options
Diffstat (limited to 'mm')
-rw-r--r-- | mm/Kconfig | 26 | ||||
-rw-r--r-- | mm/Makefile | 2 | ||||
-rw-r--r-- | mm/backing-dev.c | 23 | ||||
-rw-r--r-- | mm/compaction.c | 3 | ||||
-rw-r--r-- | mm/filemap.c | 63 | ||||
-rw-r--r-- | mm/fremap.c | 11 | ||||
-rw-r--r-- | mm/huge_memory.c | 160 | ||||
-rw-r--r-- | mm/hugetlb.c | 449 | ||||
-rw-r--r-- | mm/hugetlb_cgroup.c | 69 | ||||
-rw-r--r-- | mm/hwpoison-inject.c | 4 | ||||
-rw-r--r-- | mm/internal.h | 2 | ||||
-rw-r--r-- | mm/kmemleak.c | 2 | ||||
-rw-r--r-- | mm/ksm.c | 6 | ||||
-rw-r--r-- | mm/list_lru.c | 139 | ||||
-rw-r--r-- | mm/madvise.c | 33 | ||||
-rw-r--r-- | mm/memblock.c | 18 | ||||
-rw-r--r-- | mm/memcontrol.c | 1119 | ||||
-rw-r--r-- | mm/memory-failure.c | 183 | ||||
-rw-r--r-- | mm/memory.c | 143 | ||||
-rw-r--r-- | mm/memory_hotplug.c | 116 | ||||
-rw-r--r-- | mm/mempolicy.c | 122 | ||||
-rw-r--r-- | mm/mempool.c | 2 | ||||
-rw-r--r-- | mm/migrate.c | 63 | ||||
-rw-r--r-- | mm/mlock.c | 316 | ||||
-rw-r--r-- | mm/mmap.c | 65 | ||||
-rw-r--r-- | mm/mremap.c | 26 | ||||
-rw-r--r-- | mm/oom_kill.c | 13 | ||||
-rw-r--r-- | mm/page-writeback.c | 288 | ||||
-rw-r--r-- | mm/page_alloc.c | 310 | ||||
-rw-r--r-- | mm/page_isolation.c | 22 | ||||
-rw-r--r-- | mm/pgtable-generic.c | 24 | ||||
-rw-r--r-- | mm/readahead.c | 8 | ||||
-rw-r--r-- | mm/rmap.c | 39 | ||||
-rw-r--r-- | mm/shmem.c | 24 | ||||
-rw-r--r-- | mm/slab.c | 10 | ||||
-rw-r--r-- | mm/slab.h | 2 | ||||
-rw-r--r-- | mm/slub.c | 15 | ||||
-rw-r--r-- | mm/sparse.c | 133 | ||||
-rw-r--r-- | mm/swap.c | 150 | ||||
-rw-r--r-- | mm/swap_state.c | 4 | ||||
-rw-r--r-- | mm/swapfile.c | 615 | ||||
-rw-r--r-- | mm/truncate.c | 9 | ||||
-rw-r--r-- | mm/util.c | 5 | ||||
-rw-r--r-- | mm/vmalloc.c | 29 | ||||
-rw-r--r-- | mm/vmpressure.c | 53 | ||||
-rw-r--r-- | mm/vmscan.c | 404 | ||||
-rw-r--r-- | mm/vmstat.c | 101 | ||||
-rw-r--r-- | mm/zbud.c | 6 | ||||
-rw-r--r-- | mm/zswap.c | 18 |
49 files changed, 3339 insertions, 2108 deletions
@@ -245,7 +245,7 @@ config COMPACTION config MIGRATION bool "Page migration" def_bool y - depends on NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA + depends on (NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA) && MMU help Allows the migration of the physical location of pages of processes while the virtual addresses are not changed. This is useful in @@ -478,6 +478,30 @@ config FRONTSWAP If unsure, say Y to enable frontswap. +config CMA + bool "Contiguous Memory Allocator" + depends on HAVE_MEMBLOCK && MMU + select MIGRATION + select MEMORY_ISOLATION + help + This enables the Contiguous Memory Allocator which allows other + subsystems to allocate big physically-contiguous blocks of memory. + CMA reserves a region of memory and allows only movable pages to + be allocated from it. This way, the kernel can use the memory for + pagecache and when a subsystem requests for contiguous area, the + allocated pages are migrated away to serve the contiguous request. + + If unsure, say "n". + +config CMA_DEBUG + bool "CMA debug messages (DEVELOPMENT)" + depends on DEBUG_KERNEL && CMA + help + Turns on debug messages in CMA. This produces KERN_DEBUG + messages for every CMA call as well as various messages while + processing calls such as dma_alloc_from_contiguous(). + This option does not affect warning and error messages. + config ZBUD tristate default n diff --git a/mm/Makefile b/mm/Makefile index f008033..305d10a 100644 --- a/mm/Makefile +++ b/mm/Makefile @@ -17,7 +17,7 @@ obj-y := filemap.o mempool.o oom_kill.o fadvise.o \ util.o mmzone.o vmstat.o backing-dev.o \ mm_init.o mmu_context.o percpu.o slab_common.o \ compaction.o balloon_compaction.o \ - interval_tree.o $(mmu-y) + interval_tree.o list_lru.o $(mmu-y) obj-y += init-mm.o diff --git a/mm/backing-dev.c b/mm/backing-dev.c index d014ee5..ce682f7 100644 --- a/mm/backing-dev.c +++ b/mm/backing-dev.c @@ -180,7 +180,8 @@ static ssize_t name##_show(struct device *dev, \ struct backing_dev_info *bdi = dev_get_drvdata(dev); \ \ return snprintf(page, PAGE_SIZE-1, "%lld\n", (long long)expr); \ -} +} \ +static DEVICE_ATTR_RW(name); BDI_SHOW(read_ahead_kb, K(bdi->ra_pages)) @@ -231,16 +232,16 @@ static ssize_t stable_pages_required_show(struct device *dev, return snprintf(page, PAGE_SIZE-1, "%d\n", bdi_cap_stable_pages_required(bdi) ? 1 : 0); } +static DEVICE_ATTR_RO(stable_pages_required); -#define __ATTR_RW(attr) __ATTR(attr, 0644, attr##_show, attr##_store) - -static struct device_attribute bdi_dev_attrs[] = { - __ATTR_RW(read_ahead_kb), - __ATTR_RW(min_ratio), - __ATTR_RW(max_ratio), - __ATTR_RO(stable_pages_required), - __ATTR_NULL, +static struct attribute *bdi_dev_attrs[] = { + &dev_attr_read_ahead_kb.attr, + &dev_attr_min_ratio.attr, + &dev_attr_max_ratio.attr, + &dev_attr_stable_pages_required.attr, + NULL, }; +ATTRIBUTE_GROUPS(bdi_dev); static __init int bdi_class_init(void) { @@ -248,7 +249,7 @@ static __init int bdi_class_init(void) if (IS_ERR(bdi_class)) return PTR_ERR(bdi_class); - bdi_class->dev_attrs = bdi_dev_attrs; + bdi_class->dev_groups = bdi_dev_groups; bdi_debug_init(); return 0; } @@ -651,7 +652,7 @@ int pdflush_proc_obsolete(struct ctl_table *table, int write, { char kbuf[] = "0\n"; - if (*ppos) { + if (*ppos || *lenp < sizeof(kbuf)) { *lenp = 0; return 0; } diff --git a/mm/compaction.c b/mm/compaction.c index 05ccb4c..c437893 100644 --- a/mm/compaction.c +++ b/mm/compaction.c @@ -1131,6 +1131,9 @@ void compact_pgdat(pg_data_t *pgdat, int order) .sync = false, }; + if (!order) + return; + __compact_pgdat(pgdat, &cc); } diff --git a/mm/filemap.c b/mm/filemap.c index 4b51ac1..1e6aec4 100644 --- a/mm/filemap.c +++ b/mm/filemap.c @@ -467,32 +467,34 @@ int add_to_page_cache_locked(struct page *page, struct address_space *mapping, error = mem_cgroup_cache_charge(page, current->mm, gfp_mask & GFP_RECLAIM_MASK); if (error) - goto out; - - error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); - if (error == 0) { - page_cache_get(page); - page->mapping = mapping; - page->index = offset; + return error; - spin_lock_irq(&mapping->tree_lock); - error = radix_tree_insert(&mapping->page_tree, offset, page); - if (likely(!error)) { - mapping->nrpages++; - __inc_zone_page_state(page, NR_FILE_PAGES); - spin_unlock_irq(&mapping->tree_lock); - trace_mm_filemap_add_to_page_cache(page); - } else { - page->mapping = NULL; - /* Leave page->index set: truncation relies upon it */ - spin_unlock_irq(&mapping->tree_lock); - mem_cgroup_uncharge_cache_page(page); - page_cache_release(page); - } - radix_tree_preload_end(); - } else + error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); + if (error) { mem_cgroup_uncharge_cache_page(page); -out: + return error; + } + + page_cache_get(page); + page->mapping = mapping; + page->index = offset; + + spin_lock_irq(&mapping->tree_lock); + error = radix_tree_insert(&mapping->page_tree, offset, page); + radix_tree_preload_end(); + if (unlikely(error)) + goto err_insert; + mapping->nrpages++; + __inc_zone_page_state(page, NR_FILE_PAGES); + spin_unlock_irq(&mapping->tree_lock); + trace_mm_filemap_add_to_page_cache(page); + return 0; +err_insert: + page->mapping = NULL; + /* Leave page->index set: truncation relies upon it */ + spin_unlock_irq(&mapping->tree_lock); + mem_cgroup_uncharge_cache_page(page); + page_cache_release(page); return error; } EXPORT_SYMBOL(add_to_page_cache_locked); @@ -1614,6 +1616,7 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) struct inode *inode = mapping->host; pgoff_t offset = vmf->pgoff; struct page *page; + bool memcg_oom; pgoff_t size; int ret = 0; @@ -1622,7 +1625,11 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) return VM_FAULT_SIGBUS; /* - * Do we have something in the page cache already? + * Do we have something in the page cache already? Either + * way, try readahead, but disable the memcg OOM killer for it + * as readahead is optional and no errors are propagated up + * the fault stack. The OOM killer is enabled while trying to + * instantiate the faulting page individually below. */ page = find_get_page(mapping, offset); if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { @@ -1630,10 +1637,14 @@ int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) * We found the page, so try async readahead before * waiting for the lock. */ + memcg_oom = mem_cgroup_toggle_oom(false); do_async_mmap_readahead(vma, ra, file, page, offset); + mem_cgroup_toggle_oom(memcg_oom); } else if (!page) { /* No page in the page cache at all */ + memcg_oom = mem_cgroup_toggle_oom(false); do_sync_mmap_readahead(vma, ra, file, offset); + mem_cgroup_toggle_oom(memcg_oom); count_vm_event(PGMAJFAULT); mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); ret = VM_FAULT_MAJOR; @@ -2550,7 +2561,7 @@ ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); mutex_unlock(&inode->i_mutex); - if (ret > 0 || ret == -EIOCBQUEUED) { + if (ret > 0) { ssize_t err; err = generic_write_sync(file, pos, ret); diff --git a/mm/fremap.c b/mm/fremap.c index 87da359..5bff081 100644 --- a/mm/fremap.c +++ b/mm/fremap.c @@ -57,17 +57,22 @@ static int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot) { int err = -ENOMEM; - pte_t *pte; + pte_t *pte, ptfile; spinlock_t *ptl; pte = get_locked_pte(mm, addr, &ptl); if (!pte) goto out; - if (!pte_none(*pte)) + ptfile = pgoff_to_pte(pgoff); + + if (!pte_none(*pte)) { + if (pte_present(*pte) && pte_soft_dirty(*pte)) + pte_file_mksoft_dirty(ptfile); zap_pte(mm, vma, addr, pte); + } - set_pte_at(mm, addr, pte, pgoff_to_pte(pgoff)); + set_pte_at(mm, addr, pte, ptfile); /* * We don't need to run update_mmu_cache() here because the "file pte" * being installed by install_file_pte() is not a real pte - it's a diff --git a/mm/huge_memory.c b/mm/huge_memory.c index 243e710..7489884 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -211,24 +211,29 @@ static void put_huge_zero_page(void) BUG_ON(atomic_dec_and_test(&huge_zero_refcount)); } -static int shrink_huge_zero_page(struct shrinker *shrink, - struct shrink_control *sc) +static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink, + struct shrink_control *sc) { - if (!sc->nr_to_scan) - /* we can free zero page only if last reference remains */ - return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; + /* we can free zero page only if last reference remains */ + return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0; +} +static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink, + struct shrink_control *sc) +{ if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) { struct page *zero_page = xchg(&huge_zero_page, NULL); BUG_ON(zero_page == NULL); __free_page(zero_page); + return HPAGE_PMD_NR; } return 0; } static struct shrinker huge_zero_page_shrinker = { - .shrink = shrink_huge_zero_page, + .count_objects = shrink_huge_zero_page_count, + .scan_objects = shrink_huge_zero_page_scan, .seeks = DEFAULT_SEEKS, }; @@ -417,7 +422,7 @@ static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, unsigned long msecs; int err; - err = strict_strtoul(buf, 10, &msecs); + err = kstrtoul(buf, 10, &msecs); if (err || msecs > UINT_MAX) return -EINVAL; @@ -444,7 +449,7 @@ static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, unsigned long msecs; int err; - err = strict_strtoul(buf, 10, &msecs); + err = kstrtoul(buf, 10, &msecs); if (err || msecs > UINT_MAX) return -EINVAL; @@ -470,7 +475,7 @@ static ssize_t pages_to_scan_store(struct kobject *kobj, int err; unsigned long pages; - err = strict_strtoul(buf, 10, &pages); + err = kstrtoul(buf, 10, &pages); if (err || !pages || pages > UINT_MAX) return -EINVAL; @@ -538,7 +543,7 @@ static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, int err; unsigned long max_ptes_none; - err = strict_strtoul(buf, 10, &max_ptes_none); + err = kstrtoul(buf, 10, &max_ptes_none); if (err || max_ptes_none > HPAGE_PMD_NR-1) return -EINVAL; @@ -690,11 +695,10 @@ pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma) return pmd; } -static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma) +static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot) { pmd_t entry; - entry = mk_pmd(page, vma->vm_page_prot); - entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); + entry = mk_pmd(page, prot); entry = pmd_mkhuge(entry); return entry; } @@ -727,7 +731,8 @@ static int __do_huge_pmd_anonymous_page(struct mm_struct *mm, pte_free(mm, pgtable); } else { pmd_t entry; - entry = mk_huge_pmd(page, vma); + entry = mk_huge_pmd(page, vma->vm_page_prot); + entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); page_add_new_anon_rmap(page, vma, haddr); pgtable_trans_huge_deposit(mm, pmd, pgtable); set_pmd_at(mm, haddr, pmd, entry); @@ -783,77 +788,57 @@ int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, { struct page *page; unsigned long haddr = address & HPAGE_PMD_MASK; - pte_t *pte; - if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) { - if (unlikely(anon_vma_prepare(vma))) - return VM_FAULT_OOM; - if (unlikely(khugepaged_enter(vma))) + if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) + return VM_FAULT_FALLBACK; + if (unlikely(anon_vma_prepare(vma))) + return VM_FAULT_OOM; + if (unlikely(khugepaged_enter(vma))) + return VM_FAULT_OOM; + if (!(flags & FAULT_FLAG_WRITE) && + transparent_hugepage_use_zero_page()) { + pgtable_t pgtable; + struct page *zero_page; + bool set; + pgtable = pte_alloc_one(mm, haddr); + if (unlikely(!pgtable)) return VM_FAULT_OOM; - if (!(flags & FAULT_FLAG_WRITE) && - transparent_hugepage_use_zero_page()) { - pgtable_t pgtable; - struct page *zero_page; - bool set; - pgtable = pte_alloc_one(mm, haddr); - if (unlikely(!pgtable)) - return VM_FAULT_OOM; - zero_page = get_huge_zero_page(); - if (unlikely(!zero_page)) { - pte_free(mm, pgtable); - count_vm_event(THP_FAULT_FALLBACK); - goto out; - } - spin_lock(&mm->page_table_lock); - set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd, - zero_page); - spin_unlock(&mm->page_table_lock); - if (!set) { - pte_free(mm, pgtable); - put_huge_zero_page(); - } - return 0; - } - page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), - vma, haddr, numa_node_id(), 0); - if (unlikely(!page)) { + zero_page = get_huge_zero_page(); + if (unlikely(!zero_page)) { + pte_free(mm, pgtable); count_vm_event(THP_FAULT_FALLBACK); - goto out; + return VM_FAULT_FALLBACK; } - count_vm_event(THP_FAULT_ALLOC); - if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) { - put_page(page); - goto out; - } - if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, - page))) { - mem_cgroup_uncharge_page(page); - put_page(page); - goto out; + spin_lock(&mm->page_table_lock); + set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd, + zero_page); + spin_unlock(&mm->page_table_lock); + if (!set) { + pte_free(mm, pgtable); + put_huge_zero_page(); } - return 0; } -out: - /* - * Use __pte_alloc instead of pte_alloc_map, because we can't - * run pte_offset_map on the pmd, if an huge pmd could - * materialize from under us from a different thread. - */ - if (unlikely(pmd_none(*pmd)) && - unlikely(__pte_alloc(mm, vma, pmd, address))) - return VM_FAULT_OOM; - /* if an huge pmd materialized from under us just retry later */ - if (unlikely(pmd_trans_huge(*pmd))) - return 0; - /* - * A regular pmd is established and it can't morph into a huge pmd - * from under us anymore at this point because we hold the mmap_sem - * read mode and khugepaged takes it in write mode. So now it's - * safe to run pte_offset_map(). - */ - pte = pte_offset_map(pmd, address); - return handle_pte_fault(mm, vma, address, pte, pmd, flags); + page = alloc_hugepage_vma(transparent_hugepage_defrag(vma), + vma, haddr, numa_node_id(), 0); + if (unlikely(!page)) { + count_vm_event(THP_FAULT_FALLBACK); + return VM_FAULT_FALLBACK; + } + if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) { + put_page(page); + count_vm_event(THP_FAULT_FALLBACK); + return VM_FAULT_FALLBACK; + } + if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) { + mem_cgroup_uncharge_page(page); + put_page(page); + count_vm_event(THP_FAULT_FALLBACK); + return VM_FAULT_FALLBACK; + } + + count_vm_event(THP_FAULT_ALLOC); + return 0; } int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm, @@ -1165,7 +1150,6 @@ alloc: new_page = NULL; if (unlikely(!new_page)) { - count_vm_event(THP_FAULT_FALLBACK); if (is_huge_zero_pmd(orig_pmd)) { ret = do_huge_pmd_wp_zero_page_fallback(mm, vma, address, pmd, orig_pmd, haddr); @@ -1176,9 +1160,9 @@ alloc: split_huge_page(page); put_page(page); } + count_vm_event(THP_FAULT_FALLBACK); goto out; } - count_vm_event(THP_FAULT_ALLOC); if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) { put_page(new_page); @@ -1186,10 +1170,13 @@ alloc: split_huge_page(page); put_page(page); } + count_vm_event(THP_FAULT_FALLBACK); ret |= VM_FAULT_OOM; goto out; } + count_vm_event(THP_FAULT_ALLOC); + if (is_huge_zero_pmd(orig_pmd)) clear_huge_page(new_page, haddr, HPAGE_PMD_NR); else @@ -1210,7 +1197,8 @@ alloc: goto out_mn; } else { pmd_t entry; - entry = mk_huge_pmd(new_page, vma); + entry = mk_huge_pmd(new_page, vma->vm_page_prot); + entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); pmdp_clear_flush(vma, haddr, pmd); page_add_new_anon_rmap(new_page, vma, haddr); set_pmd_at(mm, haddr, pmd, entry); @@ -1620,7 +1608,9 @@ static void __split_huge_page_refcount(struct page *page, ((1L << PG_referenced) | (1L << PG_swapbacked) | (1L << PG_mlocked) | - (1L << PG_uptodate))); + (1L << PG_uptodate) | + (1L << PG_active) | + (1L << PG_unevictable))); page_tail->flags |= (1L << PG_dirty); /* clear PageTail before overwriting first_page */ @@ -1659,7 +1649,6 @@ static void __split_huge_page_refcount(struct page *page, BUG_ON(atomic_read(&page->_count) <= 0); __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1); - __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR); ClearPageCompound(page); compound_unlock(page); @@ -2294,6 +2283,8 @@ static void collapse_huge_page(struct mm_struct *mm, goto out; vma = find_vma(mm, address); + if (!vma) + goto out; hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; hend = vma->vm_end & HPAGE_PMD_MASK; if (address < hstart || address + HPAGE_PMD_SIZE > hend) @@ -2355,7 +2346,8 @@ static void collapse_huge_page(struct mm_struct *mm, __SetPageUptodate(new_page); pgtable = pmd_pgtable(_pmd); - _pmd = mk_huge_pmd(new_page, vma); + _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); + _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); /* * spin_lock() below is not the equivalent of smp_wmb(), so diff --git a/mm/hugetlb.c b/mm/hugetlb.c index 83aff0a..b49579c 100644 --- a/mm/hugetlb.c +++ b/mm/hugetlb.c @@ -21,6 +21,7 @@ #include <linux/rmap.h> #include <linux/swap.h> #include <linux/swapops.h> +#include <linux/page-isolation.h> #include <asm/page.h> #include <asm/pgtable.h> @@ -33,7 +34,6 @@ #include "internal.h" const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL; -static gfp_t htlb_alloc_mask = GFP_HIGHUSER; unsigned long hugepages_treat_as_movable; int hugetlb_max_hstate __read_mostly; @@ -48,7 +48,8 @@ static unsigned long __initdata default_hstate_max_huge_pages; static unsigned long __initdata default_hstate_size; /* - * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages + * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages, + * free_huge_pages, and surplus_huge_pages. */ DEFINE_SPINLOCK(hugetlb_lock); @@ -135,9 +136,9 @@ static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma) * across the pages in a mapping. * * The region data structures are protected by a combination of the mmap_sem - * and the hugetlb_instantion_mutex. To access or modify a region the caller + * and the hugetlb_instantiation_mutex. To access or modify a region the caller * must either hold the mmap_sem for write, or the mmap_sem for read and - * the hugetlb_instantiation mutex: + * the hugetlb_instantiation_mutex: * * down_write(&mm->mmap_sem); * or @@ -434,25 +435,6 @@ static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag) return (get_vma_private_data(vma) & flag) != 0; } -/* Decrement the reserved pages in the hugepage pool by one */ -static void decrement_hugepage_resv_vma(struct hstate *h, - struct vm_area_struct *vma) -{ - if (vma->vm_flags & VM_NORESERVE) - return; - - if (vma->vm_flags & VM_MAYSHARE) { - /* Shared mappings always use reserves */ - h->resv_huge_pages--; - } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { - /* - * Only the process that called mmap() has reserves for - * private mappings. - */ - h->resv_huge_pages--; - } -} - /* Reset counters to 0 and clear all HPAGE_RESV_* flags */ void reset_vma_resv_huge_pages(struct vm_area_struct *vma) { @@ -462,12 +444,35 @@ void reset_vma_resv_huge_pages(struct vm_area_struct *vma) } /* Returns true if the VMA has associated reserve pages */ -static int vma_has_reserves(struct vm_area_struct *vma) +static int vma_has_reserves(struct vm_area_struct *vma, long chg) { + if (vma->vm_flags & VM_NORESERVE) { + /* + * This address is already reserved by other process(chg == 0), + * so, we should decrement reserved count. Without decrementing, + * reserve count remains after releasing inode, because this + * allocated page will go into page cache and is regarded as + * coming from reserved pool in releasing step. Currently, we + * don't have any other solution to deal with this situation + * properly, so add work-around here. + */ + if (vma->vm_flags & VM_MAYSHARE && chg == 0) + return 1; + else + return 0; + } + + /* Shared mappings always use reserves */ if (vma->vm_flags & VM_MAYSHARE) return 1; + + /* + * Only the process that called mmap() has reserves for + * private mappings. + */ if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) return 1; + return 0; } @@ -517,9 +522,15 @@ static struct page *dequeue_huge_page_node(struct hstate *h, int nid) { struct page *page; - if (list_empty(&h->hugepage_freelists[nid])) + list_for_each_entry(page, &h->hugepage_freelists[nid], lru) + if (!is_migrate_isolate_page(page)) + break; + /* + * if 'non-isolated free hugepage' not found on the list, + * the allocation fails. + */ + if (&h->hugepage_freelists[nid] == &page->lru) return NULL; - page = list_entry(h->hugepage_freelists[nid].next, struct page, lru); list_move(&page->lru, &h->hugepage_activelist); set_page_refcounted(page); h->free_huge_pages--; @@ -527,9 +538,19 @@ static struct page *dequeue_huge_page_node(struct hstate *h, int nid) return page; } +/* Movability of hugepages depends on migration support. */ +static inline gfp_t htlb_alloc_mask(struct hstate *h) +{ + if (hugepages_treat_as_movable || hugepage_migration_support(h)) + return GFP_HIGHUSER_MOVABLE; + else + return GFP_HIGHUSER; +} + static struct page *dequeue_huge_page_vma(struct hstate *h, struct vm_area_struct *vma, - unsigned long address, int avoid_reserve) + unsigned long address, int avoid_reserve, + long chg) { struct page *page = NULL; struct mempolicy *mpol; @@ -539,16 +560,12 @@ static struct page *dequeue_huge_page_vma(struct hstate *h, struct zoneref *z; unsigned int cpuset_mems_cookie; -retry_cpuset: - cpuset_mems_cookie = get_mems_allowed(); - zonelist = huge_zonelist(vma, address, - htlb_alloc_mask, &mpol, &nodemask); /* * A child process with MAP_PRIVATE mappings created by their parent * have no page reserves. This check ensures that reservations are * not "stolen". The child may still get SIGKILLed */ - if (!vma_has_reserves(vma) && + if (!vma_has_reserves(vma, chg) && h->free_huge_pages - h->resv_huge_pages == 0) goto err; @@ -556,13 +573,23 @@ retry_cpuset: if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0) goto err; +retry_cpuset: + cpuset_mems_cookie = get_mems_allowed(); + zonelist = huge_zonelist(vma, address, + htlb_alloc_mask(h), &mpol, &nodemask); + for_each_zone_zonelist_nodemask(zone, z, zonelist, MAX_NR_ZONES - 1, nodemask) { - if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) { + if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) { page = dequeue_huge_page_node(h, zone_to_nid(zone)); if (page) { - if (!avoid_reserve) - decrement_hugepage_resv_vma(h, vma); + if (avoid_reserve) + break; + if (!vma_has_reserves(vma, chg)) + break; + + SetPagePrivate(page); + h->resv_huge_pages--; break; } } @@ -574,7 +601,6 @@ retry_cpuset: return page; err: - mpol_cond_put(mpol); return NULL; } @@ -620,15 +646,20 @@ static void free_huge_page(struct page *page) int nid = page_to_nid(page); struct hugepage_subpool *spool = (struct hugepage_subpool *)page_private(page); + bool restore_reserve; set_page_private(page, 0); page->mapping = NULL; BUG_ON(page_count(page)); BUG_ON(page_mapcount(page)); + restore_reserve = PagePrivate(page); spin_lock(&hugetlb_lock); hugetlb_cgroup_uncharge_page(hstate_index(h), pages_per_huge_page(h), page); + if (restore_reserve) + h->resv_huge_pages++; + if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) { /* remove the page from active list */ list_del(&page->lru); @@ -715,7 +746,7 @@ static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid) return NULL; page = alloc_pages_exact_node(nid, - htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| + htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); if (page) { @@ -772,33 +803,6 @@ static int hstate_next_node_to_alloc(struct hstate *h, return nid; } -static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) -{ - struct page *page; - int start_nid; - int next_nid; - int ret = 0; - - start_nid = hstate_next_node_to_alloc(h, nodes_allowed); - next_nid = start_nid; - - do { - page = alloc_fresh_huge_page_node(h, next_nid); - if (page) { - ret = 1; - break; - } - next_nid = hstate_next_node_to_alloc(h, nodes_allowed); - } while (next_nid != start_nid); - - if (ret) - count_vm_event(HTLB_BUDDY_PGALLOC); - else - count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); - - return ret; -} - /* * helper for free_pool_huge_page() - return the previously saved * node ["this node"] from which to free a huge page. Advance the @@ -817,6 +821,40 @@ static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) return nid; } +#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \ + for (nr_nodes = nodes_weight(*mask); \ + nr_nodes > 0 && \ + ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \ + nr_nodes--) + +#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \ + for (nr_nodes = nodes_weight(*mask); \ + nr_nodes > 0 && \ + ((node = hstate_next_node_to_free(hs, mask)) || 1); \ + nr_nodes--) + +static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed) +{ + struct page *page; + int nr_nodes, node; + int ret = 0; + + for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { + page = alloc_fresh_huge_page_node(h, node); + if (page) { + ret = 1; + break; + } + } + + if (ret) + count_vm_event(HTLB_BUDDY_PGALLOC); + else + count_vm_event(HTLB_BUDDY_PGALLOC_FAIL); + + return ret; +} + /* * Free huge page from pool from next node to free. * Attempt to keep persistent huge pages more or less @@ -826,40 +864,73 @@ static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed) static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed, bool acct_surplus) { - int start_nid; - int next_nid; + int nr_nodes, node; int ret = 0; - start_nid = hstate_next_node_to_free(h, nodes_allowed); - next_nid = start_nid; - - do { + for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { /* * If we're returning unused surplus pages, only examine * nodes with surplus pages. */ - if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) && - !list_empty(&h->hugepage_freelists[next_nid])) { + if ((!acct_surplus || h->surplus_huge_pages_node[node]) && + !list_empty(&h->hugepage_freelists[node])) { struct page *page = - list_entry(h->hugepage_freelists[next_nid].next, + list_entry(h->hugepage_freelists[node].next, struct page, lru); list_del(&page->lru); h->free_huge_pages--; - h->free_huge_pages_node[next_nid]--; + h->free_huge_pages_node[node]--; if (acct_surplus) { h->surplus_huge_pages--; - h->surplus_huge_pages_node[next_nid]--; + h->surplus_huge_pages_node[node]--; } update_and_free_page(h, page); ret = 1; break; } - next_nid = hstate_next_node_to_free(h, nodes_allowed); - } while (next_nid != start_nid); + } return ret; } +/* + * Dissolve a given free hugepage into free buddy pages. This function does + * nothing for in-use (including surplus) hugepages. + */ +static void dissolve_free_huge_page(struct page *page) +{ + spin_lock(&hugetlb_lock); + if (PageHuge(page) && !page_count(page)) { + struct hstate *h = page_hstate(page); + int nid = page_to_nid(page); + list_del(&page->lru); + h->free_huge_pages--; + h->free_huge_pages_node[nid]--; + update_and_free_page(h, page); + } + spin_unlock(&hugetlb_lock); +} + +/* + * Dissolve free hugepages in a given pfn range. Used by memory hotplug to + * make specified memory blocks removable from the system. + * Note that start_pfn should aligned with (minimum) hugepage size. + */ +void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn) +{ + unsigned int order = 8 * sizeof(void *); + unsigned long pfn; + struct hstate *h; + + /* Set scan step to minimum hugepage size */ + for_each_hstate(h) + if (order > huge_page_order(h)) + order = huge_page_order(h); + VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order)); + for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) + dissolve_free_huge_page(pfn_to_page(pfn)); +} + static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) { struct page *page; @@ -902,12 +973,12 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) spin_unlock(&hugetlb_lock); if (nid == NUMA_NO_NODE) - page = alloc_pages(htlb_alloc_mask|__GFP_COMP| + page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP| __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); else page = alloc_pages_exact_node(nid, - htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE| + htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE| __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h)); if (page && arch_prepare_hugepage(page)) { @@ -944,10 +1015,11 @@ static struct page *alloc_buddy_huge_page(struct hstate *h, int nid) */ struct page *alloc_huge_page_node(struct hstate *h, int nid) { - struct page *page; + struct page *page = NULL; spin_lock(&hugetlb_lock); - page = dequeue_huge_page_node(h, nid); + if (h->free_huge_pages - h->resv_huge_pages > 0) + page = dequeue_huge_page_node(h, nid); spin_unlock(&hugetlb_lock); if (!page) @@ -1035,11 +1107,8 @@ free: spin_unlock(&hugetlb_lock); /* Free unnecessary surplus pages to the buddy allocator */ - if (!list_empty(&surplus_list)) { - list_for_each_entry_safe(page, tmp, &surplus_list, lru) { - put_page(page); - } - } + list_for_each_entry_safe(page, tmp, &surplus_list, lru) + put_page(page); spin_lock(&hugetlb_lock); return ret; @@ -1106,9 +1175,9 @@ static long vma_needs_reservation(struct hstate *h, } else { long err; pgoff_t idx = vma_hugecache_offset(h, vma, addr); - struct resv_map *reservations = vma_resv_map(vma); + struct resv_map *resv = vma_resv_map(vma); - err = region_chg(&reservations->regions, idx, idx + 1); + err = region_chg(&resv->regions, idx, idx + 1); if (err < 0) return err; return 0; @@ -1126,10 +1195,10 @@ static void vma_commit_reservation(struct hstate *h, } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) { pgoff_t idx = vma_hugecache_offset(h, vma, addr); - struct resv_map *reservations = vma_resv_map(vma); + struct resv_map *resv = vma_resv_map(vma); /* Mark this page used in the map. */ - region_add(&reservations->regions, idx, idx + 1); + region_add(&resv->regions, idx, idx + 1); } } @@ -1155,38 +1224,35 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma, chg = vma_needs_reservation(h, vma, addr); if (chg < 0) return ERR_PTR(-ENOMEM); - if (chg) - if (hugepage_subpool_get_pages(spool, chg)) + if (chg || avoid_reserve) + if (hugepage_subpool_get_pages(spool, 1)) return ERR_PTR(-ENOSPC); ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg); if (ret) { - hugepage_subpool_put_pages(spool, chg); + if (chg || avoid_reserve) + hugepage_subpool_put_pages(spool, 1); return ERR_PTR(-ENOSPC); } spin_lock(&hugetlb_lock); - page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve); - if (page) { - /* update page cgroup details */ - hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), - h_cg, page); - spin_unlock(&hugetlb_lock); - } else { + page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg); + if (!page) { spin_unlock(&hugetlb_lock); page = alloc_buddy_huge_page(h, NUMA_NO_NODE); if (!page) { hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg); - hugepage_subpool_put_pages(spool, chg); + if (chg || avoid_reserve) + hugepage_subpool_put_pages(spool, 1); return ERR_PTR(-ENOSPC); } spin_lock(&hugetlb_lock); - hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), - h_cg, page); list_move(&page->lru, &h->hugepage_activelist); - spin_unlock(&hugetlb_lock); + /* Fall through */ } + hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page); + spin_unlock(&hugetlb_lock); set_page_private(page, (unsigned long)spool); @@ -1194,17 +1260,29 @@ static struct page *alloc_huge_page(struct vm_area_struct *vma, return page; } +/* + * alloc_huge_page()'s wrapper which simply returns the page if allocation + * succeeds, otherwise NULL. This function is called from new_vma_page(), + * where no ERR_VALUE is expected to be returned. + */ +struct page *alloc_huge_page_noerr(struct vm_area_struct *vma, + unsigned long addr, int avoid_reserve) +{ + struct page *page = alloc_huge_page(vma, addr, avoid_reserve); + if (IS_ERR(page)) + page = NULL; + return page; +} + int __weak alloc_bootmem_huge_page(struct hstate *h) { struct huge_bootmem_page *m; - int nr_nodes = nodes_weight(node_states[N_MEMORY]); + int nr_nodes, node; - while (nr_nodes) { + for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) { void *addr; - addr = __alloc_bootmem_node_nopanic( - NODE_DATA(hstate_next_node_to_alloc(h, - &node_states[N_MEMORY])), + addr = __alloc_bootmem_node_nopanic(NODE_DATA(node), huge_page_size(h), huge_page_size(h), 0); if (addr) { @@ -1216,7 +1294,6 @@ int __weak alloc_bootmem_huge_page(struct hstate *h) m = addr; goto found; } - nr_nodes--; } return 0; @@ -1355,48 +1432,28 @@ static inline void try_to_free_low(struct hstate *h, unsigned long count, static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed, int delta) { - int start_nid, next_nid; - int ret = 0; + int nr_nodes, node; VM_BUG_ON(delta != -1 && delta != 1); - if (delta < 0) - start_nid = hstate_next_node_to_alloc(h, nodes_allowed); - else - start_nid = hstate_next_node_to_free(h, nodes_allowed); - next_nid = start_nid; - - do { - int nid = next_nid; - if (delta < 0) { - /* - * To shrink on this node, there must be a surplus page - */ - if (!h->surplus_huge_pages_node[nid]) { - next_nid = hstate_next_node_to_alloc(h, - nodes_allowed); - continue; - } + if (delta < 0) { + for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) { + if (h->surplus_huge_pages_node[node]) + goto found; } - if (delta > 0) { - /* - * Surplus cannot exceed the total number of pages - */ - if (h->surplus_huge_pages_node[nid] >= - h->nr_huge_pages_node[nid]) { - next_nid = hstate_next_node_to_free(h, - nodes_allowed); - continue; - } + } else { + for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) { + if (h->surplus_huge_pages_node[node] < + h->nr_huge_pages_node[node]) + goto found; } + } + return 0; - h->surplus_huge_pages += delta; - h->surplus_huge_pages_node[nid] += delta; - ret = 1; - break; - } while (next_nid != start_nid); - - return ret; +found: + h->surplus_huge_pages += delta; + h->surplus_huge_pages_node[node] += delta; + return 1; } #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages) @@ -1526,7 +1583,7 @@ static ssize_t nr_hugepages_store_common(bool obey_mempolicy, struct hstate *h; NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY); - err = strict_strtoul(buf, 10, &count); + err = kstrtoul(buf, 10, &count); if (err) goto out; @@ -1617,7 +1674,7 @@ static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj, if (h->order >= MAX_ORDER) return -EINVAL; - err = strict_strtoul(buf, 10, &input); + err = kstrtoul(buf, 10, &input); if (err) return err; @@ -2068,18 +2125,6 @@ int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write, } #endif /* CONFIG_NUMA */ -int hugetlb_treat_movable_handler(struct ctl_table *table, int write, - void __user *buffer, - size_t *length, loff_t *ppos) -{ - proc_dointvec(table, write, buffer, length, ppos); - if (hugepages_treat_as_movable) - htlb_alloc_mask = GFP_HIGHUSER_MOVABLE; - else - htlb_alloc_mask = GFP_HIGHUSER; - return 0; -} - int hugetlb_overcommit_handler(struct ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) @@ -2207,7 +2252,7 @@ out: static void hugetlb_vm_op_open(struct vm_area_struct *vma) { - struct resv_map *reservations = vma_resv_map(vma); + struct resv_map *resv = vma_resv_map(vma); /* * This new VMA should share its siblings reservation map if present. @@ -2217,34 +2262,34 @@ static void hugetlb_vm_op_open(struct vm_area_struct *vma) * after this open call completes. It is therefore safe to take a * new reference here without additional locking. */ - if (reservations) - kref_get(&reservations->refs); + if (resv) + kref_get(&resv->refs); } static void resv_map_put(struct vm_area_struct *vma) { - struct resv_map *reservations = vma_resv_map(vma); + struct resv_map *resv = vma_resv_map(vma); - if (!reservations) + if (!resv) return; - kref_put(&reservations->refs, resv_map_release); + kref_put(&resv->refs, resv_map_release); } static void hugetlb_vm_op_close(struct vm_area_struct *vma) { struct hstate *h = hstate_vma(vma); - struct resv_map *reservations = vma_resv_map(vma); + struct resv_map *resv = vma_resv_map(vma); struct hugepage_subpool *spool = subpool_vma(vma); unsigned long reserve; unsigned long start; unsigned long end; - if (reservations) { + if (resv) { start = vma_hugecache_offset(h, vma, vma->vm_start); end = vma_hugecache_offset(h, vma, vma->vm_end); reserve = (end - start) - - region_count(&reservations->regions, start, end); + region_count(&resv->regions, start, end); resv_map_put(vma); @@ -2490,7 +2535,7 @@ void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start, mm = vma->vm_mm; - tlb_gather_mmu(&tlb, mm, 0); + tlb_gather_mmu(&tlb, mm, start, end); __unmap_hugepage_range(&tlb, vma, start, end, ref_page); tlb_finish_mmu(&tlb, start, end); } @@ -2557,7 +2602,6 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, { struct hstate *h = hstate_vma(vma); struct page *old_page, *new_page; - int avoidcopy; int outside_reserve = 0; unsigned long mmun_start; /* For mmu_notifiers */ unsigned long mmun_end; /* For mmu_notifiers */ @@ -2567,10 +2611,8 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma, retry_avoidcopy: /* If no-one else is actually using this page, avoid the copy * and just make the page writable */ - avoidcopy = (page_mapcount(old_page) == 1); - if (avoidcopy) { - if (PageAnon(old_page)) - page_move_anon_rmap(old_page, vma, address); + if (page_mapcount(old_page) == 1 && PageAnon(old_page)) { + page_move_anon_rmap(old_page, vma, address); set_huge_ptep_writable(vma, address, ptep); return 0; } @@ -2584,8 +2626,7 @@ retry_avoidcopy: * at the time of fork() could consume its reserves on COW instead * of the full address range. */ - if (!(vma->vm_flags & VM_MAYSHARE) && - is_vma_resv_set(vma, HPAGE_RESV_OWNER) && + if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && old_page != pagecache_page) outside_reserve = 1; @@ -2657,6 +2698,8 @@ retry_avoidcopy: spin_lock(&mm->page_table_lock); ptep = huge_pte_offset(mm, address & huge_page_mask(h)); if (likely(pte_same(huge_ptep_get(ptep), pte))) { + ClearPagePrivate(new_page); + /* Break COW */ huge_ptep_clear_flush(vma, address, ptep); set_huge_pte_at(mm, address, ptep, @@ -2668,10 +2711,11 @@ retry_avoidcopy: } spin_unlock(&mm->page_table_lock); mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); - /* Caller expects lock to be held */ - spin_lock(&mm->page_table_lock); page_cache_release(new_page); page_cache_release(old_page); + + /* Caller expects lock to be held */ + spin_lock(&mm->page_table_lock); return 0; } @@ -2767,6 +2811,7 @@ retry: goto retry; goto out; } + ClearPagePrivate(page); spin_lock(&inode->i_lock); inode->i_blocks += blocks_per_huge_page(h); @@ -2813,8 +2858,10 @@ retry: if (!huge_pte_none(huge_ptep_get(ptep))) goto backout; - if (anon_rmap) + if (anon_rmap) { + ClearPagePrivate(page); hugepage_add_new_anon_rmap(page, vma, address); + } else page_dup_rmap(page); new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE) @@ -3431,3 +3478,45 @@ int dequeue_hwpoisoned_huge_page(struct page *hpage) return ret; } #endif + +bool isolate_huge_page(struct page *page, struct list_head *list) +{ + VM_BUG_ON(!PageHead(page)); + if (!get_page_unless_zero(page)) + return false; + spin_lock(&hugetlb_lock); + list_move_tail(&page->lru, list); + spin_unlock(&hugetlb_lock); + return true; +} + +void putback_active_hugepage(struct page *page) +{ + VM_BUG_ON(!PageHead(page)); + spin_lock(&hugetlb_lock); + list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist); + spin_unlock(&hugetlb_lock); + put_page(page); +} + +bool is_hugepage_active(struct page *page) +{ + VM_BUG_ON(!PageHuge(page)); + /* + * This function can be called for a tail page because the caller, + * scan_movable_pages, scans through a given pfn-range which typically + * covers one memory block. In systems using gigantic hugepage (1GB + * for x86_64,) a hugepage is larger than a memory block, and we don't + * support migrating such large hugepages for now, so return false + * when called for tail pages. + */ + if (PageTail(page)) + return false; + /* + * Refcount of a hwpoisoned hugepages is 1, but they are not active, + * so we should return false for them. + */ + if (unlikely(PageHWPoison(page))) + return false; + return page_count(page) > 0; +} diff --git a/mm/hugetlb_cgroup.c b/mm/hugetlb_cgroup.c index 9cea7de..bda8e44 100644 --- a/mm/hugetlb_cgroup.c +++ b/mm/hugetlb_cgroup.c @@ -36,21 +36,13 @@ static struct hugetlb_cgroup *root_h_cgroup __read_mostly; static inline struct hugetlb_cgroup *hugetlb_cgroup_from_css(struct cgroup_subsys_state *s) { - return container_of(s, struct hugetlb_cgroup, css); -} - -static inline -struct hugetlb_cgroup *hugetlb_cgroup_from_cgroup(struct cgroup *cgroup) -{ - return hugetlb_cgroup_from_css(cgroup_subsys_state(cgroup, - hugetlb_subsys_id)); + return s ? container_of(s, struct hugetlb_cgroup, css) : NULL; } static inline struct hugetlb_cgroup *hugetlb_cgroup_from_task(struct task_struct *task) { - return hugetlb_cgroup_from_css(task_subsys_state(task, - hugetlb_subsys_id)); + return hugetlb_cgroup_from_css(task_css(task, hugetlb_subsys_id)); } static inline bool hugetlb_cgroup_is_root(struct hugetlb_cgroup *h_cg) @@ -58,17 +50,15 @@ static inline bool hugetlb_cgroup_is_root(struct hugetlb_cgroup *h_cg) return (h_cg == root_h_cgroup); } -static inline struct hugetlb_cgroup *parent_hugetlb_cgroup(struct cgroup *cg) +static inline struct hugetlb_cgroup * +parent_hugetlb_cgroup(struct hugetlb_cgroup *h_cg) { - if (!cg->parent) - return NULL; - return hugetlb_cgroup_from_cgroup(cg->parent); + return hugetlb_cgroup_from_css(css_parent(&h_cg->css)); } -static inline bool hugetlb_cgroup_have_usage(struct cgroup *cg) +static inline bool hugetlb_cgroup_have_usage(struct hugetlb_cgroup *h_cg) { int idx; - struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_cgroup(cg); for (idx = 0; idx < hugetlb_max_hstate; idx++) { if ((res_counter_read_u64(&h_cg->hugepage[idx], RES_USAGE)) > 0) @@ -77,19 +67,18 @@ static inline bool hugetlb_cgroup_have_usage(struct cgroup *cg) return false; } -static struct cgroup_subsys_state *hugetlb_cgroup_css_alloc(struct cgroup *cgroup) +static struct cgroup_subsys_state * +hugetlb_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) { + struct hugetlb_cgroup *parent_h_cgroup = hugetlb_cgroup_from_css(parent_css); + struct hugetlb_cgroup *h_cgroup; int idx; - struct cgroup *parent_cgroup; - struct hugetlb_cgroup *h_cgroup, *parent_h_cgroup; h_cgroup = kzalloc(sizeof(*h_cgroup), GFP_KERNEL); if (!h_cgroup) return ERR_PTR(-ENOMEM); - parent_cgroup = cgroup->parent; - if (parent_cgroup) { - parent_h_cgroup = hugetlb_cgroup_from_cgroup(parent_cgroup); + if (parent_h_cgroup) { for (idx = 0; idx < HUGE_MAX_HSTATE; idx++) res_counter_init(&h_cgroup->hugepage[idx], &parent_h_cgroup->hugepage[idx]); @@ -101,11 +90,11 @@ static struct cgroup_subsys_state *hugetlb_cgroup_css_alloc(struct cgroup *cgrou return &h_cgroup->css; } -static void hugetlb_cgroup_css_free(struct cgroup *cgroup) +static void hugetlb_cgroup_css_free(struct cgroup_subsys_state *css) { struct hugetlb_cgroup *h_cgroup; - h_cgroup = hugetlb_cgroup_from_cgroup(cgroup); + h_cgroup = hugetlb_cgroup_from_css(css); kfree(h_cgroup); } @@ -117,15 +106,14 @@ static void hugetlb_cgroup_css_free(struct cgroup *cgroup) * page reference and test for page active here. This function * cannot fail. */ -static void hugetlb_cgroup_move_parent(int idx, struct cgroup *cgroup, +static void hugetlb_cgroup_move_parent(int idx, struct hugetlb_cgroup *h_cg, struct page *page) { int csize; struct res_counter *counter; struct res_counter *fail_res; struct hugetlb_cgroup *page_hcg; - struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_cgroup(cgroup); - struct hugetlb_cgroup *parent = parent_hugetlb_cgroup(cgroup); + struct hugetlb_cgroup *parent = parent_hugetlb_cgroup(h_cg); page_hcg = hugetlb_cgroup_from_page(page); /* @@ -155,8 +143,9 @@ out: * Force the hugetlb cgroup to empty the hugetlb resources by moving them to * the parent cgroup. */ -static void hugetlb_cgroup_css_offline(struct cgroup *cgroup) +static void hugetlb_cgroup_css_offline(struct cgroup_subsys_state *css) { + struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(css); struct hstate *h; struct page *page; int idx = 0; @@ -165,13 +154,13 @@ static void hugetlb_cgroup_css_offline(struct cgroup *cgroup) for_each_hstate(h) { spin_lock(&hugetlb_lock); list_for_each_entry(page, &h->hugepage_activelist, lru) - hugetlb_cgroup_move_parent(idx, cgroup, page); + hugetlb_cgroup_move_parent(idx, h_cg, page); spin_unlock(&hugetlb_lock); idx++; } cond_resched(); - } while (hugetlb_cgroup_have_usage(cgroup)); + } while (hugetlb_cgroup_have_usage(h_cg)); } int hugetlb_cgroup_charge_cgroup(int idx, unsigned long nr_pages, @@ -253,14 +242,15 @@ void hugetlb_cgroup_uncharge_cgroup(int idx, unsigned long nr_pages, return; } -static ssize_t hugetlb_cgroup_read(struct cgroup *cgroup, struct cftype *cft, - struct file *file, char __user *buf, - size_t nbytes, loff_t *ppos) +static ssize_t hugetlb_cgroup_read(struct cgroup_subsys_state *css, + struct cftype *cft, struct file *file, + char __user *buf, size_t nbytes, + loff_t *ppos) { u64 val; char str[64]; int idx, name, len; - struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_cgroup(cgroup); + struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(css); idx = MEMFILE_IDX(cft->private); name = MEMFILE_ATTR(cft->private); @@ -270,12 +260,12 @@ static ssize_t hugetlb_cgroup_read(struct cgroup *cgroup, struct cftype *cft, return simple_read_from_buffer(buf, nbytes, ppos, str, len); } -static int hugetlb_cgroup_write(struct cgroup *cgroup, struct cftype *cft, - const char *buffer) +static int hugetlb_cgroup_write(struct cgroup_subsys_state *css, + struct cftype *cft, const char *buffer) { int idx, name, ret; unsigned long long val; - struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_cgroup(cgroup); + struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(css); idx = MEMFILE_IDX(cft->private); name = MEMFILE_ATTR(cft->private); @@ -300,10 +290,11 @@ static int hugetlb_cgroup_write(struct cgroup *cgroup, struct cftype *cft, return ret; } -static int hugetlb_cgroup_reset(struct cgroup *cgroup, unsigned int event) +static int hugetlb_cgroup_reset(struct cgroup_subsys_state *css, + unsigned int event) { int idx, name, ret = 0; - struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_cgroup(cgroup); + struct hugetlb_cgroup *h_cg = hugetlb_cgroup_from_css(css); idx = MEMFILE_IDX(event); name = MEMFILE_ATTR(event); diff --git a/mm/hwpoison-inject.c b/mm/hwpoison-inject.c index 3a61efc..afc2daa 100644 --- a/mm/hwpoison-inject.c +++ b/mm/hwpoison-inject.c @@ -88,12 +88,12 @@ static int pfn_inject_init(void) * hardware status change, hence do not require hardware support. * They are mainly for testing hwpoison in software level. */ - dentry = debugfs_create_file("corrupt-pfn", 0600, hwpoison_dir, + dentry = debugfs_create_file("corrupt-pfn", 0200, hwpoison_dir, NULL, &hwpoison_fops); if (!dentry) goto fail; - dentry = debugfs_create_file("unpoison-pfn", 0600, hwpoison_dir, + dentry = debugfs_create_file("unpoison-pfn", 0200, hwpoison_dir, NULL, &unpoison_fops); if (!dentry) goto fail; diff --git a/mm/internal.h b/mm/internal.h index 4390ac6..684f7aa 100644 --- a/mm/internal.h +++ b/mm/internal.h @@ -85,6 +85,8 @@ extern unsigned long highest_memmap_pfn; */ extern int isolate_lru_page(struct page *page); extern void putback_lru_page(struct page *page); +extern unsigned long zone_reclaimable_pages(struct zone *zone); +extern bool zone_reclaimable(struct zone *zone); /* * in mm/rmap.c: diff --git a/mm/kmemleak.c b/mm/kmemleak.c index c8d7f31..e126b0e 100644 --- a/mm/kmemleak.c +++ b/mm/kmemleak.c @@ -1639,7 +1639,7 @@ static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, else if (strncmp(buf, "scan=", 5) == 0) { unsigned long secs; - ret = strict_strtoul(buf + 5, 0, &secs); + ret = kstrtoul(buf + 5, 0, &secs); if (ret < 0) goto out; stop_scan_thread(); @@ -2194,7 +2194,7 @@ static ssize_t sleep_millisecs_store(struct kobject *kobj, unsigned long msecs; int err; - err = strict_strtoul(buf, 10, &msecs); + err = kstrtoul(buf, 10, &msecs); if (err || msecs > UINT_MAX) return -EINVAL; @@ -2217,7 +2217,7 @@ static ssize_t pages_to_scan_store(struct kobject *kobj, int err; unsigned long nr_pages; - err = strict_strtoul(buf, 10, &nr_pages); + err = kstrtoul(buf, 10, &nr_pages); if (err || nr_pages > UINT_MAX) return -EINVAL; @@ -2239,7 +2239,7 @@ static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr, int err; unsigned long flags; - err = strict_strtoul(buf, 10, &flags); + err = kstrtoul(buf, 10, &flags); if (err || flags > UINT_MAX) return -EINVAL; if (flags > KSM_RUN_UNMERGE) diff --git a/mm/list_lru.c b/mm/list_lru.c new file mode 100644 index 0000000..7246791 --- /dev/null +++ b/mm/list_lru.c @@ -0,0 +1,139 @@ +/* + * Copyright (c) 2013 Red Hat, Inc. and Parallels Inc. All rights reserved. + * Authors: David Chinner and Glauber Costa + * + * Generic LRU infrastructure + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mm.h> +#include <linux/list_lru.h> +#include <linux/slab.h> + +bool list_lru_add(struct list_lru *lru, struct list_head *item) +{ + int nid = page_to_nid(virt_to_page(item)); + struct list_lru_node *nlru = &lru->node[nid]; + + spin_lock(&nlru->lock); + WARN_ON_ONCE(nlru->nr_items < 0); + if (list_empty(item)) { + list_add_tail(item, &nlru->list); + if (nlru->nr_items++ == 0) + node_set(nid, lru->active_nodes); + spin_unlock(&nlru->lock); + return true; + } + spin_unlock(&nlru->lock); + return false; +} +EXPORT_SYMBOL_GPL(list_lru_add); + +bool list_lru_del(struct list_lru *lru, struct list_head *item) +{ + int nid = page_to_nid(virt_to_page(item)); + struct list_lru_node *nlru = &lru->node[nid]; + + spin_lock(&nlru->lock); + if (!list_empty(item)) { + list_del_init(item); + if (--nlru->nr_items == 0) + node_clear(nid, lru->active_nodes); + WARN_ON_ONCE(nlru->nr_items < 0); + spin_unlock(&nlru->lock); + return true; + } + spin_unlock(&nlru->lock); + return false; +} +EXPORT_SYMBOL_GPL(list_lru_del); + +unsigned long +list_lru_count_node(struct list_lru *lru, int nid) +{ + unsigned long count = 0; + struct list_lru_node *nlru = &lru->node[nid]; + + spin_lock(&nlru->lock); + WARN_ON_ONCE(nlru->nr_items < 0); + count += nlru->nr_items; + spin_unlock(&nlru->lock); + + return count; +} +EXPORT_SYMBOL_GPL(list_lru_count_node); + +unsigned long +list_lru_walk_node(struct list_lru *lru, int nid, list_lru_walk_cb isolate, + void *cb_arg, unsigned long *nr_to_walk) +{ + + struct list_lru_node *nlru = &lru->node[nid]; + struct list_head *item, *n; + unsigned long isolated = 0; + + spin_lock(&nlru->lock); +restart: + list_for_each_safe(item, n, &nlru->list) { + enum lru_status ret; + + /* + * decrement nr_to_walk first so that we don't livelock if we + * get stuck on large numbesr of LRU_RETRY items + */ + if (--(*nr_to_walk) == 0) + break; + + ret = isolate(item, &nlru->lock, cb_arg); + switch (ret) { + case LRU_REMOVED: + if (--nlru->nr_items == 0) + node_clear(nid, lru->active_nodes); + WARN_ON_ONCE(nlru->nr_items < 0); + isolated++; + break; + case LRU_ROTATE: + list_move_tail(item, &nlru->list); + break; + case LRU_SKIP: + break; + case LRU_RETRY: + /* + * The lru lock has been dropped, our list traversal is + * now invalid and so we have to restart from scratch. + */ + goto restart; + default: + BUG(); + } + } + + spin_unlock(&nlru->lock); + return isolated; +} +EXPORT_SYMBOL_GPL(list_lru_walk_node); + +int list_lru_init(struct list_lru *lru) +{ + int i; + size_t size = sizeof(*lru->node) * nr_node_ids; + + lru->node = kzalloc(size, GFP_KERNEL); + if (!lru->node) + return -ENOMEM; + + nodes_clear(lru->active_nodes); + for (i = 0; i < nr_node_ids; i++) { + spin_lock_init(&lru->node[i].lock); + INIT_LIST_HEAD(&lru->node[i].list); + lru->node[i].nr_items = 0; + } + return 0; +} +EXPORT_SYMBOL_GPL(list_lru_init); + +void list_lru_destroy(struct list_lru *lru) +{ + kfree(lru->node); +} +EXPORT_SYMBOL_GPL(list_lru_destroy); diff --git a/mm/madvise.c b/mm/madvise.c index 7055883..6975bc8 100644 --- a/mm/madvise.c +++ b/mm/madvise.c @@ -42,11 +42,11 @@ static int madvise_need_mmap_write(int behavior) * We can potentially split a vm area into separate * areas, each area with its own behavior. */ -static long madvise_behavior(struct vm_area_struct * vma, +static long madvise_behavior(struct vm_area_struct *vma, struct vm_area_struct **prev, unsigned long start, unsigned long end, int behavior) { - struct mm_struct * mm = vma->vm_mm; + struct mm_struct *mm = vma->vm_mm; int error = 0; pgoff_t pgoff; unsigned long new_flags = vma->vm_flags; @@ -215,8 +215,8 @@ static void force_shm_swapin_readahead(struct vm_area_struct *vma, /* * Schedule all required I/O operations. Do not wait for completion. */ -static long madvise_willneed(struct vm_area_struct * vma, - struct vm_area_struct ** prev, +static long madvise_willneed(struct vm_area_struct *vma, + struct vm_area_struct **prev, unsigned long start, unsigned long end) { struct file *file = vma->vm_file; @@ -270,8 +270,8 @@ static long madvise_willneed(struct vm_area_struct * vma, * An interface that causes the system to free clean pages and flush * dirty pages is already available as msync(MS_INVALIDATE). */ -static long madvise_dontneed(struct vm_area_struct * vma, - struct vm_area_struct ** prev, +static long madvise_dontneed(struct vm_area_struct *vma, + struct vm_area_struct **prev, unsigned long start, unsigned long end) { *prev = vma; @@ -343,29 +343,34 @@ static long madvise_remove(struct vm_area_struct *vma, */ static int madvise_hwpoison(int bhv, unsigned long start, unsigned long end) { - int ret = 0; - if (!capable(CAP_SYS_ADMIN)) return -EPERM; for (; start < end; start += PAGE_SIZE) { struct page *p; - int ret = get_user_pages_fast(start, 1, 0, &p); + int ret; + + ret = get_user_pages_fast(start, 1, 0, &p); if (ret != 1) return ret; + + if (PageHWPoison(p)) { + put_page(p); + continue; + } if (bhv == MADV_SOFT_OFFLINE) { - printk(KERN_INFO "Soft offlining page %lx at %lx\n", + pr_info("Soft offlining page %#lx at %#lx\n", page_to_pfn(p), start); ret = soft_offline_page(p, MF_COUNT_INCREASED); if (ret) - break; + return ret; continue; } - printk(KERN_INFO "Injecting memory failure for page %lx at %lx\n", + pr_info("Injecting memory failure for page %#lx at %#lx\n", page_to_pfn(p), start); /* Ignore return value for now */ memory_failure(page_to_pfn(p), 0, MF_COUNT_INCREASED); } - return ret; + return 0; } #endif @@ -459,7 +464,7 @@ madvise_behavior_valid(int behavior) SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior) { unsigned long end, tmp; - struct vm_area_struct * vma, *prev; + struct vm_area_struct *vma, *prev; int unmapped_error = 0; int error = -EINVAL; int write; diff --git a/mm/memblock.c b/mm/memblock.c index a847bfe6..0ac412a 100644 --- a/mm/memblock.c +++ b/mm/memblock.c @@ -914,6 +914,24 @@ int __init_memblock memblock_is_memory(phys_addr_t addr) return memblock_search(&memblock.memory, addr) != -1; } +#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP +int __init_memblock memblock_search_pfn_nid(unsigned long pfn, + unsigned long *start_pfn, unsigned long *end_pfn) +{ + struct memblock_type *type = &memblock.memory; + int mid = memblock_search(type, (phys_addr_t)pfn << PAGE_SHIFT); + + if (mid == -1) + return -1; + + *start_pfn = type->regions[mid].base >> PAGE_SHIFT; + *end_pfn = (type->regions[mid].base + type->regions[mid].size) + >> PAGE_SHIFT; + + return type->regions[mid].nid; +} +#endif + /** * memblock_is_region_memory - check if a region is a subset of memory * @base: base of region to check diff --git a/mm/memcontrol.c b/mm/memcontrol.c index d12ca6f..d5ff3ce 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -39,7 +39,6 @@ #include <linux/limits.h> #include <linux/export.h> #include <linux/mutex.h> -#include <linux/rbtree.h> #include <linux/slab.h> #include <linux/swap.h> #include <linux/swapops.h> @@ -85,26 +84,12 @@ static int really_do_swap_account __initdata = 0; #endif -/* - * Statistics for memory cgroup. - */ -enum mem_cgroup_stat_index { - /* - * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. - */ - MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ - MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ - MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ - MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ - MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ - MEM_CGROUP_STAT_NSTATS, -}; - static const char * const mem_cgroup_stat_names[] = { "cache", "rss", "rss_huge", "mapped_file", + "writeback", "swap", }; @@ -175,10 +160,6 @@ struct mem_cgroup_per_zone { struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; - struct rb_node tree_node; /* RB tree node */ - unsigned long long usage_in_excess;/* Set to the value by which */ - /* the soft limit is exceeded*/ - bool on_tree; struct mem_cgroup *memcg; /* Back pointer, we cannot */ /* use container_of */ }; @@ -187,26 +168,6 @@ struct mem_cgroup_per_node { struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; }; -/* - * Cgroups above their limits are maintained in a RB-Tree, independent of - * their hierarchy representation - */ - -struct mem_cgroup_tree_per_zone { - struct rb_root rb_root; - spinlock_t lock; -}; - -struct mem_cgroup_tree_per_node { - struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; -}; - -struct mem_cgroup_tree { - struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; -}; - -static struct mem_cgroup_tree soft_limit_tree __read_mostly; - struct mem_cgroup_threshold { struct eventfd_ctx *eventfd; u64 threshold; @@ -280,6 +241,7 @@ struct mem_cgroup { bool oom_lock; atomic_t under_oom; + atomic_t oom_wakeups; int swappiness; /* OOM-Killer disable */ @@ -304,7 +266,7 @@ struct mem_cgroup { * Should we move charges of a task when a task is moved into this * mem_cgroup ? And what type of charges should we move ? */ - unsigned long move_charge_at_immigrate; + unsigned long move_charge_at_immigrate; /* * set > 0 if pages under this cgroup are moving to other cgroup. */ @@ -341,6 +303,22 @@ struct mem_cgroup { atomic_t numainfo_events; atomic_t numainfo_updating; #endif + /* + * Protects soft_contributed transitions. + * See mem_cgroup_update_soft_limit + */ + spinlock_t soft_lock; + + /* + * If true then this group has increased parents' children_in_excess + * when it got over the soft limit. + * When a group falls bellow the soft limit, parents' children_in_excess + * is decreased and soft_contributed changed to false. + */ + bool soft_contributed; + + /* Number of children that are in soft limit excess */ + atomic_t children_in_excess; struct mem_cgroup_per_node *nodeinfo[0]; /* WARNING: nodeinfo must be the last member here */ @@ -444,7 +422,6 @@ static bool move_file(void) * limit reclaim to prevent infinite loops, if they ever occur. */ #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 -#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 enum charge_type { MEM_CGROUP_CHARGE_TYPE_CACHE = 0, @@ -483,10 +460,9 @@ enum res_type { */ static DEFINE_MUTEX(memcg_create_mutex); -static inline struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) { - return container_of(s, struct mem_cgroup, css); + return s ? container_of(s, struct mem_cgroup, css) : NULL; } /* Some nice accessors for the vmpressure. */ @@ -672,164 +648,6 @@ page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page) return mem_cgroup_zoneinfo(memcg, nid, zid); } -static struct mem_cgroup_tree_per_zone * -soft_limit_tree_node_zone(int nid, int zid) -{ - return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; -} - -static struct mem_cgroup_tree_per_zone * -soft_limit_tree_from_page(struct page *page) -{ - int nid = page_to_nid(page); - int zid = page_zonenum(page); - - return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; -} - -static void -__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg, - struct mem_cgroup_per_zone *mz, - struct mem_cgroup_tree_per_zone *mctz, - unsigned long long new_usage_in_excess) -{ - struct rb_node **p = &mctz->rb_root.rb_node; - struct rb_node *parent = NULL; - struct mem_cgroup_per_zone *mz_node; - - if (mz->on_tree) - return; - - mz->usage_in_excess = new_usage_in_excess; - if (!mz->usage_in_excess) - return; - while (*p) { - parent = *p; - mz_node = rb_entry(parent, struct mem_cgroup_per_zone, - tree_node); - if (mz->usage_in_excess < mz_node->usage_in_excess) - p = &(*p)->rb_left; - /* - * We can't avoid mem cgroups that are over their soft - * limit by the same amount - */ - else if (mz->usage_in_excess >= mz_node->usage_in_excess) - p = &(*p)->rb_right; - } - rb_link_node(&mz->tree_node, parent, p); - rb_insert_color(&mz->tree_node, &mctz->rb_root); - mz->on_tree = true; -} - -static void -__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, - struct mem_cgroup_per_zone *mz, - struct mem_cgroup_tree_per_zone *mctz) -{ - if (!mz->on_tree) - return; - rb_erase(&mz->tree_node, &mctz->rb_root); - mz->on_tree = false; -} - -static void -mem_cgroup_remove_exceeded(struct mem_cgroup *memcg, - struct mem_cgroup_per_zone *mz, - struct mem_cgroup_tree_per_zone *mctz) -{ - spin_lock(&mctz->lock); - __mem_cgroup_remove_exceeded(memcg, mz, mctz); - spin_unlock(&mctz->lock); -} - - -static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) -{ - unsigned long long excess; - struct mem_cgroup_per_zone *mz; - struct mem_cgroup_tree_per_zone *mctz; - int nid = page_to_nid(page); - int zid = page_zonenum(page); - mctz = soft_limit_tree_from_page(page); - - /* - * Necessary to update all ancestors when hierarchy is used. - * because their event counter is not touched. - */ - for (; memcg; memcg = parent_mem_cgroup(memcg)) { - mz = mem_cgroup_zoneinfo(memcg, nid, zid); - excess = res_counter_soft_limit_excess(&memcg->res); - /* - * We have to update the tree if mz is on RB-tree or - * mem is over its softlimit. - */ - if (excess || mz->on_tree) { - spin_lock(&mctz->lock); - /* if on-tree, remove it */ - if (mz->on_tree) - __mem_cgroup_remove_exceeded(memcg, mz, mctz); - /* - * Insert again. mz->usage_in_excess will be updated. - * If excess is 0, no tree ops. - */ - __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess); - spin_unlock(&mctz->lock); - } - } -} - -static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) -{ - int node, zone; - struct mem_cgroup_per_zone *mz; - struct mem_cgroup_tree_per_zone *mctz; - - for_each_node(node) { - for (zone = 0; zone < MAX_NR_ZONES; zone++) { - mz = mem_cgroup_zoneinfo(memcg, node, zone); - mctz = soft_limit_tree_node_zone(node, zone); - mem_cgroup_remove_exceeded(memcg, mz, mctz); - } - } -} - -static struct mem_cgroup_per_zone * -__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) -{ - struct rb_node *rightmost = NULL; - struct mem_cgroup_per_zone *mz; - -retry: - mz = NULL; - rightmost = rb_last(&mctz->rb_root); - if (!rightmost) - goto done; /* Nothing to reclaim from */ - - mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); - /* - * Remove the node now but someone else can add it back, - * we will to add it back at the end of reclaim to its correct - * position in the tree. - */ - __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); - if (!res_counter_soft_limit_excess(&mz->memcg->res) || - !css_tryget(&mz->memcg->css)) - goto retry; -done: - return mz; -} - -static struct mem_cgroup_per_zone * -mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) -{ - struct mem_cgroup_per_zone *mz; - - spin_lock(&mctz->lock); - mz = __mem_cgroup_largest_soft_limit_node(mctz); - spin_unlock(&mctz->lock); - return mz; -} - /* * Implementation Note: reading percpu statistics for memcg. * @@ -1004,6 +822,48 @@ static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, } /* + * Called from rate-limited memcg_check_events when enough + * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure + * that all the parents up the hierarchy will be notified that this group + * is in excess or that it is not in excess anymore. mmecg->soft_contributed + * makes the transition a single action whenever the state flips from one to + * the other. + */ +static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg) +{ + unsigned long long excess = res_counter_soft_limit_excess(&memcg->res); + struct mem_cgroup *parent = memcg; + int delta = 0; + + spin_lock(&memcg->soft_lock); + if (excess) { + if (!memcg->soft_contributed) { + delta = 1; + memcg->soft_contributed = true; + } + } else { + if (memcg->soft_contributed) { + delta = -1; + memcg->soft_contributed = false; + } + } + + /* + * Necessary to update all ancestors when hierarchy is used + * because their event counter is not touched. + * We track children even outside the hierarchy for the root + * cgroup because tree walk starting at root should visit + * all cgroups and we want to prevent from pointless tree + * walk if no children is below the limit. + */ + while (delta && (parent = parent_mem_cgroup(parent))) + atomic_add(delta, &parent->children_in_excess); + if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy) + atomic_add(delta, &root_mem_cgroup->children_in_excess); + spin_unlock(&memcg->soft_lock); +} + +/* * Check events in order. * */ @@ -1026,7 +886,7 @@ static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) mem_cgroup_threshold(memcg); if (unlikely(do_softlimit)) - mem_cgroup_update_tree(memcg, page); + mem_cgroup_update_soft_limit(memcg); #if MAX_NUMNODES > 1 if (unlikely(do_numainfo)) atomic_inc(&memcg->numainfo_events); @@ -1035,12 +895,6 @@ static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) preempt_enable(); } -struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont) -{ - return mem_cgroup_from_css( - cgroup_subsys_state(cont, mem_cgroup_subsys_id)); -} - struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) { /* @@ -1051,7 +905,7 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) if (unlikely(!p)) return NULL; - return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id)); + return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id)); } struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) @@ -1075,6 +929,15 @@ struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) return memcg; } +static enum mem_cgroup_filter_t +mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root, + mem_cgroup_iter_filter cond) +{ + if (!cond) + return VISIT; + return cond(memcg, root); +} + /* * Returns a next (in a pre-order walk) alive memcg (with elevated css * ref. count) or NULL if the whole root's subtree has been visited. @@ -1082,22 +945,13 @@ struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm) * helper function to be used by mem_cgroup_iter */ static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, - struct mem_cgroup *last_visited) + struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond) { - struct cgroup *prev_cgroup, *next_cgroup; - - /* - * Root is not visited by cgroup iterators so it needs an - * explicit visit. - */ - if (!last_visited) - return root; + struct cgroup_subsys_state *prev_css, *next_css; - prev_cgroup = (last_visited == root) ? NULL - : last_visited->css.cgroup; + prev_css = last_visited ? &last_visited->css : NULL; skip_node: - next_cgroup = cgroup_next_descendant_pre( - prev_cgroup, root->css.cgroup); + next_css = css_next_descendant_pre(prev_css, &root->css); /* * Even if we found a group we have to make sure it is @@ -1106,14 +960,34 @@ skip_node: * last_visited css is safe to use because it is * protected by css_get and the tree walk is rcu safe. */ - if (next_cgroup) { - struct mem_cgroup *mem = mem_cgroup_from_cont( - next_cgroup); - if (css_tryget(&mem->css)) - return mem; - else { - prev_cgroup = next_cgroup; + if (next_css) { + struct mem_cgroup *mem = mem_cgroup_from_css(next_css); + + switch (mem_cgroup_filter(mem, root, cond)) { + case SKIP: + prev_css = next_css; goto skip_node; + case SKIP_TREE: + if (mem == root) + return NULL; + /* + * css_rightmost_descendant is not an optimal way to + * skip through a subtree (especially for imbalanced + * trees leaning to right) but that's what we have right + * now. More effective solution would be traversing + * right-up for first non-NULL without calling + * css_next_descendant_pre afterwards. + */ + prev_css = css_rightmost_descendant(next_css); + goto skip_node; + case VISIT: + if (css_tryget(&mem->css)) + return mem; + else { + prev_css = next_css; + goto skip_node; + } + break; } } @@ -1177,6 +1051,7 @@ static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, * @root: hierarchy root * @prev: previously returned memcg, NULL on first invocation * @reclaim: cookie for shared reclaim walks, NULL for full walks + * @cond: filter for visited nodes, NULL for no filter * * Returns references to children of the hierarchy below @root, or * @root itself, or %NULL after a full round-trip. @@ -1189,15 +1064,18 @@ static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, * divide up the memcgs in the hierarchy among all concurrent * reclaimers operating on the same zone and priority. */ -struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, +struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root, struct mem_cgroup *prev, - struct mem_cgroup_reclaim_cookie *reclaim) + struct mem_cgroup_reclaim_cookie *reclaim, + mem_cgroup_iter_filter cond) { struct mem_cgroup *memcg = NULL; struct mem_cgroup *last_visited = NULL; - if (mem_cgroup_disabled()) - return NULL; + if (mem_cgroup_disabled()) { + /* first call must return non-NULL, second return NULL */ + return (struct mem_cgroup *)(unsigned long)!prev; + } if (!root) root = root_mem_cgroup; @@ -1208,7 +1086,9 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, if (!root->use_hierarchy && root != root_mem_cgroup) { if (prev) goto out_css_put; - return root; + if (mem_cgroup_filter(root, root, cond) == VISIT) + return root; + return NULL; } rcu_read_lock(); @@ -1231,7 +1111,7 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, last_visited = mem_cgroup_iter_load(iter, root, &seq); } - memcg = __mem_cgroup_iter_next(root, last_visited); + memcg = __mem_cgroup_iter_next(root, last_visited, cond); if (reclaim) { mem_cgroup_iter_update(iter, last_visited, memcg, seq); @@ -1242,7 +1122,11 @@ struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, reclaim->generation = iter->generation; } - if (prev && !memcg) + /* + * We have finished the whole tree walk or no group has been + * visited because filter told us to skip the root node. + */ + if (!memcg && (prev || (cond && !last_visited))) goto out_unlock; } out_unlock: @@ -1525,10 +1409,8 @@ static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) int mem_cgroup_swappiness(struct mem_cgroup *memcg) { - struct cgroup *cgrp = memcg->css.cgroup; - /* root ? */ - if (cgrp->parent == NULL) + if (!css_parent(&memcg->css)) return vm_swappiness; return memcg->swappiness; @@ -1805,12 +1687,11 @@ static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; for_each_mem_cgroup_tree(iter, memcg) { - struct cgroup *cgroup = iter->css.cgroup; - struct cgroup_iter it; + struct css_task_iter it; struct task_struct *task; - cgroup_iter_start(cgroup, &it); - while ((task = cgroup_iter_next(cgroup, &it))) { + css_task_iter_start(&iter->css, &it); + while ((task = css_task_iter_next(&it))) { switch (oom_scan_process_thread(task, totalpages, NULL, false)) { case OOM_SCAN_SELECT: @@ -1823,7 +1704,7 @@ static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, case OOM_SCAN_CONTINUE: continue; case OOM_SCAN_ABORT: - cgroup_iter_end(cgroup, &it); + css_task_iter_end(&it); mem_cgroup_iter_break(memcg, iter); if (chosen) put_task_struct(chosen); @@ -1840,7 +1721,7 @@ static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, get_task_struct(chosen); } } - cgroup_iter_end(cgroup, &it); + css_task_iter_end(&it); } if (!chosen) @@ -1886,6 +1767,7 @@ static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, return total; } +#if MAX_NUMNODES > 1 /** * test_mem_cgroup_node_reclaimable * @memcg: the target memcg @@ -1908,7 +1790,6 @@ static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, return false; } -#if MAX_NUMNODES > 1 /* * Always updating the nodemask is not very good - even if we have an empty @@ -1976,115 +1857,64 @@ int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) return node; } -/* - * Check all nodes whether it contains reclaimable pages or not. - * For quick scan, we make use of scan_nodes. This will allow us to skip - * unused nodes. But scan_nodes is lazily updated and may not cotain - * enough new information. We need to do double check. - */ -static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) -{ - int nid; - - /* - * quick check...making use of scan_node. - * We can skip unused nodes. - */ - if (!nodes_empty(memcg->scan_nodes)) { - for (nid = first_node(memcg->scan_nodes); - nid < MAX_NUMNODES; - nid = next_node(nid, memcg->scan_nodes)) { - - if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) - return true; - } - } - /* - * Check rest of nodes. - */ - for_each_node_state(nid, N_MEMORY) { - if (node_isset(nid, memcg->scan_nodes)) - continue; - if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) - return true; - } - return false; -} - #else int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) { return 0; } -static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) -{ - return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); -} #endif -static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, - struct zone *zone, - gfp_t gfp_mask, - unsigned long *total_scanned) -{ - struct mem_cgroup *victim = NULL; - int total = 0; - int loop = 0; - unsigned long excess; - unsigned long nr_scanned; - struct mem_cgroup_reclaim_cookie reclaim = { - .zone = zone, - .priority = 0, - }; - - excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; - - while (1) { - victim = mem_cgroup_iter(root_memcg, victim, &reclaim); - if (!victim) { - loop++; - if (loop >= 2) { - /* - * If we have not been able to reclaim - * anything, it might because there are - * no reclaimable pages under this hierarchy - */ - if (!total) - break; - /* - * We want to do more targeted reclaim. - * excess >> 2 is not to excessive so as to - * reclaim too much, nor too less that we keep - * coming back to reclaim from this cgroup - */ - if (total >= (excess >> 2) || - (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) - break; - } - continue; - } - if (!mem_cgroup_reclaimable(victim, false)) - continue; - total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, - zone, &nr_scanned); - *total_scanned += nr_scanned; - if (!res_counter_soft_limit_excess(&root_memcg->res)) +/* + * A group is eligible for the soft limit reclaim under the given root + * hierarchy if + * a) it is over its soft limit + * b) any parent up the hierarchy is over its soft limit + * + * If the given group doesn't have any children over the limit then it + * doesn't make any sense to iterate its subtree. + */ +enum mem_cgroup_filter_t +mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg, + struct mem_cgroup *root) +{ + struct mem_cgroup *parent; + + if (!memcg) + memcg = root_mem_cgroup; + parent = memcg; + + if (res_counter_soft_limit_excess(&memcg->res)) + return VISIT; + + /* + * If any parent up to the root in the hierarchy is over its soft limit + * then we have to obey and reclaim from this group as well. + */ + while ((parent = parent_mem_cgroup(parent))) { + if (res_counter_soft_limit_excess(&parent->res)) + return VISIT; + if (parent == root) break; } - mem_cgroup_iter_break(root_memcg, victim); - return total; + + if (!atomic_read(&memcg->children_in_excess)) + return SKIP_TREE; + return SKIP; } +static DEFINE_SPINLOCK(memcg_oom_lock); + /* * Check OOM-Killer is already running under our hierarchy. * If someone is running, return false. - * Has to be called with memcg_oom_lock */ -static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) +static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) { struct mem_cgroup *iter, *failed = NULL; + spin_lock(&memcg_oom_lock); + for_each_mem_cgroup_tree(iter, memcg) { if (iter->oom_lock) { /* @@ -2098,33 +1928,33 @@ static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg) iter->oom_lock = true; } - if (!failed) - return true; - - /* - * OK, we failed to lock the whole subtree so we have to clean up - * what we set up to the failing subtree - */ - for_each_mem_cgroup_tree(iter, memcg) { - if (iter == failed) { - mem_cgroup_iter_break(memcg, iter); - break; + if (failed) { + /* + * OK, we failed to lock the whole subtree so we have + * to clean up what we set up to the failing subtree + */ + for_each_mem_cgroup_tree(iter, memcg) { + if (iter == failed) { + mem_cgroup_iter_break(memcg, iter); + break; + } + iter->oom_lock = false; } - iter->oom_lock = false; } - return false; + + spin_unlock(&memcg_oom_lock); + + return !failed; } -/* - * Has to be called with memcg_oom_lock - */ -static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg) +static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) { struct mem_cgroup *iter; + spin_lock(&memcg_oom_lock); for_each_mem_cgroup_tree(iter, memcg) iter->oom_lock = false; - return 0; + spin_unlock(&memcg_oom_lock); } static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) @@ -2148,7 +1978,6 @@ static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) atomic_add_unless(&iter->under_oom, -1, 0); } -static DEFINE_SPINLOCK(memcg_oom_lock); static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); struct oom_wait_info { @@ -2178,6 +2007,7 @@ static int memcg_oom_wake_function(wait_queue_t *wait, static void memcg_wakeup_oom(struct mem_cgroup *memcg) { + atomic_inc(&memcg->oom_wakeups); /* for filtering, pass "memcg" as argument. */ __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); } @@ -2189,56 +2019,136 @@ static void memcg_oom_recover(struct mem_cgroup *memcg) } /* - * try to call OOM killer. returns false if we should exit memory-reclaim loop. + * try to call OOM killer */ -static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, - int order) +static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) { - struct oom_wait_info owait; - bool locked, need_to_kill; + bool locked; + int wakeups; - owait.memcg = memcg; - owait.wait.flags = 0; - owait.wait.func = memcg_oom_wake_function; - owait.wait.private = current; - INIT_LIST_HEAD(&owait.wait.task_list); - need_to_kill = true; - mem_cgroup_mark_under_oom(memcg); + if (!current->memcg_oom.may_oom) + return; + + current->memcg_oom.in_memcg_oom = 1; - /* At first, try to OOM lock hierarchy under memcg.*/ - spin_lock(&memcg_oom_lock); - locked = mem_cgroup_oom_lock(memcg); /* - * Even if signal_pending(), we can't quit charge() loop without - * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL - * under OOM is always welcomed, use TASK_KILLABLE here. + * As with any blocking lock, a contender needs to start + * listening for wakeups before attempting the trylock, + * otherwise it can miss the wakeup from the unlock and sleep + * indefinitely. This is just open-coded because our locking + * is so particular to memcg hierarchies. */ - prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); - if (!locked || memcg->oom_kill_disable) - need_to_kill = false; + wakeups = atomic_read(&memcg->oom_wakeups); + mem_cgroup_mark_under_oom(memcg); + + locked = mem_cgroup_oom_trylock(memcg); + if (locked) mem_cgroup_oom_notify(memcg); - spin_unlock(&memcg_oom_lock); - if (need_to_kill) { - finish_wait(&memcg_oom_waitq, &owait.wait); + if (locked && !memcg->oom_kill_disable) { + mem_cgroup_unmark_under_oom(memcg); mem_cgroup_out_of_memory(memcg, mask, order); + mem_cgroup_oom_unlock(memcg); + /* + * There is no guarantee that an OOM-lock contender + * sees the wakeups triggered by the OOM kill + * uncharges. Wake any sleepers explicitely. + */ + memcg_oom_recover(memcg); } else { - schedule(); - finish_wait(&memcg_oom_waitq, &owait.wait); + /* + * A system call can just return -ENOMEM, but if this + * is a page fault and somebody else is handling the + * OOM already, we need to sleep on the OOM waitqueue + * for this memcg until the situation is resolved. + * Which can take some time because it might be + * handled by a userspace task. + * + * However, this is the charge context, which means + * that we may sit on a large call stack and hold + * various filesystem locks, the mmap_sem etc. and we + * don't want the OOM handler to deadlock on them + * while we sit here and wait. Store the current OOM + * context in the task_struct, then return -ENOMEM. + * At the end of the page fault handler, with the + * stack unwound, pagefault_out_of_memory() will check + * back with us by calling + * mem_cgroup_oom_synchronize(), possibly putting the + * task to sleep. + */ + current->memcg_oom.oom_locked = locked; + current->memcg_oom.wakeups = wakeups; + css_get(&memcg->css); + current->memcg_oom.wait_on_memcg = memcg; } - spin_lock(&memcg_oom_lock); - if (locked) - mem_cgroup_oom_unlock(memcg); - memcg_wakeup_oom(memcg); - spin_unlock(&memcg_oom_lock); +} - mem_cgroup_unmark_under_oom(memcg); +/** + * mem_cgroup_oom_synchronize - complete memcg OOM handling + * + * This has to be called at the end of a page fault if the the memcg + * OOM handler was enabled and the fault is returning %VM_FAULT_OOM. + * + * Memcg supports userspace OOM handling, so failed allocations must + * sleep on a waitqueue until the userspace task resolves the + * situation. Sleeping directly in the charge context with all kinds + * of locks held is not a good idea, instead we remember an OOM state + * in the task and mem_cgroup_oom_synchronize() has to be called at + * the end of the page fault to put the task to sleep and clean up the + * OOM state. + * + * Returns %true if an ongoing memcg OOM situation was detected and + * finalized, %false otherwise. + */ +bool mem_cgroup_oom_synchronize(void) +{ + struct oom_wait_info owait; + struct mem_cgroup *memcg; - if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) + /* OOM is global, do not handle */ + if (!current->memcg_oom.in_memcg_oom) return false; - /* Give chance to dying process */ - schedule_timeout_uninterruptible(1); + + /* + * We invoked the OOM killer but there is a chance that a kill + * did not free up any charges. Everybody else might already + * be sleeping, so restart the fault and keep the rampage + * going until some charges are released. + */ + memcg = current->memcg_oom.wait_on_memcg; + if (!memcg) + goto out; + + if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) + goto out_memcg; + + owait.memcg = memcg; + owait.wait.flags = 0; + owait.wait.func = memcg_oom_wake_function; + owait.wait.private = current; + INIT_LIST_HEAD(&owait.wait.task_list); + + prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); + /* Only sleep if we didn't miss any wakeups since OOM */ + if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups) + schedule(); + finish_wait(&memcg_oom_waitq, &owait.wait); +out_memcg: + mem_cgroup_unmark_under_oom(memcg); + if (current->memcg_oom.oom_locked) { + mem_cgroup_oom_unlock(memcg); + /* + * There is no guarantee that an OOM-lock contender + * sees the wakeups triggered by the OOM kill + * uncharges. Wake any sleepers explicitely. + */ + memcg_oom_recover(memcg); + } + css_put(&memcg->css); + current->memcg_oom.wait_on_memcg = NULL; +out: + current->memcg_oom.in_memcg_oom = 0; return true; } @@ -2307,7 +2217,7 @@ void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) } void mem_cgroup_update_page_stat(struct page *page, - enum mem_cgroup_page_stat_item idx, int val) + enum mem_cgroup_stat_index idx, int val) { struct mem_cgroup *memcg; struct page_cgroup *pc = lookup_page_cgroup(page); @@ -2316,18 +2226,11 @@ void mem_cgroup_update_page_stat(struct page *page, if (mem_cgroup_disabled()) return; + VM_BUG_ON(!rcu_read_lock_held()); memcg = pc->mem_cgroup; if (unlikely(!memcg || !PageCgroupUsed(pc))) return; - switch (idx) { - case MEMCG_NR_FILE_MAPPED: - idx = MEM_CGROUP_STAT_FILE_MAPPED; - break; - default: - BUG(); - } - this_cpu_add(memcg->stat->count[idx], val); } @@ -2469,7 +2372,7 @@ static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) flush_work(&stock->work); } out: - put_online_cpus(); + put_online_cpus(); } /* @@ -2522,7 +2425,7 @@ static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) spin_unlock(&memcg->pcp_counter_lock); } -static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb, +static int memcg_cpu_hotplug_callback(struct notifier_block *nb, unsigned long action, void *hcpu) { @@ -2551,12 +2454,11 @@ enum { CHARGE_RETRY, /* need to retry but retry is not bad */ CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ - CHARGE_OOM_DIE, /* the current is killed because of OOM */ }; static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, unsigned int nr_pages, unsigned int min_pages, - bool oom_check) + bool invoke_oom) { unsigned long csize = nr_pages * PAGE_SIZE; struct mem_cgroup *mem_over_limit; @@ -2613,14 +2515,10 @@ static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, if (mem_cgroup_wait_acct_move(mem_over_limit)) return CHARGE_RETRY; - /* If we don't need to call oom-killer at el, return immediately */ - if (!oom_check) - return CHARGE_NOMEM; - /* check OOM */ - if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize))) - return CHARGE_OOM_DIE; + if (invoke_oom) + mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); - return CHARGE_RETRY; + return CHARGE_NOMEM; } /* @@ -2723,7 +2621,7 @@ again: } do { - bool oom_check; + bool invoke_oom = oom && !nr_oom_retries; /* If killed, bypass charge */ if (fatal_signal_pending(current)) { @@ -2731,14 +2629,8 @@ again: goto bypass; } - oom_check = false; - if (oom && !nr_oom_retries) { - oom_check = true; - nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; - } - - ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages, - oom_check); + ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, + nr_pages, invoke_oom); switch (ret) { case CHARGE_OK: break; @@ -2751,16 +2643,12 @@ again: css_put(&memcg->css); goto nomem; case CHARGE_NOMEM: /* OOM routine works */ - if (!oom) { + if (!oom || invoke_oom) { css_put(&memcg->css); goto nomem; } - /* If oom, we never return -ENOMEM */ nr_oom_retries--; break; - case CHARGE_OOM_DIE: /* Killed by OOM Killer */ - css_put(&memcg->css); - goto bypass; } } while (ret != CHARGE_OK); @@ -2901,7 +2789,7 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, * is accessed after testing USED bit. To make pc->mem_cgroup visible * before USED bit, we need memory barrier here. * See mem_cgroup_add_lru_list(), etc. - */ + */ smp_wmb(); SetPageCgroupUsed(pc); @@ -2924,9 +2812,7 @@ static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, unlock_page_cgroup(pc); /* - * "charge_statistics" updated event counter. Then, check it. - * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. - * if they exceeds softlimit. + * "charge_statistics" updated event counter. */ memcg_check_events(memcg, page); } @@ -2954,10 +2840,10 @@ static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) } #ifdef CONFIG_SLABINFO -static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft, - struct seq_file *m) +static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css, + struct cftype *cft, struct seq_file *m) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct memcg_cache_params *params; if (!memcg_can_account_kmem(memcg)) @@ -3140,7 +3026,7 @@ int memcg_update_cache_size(struct kmem_cache *s, int num_groups) ssize_t size = memcg_caches_array_size(num_groups); size *= sizeof(void *); - size += sizeof(struct memcg_cache_params); + size += offsetof(struct memcg_cache_params, memcg_caches); s->memcg_params = kzalloc(size, GFP_KERNEL); if (!s->memcg_params) { @@ -3183,23 +3069,26 @@ int memcg_update_cache_size(struct kmem_cache *s, int num_groups) int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s, struct kmem_cache *root_cache) { - size_t size = sizeof(struct memcg_cache_params); + size_t size; if (!memcg_kmem_enabled()) return 0; - if (!memcg) + if (!memcg) { + size = offsetof(struct memcg_cache_params, memcg_caches); size += memcg_limited_groups_array_size * sizeof(void *); + } else + size = sizeof(struct memcg_cache_params); s->memcg_params = kzalloc(size, GFP_KERNEL); if (!s->memcg_params) return -ENOMEM; - INIT_WORK(&s->memcg_params->destroy, - kmem_cache_destroy_work_func); if (memcg) { s->memcg_params->memcg = memcg; s->memcg_params->root_cache = root_cache; + INIT_WORK(&s->memcg_params->destroy, + kmem_cache_destroy_work_func); } else s->memcg_params->is_root_cache = true; @@ -3642,9 +3531,9 @@ __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) * the page allocator. Therefore, the following sequence when backed by * the SLUB allocator: * - * memcg_stop_kmem_account(); - * kmalloc(<large_number>) - * memcg_resume_kmem_account(); + * memcg_stop_kmem_account(); + * kmalloc(<large_number>) + * memcg_resume_kmem_account(); * * would effectively ignore the fact that we should skip accounting, * since it will drive us directly to this function without passing @@ -3766,6 +3655,20 @@ void mem_cgroup_split_huge_fixup(struct page *head) } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ +static inline +void mem_cgroup_move_account_page_stat(struct mem_cgroup *from, + struct mem_cgroup *to, + unsigned int nr_pages, + enum mem_cgroup_stat_index idx) +{ + /* Update stat data for mem_cgroup */ + preempt_disable(); + WARN_ON_ONCE(from->stat->count[idx] < nr_pages); + __this_cpu_add(from->stat->count[idx], -nr_pages); + __this_cpu_add(to->stat->count[idx], nr_pages); + preempt_enable(); +} + /** * mem_cgroup_move_account - move account of the page * @page: the page @@ -3811,13 +3714,14 @@ static int mem_cgroup_move_account(struct page *page, move_lock_mem_cgroup(from, &flags); - if (!anon && page_mapped(page)) { - /* Update mapped_file data for mem_cgroup */ - preempt_disable(); - __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); - __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]); - preempt_enable(); - } + if (!anon && page_mapped(page)) + mem_cgroup_move_account_page_stat(from, to, nr_pages, + MEM_CGROUP_STAT_FILE_MAPPED); + + if (PageWriteback(page)) + mem_cgroup_move_account_page_stat(from, to, nr_pages, + MEM_CGROUP_STAT_WRITEBACK); + mem_cgroup_charge_statistics(from, page, anon, -nr_pages); /* caller should have done css_get */ @@ -4673,7 +4577,7 @@ static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, MEM_CGROUP_RECLAIM_SHRINK); curusage = res_counter_read_u64(&memcg->res, RES_USAGE); /* Usage is reduced ? */ - if (curusage >= oldusage) + if (curusage >= oldusage) retry_count--; else oldusage = curusage; @@ -4694,7 +4598,7 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, int enlarge = 0; /* see mem_cgroup_resize_res_limit */ - retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; + retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); while (retry_count) { if (signal_pending(current)) { @@ -4743,98 +4647,6 @@ static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, return ret; } -unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, - gfp_t gfp_mask, - unsigned long *total_scanned) -{ - unsigned long nr_reclaimed = 0; - struct mem_cgroup_per_zone *mz, *next_mz = NULL; - unsigned long reclaimed; - int loop = 0; - struct mem_cgroup_tree_per_zone *mctz; - unsigned long long excess; - unsigned long nr_scanned; - - if (order > 0) - return 0; - - mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); - /* - * This loop can run a while, specially if mem_cgroup's continuously - * keep exceeding their soft limit and putting the system under - * pressure - */ - do { - if (next_mz) - mz = next_mz; - else - mz = mem_cgroup_largest_soft_limit_node(mctz); - if (!mz) - break; - - nr_scanned = 0; - reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, - gfp_mask, &nr_scanned); - nr_reclaimed += reclaimed; - *total_scanned += nr_scanned; - spin_lock(&mctz->lock); - - /* - * If we failed to reclaim anything from this memory cgroup - * it is time to move on to the next cgroup - */ - next_mz = NULL; - if (!reclaimed) { - do { - /* - * Loop until we find yet another one. - * - * By the time we get the soft_limit lock - * again, someone might have aded the - * group back on the RB tree. Iterate to - * make sure we get a different mem. - * mem_cgroup_largest_soft_limit_node returns - * NULL if no other cgroup is present on - * the tree - */ - next_mz = - __mem_cgroup_largest_soft_limit_node(mctz); - if (next_mz == mz) - css_put(&next_mz->memcg->css); - else /* next_mz == NULL or other memcg */ - break; - } while (1); - } - __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz); - excess = res_counter_soft_limit_excess(&mz->memcg->res); - /* - * One school of thought says that we should not add - * back the node to the tree if reclaim returns 0. - * But our reclaim could return 0, simply because due - * to priority we are exposing a smaller subset of - * memory to reclaim from. Consider this as a longer - * term TODO. - */ - /* If excess == 0, no tree ops */ - __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess); - spin_unlock(&mctz->lock); - css_put(&mz->memcg->css); - loop++; - /* - * Could not reclaim anything and there are no more - * mem cgroups to try or we seem to be looping without - * reclaiming anything. - */ - if (!nr_reclaimed && - (next_mz == NULL || - loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) - break; - } while (!nr_reclaimed); - if (next_mz) - css_put(&next_mz->memcg->css); - return nr_reclaimed; -} - /** * mem_cgroup_force_empty_list - clears LRU of a group * @memcg: group to clear @@ -4943,10 +4755,10 @@ static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) */ static inline bool __memcg_has_children(struct mem_cgroup *memcg) { - struct cgroup *pos; + struct cgroup_subsys_state *pos; /* bounce at first found */ - cgroup_for_each_child(pos, memcg->css.cgroup) + css_for_each_child(pos, &memcg->css) return true; return false; } @@ -5002,36 +4814,28 @@ static int mem_cgroup_force_empty(struct mem_cgroup *memcg) return 0; } -static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event) +static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css, + unsigned int event) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); - int ret; + struct mem_cgroup *memcg = mem_cgroup_from_css(css); if (mem_cgroup_is_root(memcg)) return -EINVAL; - css_get(&memcg->css); - ret = mem_cgroup_force_empty(memcg); - css_put(&memcg->css); - - return ret; + return mem_cgroup_force_empty(memcg); } - -static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft) +static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, + struct cftype *cft) { - return mem_cgroup_from_cont(cont)->use_hierarchy; + return mem_cgroup_from_css(css)->use_hierarchy; } -static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft, - u64 val) +static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) { int retval = 0; - struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); - struct cgroup *parent = cont->parent; - struct mem_cgroup *parent_memcg = NULL; - - if (parent) - parent_memcg = mem_cgroup_from_cont(parent); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css)); mutex_lock(&memcg_create_mutex); @@ -5101,11 +4905,11 @@ static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) return val << PAGE_SHIFT; } -static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, - struct file *file, char __user *buf, - size_t nbytes, loff_t *ppos) +static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css, + struct cftype *cft, struct file *file, + char __user *buf, size_t nbytes, loff_t *ppos) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); char str[64]; u64 val; int name, len; @@ -5138,11 +4942,11 @@ static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft, return simple_read_from_buffer(buf, nbytes, ppos, str, len); } -static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) +static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val) { int ret = -EINVAL; #ifdef CONFIG_MEMCG_KMEM - struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); /* * For simplicity, we won't allow this to be disabled. It also can't * be changed if the cgroup has children already, or if tasks had @@ -5157,8 +4961,8 @@ static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) */ mutex_lock(&memcg_create_mutex); mutex_lock(&set_limit_mutex); - if (!memcg->kmem_account_flags && val != RESOURCE_MAX) { - if (cgroup_task_count(cont) || memcg_has_children(memcg)) { + if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) { + if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) { ret = -EBUSY; goto out; } @@ -5167,7 +4971,7 @@ static int memcg_update_kmem_limit(struct cgroup *cont, u64 val) ret = memcg_update_cache_sizes(memcg); if (ret) { - res_counter_set_limit(&memcg->kmem, RESOURCE_MAX); + res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX); goto out; } static_key_slow_inc(&memcg_kmem_enabled_key); @@ -5228,10 +5032,10 @@ out: * The user of this function is... * RES_LIMIT. */ -static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, +static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft, const char *buffer) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); enum res_type type; int name; unsigned long long val; @@ -5255,7 +5059,7 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, else if (type == _MEMSWAP) ret = mem_cgroup_resize_memsw_limit(memcg, val); else if (type == _KMEM) - ret = memcg_update_kmem_limit(cont, val); + ret = memcg_update_kmem_limit(css, val); else return -EINVAL; break; @@ -5283,18 +5087,15 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft, static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, unsigned long long *mem_limit, unsigned long long *memsw_limit) { - struct cgroup *cgroup; unsigned long long min_limit, min_memsw_limit, tmp; min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); - cgroup = memcg->css.cgroup; if (!memcg->use_hierarchy) goto out; - while (cgroup->parent) { - cgroup = cgroup->parent; - memcg = mem_cgroup_from_cont(cgroup); + while (css_parent(&memcg->css)) { + memcg = mem_cgroup_from_css(css_parent(&memcg->css)); if (!memcg->use_hierarchy) break; tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); @@ -5307,9 +5108,9 @@ out: *memsw_limit = min_memsw_limit; } -static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) +static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); int name; enum res_type type; @@ -5342,17 +5143,17 @@ static int mem_cgroup_reset(struct cgroup *cont, unsigned int event) return 0; } -static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp, +static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, struct cftype *cft) { - return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate; + return mem_cgroup_from_css(css)->move_charge_at_immigrate; } #ifdef CONFIG_MMU -static int mem_cgroup_move_charge_write(struct cgroup *cgrp, +static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); if (val >= (1 << NR_MOVE_TYPE)) return -EINVAL; @@ -5367,7 +5168,7 @@ static int mem_cgroup_move_charge_write(struct cgroup *cgrp, return 0; } #else -static int mem_cgroup_move_charge_write(struct cgroup *cgrp, +static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { return -ENOSYS; @@ -5375,13 +5176,13 @@ static int mem_cgroup_move_charge_write(struct cgroup *cgrp, #endif #ifdef CONFIG_NUMA -static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft, - struct seq_file *m) +static int memcg_numa_stat_show(struct cgroup_subsys_state *css, + struct cftype *cft, struct seq_file *m) { int nid; unsigned long total_nr, file_nr, anon_nr, unevictable_nr; unsigned long node_nr; - struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL); seq_printf(m, "total=%lu", total_nr); @@ -5426,10 +5227,10 @@ static inline void mem_cgroup_lru_names_not_uptodate(void) BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); } -static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, +static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft, struct seq_file *m) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup *mi; unsigned int i; @@ -5513,27 +5314,23 @@ static int memcg_stat_show(struct cgroup *cont, struct cftype *cft, return 0; } -static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft) +static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, + struct cftype *cft) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); return mem_cgroup_swappiness(memcg); } -static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft, - u64 val) +static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); - struct mem_cgroup *parent; - - if (val > 100) - return -EINVAL; + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); - if (cgrp->parent == NULL) + if (val > 100 || !parent) return -EINVAL; - parent = mem_cgroup_from_cont(cgrp->parent); - mutex_lock(&memcg_create_mutex); /* If under hierarchy, only empty-root can set this value */ @@ -5616,7 +5413,13 @@ static int compare_thresholds(const void *a, const void *b) const struct mem_cgroup_threshold *_a = a; const struct mem_cgroup_threshold *_b = b; - return _a->threshold - _b->threshold; + if (_a->threshold > _b->threshold) + return 1; + + if (_a->threshold < _b->threshold) + return -1; + + return 0; } static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) @@ -5636,10 +5439,10 @@ static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) mem_cgroup_oom_notify_cb(iter); } -static int mem_cgroup_usage_register_event(struct cgroup *cgrp, +static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css, struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_thresholds *thresholds; struct mem_cgroup_threshold_ary *new; enum res_type type = MEMFILE_TYPE(cft->private); @@ -5719,10 +5522,10 @@ unlock: return ret; } -static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp, +static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css, struct cftype *cft, struct eventfd_ctx *eventfd) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_thresholds *thresholds; struct mem_cgroup_threshold_ary *new; enum res_type type = MEMFILE_TYPE(cft->private); @@ -5798,10 +5601,10 @@ unlock: mutex_unlock(&memcg->thresholds_lock); } -static int mem_cgroup_oom_register_event(struct cgroup *cgrp, +static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css, struct cftype *cft, struct eventfd_ctx *eventfd, const char *args) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_eventfd_list *event; enum res_type type = MEMFILE_TYPE(cft->private); @@ -5823,10 +5626,10 @@ static int mem_cgroup_oom_register_event(struct cgroup *cgrp, return 0; } -static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, +static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css, struct cftype *cft, struct eventfd_ctx *eventfd) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); struct mem_cgroup_eventfd_list *ev, *tmp; enum res_type type = MEMFILE_TYPE(cft->private); @@ -5844,10 +5647,10 @@ static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp, spin_unlock(&memcg_oom_lock); } -static int mem_cgroup_oom_control_read(struct cgroup *cgrp, +static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css, struct cftype *cft, struct cgroup_map_cb *cb) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable); @@ -5858,18 +5661,16 @@ static int mem_cgroup_oom_control_read(struct cgroup *cgrp, return 0; } -static int mem_cgroup_oom_control_write(struct cgroup *cgrp, +static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, struct cftype *cft, u64 val) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp); - struct mem_cgroup *parent; + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css)); /* cannot set to root cgroup and only 0 and 1 are allowed */ - if (!cgrp->parent || !((val == 0) || (val == 1))) + if (!parent || !((val == 0) || (val == 1))) return -EINVAL; - parent = mem_cgroup_from_cont(cgrp->parent); - mutex_lock(&memcg_create_mutex); /* oom-kill-disable is a flag for subhierarchy. */ if ((parent->use_hierarchy) || memcg_has_children(memcg)) { @@ -6110,8 +5911,6 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) for (zone = 0; zone < MAX_NR_ZONES; zone++) { mz = &pn->zoneinfo[zone]; lruvec_init(&mz->lruvec); - mz->usage_in_excess = 0; - mz->on_tree = false; mz->memcg = memcg; } memcg->nodeinfo[node] = pn; @@ -6167,7 +5966,6 @@ static void __mem_cgroup_free(struct mem_cgroup *memcg) int node; size_t size = memcg_size(); - mem_cgroup_remove_from_trees(memcg); free_css_id(&mem_cgroup_subsys, &memcg->css); for_each_node(node) @@ -6204,31 +6002,8 @@ struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) } EXPORT_SYMBOL(parent_mem_cgroup); -static void __init mem_cgroup_soft_limit_tree_init(void) -{ - struct mem_cgroup_tree_per_node *rtpn; - struct mem_cgroup_tree_per_zone *rtpz; - int tmp, node, zone; - - for_each_node(node) { - tmp = node; - if (!node_state(node, N_NORMAL_MEMORY)) - tmp = -1; - rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); - BUG_ON(!rtpn); - - soft_limit_tree.rb_tree_per_node[node] = rtpn; - - for (zone = 0; zone < MAX_NR_ZONES; zone++) { - rtpz = &rtpn->rb_tree_per_zone[zone]; - rtpz->rb_root = RB_ROOT; - spin_lock_init(&rtpz->lock); - } - } -} - static struct cgroup_subsys_state * __ref -mem_cgroup_css_alloc(struct cgroup *cont) +mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) { struct mem_cgroup *memcg; long error = -ENOMEM; @@ -6243,7 +6018,7 @@ mem_cgroup_css_alloc(struct cgroup *cont) goto free_out; /* root ? */ - if (cont->parent == NULL) { + if (parent_css == NULL) { root_mem_cgroup = memcg; res_counter_init(&memcg->res, NULL); res_counter_init(&memcg->memsw, NULL); @@ -6256,6 +6031,7 @@ mem_cgroup_css_alloc(struct cgroup *cont) mutex_init(&memcg->thresholds_lock); spin_lock_init(&memcg->move_lock); vmpressure_init(&memcg->vmpressure); + spin_lock_init(&memcg->soft_lock); return &memcg->css; @@ -6265,17 +6041,16 @@ free_out: } static int -mem_cgroup_css_online(struct cgroup *cont) +mem_cgroup_css_online(struct cgroup_subsys_state *css) { - struct mem_cgroup *memcg, *parent; + struct mem_cgroup *memcg = mem_cgroup_from_css(css); + struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css)); int error = 0; - if (!cont->parent) + if (!parent) return 0; mutex_lock(&memcg_create_mutex); - memcg = mem_cgroup_from_cont(cont); - parent = mem_cgroup_from_cont(cont->parent); memcg->use_hierarchy = parent->use_hierarchy; memcg->oom_kill_disable = parent->oom_kill_disable; @@ -6326,20 +6101,28 @@ static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) mem_cgroup_iter_invalidate(root_mem_cgroup); } -static void mem_cgroup_css_offline(struct cgroup *cont) +static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); kmem_cgroup_css_offline(memcg); mem_cgroup_invalidate_reclaim_iterators(memcg); mem_cgroup_reparent_charges(memcg); + if (memcg->soft_contributed) { + while ((memcg = parent_mem_cgroup(memcg))) + atomic_dec(&memcg->children_in_excess); + + if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy) + atomic_dec(&root_mem_cgroup->children_in_excess); + } mem_cgroup_destroy_all_caches(memcg); + vmpressure_cleanup(&memcg->vmpressure); } -static void mem_cgroup_css_free(struct cgroup *cont) +static void mem_cgroup_css_free(struct cgroup_subsys_state *css) { - struct mem_cgroup *memcg = mem_cgroup_from_cont(cont); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); memcg_destroy_kmem(memcg); __mem_cgroup_free(memcg); @@ -6709,12 +6492,12 @@ static void mem_cgroup_clear_mc(void) mem_cgroup_end_move(from); } -static int mem_cgroup_can_attach(struct cgroup *cgroup, +static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { struct task_struct *p = cgroup_taskset_first(tset); int ret = 0; - struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); unsigned long move_charge_at_immigrate; /* @@ -6756,7 +6539,7 @@ static int mem_cgroup_can_attach(struct cgroup *cgroup, return ret; } -static void mem_cgroup_cancel_attach(struct cgroup *cgroup, +static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { mem_cgroup_clear_mc(); @@ -6904,7 +6687,7 @@ retry: up_read(&mm->mmap_sem); } -static void mem_cgroup_move_task(struct cgroup *cont, +static void mem_cgroup_move_task(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { struct task_struct *p = cgroup_taskset_first(tset); @@ -6919,16 +6702,16 @@ static void mem_cgroup_move_task(struct cgroup *cont, mem_cgroup_clear_mc(); } #else /* !CONFIG_MMU */ -static int mem_cgroup_can_attach(struct cgroup *cgroup, +static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { return 0; } -static void mem_cgroup_cancel_attach(struct cgroup *cgroup, +static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { } -static void mem_cgroup_move_task(struct cgroup *cont, +static void mem_cgroup_move_task(struct cgroup_subsys_state *css, struct cgroup_taskset *tset) { } @@ -6938,15 +6721,15 @@ static void mem_cgroup_move_task(struct cgroup *cont, * Cgroup retains root cgroups across [un]mount cycles making it necessary * to verify sane_behavior flag on each mount attempt. */ -static void mem_cgroup_bind(struct cgroup *root) +static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) { /* * use_hierarchy is forced with sane_behavior. cgroup core * guarantees that @root doesn't have any children, so turning it * on for the root memcg is enough. */ - if (cgroup_sane_behavior(root)) - mem_cgroup_from_cont(root)->use_hierarchy = true; + if (cgroup_sane_behavior(root_css->cgroup)) + mem_cgroup_from_css(root_css)->use_hierarchy = true; } struct cgroup_subsys mem_cgroup_subsys = { @@ -6968,7 +6751,6 @@ struct cgroup_subsys mem_cgroup_subsys = { #ifdef CONFIG_MEMCG_SWAP static int __init enable_swap_account(char *s) { - /* consider enabled if no parameter or 1 is given */ if (!strcmp(s, "1")) really_do_swap_account = 1; else if (!strcmp(s, "0")) @@ -7008,7 +6790,6 @@ static int __init mem_cgroup_init(void) { hotcpu_notifier(memcg_cpu_hotplug_callback, 0); enable_swap_cgroup(); - mem_cgroup_soft_limit_tree_init(); memcg_stock_init(); return 0; } diff --git a/mm/memory-failure.c b/mm/memory-failure.c index 2c13aa7..947ed54 100644 --- a/mm/memory-failure.c +++ b/mm/memory-failure.c @@ -206,7 +206,7 @@ static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, #ifdef __ARCH_SI_TRAPNO si.si_trapno = trapno; #endif - si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT; + si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; if ((flags & MF_ACTION_REQUIRED) && t == current) { si.si_code = BUS_MCEERR_AR; @@ -248,10 +248,12 @@ void shake_page(struct page *p, int access) */ if (access) { int nr; + int nid = page_to_nid(p); do { struct shrink_control shrink = { .gfp_mask = GFP_KERNEL, }; + node_set(nid, shrink.nodes_to_scan); nr = shrink_slab(&shrink, 1000, 1000); if (page_count(p) == 1) @@ -983,7 +985,7 @@ static int hwpoison_user_mappings(struct page *p, unsigned long pfn, static void set_page_hwpoison_huge_page(struct page *hpage) { int i; - int nr_pages = 1 << compound_trans_order(hpage); + int nr_pages = 1 << compound_order(hpage); for (i = 0; i < nr_pages; i++) SetPageHWPoison(hpage + i); } @@ -991,7 +993,7 @@ static void set_page_hwpoison_huge_page(struct page *hpage) static void clear_page_hwpoison_huge_page(struct page *hpage) { int i; - int nr_pages = 1 << compound_trans_order(hpage); + int nr_pages = 1 << compound_order(hpage); for (i = 0; i < nr_pages; i++) ClearPageHWPoison(hpage + i); } @@ -1204,6 +1206,9 @@ int memory_failure(unsigned long pfn, int trapno, int flags) for (ps = error_states;; ps++) if ((p->flags & ps->mask) == ps->res) break; + + page_flags |= (p->flags & (1UL << PG_dirty)); + if (!ps->mask) for (ps = error_states;; ps++) if ((page_flags & ps->mask) == ps->res) @@ -1265,7 +1270,7 @@ void memory_failure_queue(unsigned long pfn, int trapno, int flags) if (kfifo_put(&mf_cpu->fifo, &entry)) schedule_work_on(smp_processor_id(), &mf_cpu->work); else - pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n", + pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", pfn); spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); put_cpu_var(memory_failure_cpu); @@ -1286,7 +1291,10 @@ static void memory_failure_work_func(struct work_struct *work) spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); if (!gotten) break; - memory_failure(entry.pfn, entry.trapno, entry.flags); + if (entry.flags & MF_SOFT_OFFLINE) + soft_offline_page(pfn_to_page(entry.pfn), entry.flags); + else + memory_failure(entry.pfn, entry.trapno, entry.flags); } } @@ -1336,7 +1344,17 @@ int unpoison_memory(unsigned long pfn) return 0; } - nr_pages = 1 << compound_trans_order(page); + /* + * unpoison_memory() can encounter thp only when the thp is being + * worked by memory_failure() and the page lock is not held yet. + * In such case, we yield to memory_failure() and make unpoison fail. + */ + if (PageTransHuge(page)) { + pr_info("MCE: Memory failure is now running on %#lx\n", pfn); + return 0; + } + + nr_pages = 1 << compound_order(page); if (!get_page_unless_zero(page)) { /* @@ -1350,7 +1368,7 @@ int unpoison_memory(unsigned long pfn) return 0; } if (TestClearPageHWPoison(p)) - atomic_long_sub(nr_pages, &num_poisoned_pages); + atomic_long_dec(&num_poisoned_pages); pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); return 0; } @@ -1372,7 +1390,7 @@ int unpoison_memory(unsigned long pfn) unlock_page(page); put_page(page); - if (freeit) + if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) put_page(page); return 0; @@ -1413,7 +1431,8 @@ static int __get_any_page(struct page *p, unsigned long pfn, int flags) * was free. This flag should be kept set until the source page * is freed and PG_hwpoison on it is set. */ - set_migratetype_isolate(p, true); + if (get_pageblock_migratetype(p) != MIGRATE_ISOLATE) + set_migratetype_isolate(p, true); /* * When the target page is a free hugepage, just remove it * from free hugepage list. @@ -1467,6 +1486,7 @@ static int soft_offline_huge_page(struct page *page, int flags) int ret; unsigned long pfn = page_to_pfn(page); struct page *hpage = compound_head(page); + LIST_HEAD(pagelist); /* * This double-check of PageHWPoison is to avoid the race with @@ -1482,86 +1502,29 @@ static int soft_offline_huge_page(struct page *page, int flags) unlock_page(hpage); /* Keep page count to indicate a given hugepage is isolated. */ - ret = migrate_huge_page(hpage, new_page, MPOL_MF_MOVE_ALL, - MIGRATE_SYNC); - put_page(hpage); + list_move(&hpage->lru, &pagelist); + ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, + MIGRATE_SYNC, MR_MEMORY_FAILURE); if (ret) { pr_info("soft offline: %#lx: migration failed %d, type %lx\n", pfn, ret, page->flags); + /* + * We know that soft_offline_huge_page() tries to migrate + * only one hugepage pointed to by hpage, so we need not + * run through the pagelist here. + */ + putback_active_hugepage(hpage); + if (ret > 0) + ret = -EIO; } else { set_page_hwpoison_huge_page(hpage); dequeue_hwpoisoned_huge_page(hpage); - atomic_long_add(1 << compound_trans_order(hpage), + atomic_long_add(1 << compound_order(hpage), &num_poisoned_pages); } return ret; } -static int __soft_offline_page(struct page *page, int flags); - -/** - * soft_offline_page - Soft offline a page. - * @page: page to offline - * @flags: flags. Same as memory_failure(). - * - * Returns 0 on success, otherwise negated errno. - * - * Soft offline a page, by migration or invalidation, - * without killing anything. This is for the case when - * a page is not corrupted yet (so it's still valid to access), - * but has had a number of corrected errors and is better taken - * out. - * - * The actual policy on when to do that is maintained by - * user space. - * - * This should never impact any application or cause data loss, - * however it might take some time. - * - * This is not a 100% solution for all memory, but tries to be - * ``good enough'' for the majority of memory. - */ -int soft_offline_page(struct page *page, int flags) -{ - int ret; - unsigned long pfn = page_to_pfn(page); - struct page *hpage = compound_trans_head(page); - - if (PageHWPoison(page)) { - pr_info("soft offline: %#lx page already poisoned\n", pfn); - return -EBUSY; - } - if (!PageHuge(page) && PageTransHuge(hpage)) { - if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) { - pr_info("soft offline: %#lx: failed to split THP\n", - pfn); - return -EBUSY; - } - } - - ret = get_any_page(page, pfn, flags); - if (ret < 0) - return ret; - if (ret) { /* for in-use pages */ - if (PageHuge(page)) - ret = soft_offline_huge_page(page, flags); - else - ret = __soft_offline_page(page, flags); - } else { /* for free pages */ - if (PageHuge(page)) { - set_page_hwpoison_huge_page(hpage); - dequeue_hwpoisoned_huge_page(hpage); - atomic_long_add(1 << compound_trans_order(hpage), - &num_poisoned_pages); - } else { - SetPageHWPoison(page); - atomic_long_inc(&num_poisoned_pages); - } - } - unset_migratetype_isolate(page, MIGRATE_MOVABLE); - return ret; -} - static int __soft_offline_page(struct page *page, int flags) { int ret; @@ -1648,3 +1611,67 @@ static int __soft_offline_page(struct page *page, int flags) } return ret; } + +/** + * soft_offline_page - Soft offline a page. + * @page: page to offline + * @flags: flags. Same as memory_failure(). + * + * Returns 0 on success, otherwise negated errno. + * + * Soft offline a page, by migration or invalidation, + * without killing anything. This is for the case when + * a page is not corrupted yet (so it's still valid to access), + * but has had a number of corrected errors and is better taken + * out. + * + * The actual policy on when to do that is maintained by + * user space. + * + * This should never impact any application or cause data loss, + * however it might take some time. + * + * This is not a 100% solution for all memory, but tries to be + * ``good enough'' for the majority of memory. + */ +int soft_offline_page(struct page *page, int flags) +{ + int ret; + unsigned long pfn = page_to_pfn(page); + struct page *hpage = compound_trans_head(page); + + if (PageHWPoison(page)) { + pr_info("soft offline: %#lx page already poisoned\n", pfn); + return -EBUSY; + } + if (!PageHuge(page) && PageTransHuge(hpage)) { + if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) { + pr_info("soft offline: %#lx: failed to split THP\n", + pfn); + return -EBUSY; + } + } + + ret = get_any_page(page, pfn, flags); + if (ret < 0) + goto unset; + if (ret) { /* for in-use pages */ + if (PageHuge(page)) + ret = soft_offline_huge_page(page, flags); + else + ret = __soft_offline_page(page, flags); + } else { /* for free pages */ + if (PageHuge(page)) { + set_page_hwpoison_huge_page(hpage); + dequeue_hwpoisoned_huge_page(hpage); + atomic_long_add(1 << compound_order(hpage), + &num_poisoned_pages); + } else { + SetPageHWPoison(page); + atomic_long_inc(&num_poisoned_pages); + } + } +unset: + unset_migratetype_isolate(page, MIGRATE_MOVABLE); + return ret; +} diff --git a/mm/memory.c b/mm/memory.c index 1ce2e2a..ca00039 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -209,14 +209,15 @@ static int tlb_next_batch(struct mmu_gather *tlb) * tear-down from @mm. The @fullmm argument is used when @mm is without * users and we're going to destroy the full address space (exit/execve). */ -void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) +void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) { tlb->mm = mm; - tlb->fullmm = fullmm; + /* Is it from 0 to ~0? */ + tlb->fullmm = !(start | (end+1)); tlb->need_flush_all = 0; - tlb->start = -1UL; - tlb->end = 0; + tlb->start = start; + tlb->end = end; tlb->need_flush = 0; tlb->local.next = NULL; tlb->local.nr = 0; @@ -256,8 +257,6 @@ void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long e { struct mmu_gather_batch *batch, *next; - tlb->start = start; - tlb->end = end; tlb_flush_mmu(tlb); /* keep the page table cache within bounds */ @@ -374,30 +373,6 @@ void tlb_remove_table(struct mmu_gather *tlb, void *table) #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ /* - * If a p?d_bad entry is found while walking page tables, report - * the error, before resetting entry to p?d_none. Usually (but - * very seldom) called out from the p?d_none_or_clear_bad macros. - */ - -void pgd_clear_bad(pgd_t *pgd) -{ - pgd_ERROR(*pgd); - pgd_clear(pgd); -} - -void pud_clear_bad(pud_t *pud) -{ - pud_ERROR(*pud); - pud_clear(pud); -} - -void pmd_clear_bad(pmd_t *pmd) -{ - pmd_ERROR(*pmd); - pmd_clear(pmd); -} - -/* * Note: this doesn't free the actual pages themselves. That * has been handled earlier when unmapping all the memory regions. */ @@ -1099,7 +1074,6 @@ static unsigned long zap_pte_range(struct mmu_gather *tlb, spinlock_t *ptl; pte_t *start_pte; pte_t *pte; - unsigned long range_start = addr; again: init_rss_vec(rss); @@ -1141,9 +1115,12 @@ again: continue; if (unlikely(details) && details->nonlinear_vma && linear_page_index(details->nonlinear_vma, - addr) != page->index) - set_pte_at(mm, addr, pte, - pgoff_to_pte(page->index)); + addr) != page->index) { + pte_t ptfile = pgoff_to_pte(page->index); + if (pte_soft_dirty(ptent)) + pte_file_mksoft_dirty(ptfile); + set_pte_at(mm, addr, pte, ptfile); + } if (PageAnon(page)) rss[MM_ANONPAGES]--; else { @@ -1202,17 +1179,25 @@ again: * and page-free while holding it. */ if (force_flush) { + unsigned long old_end; + force_flush = 0; -#ifdef HAVE_GENERIC_MMU_GATHER - tlb->start = range_start; + /* + * Flush the TLB just for the previous segment, + * then update the range to be the remaining + * TLB range. + */ + old_end = tlb->end; tlb->end = addr; -#endif + tlb_flush_mmu(tlb); - if (addr != end) { - range_start = addr; + + tlb->start = addr; + tlb->end = old_end; + + if (addr != end) goto again; - } } return addr; @@ -1397,7 +1382,7 @@ void zap_page_range(struct vm_area_struct *vma, unsigned long start, unsigned long end = start + size; lru_add_drain(); - tlb_gather_mmu(&tlb, mm, 0); + tlb_gather_mmu(&tlb, mm, start, end); update_hiwater_rss(mm); mmu_notifier_invalidate_range_start(mm, start, end); for ( ; vma && vma->vm_start < end; vma = vma->vm_next) @@ -1423,7 +1408,7 @@ static void zap_page_range_single(struct vm_area_struct *vma, unsigned long addr unsigned long end = address + size; lru_add_drain(); - tlb_gather_mmu(&tlb, mm, 0); + tlb_gather_mmu(&tlb, mm, address, end); update_hiwater_rss(mm); mmu_notifier_invalidate_range_start(mm, address, end); unmap_single_vma(&tlb, vma, address, end, details); @@ -1496,7 +1481,8 @@ struct page *follow_page_mask(struct vm_area_struct *vma, if (pud_none(*pud)) goto no_page_table; if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { - BUG_ON(flags & FOLL_GET); + if (flags & FOLL_GET) + goto out; page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); goto out; } @@ -1507,8 +1493,20 @@ struct page *follow_page_mask(struct vm_area_struct *vma, if (pmd_none(*pmd)) goto no_page_table; if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { - BUG_ON(flags & FOLL_GET); page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); + if (flags & FOLL_GET) { + /* + * Refcount on tail pages are not well-defined and + * shouldn't be taken. The caller should handle a NULL + * return when trying to follow tail pages. + */ + if (PageHead(page)) + get_page(page); + else { + page = NULL; + goto out; + } + } goto out; } if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) @@ -3115,6 +3113,8 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, exclusive = 1; } flush_icache_page(vma, page); + if (pte_swp_soft_dirty(orig_pte)) + pte = pte_mksoft_dirty(pte); set_pte_at(mm, address, page_table, pte); if (page == swapcache) do_page_add_anon_rmap(page, vma, address, exclusive); @@ -3408,6 +3408,8 @@ static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, entry = mk_pte(page, vma->vm_page_prot); if (flags & FAULT_FLAG_WRITE) entry = maybe_mkwrite(pte_mkdirty(entry), vma); + else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte)) + pte_mksoft_dirty(entry); if (anon) { inc_mm_counter_fast(mm, MM_ANONPAGES); page_add_new_anon_rmap(page, vma, address); @@ -3693,7 +3695,7 @@ static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, * but allow concurrent faults), and pte mapped but not yet locked. * We return with mmap_sem still held, but pte unmapped and unlocked. */ -int handle_pte_fault(struct mm_struct *mm, +static int handle_pte_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, pte_t *pte, pmd_t *pmd, unsigned int flags) { @@ -3752,22 +3754,14 @@ unlock: /* * By the time we get here, we already hold the mm semaphore */ -int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, - unsigned long address, unsigned int flags) +static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, + unsigned long address, unsigned int flags) { pgd_t *pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; - __set_current_state(TASK_RUNNING); - - count_vm_event(PGFAULT); - mem_cgroup_count_vm_event(mm, PGFAULT); - - /* do counter updates before entering really critical section. */ - check_sync_rss_stat(current); - if (unlikely(is_vm_hugetlb_page(vma))) return hugetlb_fault(mm, vma, address, flags); @@ -3780,9 +3774,12 @@ retry: if (!pmd) return VM_FAULT_OOM; if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { + int ret = VM_FAULT_FALLBACK; if (!vma->vm_ops) - return do_huge_pmd_anonymous_page(mm, vma, address, - pmd, flags); + ret = do_huge_pmd_anonymous_page(mm, vma, address, + pmd, flags); + if (!(ret & VM_FAULT_FALLBACK)) + return ret; } else { pmd_t orig_pmd = *pmd; int ret; @@ -3848,6 +3845,37 @@ retry: return handle_pte_fault(mm, vma, address, pte, pmd, flags); } +int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, + unsigned long address, unsigned int flags) +{ + int ret; + + __set_current_state(TASK_RUNNING); + + count_vm_event(PGFAULT); + mem_cgroup_count_vm_event(mm, PGFAULT); + + /* do counter updates before entering really critical section. */ + check_sync_rss_stat(current); + + /* + * Enable the memcg OOM handling for faults triggered in user + * space. Kernel faults are handled more gracefully. + */ + if (flags & FAULT_FLAG_USER) + mem_cgroup_enable_oom(); + + ret = __handle_mm_fault(mm, vma, address, flags); + + if (flags & FAULT_FLAG_USER) + mem_cgroup_disable_oom(); + + if (WARN_ON(task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))) + mem_cgroup_oom_synchronize(); + + return ret; +} + #ifndef __PAGETABLE_PUD_FOLDED /* * Allocate page upper directory. @@ -4066,6 +4094,7 @@ int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, return len; } +EXPORT_SYMBOL_GPL(generic_access_phys); #endif /* diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c index ca1dd3a..ed85fe3 100644 --- a/mm/memory_hotplug.c +++ b/mm/memory_hotplug.c @@ -30,6 +30,7 @@ #include <linux/mm_inline.h> #include <linux/firmware-map.h> #include <linux/stop_machine.h> +#include <linux/hugetlb.h> #include <asm/tlbflush.h> @@ -51,14 +52,10 @@ DEFINE_MUTEX(mem_hotplug_mutex); void lock_memory_hotplug(void) { mutex_lock(&mem_hotplug_mutex); - - /* for exclusive hibernation if CONFIG_HIBERNATION=y */ - lock_system_sleep(); } void unlock_memory_hotplug(void) { - unlock_system_sleep(); mutex_unlock(&mem_hotplug_mutex); } @@ -194,7 +191,7 @@ void register_page_bootmem_info_node(struct pglist_data *pgdat) zone = &pgdat->node_zones[0]; for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) { - if (zone->wait_table) { + if (zone_is_initialized(zone)) { nr_pages = zone->wait_table_hash_nr_entries * sizeof(wait_queue_head_t); nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT; @@ -229,8 +226,8 @@ static void grow_zone_span(struct zone *zone, unsigned long start_pfn, zone_span_writelock(zone); - old_zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; - if (!zone->spanned_pages || start_pfn < zone->zone_start_pfn) + old_zone_end_pfn = zone_end_pfn(zone); + if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn) zone->zone_start_pfn = start_pfn; zone->spanned_pages = max(old_zone_end_pfn, end_pfn) - @@ -305,7 +302,7 @@ static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2, goto out_fail; /* use start_pfn for z1's start_pfn if z1 is empty */ - if (z1->spanned_pages) + if (!zone_is_empty(z1)) z1_start_pfn = z1->zone_start_pfn; else z1_start_pfn = start_pfn; @@ -347,7 +344,7 @@ static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2, goto out_fail; /* use end_pfn for z2's end_pfn if z2 is empty */ - if (z2->spanned_pages) + if (!zone_is_empty(z2)) z2_end_pfn = zone_end_pfn(z2); else z2_end_pfn = end_pfn; @@ -514,8 +511,9 @@ static int find_biggest_section_pfn(int nid, struct zone *zone, static void shrink_zone_span(struct zone *zone, unsigned long start_pfn, unsigned long end_pfn) { - unsigned long zone_start_pfn = zone->zone_start_pfn; - unsigned long zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages; + unsigned long zone_start_pfn = zone->zone_start_pfn; + unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */ + unsigned long zone_end_pfn = z; unsigned long pfn; struct mem_section *ms; int nid = zone_to_nid(zone); @@ -1069,6 +1067,23 @@ out: return ret; } +static int check_hotplug_memory_range(u64 start, u64 size) +{ + u64 start_pfn = start >> PAGE_SHIFT; + u64 nr_pages = size >> PAGE_SHIFT; + + /* Memory range must be aligned with section */ + if ((start_pfn & ~PAGE_SECTION_MASK) || + (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) { + pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n", + (unsigned long long)start, + (unsigned long long)size); + return -EINVAL; + } + + return 0; +} + /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */ int __ref add_memory(int nid, u64 start, u64 size) { @@ -1078,6 +1093,10 @@ int __ref add_memory(int nid, u64 start, u64 size) struct resource *res; int ret; + ret = check_hotplug_memory_range(start, size); + if (ret) + return ret; + lock_memory_hotplug(); res = register_memory_resource(start, size); @@ -1208,10 +1227,12 @@ static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn) } /* - * Scanning pfn is much easier than scanning lru list. - * Scan pfn from start to end and Find LRU page. + * Scan pfn range [start,end) to find movable/migratable pages (LRU pages + * and hugepages). We scan pfn because it's much easier than scanning over + * linked list. This function returns the pfn of the first found movable + * page if it's found, otherwise 0. */ -static unsigned long scan_lru_pages(unsigned long start, unsigned long end) +static unsigned long scan_movable_pages(unsigned long start, unsigned long end) { unsigned long pfn; struct page *page; @@ -1220,6 +1241,13 @@ static unsigned long scan_lru_pages(unsigned long start, unsigned long end) page = pfn_to_page(pfn); if (PageLRU(page)) return pfn; + if (PageHuge(page)) { + if (is_hugepage_active(page)) + return pfn; + else + pfn = round_up(pfn + 1, + 1 << compound_order(page)) - 1; + } } } return 0; @@ -1240,6 +1268,19 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) if (!pfn_valid(pfn)) continue; page = pfn_to_page(pfn); + + if (PageHuge(page)) { + struct page *head = compound_head(page); + pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1; + if (compound_order(head) > PFN_SECTION_SHIFT) { + ret = -EBUSY; + break; + } + if (isolate_huge_page(page, &source)) + move_pages -= 1 << compound_order(head); + continue; + } + if (!get_page_unless_zero(page)) continue; /* @@ -1272,7 +1313,7 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) } if (!list_empty(&source)) { if (not_managed) { - putback_lru_pages(&source); + putback_movable_pages(&source); goto out; } @@ -1283,7 +1324,7 @@ do_migrate_range(unsigned long start_pfn, unsigned long end_pfn) ret = migrate_pages(&source, alloc_migrate_target, 0, MIGRATE_SYNC, MR_MEMORY_HOTPLUG); if (ret) - putback_lru_pages(&source); + putback_movable_pages(&source); } out: return ret; @@ -1472,7 +1513,6 @@ static int __ref __offline_pages(unsigned long start_pfn, struct zone *zone; struct memory_notify arg; - BUG_ON(start_pfn >= end_pfn); /* at least, alignment against pageblock is necessary */ if (!IS_ALIGNED(start_pfn, pageblock_nr_pages)) return -EINVAL; @@ -1527,8 +1567,8 @@ repeat: drain_all_pages(); } - pfn = scan_lru_pages(start_pfn, end_pfn); - if (pfn) { /* We have page on LRU */ + pfn = scan_movable_pages(start_pfn, end_pfn); + if (pfn) { /* We have movable pages */ ret = do_migrate_range(pfn, end_pfn); if (!ret) { drain = 1; @@ -1547,6 +1587,11 @@ repeat: yield(); /* drain pcp pages, this is synchronous. */ drain_all_pages(); + /* + * dissolve free hugepages in the memory block before doing offlining + * actually in order to make hugetlbfs's object counting consistent. + */ + dissolve_free_huge_pages(start_pfn, end_pfn); /* check again */ offlined_pages = check_pages_isolated(start_pfn, end_pfn); if (offlined_pages < 0) { @@ -1674,9 +1719,8 @@ static int is_memblock_offlined_cb(struct memory_block *mem, void *arg) return ret; } -static int check_cpu_on_node(void *data) +static int check_cpu_on_node(pg_data_t *pgdat) { - struct pglist_data *pgdat = data; int cpu; for_each_present_cpu(cpu) { @@ -1691,10 +1735,9 @@ static int check_cpu_on_node(void *data) return 0; } -static void unmap_cpu_on_node(void *data) +static void unmap_cpu_on_node(pg_data_t *pgdat) { #ifdef CONFIG_ACPI_NUMA - struct pglist_data *pgdat = data; int cpu; for_each_possible_cpu(cpu) @@ -1703,10 +1746,11 @@ static void unmap_cpu_on_node(void *data) #endif } -static int check_and_unmap_cpu_on_node(void *data) +static int check_and_unmap_cpu_on_node(pg_data_t *pgdat) { - int ret = check_cpu_on_node(data); + int ret; + ret = check_cpu_on_node(pgdat); if (ret) return ret; @@ -1715,11 +1759,18 @@ static int check_and_unmap_cpu_on_node(void *data) * the cpu_to_node() now. */ - unmap_cpu_on_node(data); + unmap_cpu_on_node(pgdat); return 0; } -/* offline the node if all memory sections of this node are removed */ +/** + * try_offline_node + * + * Offline a node if all memory sections and cpus of the node are removed. + * + * NOTE: The caller must call lock_device_hotplug() to serialize hotplug + * and online/offline operations before this call. + */ void try_offline_node(int nid) { pg_data_t *pgdat = NODE_DATA(nid); @@ -1745,7 +1796,7 @@ void try_offline_node(int nid) return; } - if (stop_machine(check_and_unmap_cpu_on_node, pgdat, NULL)) + if (check_and_unmap_cpu_on_node(pgdat)) return; /* @@ -1782,10 +1833,19 @@ void try_offline_node(int nid) } EXPORT_SYMBOL(try_offline_node); +/** + * remove_memory + * + * NOTE: The caller must call lock_device_hotplug() to serialize hotplug + * and online/offline operations before this call, as required by + * try_offline_node(). + */ void __ref remove_memory(int nid, u64 start, u64 size) { int ret; + BUG_ON(check_hotplug_memory_range(start, size)); + lock_memory_hotplug(); /* diff --git a/mm/mempolicy.c b/mm/mempolicy.c index 7431001..0472964 100644 --- a/mm/mempolicy.c +++ b/mm/mempolicy.c @@ -123,16 +123,19 @@ static struct mempolicy preferred_node_policy[MAX_NUMNODES]; static struct mempolicy *get_task_policy(struct task_struct *p) { struct mempolicy *pol = p->mempolicy; - int node; if (!pol) { - node = numa_node_id(); - if (node != NUMA_NO_NODE) - pol = &preferred_node_policy[node]; + int node = numa_node_id(); - /* preferred_node_policy is not initialised early in boot */ - if (!pol->mode) - pol = NULL; + if (node != NUMA_NO_NODE) { + pol = &preferred_node_policy[node]; + /* + * preferred_node_policy is not initialised early in + * boot + */ + if (!pol->mode) + pol = NULL; + } } return pol; @@ -473,8 +476,11 @@ static const struct mempolicy_operations mpol_ops[MPOL_MAX] = { static void migrate_page_add(struct page *page, struct list_head *pagelist, unsigned long flags); -/* Scan through pages checking if pages follow certain conditions. */ -static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, +/* + * Scan through pages checking if pages follow certain conditions, + * and move them to the pagelist if they do. + */ +static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd, unsigned long addr, unsigned long end, const nodemask_t *nodes, unsigned long flags, void *private) @@ -512,7 +518,31 @@ static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd, return addr != end; } -static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, +static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma, + pmd_t *pmd, const nodemask_t *nodes, unsigned long flags, + void *private) +{ +#ifdef CONFIG_HUGETLB_PAGE + int nid; + struct page *page; + + spin_lock(&vma->vm_mm->page_table_lock); + page = pte_page(huge_ptep_get((pte_t *)pmd)); + nid = page_to_nid(page); + if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT)) + goto unlock; + /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */ + if (flags & (MPOL_MF_MOVE_ALL) || + (flags & MPOL_MF_MOVE && page_mapcount(page) == 1)) + isolate_huge_page(page, private); +unlock: + spin_unlock(&vma->vm_mm->page_table_lock); +#else + BUG(); +#endif +} + +static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud, unsigned long addr, unsigned long end, const nodemask_t *nodes, unsigned long flags, void *private) @@ -523,17 +553,24 @@ static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud, pmd = pmd_offset(pud, addr); do { next = pmd_addr_end(addr, end); + if (!pmd_present(*pmd)) + continue; + if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) { + queue_pages_hugetlb_pmd_range(vma, pmd, nodes, + flags, private); + continue; + } split_huge_page_pmd(vma, addr, pmd); if (pmd_none_or_trans_huge_or_clear_bad(pmd)) continue; - if (check_pte_range(vma, pmd, addr, next, nodes, + if (queue_pages_pte_range(vma, pmd, addr, next, nodes, flags, private)) return -EIO; } while (pmd++, addr = next, addr != end); return 0; } -static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, +static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd, unsigned long addr, unsigned long end, const nodemask_t *nodes, unsigned long flags, void *private) @@ -544,16 +581,18 @@ static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd, pud = pud_offset(pgd, addr); do { next = pud_addr_end(addr, end); + if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) + continue; if (pud_none_or_clear_bad(pud)) continue; - if (check_pmd_range(vma, pud, addr, next, nodes, + if (queue_pages_pmd_range(vma, pud, addr, next, nodes, flags, private)) return -EIO; } while (pud++, addr = next, addr != end); return 0; } -static inline int check_pgd_range(struct vm_area_struct *vma, +static inline int queue_pages_pgd_range(struct vm_area_struct *vma, unsigned long addr, unsigned long end, const nodemask_t *nodes, unsigned long flags, void *private) @@ -566,7 +605,7 @@ static inline int check_pgd_range(struct vm_area_struct *vma, next = pgd_addr_end(addr, end); if (pgd_none_or_clear_bad(pgd)) continue; - if (check_pud_range(vma, pgd, addr, next, nodes, + if (queue_pages_pud_range(vma, pgd, addr, next, nodes, flags, private)) return -EIO; } while (pgd++, addr = next, addr != end); @@ -604,12 +643,14 @@ static unsigned long change_prot_numa(struct vm_area_struct *vma, #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */ /* - * Check if all pages in a range are on a set of nodes. - * If pagelist != NULL then isolate pages from the LRU and - * put them on the pagelist. + * Walk through page tables and collect pages to be migrated. + * + * If pages found in a given range are on a set of nodes (determined by + * @nodes and @flags,) it's isolated and queued to the pagelist which is + * passed via @private.) */ static struct vm_area_struct * -check_range(struct mm_struct *mm, unsigned long start, unsigned long end, +queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end, const nodemask_t *nodes, unsigned long flags, void *private) { int err; @@ -635,9 +676,6 @@ check_range(struct mm_struct *mm, unsigned long start, unsigned long end, return ERR_PTR(-EFAULT); } - if (is_vm_hugetlb_page(vma)) - goto next; - if (flags & MPOL_MF_LAZY) { change_prot_numa(vma, start, endvma); goto next; @@ -647,7 +685,7 @@ check_range(struct mm_struct *mm, unsigned long start, unsigned long end, ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) && vma_migratable(vma))) { - err = check_pgd_range(vma, start, endvma, nodes, + err = queue_pages_pgd_range(vma, start, endvma, nodes, flags, private); if (err) { first = ERR_PTR(err); @@ -732,7 +770,10 @@ static int mbind_range(struct mm_struct *mm, unsigned long start, if (prev) { vma = prev; next = vma->vm_next; - continue; + if (mpol_equal(vma_policy(vma), new_pol)) + continue; + /* vma_merge() joined vma && vma->next, case 8 */ + goto replace; } if (vma->vm_start != vmstart) { err = split_vma(vma->vm_mm, vma, vmstart, 1); @@ -744,6 +785,7 @@ static int mbind_range(struct mm_struct *mm, unsigned long start, if (err) goto out; } + replace: err = vma_replace_policy(vma, new_pol); if (err) goto out; @@ -986,7 +1028,11 @@ static void migrate_page_add(struct page *page, struct list_head *pagelist, static struct page *new_node_page(struct page *page, unsigned long node, int **x) { - return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); + if (PageHuge(page)) + return alloc_huge_page_node(page_hstate(compound_head(page)), + node); + else + return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0); } /* @@ -1009,14 +1055,14 @@ static int migrate_to_node(struct mm_struct *mm, int source, int dest, * space range and MPOL_MF_DISCONTIG_OK, this call can not fail. */ VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))); - check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, + queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask, flags | MPOL_MF_DISCONTIG_OK, &pagelist); if (!list_empty(&pagelist)) { err = migrate_pages(&pagelist, new_node_page, dest, MIGRATE_SYNC, MR_SYSCALL); if (err) - putback_lru_pages(&pagelist); + putback_movable_pages(&pagelist); } return err; @@ -1150,10 +1196,14 @@ static struct page *new_vma_page(struct page *page, unsigned long private, int * break; vma = vma->vm_next; } - /* - * if !vma, alloc_page_vma() will use task or system default policy + * queue_pages_range() confirms that @page belongs to some vma, + * so vma shouldn't be NULL. */ + BUG_ON(!vma); + + if (PageHuge(page)) + return alloc_huge_page_noerr(vma, address, 1); return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); } #else @@ -1245,7 +1295,7 @@ static long do_mbind(unsigned long start, unsigned long len, if (err) goto mpol_out; - vma = check_range(mm, start, end, nmask, + vma = queue_pages_range(mm, start, end, nmask, flags | MPOL_MF_INVERT, &pagelist); err = PTR_ERR(vma); /* maybe ... */ @@ -1261,7 +1311,7 @@ static long do_mbind(unsigned long start, unsigned long len, (unsigned long)vma, MIGRATE_SYNC, MR_MEMPOLICY_MBIND); if (nr_failed) - putback_lru_pages(&pagelist); + putback_movable_pages(&pagelist); } if (nr_failed && (flags & MPOL_MF_STRICT)) @@ -2061,6 +2111,16 @@ retry_cpuset: } EXPORT_SYMBOL(alloc_pages_current); +int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst) +{ + struct mempolicy *pol = mpol_dup(vma_policy(src)); + + if (IS_ERR(pol)) + return PTR_ERR(pol); + dst->vm_policy = pol; + return 0; +} + /* * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it * rebinds the mempolicy its copying by calling mpol_rebind_policy() diff --git a/mm/mempool.c b/mm/mempool.c index 5499047..659aa42 100644 --- a/mm/mempool.c +++ b/mm/mempool.c @@ -73,7 +73,7 @@ mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn, gfp_t gfp_mask, int node_id) { mempool_t *pool; - pool = kmalloc_node(sizeof(*pool), gfp_mask | __GFP_ZERO, node_id); + pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id); if (!pool) return NULL; pool->elements = kmalloc_node(min_nr * sizeof(void *), diff --git a/mm/migrate.c b/mm/migrate.c index 1da0092..9c8d5f5 100644 --- a/mm/migrate.c +++ b/mm/migrate.c @@ -100,6 +100,10 @@ void putback_movable_pages(struct list_head *l) struct page *page2; list_for_each_entry_safe(page, page2, l, lru) { + if (unlikely(PageHuge(page))) { + putback_active_hugepage(page); + continue; + } list_del(&page->lru); dec_zone_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page)); @@ -945,6 +949,16 @@ static int unmap_and_move_huge_page(new_page_t get_new_page, struct page *new_hpage = get_new_page(hpage, private, &result); struct anon_vma *anon_vma = NULL; + /* + * Movability of hugepages depends on architectures and hugepage size. + * This check is necessary because some callers of hugepage migration + * like soft offline and memory hotremove don't walk through page + * tables or check whether the hugepage is pmd-based or not before + * kicking migration. + */ + if (!hugepage_migration_support(page_hstate(hpage))) + return -ENOSYS; + if (!new_hpage) return -ENOMEM; @@ -975,6 +989,8 @@ static int unmap_and_move_huge_page(new_page_t get_new_page, unlock_page(hpage); out: + if (rc != -EAGAIN) + putback_active_hugepage(hpage); put_page(new_hpage); if (result) { if (rc) @@ -1025,7 +1041,11 @@ int migrate_pages(struct list_head *from, new_page_t get_new_page, list_for_each_entry_safe(page, page2, from, lru) { cond_resched(); - rc = unmap_and_move(get_new_page, private, + if (PageHuge(page)) + rc = unmap_and_move_huge_page(get_new_page, + private, page, pass > 2, mode); + else + rc = unmap_and_move(get_new_page, private, page, pass > 2, mode); switch(rc) { @@ -1058,32 +1078,6 @@ out: return rc; } -int migrate_huge_page(struct page *hpage, new_page_t get_new_page, - unsigned long private, enum migrate_mode mode) -{ - int pass, rc; - - for (pass = 0; pass < 10; pass++) { - rc = unmap_and_move_huge_page(get_new_page, private, - hpage, pass > 2, mode); - switch (rc) { - case -ENOMEM: - goto out; - case -EAGAIN: - /* try again */ - cond_resched(); - break; - case MIGRATEPAGE_SUCCESS: - goto out; - default: - rc = -EIO; - goto out; - } - } -out: - return rc; -} - #ifdef CONFIG_NUMA /* * Move a list of individual pages @@ -1108,7 +1102,11 @@ static struct page *new_page_node(struct page *p, unsigned long private, *result = &pm->status; - return alloc_pages_exact_node(pm->node, + if (PageHuge(p)) + return alloc_huge_page_node(page_hstate(compound_head(p)), + pm->node); + else + return alloc_pages_exact_node(pm->node, GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0); } @@ -1168,6 +1166,11 @@ static int do_move_page_to_node_array(struct mm_struct *mm, !migrate_all) goto put_and_set; + if (PageHuge(page)) { + isolate_huge_page(page, &pagelist); + goto put_and_set; + } + err = isolate_lru_page(page); if (!err) { list_add_tail(&page->lru, &pagelist); @@ -1190,7 +1193,7 @@ set_status: err = migrate_pages(&pagelist, new_page_node, (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL); if (err) - putback_lru_pages(&pagelist); + putback_movable_pages(&pagelist); } up_read(&mm->mmap_sem); @@ -1468,7 +1471,7 @@ static bool migrate_balanced_pgdat(struct pglist_data *pgdat, if (!populated_zone(zone)) continue; - if (zone->all_unreclaimable) + if (!zone_reclaimable(zone)) continue; /* Avoid waking kswapd by allocating pages_to_migrate pages. */ @@ -11,6 +11,7 @@ #include <linux/swap.h> #include <linux/swapops.h> #include <linux/pagemap.h> +#include <linux/pagevec.h> #include <linux/mempolicy.h> #include <linux/syscalls.h> #include <linux/sched.h> @@ -18,6 +19,8 @@ #include <linux/rmap.h> #include <linux/mmzone.h> #include <linux/hugetlb.h> +#include <linux/memcontrol.h> +#include <linux/mm_inline.h> #include "internal.h" @@ -87,6 +90,47 @@ void mlock_vma_page(struct page *page) } } +/* + * Finish munlock after successful page isolation + * + * Page must be locked. This is a wrapper for try_to_munlock() + * and putback_lru_page() with munlock accounting. + */ +static void __munlock_isolated_page(struct page *page) +{ + int ret = SWAP_AGAIN; + + /* + * Optimization: if the page was mapped just once, that's our mapping + * and we don't need to check all the other vmas. + */ + if (page_mapcount(page) > 1) + ret = try_to_munlock(page); + + /* Did try_to_unlock() succeed or punt? */ + if (ret != SWAP_MLOCK) + count_vm_event(UNEVICTABLE_PGMUNLOCKED); + + putback_lru_page(page); +} + +/* + * Accounting for page isolation fail during munlock + * + * Performs accounting when page isolation fails in munlock. There is nothing + * else to do because it means some other task has already removed the page + * from the LRU. putback_lru_page() will take care of removing the page from + * the unevictable list, if necessary. vmscan [page_referenced()] will move + * the page back to the unevictable list if some other vma has it mlocked. + */ +static void __munlock_isolation_failed(struct page *page) +{ + if (PageUnevictable(page)) + count_vm_event(UNEVICTABLE_PGSTRANDED); + else + count_vm_event(UNEVICTABLE_PGMUNLOCKED); +} + /** * munlock_vma_page - munlock a vma page * @page - page to be unlocked @@ -112,37 +156,10 @@ unsigned int munlock_vma_page(struct page *page) unsigned int nr_pages = hpage_nr_pages(page); mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); page_mask = nr_pages - 1; - if (!isolate_lru_page(page)) { - int ret = SWAP_AGAIN; - - /* - * Optimization: if the page was mapped just once, - * that's our mapping and we don't need to check all the - * other vmas. - */ - if (page_mapcount(page) > 1) - ret = try_to_munlock(page); - /* - * did try_to_unlock() succeed or punt? - */ - if (ret != SWAP_MLOCK) - count_vm_event(UNEVICTABLE_PGMUNLOCKED); - - putback_lru_page(page); - } else { - /* - * Some other task has removed the page from the LRU. - * putback_lru_page() will take care of removing the - * page from the unevictable list, if necessary. - * vmscan [page_referenced()] will move the page back - * to the unevictable list if some other vma has it - * mlocked. - */ - if (PageUnevictable(page)) - count_vm_event(UNEVICTABLE_PGSTRANDED); - else - count_vm_event(UNEVICTABLE_PGMUNLOCKED); - } + if (!isolate_lru_page(page)) + __munlock_isolated_page(page); + else + __munlock_isolation_failed(page); } return page_mask; @@ -210,6 +227,191 @@ static int __mlock_posix_error_return(long retval) } /* + * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec() + * + * The fast path is available only for evictable pages with single mapping. + * Then we can bypass the per-cpu pvec and get better performance. + * when mapcount > 1 we need try_to_munlock() which can fail. + * when !page_evictable(), we need the full redo logic of putback_lru_page to + * avoid leaving evictable page in unevictable list. + * + * In case of success, @page is added to @pvec and @pgrescued is incremented + * in case that the page was previously unevictable. @page is also unlocked. + */ +static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec, + int *pgrescued) +{ + VM_BUG_ON(PageLRU(page)); + VM_BUG_ON(!PageLocked(page)); + + if (page_mapcount(page) <= 1 && page_evictable(page)) { + pagevec_add(pvec, page); + if (TestClearPageUnevictable(page)) + (*pgrescued)++; + unlock_page(page); + return true; + } + + return false; +} + +/* + * Putback multiple evictable pages to the LRU + * + * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of + * the pages might have meanwhile become unevictable but that is OK. + */ +static void __putback_lru_fast(struct pagevec *pvec, int pgrescued) +{ + count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec)); + /* + *__pagevec_lru_add() calls release_pages() so we don't call + * put_page() explicitly + */ + __pagevec_lru_add(pvec); + count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued); +} + +/* + * Munlock a batch of pages from the same zone + * + * The work is split to two main phases. First phase clears the Mlocked flag + * and attempts to isolate the pages, all under a single zone lru lock. + * The second phase finishes the munlock only for pages where isolation + * succeeded. + * + * Note that the pagevec may be modified during the process. + */ +static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone) +{ + int i; + int nr = pagevec_count(pvec); + int delta_munlocked = -nr; + struct pagevec pvec_putback; + int pgrescued = 0; + + /* Phase 1: page isolation */ + spin_lock_irq(&zone->lru_lock); + for (i = 0; i < nr; i++) { + struct page *page = pvec->pages[i]; + + if (TestClearPageMlocked(page)) { + struct lruvec *lruvec; + int lru; + + if (PageLRU(page)) { + lruvec = mem_cgroup_page_lruvec(page, zone); + lru = page_lru(page); + /* + * We already have pin from follow_page_mask() + * so we can spare the get_page() here. + */ + ClearPageLRU(page); + del_page_from_lru_list(page, lruvec, lru); + } else { + __munlock_isolation_failed(page); + goto skip_munlock; + } + + } else { +skip_munlock: + /* + * We won't be munlocking this page in the next phase + * but we still need to release the follow_page_mask() + * pin. + */ + pvec->pages[i] = NULL; + put_page(page); + delta_munlocked++; + } + } + __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked); + spin_unlock_irq(&zone->lru_lock); + + /* Phase 2: page munlock */ + pagevec_init(&pvec_putback, 0); + for (i = 0; i < nr; i++) { + struct page *page = pvec->pages[i]; + + if (page) { + lock_page(page); + if (!__putback_lru_fast_prepare(page, &pvec_putback, + &pgrescued)) { + /* + * Slow path. We don't want to lose the last + * pin before unlock_page() + */ + get_page(page); /* for putback_lru_page() */ + __munlock_isolated_page(page); + unlock_page(page); + put_page(page); /* from follow_page_mask() */ + } + } + } + + /* + * Phase 3: page putback for pages that qualified for the fast path + * This will also call put_page() to return pin from follow_page_mask() + */ + if (pagevec_count(&pvec_putback)) + __putback_lru_fast(&pvec_putback, pgrescued); +} + +/* + * Fill up pagevec for __munlock_pagevec using pte walk + * + * The function expects that the struct page corresponding to @start address is + * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone. + * + * The rest of @pvec is filled by subsequent pages within the same pmd and same + * zone, as long as the pte's are present and vm_normal_page() succeeds. These + * pages also get pinned. + * + * Returns the address of the next page that should be scanned. This equals + * @start + PAGE_SIZE when no page could be added by the pte walk. + */ +static unsigned long __munlock_pagevec_fill(struct pagevec *pvec, + struct vm_area_struct *vma, int zoneid, unsigned long start, + unsigned long end) +{ + pte_t *pte; + spinlock_t *ptl; + + /* + * Initialize pte walk starting at the already pinned page where we + * are sure that there is a pte. + */ + pte = get_locked_pte(vma->vm_mm, start, &ptl); + end = min(end, pmd_addr_end(start, end)); + + /* The page next to the pinned page is the first we will try to get */ + start += PAGE_SIZE; + while (start < end) { + struct page *page = NULL; + pte++; + if (pte_present(*pte)) + page = vm_normal_page(vma, start, *pte); + /* + * Break if page could not be obtained or the page's node+zone does not + * match + */ + if (!page || page_zone_id(page) != zoneid) + break; + + get_page(page); + /* + * Increase the address that will be returned *before* the + * eventual break due to pvec becoming full by adding the page + */ + start += PAGE_SIZE; + if (pagevec_add(pvec, page) == 0) + break; + } + pte_unmap_unlock(pte, ptl); + return start; +} + +/* * munlock_vma_pages_range() - munlock all pages in the vma range.' * @vma - vma containing range to be munlock()ed. * @start - start address in @vma of the range @@ -233,9 +435,13 @@ void munlock_vma_pages_range(struct vm_area_struct *vma, vma->vm_flags &= ~VM_LOCKED; while (start < end) { - struct page *page; + struct page *page = NULL; unsigned int page_mask, page_increm; + struct pagevec pvec; + struct zone *zone; + int zoneid; + pagevec_init(&pvec, 0); /* * Although FOLL_DUMP is intended for get_dump_page(), * it just so happens that its special treatment of the @@ -244,21 +450,45 @@ void munlock_vma_pages_range(struct vm_area_struct *vma, * has sneaked into the range, we won't oops here: great). */ page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP, - &page_mask); + &page_mask); + if (page && !IS_ERR(page)) { - lock_page(page); - lru_add_drain(); - /* - * Any THP page found by follow_page_mask() may have - * gotten split before reaching munlock_vma_page(), - * so we need to recompute the page_mask here. - */ - page_mask = munlock_vma_page(page); - unlock_page(page); - put_page(page); + if (PageTransHuge(page)) { + lock_page(page); + /* + * Any THP page found by follow_page_mask() may + * have gotten split before reaching + * munlock_vma_page(), so we need to recompute + * the page_mask here. + */ + page_mask = munlock_vma_page(page); + unlock_page(page); + put_page(page); /* follow_page_mask() */ + } else { + /* + * Non-huge pages are handled in batches via + * pagevec. The pin from follow_page_mask() + * prevents them from collapsing by THP. + */ + pagevec_add(&pvec, page); + zone = page_zone(page); + zoneid = page_zone_id(page); + + /* + * Try to fill the rest of pagevec using fast + * pte walk. This will also update start to + * the next page to process. Then munlock the + * pagevec. + */ + start = __munlock_pagevec_fill(&pvec, vma, + zoneid, start, end); + __munlock_pagevec(&pvec, zone); + goto next; + } } page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); start += page_increm * PAGE_SIZE; +next: cond_resched(); } } @@ -865,7 +865,7 @@ again: remove_next = 1 + (end > next->vm_end); if (next->anon_vma) anon_vma_merge(vma, next); mm->map_count--; - vma_set_policy(vma, vma_policy(next)); + mpol_put(vma_policy(next)); kmem_cache_free(vm_area_cachep, next); /* * In mprotect's case 6 (see comments on vma_merge), @@ -1202,7 +1202,6 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, unsigned long *populate) { struct mm_struct * mm = current->mm; - struct inode *inode; vm_flags_t vm_flags; *populate = 0; @@ -1265,9 +1264,9 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, return -EAGAIN; } - inode = file ? file_inode(file) : NULL; - if (file) { + struct inode *inode = file_inode(file); + switch (flags & MAP_TYPE) { case MAP_SHARED: if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE)) @@ -1302,6 +1301,8 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, if (!file->f_op || !file->f_op->mmap) return -ENODEV; + if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) + return -EINVAL; break; default: @@ -1310,6 +1311,8 @@ unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, } else { switch (flags & MAP_TYPE) { case MAP_SHARED: + if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) + return -EINVAL; /* * Ignore pgoff. */ @@ -1476,11 +1479,9 @@ unsigned long mmap_region(struct file *file, unsigned long addr, { struct mm_struct *mm = current->mm; struct vm_area_struct *vma, *prev; - int correct_wcount = 0; int error; struct rb_node **rb_link, *rb_parent; unsigned long charged = 0; - struct inode *inode = file ? file_inode(file) : NULL; /* Check against address space limit. */ if (!may_expand_vm(mm, len >> PAGE_SHIFT)) { @@ -1544,16 +1545,11 @@ munmap_back: vma->vm_pgoff = pgoff; INIT_LIST_HEAD(&vma->anon_vma_chain); - error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */ - if (file) { - if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP)) - goto free_vma; if (vm_flags & VM_DENYWRITE) { error = deny_write_access(file); if (error) goto free_vma; - correct_wcount = 1; } vma->vm_file = get_file(file); error = file->f_op->mmap(file, vma); @@ -1570,11 +1566,8 @@ munmap_back: WARN_ON_ONCE(addr != vma->vm_start); addr = vma->vm_start; - pgoff = vma->vm_pgoff; vm_flags = vma->vm_flags; } else if (vm_flags & VM_SHARED) { - if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP))) - goto free_vma; error = shmem_zero_setup(vma); if (error) goto free_vma; @@ -1596,11 +1589,10 @@ munmap_back: } vma_link(mm, vma, prev, rb_link, rb_parent); - file = vma->vm_file; - /* Once vma denies write, undo our temporary denial count */ - if (correct_wcount) - atomic_inc(&inode->i_writecount); + if (vm_flags & VM_DENYWRITE) + allow_write_access(file); + file = vma->vm_file; out: perf_event_mmap(vma); @@ -1616,11 +1608,20 @@ out: if (file) uprobe_mmap(vma); + /* + * New (or expanded) vma always get soft dirty status. + * Otherwise user-space soft-dirty page tracker won't + * be able to distinguish situation when vma area unmapped, + * then new mapped in-place (which must be aimed as + * a completely new data area). + */ + vma->vm_flags |= VM_SOFTDIRTY; + return addr; unmap_and_free_vma: - if (correct_wcount) - atomic_inc(&inode->i_writecount); + if (vm_flags & VM_DENYWRITE) + allow_write_access(file); vma->vm_file = NULL; fput(file); @@ -2336,7 +2337,7 @@ static void unmap_region(struct mm_struct *mm, struct mmu_gather tlb; lru_add_drain(); - tlb_gather_mmu(&tlb, mm, 0); + tlb_gather_mmu(&tlb, mm, start, end); update_hiwater_rss(mm); unmap_vmas(&tlb, vma, start, end); free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS, @@ -2380,7 +2381,6 @@ detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma, static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, unsigned long addr, int new_below) { - struct mempolicy *pol; struct vm_area_struct *new; int err = -ENOMEM; @@ -2404,12 +2404,9 @@ static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); } - pol = mpol_dup(vma_policy(vma)); - if (IS_ERR(pol)) { - err = PTR_ERR(pol); + err = vma_dup_policy(vma, new); + if (err) goto out_free_vma; - } - vma_set_policy(new, pol); if (anon_vma_clone(new, vma)) goto out_free_mpol; @@ -2437,7 +2434,7 @@ static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma, fput(new->vm_file); unlink_anon_vmas(new); out_free_mpol: - mpol_put(pol); + mpol_put(vma_policy(new)); out_free_vma: kmem_cache_free(vm_area_cachep, new); out_err: @@ -2663,6 +2660,7 @@ out: mm->total_vm += len >> PAGE_SHIFT; if (flags & VM_LOCKED) mm->locked_vm += (len >> PAGE_SHIFT); + vma->vm_flags |= VM_SOFTDIRTY; return addr; } @@ -2709,7 +2707,7 @@ void exit_mmap(struct mm_struct *mm) lru_add_drain(); flush_cache_mm(mm); - tlb_gather_mmu(&tlb, mm, 1); + tlb_gather_mmu(&tlb, mm, 0, -1); /* update_hiwater_rss(mm) here? but nobody should be looking */ /* Use -1 here to ensure all VMAs in the mm are unmapped */ unmap_vmas(&tlb, vma, 0, -1); @@ -2780,7 +2778,6 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, struct mm_struct *mm = vma->vm_mm; struct vm_area_struct *new_vma, *prev; struct rb_node **rb_link, *rb_parent; - struct mempolicy *pol; bool faulted_in_anon_vma = true; /* @@ -2825,10 +2822,8 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, new_vma->vm_start = addr; new_vma->vm_end = addr + len; new_vma->vm_pgoff = pgoff; - pol = mpol_dup(vma_policy(vma)); - if (IS_ERR(pol)) + if (vma_dup_policy(vma, new_vma)) goto out_free_vma; - vma_set_policy(new_vma, pol); INIT_LIST_HEAD(&new_vma->anon_vma_chain); if (anon_vma_clone(new_vma, vma)) goto out_free_mempol; @@ -2843,7 +2838,7 @@ struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, return new_vma; out_free_mempol: - mpol_put(pol); + mpol_put(vma_policy(new_vma)); out_free_vma: kmem_cache_free(vm_area_cachep, new_vma); return NULL; @@ -2930,7 +2925,7 @@ int install_special_mapping(struct mm_struct *mm, vma->vm_start = addr; vma->vm_end = addr + len; - vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND; + vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY; vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); vma->vm_ops = &special_mapping_vmops; diff --git a/mm/mremap.c b/mm/mremap.c index 457d34e..91b13d6 100644 --- a/mm/mremap.c +++ b/mm/mremap.c @@ -15,6 +15,7 @@ #include <linux/swap.h> #include <linux/capability.h> #include <linux/fs.h> +#include <linux/swapops.h> #include <linux/highmem.h> #include <linux/security.h> #include <linux/syscalls.h> @@ -24,6 +25,7 @@ #include <asm/uaccess.h> #include <asm/cacheflush.h> #include <asm/tlbflush.h> +#include <asm/pgalloc.h> #include "internal.h" @@ -61,14 +63,33 @@ static pmd_t *alloc_new_pmd(struct mm_struct *mm, struct vm_area_struct *vma, return NULL; pmd = pmd_alloc(mm, pud, addr); - if (!pmd) + if (!pmd) { + pud_free(mm, pud); return NULL; + } VM_BUG_ON(pmd_trans_huge(*pmd)); return pmd; } +static pte_t move_soft_dirty_pte(pte_t pte) +{ + /* + * Set soft dirty bit so we can notice + * in userspace the ptes were moved. + */ +#ifdef CONFIG_MEM_SOFT_DIRTY + if (pte_present(pte)) + pte = pte_mksoft_dirty(pte); + else if (is_swap_pte(pte)) + pte = pte_swp_mksoft_dirty(pte); + else if (pte_file(pte)) + pte = pte_file_mksoft_dirty(pte); +#endif + return pte; +} + static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, unsigned long old_addr, unsigned long old_end, struct vm_area_struct *new_vma, pmd_t *new_pmd, @@ -126,7 +147,8 @@ static void move_ptes(struct vm_area_struct *vma, pmd_t *old_pmd, continue; pte = ptep_get_and_clear(mm, old_addr, old_pte); pte = move_pte(pte, new_vma->vm_page_prot, old_addr, new_addr); - set_pte_at(mm, new_addr, new_pte, pte_mksoft_dirty(pte)); + pte = move_soft_dirty_pte(pte); + set_pte_at(mm, new_addr, new_pte, pte); } arch_leave_lazy_mmu_mode(); diff --git a/mm/oom_kill.c b/mm/oom_kill.c index 79e451a..314e9d2 100644 --- a/mm/oom_kill.c +++ b/mm/oom_kill.c @@ -288,7 +288,7 @@ enum oom_scan_t oom_scan_process_thread(struct task_struct *task, /* * Simple selection loop. We chose the process with the highest - * number of 'points'. + * number of 'points'. Returns -1 on scan abort. * * (not docbooked, we don't want this one cluttering up the manual) */ @@ -314,7 +314,7 @@ static struct task_struct *select_bad_process(unsigned int *ppoints, continue; case OOM_SCAN_ABORT: rcu_read_unlock(); - return ERR_PTR(-1UL); + return (struct task_struct *)(-1UL); case OOM_SCAN_OK: break; }; @@ -657,7 +657,7 @@ void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, dump_header(NULL, gfp_mask, order, NULL, mpol_mask); panic("Out of memory and no killable processes...\n"); } - if (PTR_ERR(p) != -1UL) { + if (p != (void *)-1UL) { oom_kill_process(p, gfp_mask, order, points, totalpages, NULL, nodemask, "Out of memory"); killed = 1; @@ -678,9 +678,12 @@ out: */ void pagefault_out_of_memory(void) { - struct zonelist *zonelist = node_zonelist(first_online_node, - GFP_KERNEL); + struct zonelist *zonelist; + if (mem_cgroup_oom_synchronize()) + return; + + zonelist = node_zonelist(first_online_node, GFP_KERNEL); if (try_set_zonelist_oom(zonelist, GFP_KERNEL)) { out_of_memory(NULL, 0, 0, NULL, false); clear_zonelist_oom(zonelist, GFP_KERNEL); diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 4514ad7..f5236f8 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -36,8 +36,11 @@ #include <linux/pagevec.h> #include <linux/timer.h> #include <linux/sched/rt.h> +#include <linux/mm_inline.h> #include <trace/events/writeback.h> +#include "internal.h" + /* * Sleep at most 200ms at a time in balance_dirty_pages(). */ @@ -241,9 +244,6 @@ static unsigned long global_dirtyable_memory(void) if (!vm_highmem_is_dirtyable) x -= highmem_dirtyable_memory(x); - /* Subtract min_free_kbytes */ - x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10)); - return x + 1; /* Ensure that we never return 0 */ } @@ -585,6 +585,37 @@ unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) } /* + * setpoint - dirty 3 + * f(dirty) := 1.0 + (----------------) + * limit - setpoint + * + * it's a 3rd order polynomial that subjects to + * + * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast + * (2) f(setpoint) = 1.0 => the balance point + * (3) f(limit) = 0 => the hard limit + * (4) df/dx <= 0 => negative feedback control + * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) + * => fast response on large errors; small oscillation near setpoint + */ +static inline long long pos_ratio_polynom(unsigned long setpoint, + unsigned long dirty, + unsigned long limit) +{ + long long pos_ratio; + long x; + + x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, + limit - setpoint + 1); + pos_ratio = x; + pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; + pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; + pos_ratio += 1 << RATELIMIT_CALC_SHIFT; + + return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); +} + +/* * Dirty position control. * * (o) global/bdi setpoints @@ -682,26 +713,80 @@ static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, /* * global setpoint * - * setpoint - dirty 3 - * f(dirty) := 1.0 + (----------------) - * limit - setpoint + * See comment for pos_ratio_polynom(). + */ + setpoint = (freerun + limit) / 2; + pos_ratio = pos_ratio_polynom(setpoint, dirty, limit); + + /* + * The strictlimit feature is a tool preventing mistrusted filesystems + * from growing a large number of dirty pages before throttling. For + * such filesystems balance_dirty_pages always checks bdi counters + * against bdi limits. Even if global "nr_dirty" is under "freerun". + * This is especially important for fuse which sets bdi->max_ratio to + * 1% by default. Without strictlimit feature, fuse writeback may + * consume arbitrary amount of RAM because it is accounted in + * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". * - * it's a 3rd order polynomial that subjects to + * Here, in bdi_position_ratio(), we calculate pos_ratio based on + * two values: bdi_dirty and bdi_thresh. Let's consider an example: + * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global + * limits are set by default to 10% and 20% (background and throttle). + * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. + * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is + * about ~6K pages (as the average of background and throttle bdi + * limits). The 3rd order polynomial will provide positive feedback if + * bdi_dirty is under bdi_setpoint and vice versa. * - * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast - * (2) f(setpoint) = 1.0 => the balance point - * (3) f(limit) = 0 => the hard limit - * (4) df/dx <= 0 => negative feedback control - * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) - * => fast response on large errors; small oscillation near setpoint + * Note, that we cannot use global counters in these calculations + * because we want to throttle process writing to a strictlimit BDI + * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB + * in the example above). */ - setpoint = (freerun + limit) / 2; - x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, - limit - setpoint + 1); - pos_ratio = x; - pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; - pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; - pos_ratio += 1 << RATELIMIT_CALC_SHIFT; + if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { + long long bdi_pos_ratio; + unsigned long bdi_bg_thresh; + + if (bdi_dirty < 8) + return min_t(long long, pos_ratio * 2, + 2 << RATELIMIT_CALC_SHIFT); + + if (bdi_dirty >= bdi_thresh) + return 0; + + bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh); + bdi_setpoint = dirty_freerun_ceiling(bdi_thresh, + bdi_bg_thresh); + + if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh) + return 0; + + bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty, + bdi_thresh); + + /* + * Typically, for strictlimit case, bdi_setpoint << setpoint + * and pos_ratio >> bdi_pos_ratio. In the other words global + * state ("dirty") is not limiting factor and we have to + * make decision based on bdi counters. But there is an + * important case when global pos_ratio should get precedence: + * global limits are exceeded (e.g. due to activities on other + * BDIs) while given strictlimit BDI is below limit. + * + * "pos_ratio * bdi_pos_ratio" would work for the case above, + * but it would look too non-natural for the case of all + * activity in the system coming from a single strictlimit BDI + * with bdi->max_ratio == 100%. + * + * Note that min() below somewhat changes the dynamics of the + * control system. Normally, pos_ratio value can be well over 3 + * (when globally we are at freerun and bdi is well below bdi + * setpoint). Now the maximum pos_ratio in the same situation + * is 2. We might want to tweak this if we observe the control + * system is too slow to adapt. + */ + return min(pos_ratio, bdi_pos_ratio); + } /* * We have computed basic pos_ratio above based on global situation. If @@ -994,6 +1079,27 @@ static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, * keep that period small to reduce time lags). */ step = 0; + + /* + * For strictlimit case, calculations above were based on bdi counters + * and limits (starting from pos_ratio = bdi_position_ratio() and up to + * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). + * Hence, to calculate "step" properly, we have to use bdi_dirty as + * "dirty" and bdi_setpoint as "setpoint". + * + * We rampup dirty_ratelimit forcibly if bdi_dirty is low because + * it's possible that bdi_thresh is close to zero due to inactivity + * of backing device (see the implementation of bdi_dirty_limit()). + */ + if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { + dirty = bdi_dirty; + if (bdi_dirty < 8) + setpoint = bdi_dirty + 1; + else + setpoint = (bdi_thresh + + bdi_dirty_limit(bdi, bg_thresh)) / 2; + } + if (dirty < setpoint) { x = min(bdi->balanced_dirty_ratelimit, min(balanced_dirty_ratelimit, task_ratelimit)); @@ -1198,6 +1304,56 @@ static long bdi_min_pause(struct backing_dev_info *bdi, return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; } +static inline void bdi_dirty_limits(struct backing_dev_info *bdi, + unsigned long dirty_thresh, + unsigned long background_thresh, + unsigned long *bdi_dirty, + unsigned long *bdi_thresh, + unsigned long *bdi_bg_thresh) +{ + unsigned long bdi_reclaimable; + + /* + * bdi_thresh is not treated as some limiting factor as + * dirty_thresh, due to reasons + * - in JBOD setup, bdi_thresh can fluctuate a lot + * - in a system with HDD and USB key, the USB key may somehow + * go into state (bdi_dirty >> bdi_thresh) either because + * bdi_dirty starts high, or because bdi_thresh drops low. + * In this case we don't want to hard throttle the USB key + * dirtiers for 100 seconds until bdi_dirty drops under + * bdi_thresh. Instead the auxiliary bdi control line in + * bdi_position_ratio() will let the dirtier task progress + * at some rate <= (write_bw / 2) for bringing down bdi_dirty. + */ + *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); + + if (bdi_bg_thresh) + *bdi_bg_thresh = div_u64((u64)*bdi_thresh * + background_thresh, + dirty_thresh); + + /* + * In order to avoid the stacked BDI deadlock we need + * to ensure we accurately count the 'dirty' pages when + * the threshold is low. + * + * Otherwise it would be possible to get thresh+n pages + * reported dirty, even though there are thresh-m pages + * actually dirty; with m+n sitting in the percpu + * deltas. + */ + if (*bdi_thresh < 2 * bdi_stat_error(bdi)) { + bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); + *bdi_dirty = bdi_reclaimable + + bdi_stat_sum(bdi, BDI_WRITEBACK); + } else { + bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); + *bdi_dirty = bdi_reclaimable + + bdi_stat(bdi, BDI_WRITEBACK); + } +} + /* * balance_dirty_pages() must be called by processes which are generating dirty * data. It looks at the number of dirty pages in the machine and will force @@ -1209,13 +1365,9 @@ static void balance_dirty_pages(struct address_space *mapping, unsigned long pages_dirtied) { unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ - unsigned long bdi_reclaimable; unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ - unsigned long bdi_dirty; - unsigned long freerun; unsigned long background_thresh; unsigned long dirty_thresh; - unsigned long bdi_thresh; long period; long pause; long max_pause; @@ -1226,10 +1378,16 @@ static void balance_dirty_pages(struct address_space *mapping, unsigned long dirty_ratelimit; unsigned long pos_ratio; struct backing_dev_info *bdi = mapping->backing_dev_info; + bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; unsigned long start_time = jiffies; for (;;) { unsigned long now = jiffies; + unsigned long uninitialized_var(bdi_thresh); + unsigned long thresh; + unsigned long uninitialized_var(bdi_dirty); + unsigned long dirty; + unsigned long bg_thresh; /* * Unstable writes are a feature of certain networked @@ -1243,61 +1401,44 @@ static void balance_dirty_pages(struct address_space *mapping, global_dirty_limits(&background_thresh, &dirty_thresh); + if (unlikely(strictlimit)) { + bdi_dirty_limits(bdi, dirty_thresh, background_thresh, + &bdi_dirty, &bdi_thresh, &bg_thresh); + + dirty = bdi_dirty; + thresh = bdi_thresh; + } else { + dirty = nr_dirty; + thresh = dirty_thresh; + bg_thresh = background_thresh; + } + /* * Throttle it only when the background writeback cannot * catch-up. This avoids (excessively) small writeouts - * when the bdi limits are ramping up. + * when the bdi limits are ramping up in case of !strictlimit. + * + * In strictlimit case make decision based on the bdi counters + * and limits. Small writeouts when the bdi limits are ramping + * up are the price we consciously pay for strictlimit-ing. */ - freerun = dirty_freerun_ceiling(dirty_thresh, - background_thresh); - if (nr_dirty <= freerun) { + if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) { current->dirty_paused_when = now; current->nr_dirtied = 0; current->nr_dirtied_pause = - dirty_poll_interval(nr_dirty, dirty_thresh); + dirty_poll_interval(dirty, thresh); break; } if (unlikely(!writeback_in_progress(bdi))) bdi_start_background_writeback(bdi); - /* - * bdi_thresh is not treated as some limiting factor as - * dirty_thresh, due to reasons - * - in JBOD setup, bdi_thresh can fluctuate a lot - * - in a system with HDD and USB key, the USB key may somehow - * go into state (bdi_dirty >> bdi_thresh) either because - * bdi_dirty starts high, or because bdi_thresh drops low. - * In this case we don't want to hard throttle the USB key - * dirtiers for 100 seconds until bdi_dirty drops under - * bdi_thresh. Instead the auxiliary bdi control line in - * bdi_position_ratio() will let the dirtier task progress - * at some rate <= (write_bw / 2) for bringing down bdi_dirty. - */ - bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); - - /* - * In order to avoid the stacked BDI deadlock we need - * to ensure we accurately count the 'dirty' pages when - * the threshold is low. - * - * Otherwise it would be possible to get thresh+n pages - * reported dirty, even though there are thresh-m pages - * actually dirty; with m+n sitting in the percpu - * deltas. - */ - if (bdi_thresh < 2 * bdi_stat_error(bdi)) { - bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); - bdi_dirty = bdi_reclaimable + - bdi_stat_sum(bdi, BDI_WRITEBACK); - } else { - bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); - bdi_dirty = bdi_reclaimable + - bdi_stat(bdi, BDI_WRITEBACK); - } + if (!strictlimit) + bdi_dirty_limits(bdi, dirty_thresh, background_thresh, + &bdi_dirty, &bdi_thresh, NULL); dirty_exceeded = (bdi_dirty > bdi_thresh) && - (nr_dirty > dirty_thresh); + ((nr_dirty > dirty_thresh) || strictlimit); if (dirty_exceeded && !bdi->dirty_exceeded) bdi->dirty_exceeded = 1; @@ -1619,7 +1760,7 @@ void writeback_set_ratelimit(void) ratelimit_pages = 16; } -static int __cpuinit +static int ratelimit_handler(struct notifier_block *self, unsigned long action, void *hcpu) { @@ -1634,7 +1775,7 @@ ratelimit_handler(struct notifier_block *self, unsigned long action, } } -static struct notifier_block __cpuinitdata ratelimit_nb = { +static struct notifier_block ratelimit_nb = { .notifier_call = ratelimit_handler, .next = NULL, }; @@ -2002,11 +2143,17 @@ EXPORT_SYMBOL(account_page_dirtied); /* * Helper function for set_page_writeback family. + * + * The caller must hold mem_cgroup_begin/end_update_page_stat() lock + * while calling this function. + * See test_set_page_writeback for example. + * * NOTE: Unlike account_page_dirtied this does not rely on being atomic * wrt interrupts. */ void account_page_writeback(struct page *page) { + mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); inc_zone_page_state(page, NR_WRITEBACK); } EXPORT_SYMBOL(account_page_writeback); @@ -2223,7 +2370,10 @@ int test_clear_page_writeback(struct page *page) { struct address_space *mapping = page_mapping(page); int ret; + bool locked; + unsigned long memcg_flags; + mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags); if (mapping) { struct backing_dev_info *bdi = mapping->backing_dev_info; unsigned long flags; @@ -2244,9 +2394,11 @@ int test_clear_page_writeback(struct page *page) ret = TestClearPageWriteback(page); } if (ret) { + mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); dec_zone_page_state(page, NR_WRITEBACK); inc_zone_page_state(page, NR_WRITTEN); } + mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags); return ret; } @@ -2254,7 +2406,10 @@ int test_set_page_writeback(struct page *page) { struct address_space *mapping = page_mapping(page); int ret; + bool locked; + unsigned long memcg_flags; + mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags); if (mapping) { struct backing_dev_info *bdi = mapping->backing_dev_info; unsigned long flags; @@ -2281,6 +2436,7 @@ int test_set_page_writeback(struct page *page) } if (!ret) account_page_writeback(page); + mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags); return ret; } diff --git a/mm/page_alloc.c b/mm/page_alloc.c index b100255..0ee638f 100644 --- a/mm/page_alloc.c +++ b/mm/page_alloc.c @@ -56,6 +56,7 @@ #include <linux/ftrace_event.h> #include <linux/memcontrol.h> #include <linux/prefetch.h> +#include <linux/mm_inline.h> #include <linux/migrate.h> #include <linux/page-debug-flags.h> #include <linux/hugetlb.h> @@ -488,8 +489,10 @@ __find_buddy_index(unsigned long page_idx, unsigned int order) * (c) a page and its buddy have the same order && * (d) a page and its buddy are in the same zone. * - * For recording whether a page is in the buddy system, we set ->_mapcount -2. - * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. + * For recording whether a page is in the buddy system, we set ->_mapcount + * PAGE_BUDDY_MAPCOUNT_VALUE. + * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is + * serialized by zone->lock. * * For recording page's order, we use page_private(page). */ @@ -527,8 +530,9 @@ static inline int page_is_buddy(struct page *page, struct page *buddy, * as necessary, plus some accounting needed to play nicely with other * parts of the VM system. * At each level, we keep a list of pages, which are heads of continuous - * free pages of length of (1 << order) and marked with _mapcount -2. Page's - * order is recorded in page_private(page) field. + * free pages of length of (1 << order) and marked with _mapcount + * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) + * field. * So when we are allocating or freeing one, we can derive the state of the * other. That is, if we allocate a small block, and both were * free, the remainder of the region must be split into blocks. @@ -647,7 +651,6 @@ static void free_pcppages_bulk(struct zone *zone, int count, int to_free = count; spin_lock(&zone->lock); - zone->all_unreclaimable = 0; zone->pages_scanned = 0; while (to_free) { @@ -696,7 +699,6 @@ static void free_one_page(struct zone *zone, struct page *page, int order, int migratetype) { spin_lock(&zone->lock); - zone->all_unreclaimable = 0; zone->pages_scanned = 0; __free_one_page(page, zone, order, migratetype); @@ -721,7 +723,8 @@ static bool free_pages_prepare(struct page *page, unsigned int order) return false; if (!PageHighMem(page)) { - debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); + debug_check_no_locks_freed(page_address(page), + PAGE_SIZE << order); debug_check_no_obj_freed(page_address(page), PAGE_SIZE << order); } @@ -750,25 +753,25 @@ static void __free_pages_ok(struct page *page, unsigned int order) void __init __free_pages_bootmem(struct page *page, unsigned int order) { unsigned int nr_pages = 1 << order; + struct page *p = page; unsigned int loop; - prefetchw(page); - for (loop = 0; loop < nr_pages; loop++) { - struct page *p = &page[loop]; - - if (loop + 1 < nr_pages) - prefetchw(p + 1); + prefetchw(p); + for (loop = 0; loop < (nr_pages - 1); loop++, p++) { + prefetchw(p + 1); __ClearPageReserved(p); set_page_count(p, 0); } + __ClearPageReserved(p); + set_page_count(p, 0); - page_zone(page)->managed_pages += 1 << order; + page_zone(page)->managed_pages += nr_pages; set_page_refcounted(page); __free_pages(page, order); } #ifdef CONFIG_CMA -/* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ +/* Free whole pageblock and set its migration type to MIGRATE_CMA. */ void __init init_cma_reserved_pageblock(struct page *page) { unsigned i = pageblock_nr_pages; @@ -885,7 +888,7 @@ struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, int migratetype) { unsigned int current_order; - struct free_area * area; + struct free_area *area; struct page *page; /* Find a page of the appropriate size in the preferred list */ @@ -1007,14 +1010,60 @@ static void change_pageblock_range(struct page *pageblock_page, } } +/* + * If breaking a large block of pages, move all free pages to the preferred + * allocation list. If falling back for a reclaimable kernel allocation, be + * more aggressive about taking ownership of free pages. + * + * On the other hand, never change migration type of MIGRATE_CMA pageblocks + * nor move CMA pages to different free lists. We don't want unmovable pages + * to be allocated from MIGRATE_CMA areas. + * + * Returns the new migratetype of the pageblock (or the same old migratetype + * if it was unchanged). + */ +static int try_to_steal_freepages(struct zone *zone, struct page *page, + int start_type, int fallback_type) +{ + int current_order = page_order(page); + + if (is_migrate_cma(fallback_type)) + return fallback_type; + + /* Take ownership for orders >= pageblock_order */ + if (current_order >= pageblock_order) { + change_pageblock_range(page, current_order, start_type); + return start_type; + } + + if (current_order >= pageblock_order / 2 || + start_type == MIGRATE_RECLAIMABLE || + page_group_by_mobility_disabled) { + int pages; + + pages = move_freepages_block(zone, page, start_type); + + /* Claim the whole block if over half of it is free */ + if (pages >= (1 << (pageblock_order-1)) || + page_group_by_mobility_disabled) { + + set_pageblock_migratetype(page, start_type); + return start_type; + } + + } + + return fallback_type; +} + /* Remove an element from the buddy allocator from the fallback list */ static inline struct page * __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) { - struct free_area * area; + struct free_area *area; int current_order; struct page *page; - int migratetype, i; + int migratetype, new_type, i; /* Find the largest possible block of pages in the other list */ for (current_order = MAX_ORDER-1; current_order >= order; @@ -1034,51 +1083,29 @@ __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) struct page, lru); area->nr_free--; - /* - * If breaking a large block of pages, move all free - * pages to the preferred allocation list. If falling - * back for a reclaimable kernel allocation, be more - * aggressive about taking ownership of free pages - * - * On the other hand, never change migration - * type of MIGRATE_CMA pageblocks nor move CMA - * pages on different free lists. We don't - * want unmovable pages to be allocated from - * MIGRATE_CMA areas. - */ - if (!is_migrate_cma(migratetype) && - (current_order >= pageblock_order / 2 || - start_migratetype == MIGRATE_RECLAIMABLE || - page_group_by_mobility_disabled)) { - int pages; - pages = move_freepages_block(zone, page, - start_migratetype); - - /* Claim the whole block if over half of it is free */ - if (pages >= (1 << (pageblock_order-1)) || - page_group_by_mobility_disabled) - set_pageblock_migratetype(page, - start_migratetype); - - migratetype = start_migratetype; - } + new_type = try_to_steal_freepages(zone, page, + start_migratetype, + migratetype); /* Remove the page from the freelists */ list_del(&page->lru); rmv_page_order(page); - /* Take ownership for orders >= pageblock_order */ - if (current_order >= pageblock_order && - !is_migrate_cma(migratetype)) - change_pageblock_range(page, current_order, - start_migratetype); - + /* + * Borrow the excess buddy pages as well, irrespective + * of whether we stole freepages, or took ownership of + * the pageblock or not. + * + * Exception: When borrowing from MIGRATE_CMA, release + * the excess buddy pages to CMA itself. + */ expand(zone, page, order, current_order, area, is_migrate_cma(migratetype) ? migratetype : start_migratetype); - trace_mm_page_alloc_extfrag(page, order, current_order, - start_migratetype, migratetype); + trace_mm_page_alloc_extfrag(page, order, + current_order, start_migratetype, migratetype, + new_type == start_migratetype); return page; } @@ -1281,7 +1308,7 @@ void mark_free_pages(struct zone *zone) int order, t; struct list_head *curr; - if (!zone->spanned_pages) + if (zone_is_empty(zone)) return; spin_lock_irqsave(&zone->lock, flags); @@ -1526,6 +1553,7 @@ again: get_pageblock_migratetype(page)); } + __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); __count_zone_vm_events(PGALLOC, zone, 1 << order); zone_statistics(preferred_zone, zone, gfp_flags); local_irq_restore(flags); @@ -1792,6 +1820,11 @@ static void zlc_clear_zones_full(struct zonelist *zonelist) bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); } +static bool zone_local(struct zone *local_zone, struct zone *zone) +{ + return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE; +} + static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) { return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); @@ -1829,6 +1862,11 @@ static void zlc_clear_zones_full(struct zonelist *zonelist) { } +static bool zone_local(struct zone *local_zone, struct zone *zone) +{ + return true; +} + static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) { return true; @@ -1860,16 +1898,41 @@ get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, zonelist_scan: /* * Scan zonelist, looking for a zone with enough free. - * See also cpuset_zone_allowed() comment in kernel/cpuset.c. + * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c. */ for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx, nodemask) { + unsigned long mark; + if (IS_ENABLED(CONFIG_NUMA) && zlc_active && !zlc_zone_worth_trying(zonelist, z, allowednodes)) continue; if ((alloc_flags & ALLOC_CPUSET) && !cpuset_zone_allowed_softwall(zone, gfp_mask)) continue; + BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); + if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS)) + goto try_this_zone; + /* + * Distribute pages in proportion to the individual + * zone size to ensure fair page aging. The zone a + * page was allocated in should have no effect on the + * time the page has in memory before being reclaimed. + * + * When zone_reclaim_mode is enabled, try to stay in + * local zones in the fastpath. If that fails, the + * slowpath is entered, which will do another pass + * starting with the local zones, but ultimately fall + * back to remote zones that do not partake in the + * fairness round-robin cycle of this zonelist. + */ + if (alloc_flags & ALLOC_WMARK_LOW) { + if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0) + continue; + if (zone_reclaim_mode && + !zone_local(preferred_zone, zone)) + continue; + } /* * When allocating a page cache page for writing, we * want to get it from a zone that is within its dirty @@ -1900,16 +1963,11 @@ zonelist_scan: (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) goto this_zone_full; - BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); - if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { - unsigned long mark; + mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; + if (!zone_watermark_ok(zone, order, mark, + classzone_idx, alloc_flags)) { int ret; - mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; - if (zone_watermark_ok(zone, order, mark, - classzone_idx, alloc_flags)) - goto try_this_zone; - if (IS_ENABLED(CONFIG_NUMA) && !did_zlc_setup && nr_online_nodes > 1) { /* @@ -2321,16 +2379,30 @@ __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, return page; } -static inline -void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, - enum zone_type high_zoneidx, - enum zone_type classzone_idx) +static void prepare_slowpath(gfp_t gfp_mask, unsigned int order, + struct zonelist *zonelist, + enum zone_type high_zoneidx, + struct zone *preferred_zone) { struct zoneref *z; struct zone *zone; - for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) - wakeup_kswapd(zone, order, classzone_idx); + for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { + if (!(gfp_mask & __GFP_NO_KSWAPD)) + wakeup_kswapd(zone, order, zone_idx(preferred_zone)); + /* + * Only reset the batches of zones that were actually + * considered in the fast path, we don't want to + * thrash fairness information for zones that are not + * actually part of this zonelist's round-robin cycle. + */ + if (zone_reclaim_mode && !zone_local(preferred_zone, zone)) + continue; + mod_zone_page_state(zone, NR_ALLOC_BATCH, + high_wmark_pages(zone) - + low_wmark_pages(zone) - + zone_page_state(zone, NR_ALLOC_BATCH)); + } } static inline int @@ -2426,9 +2498,8 @@ __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, goto nopage; restart: - if (!(gfp_mask & __GFP_NO_KSWAPD)) - wake_all_kswapd(order, zonelist, high_zoneidx, - zone_idx(preferred_zone)); + prepare_slowpath(gfp_mask, order, zonelist, + high_zoneidx, preferred_zone); /* * OK, we're below the kswapd watermark and have kicked background @@ -3095,7 +3166,7 @@ void show_free_areas(unsigned int filter) K(zone_page_state(zone, NR_FREE_CMA_PAGES)), K(zone_page_state(zone, NR_WRITEBACK_TEMP)), zone->pages_scanned, - (zone->all_unreclaimable ? "yes" : "no") + (!zone_reclaimable(zone) ? "yes" : "no") ); printk("lowmem_reserve[]:"); for (i = 0; i < MAX_NR_ZONES; i++) @@ -3104,7 +3175,7 @@ void show_free_areas(unsigned int filter) } for_each_populated_zone(zone) { - unsigned long nr[MAX_ORDER], flags, order, total = 0; + unsigned long nr[MAX_ORDER], flags, order, total = 0; unsigned char types[MAX_ORDER]; if (skip_free_areas_node(filter, zone_to_nid(zone))) @@ -3416,11 +3487,11 @@ static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) static int default_zonelist_order(void) { int nid, zone_type; - unsigned long low_kmem_size,total_size; + unsigned long low_kmem_size, total_size; struct zone *z; int average_size; /* - * ZONE_DMA and ZONE_DMA32 can be very small area in the system. + * ZONE_DMA and ZONE_DMA32 can be very small area in the system. * If they are really small and used heavily, the system can fall * into OOM very easily. * This function detect ZONE_DMA/DMA32 size and configures zone order. @@ -3452,9 +3523,9 @@ static int default_zonelist_order(void) return ZONELIST_ORDER_NODE; /* * look into each node's config. - * If there is a node whose DMA/DMA32 memory is very big area on - * local memory, NODE_ORDER may be suitable. - */ + * If there is a node whose DMA/DMA32 memory is very big area on + * local memory, NODE_ORDER may be suitable. + */ average_size = total_size / (nodes_weight(node_states[N_MEMORY]) + 1); for_each_online_node(nid) { @@ -4180,7 +4251,7 @@ int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) if (!zone->wait_table) return -ENOMEM; - for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) + for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) init_waitqueue_head(zone->wait_table + i); return 0; @@ -4237,7 +4308,7 @@ int __meminit init_currently_empty_zone(struct zone *zone, int __meminit __early_pfn_to_nid(unsigned long pfn) { unsigned long start_pfn, end_pfn; - int i, nid; + int nid; /* * NOTE: The following SMP-unsafe globals are only used early in boot * when the kernel is running single-threaded. @@ -4248,15 +4319,14 @@ int __meminit __early_pfn_to_nid(unsigned long pfn) if (last_start_pfn <= pfn && pfn < last_end_pfn) return last_nid; - for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) - if (start_pfn <= pfn && pfn < end_pfn) { - last_start_pfn = start_pfn; - last_end_pfn = end_pfn; - last_nid = nid; - return nid; - } - /* This is a memory hole */ - return -1; + nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); + if (nid != -1) { + last_start_pfn = start_pfn; + last_end_pfn = end_pfn; + last_nid = nid; + } + + return nid; } #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ @@ -4586,7 +4656,7 @@ static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ -void __init set_pageblock_order(void) +void __paginginit set_pageblock_order(void) { unsigned int order; @@ -4614,7 +4684,7 @@ void __init set_pageblock_order(void) * include/linux/pageblock-flags.h for the values of pageblock_order based on * the kernel config */ -void __init set_pageblock_order(void) +void __paginginit set_pageblock_order(void) { } @@ -4728,8 +4798,11 @@ static void __paginginit free_area_init_core(struct pglist_data *pgdat, spin_lock_init(&zone->lru_lock); zone_seqlock_init(zone); zone->zone_pgdat = pgdat; - zone_pcp_init(zone); + + /* For bootup, initialized properly in watermark setup */ + mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); + lruvec_init(&zone->lruvec); if (!size) continue; @@ -4930,7 +5003,7 @@ static unsigned long __init early_calculate_totalpages(void) if (pages) node_set_state(nid, N_MEMORY); } - return totalpages; + return totalpages; } /* @@ -5047,7 +5120,7 @@ restart: /* * Some kernelcore has been met, update counts and * break if the kernelcore for this node has been - * satisified + * satisfied */ required_kernelcore -= min(required_kernelcore, size_pages); @@ -5061,7 +5134,7 @@ restart: * If there is still required_kernelcore, we do another pass with one * less node in the count. This will push zone_movable_pfn[nid] further * along on the nodes that still have memory until kernelcore is - * satisified + * satisfied */ usable_nodes--; if (usable_nodes && required_kernelcore > usable_nodes) @@ -5286,8 +5359,10 @@ void __init mem_init_print_info(const char *str) * 3) .rodata.* may be embedded into .text or .data sections. */ #define adj_init_size(start, end, size, pos, adj) \ - if (start <= pos && pos < end && size > adj) \ - size -= adj; + do { \ + if (start <= pos && pos < end && size > adj) \ + size -= adj; \ + } while (0) adj_init_size(__init_begin, __init_end, init_data_size, _sinittext, init_code_size); @@ -5361,7 +5436,7 @@ static int page_alloc_cpu_notify(struct notifier_block *self, * This is only okay since the processor is dead and cannot * race with what we are doing. */ - refresh_cpu_vm_stats(cpu); + cpu_vm_stats_fold(cpu); } return NOTIFY_OK; } @@ -5498,6 +5573,11 @@ static void __setup_per_zone_wmarks(void) zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); + __mod_zone_page_state(zone, NR_ALLOC_BATCH, + high_wmark_pages(zone) - + low_wmark_pages(zone) - + zone_page_state(zone, NR_ALLOC_BATCH)); + setup_zone_migrate_reserve(zone); spin_unlock_irqrestore(&zone->lock, flags); } @@ -5570,7 +5650,7 @@ static void __meminit setup_per_zone_inactive_ratio(void) * we want it large (64MB max). But it is not linear, because network * bandwidth does not increase linearly with machine size. We use * - * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: + * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: * min_free_kbytes = sqrt(lowmem_kbytes * 16) * * which yields @@ -5614,11 +5694,11 @@ int __meminit init_per_zone_wmark_min(void) module_init(init_per_zone_wmark_min) /* - * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so + * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so * that we can call two helper functions whenever min_free_kbytes * changes. */ -int min_free_kbytes_sysctl_handler(ctl_table *table, int write, +int min_free_kbytes_sysctl_handler(ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) { proc_dointvec(table, write, buffer, length, ppos); @@ -5682,8 +5762,8 @@ int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, /* * percpu_pagelist_fraction - changes the pcp->high for each zone on each - * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist - * can have before it gets flushed back to buddy allocator. + * cpu. It is the fraction of total pages in each zone that a hot per cpu + * pagelist can have before it gets flushed back to buddy allocator. */ int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, void __user *buffer, size_t *length, loff_t *ppos) @@ -5745,9 +5825,10 @@ void *__init alloc_large_system_hash(const char *tablename, if (!numentries) { /* round applicable memory size up to nearest megabyte */ numentries = nr_kernel_pages; - numentries += (1UL << (20 - PAGE_SHIFT)) - 1; - numentries >>= 20 - PAGE_SHIFT; - numentries <<= 20 - PAGE_SHIFT; + + /* It isn't necessary when PAGE_SIZE >= 1MB */ + if (PAGE_SHIFT < 20) + numentries = round_up(numentries, (1<<20)/PAGE_SIZE); /* limit to 1 bucket per 2^scale bytes of low memory */ if (scale > PAGE_SHIFT) @@ -5900,7 +5981,7 @@ void set_pageblock_flags_group(struct page *page, unsigned long flags, * This function checks whether pageblock includes unmovable pages or not. * If @count is not zero, it is okay to include less @count unmovable pages * - * PageLRU check wihtout isolation or lru_lock could race so that + * PageLRU check without isolation or lru_lock could race so that * MIGRATE_MOVABLE block might include unmovable pages. It means you can't * expect this function should be exact. */ @@ -5928,6 +6009,17 @@ bool has_unmovable_pages(struct zone *zone, struct page *page, int count, continue; page = pfn_to_page(check); + + /* + * Hugepages are not in LRU lists, but they're movable. + * We need not scan over tail pages bacause we don't + * handle each tail page individually in migration. + */ + if (PageHuge(page)) { + iter = round_up(iter + 1, 1<<compound_order(page)) - 1; + continue; + } + /* * We can't use page_count without pin a page * because another CPU can free compound page. diff --git a/mm/page_isolation.c b/mm/page_isolation.c index 383bdbb..d1473b2 100644 --- a/mm/page_isolation.c +++ b/mm/page_isolation.c @@ -6,6 +6,7 @@ #include <linux/page-isolation.h> #include <linux/pageblock-flags.h> #include <linux/memory.h> +#include <linux/hugetlb.h> #include "internal.h" int set_migratetype_isolate(struct page *page, bool skip_hwpoisoned_pages) @@ -226,9 +227,9 @@ int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn, int ret; /* - * Note: pageblock_nr_page != MAX_ORDER. Then, chunks of free page - * is not aligned to pageblock_nr_pages. - * Then we just check pagetype fist. + * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages + * are not aligned to pageblock_nr_pages. + * Then we just check migratetype first. */ for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { page = __first_valid_page(pfn, pageblock_nr_pages); @@ -238,7 +239,7 @@ int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn, page = __first_valid_page(start_pfn, end_pfn - start_pfn); if ((pfn < end_pfn) || !page) return -EBUSY; - /* Check all pages are free or Marked as ISOLATED */ + /* Check all pages are free or marked as ISOLATED */ zone = page_zone(page); spin_lock_irqsave(&zone->lock, flags); ret = __test_page_isolated_in_pageblock(start_pfn, end_pfn, @@ -252,6 +253,19 @@ struct page *alloc_migrate_target(struct page *page, unsigned long private, { gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE; + /* + * TODO: allocate a destination hugepage from a nearest neighbor node, + * accordance with memory policy of the user process if possible. For + * now as a simple work-around, we use the next node for destination. + */ + if (PageHuge(page)) { + nodemask_t src = nodemask_of_node(page_to_nid(page)); + nodemask_t dst; + nodes_complement(dst, src); + return alloc_huge_page_node(page_hstate(compound_head(page)), + next_node(page_to_nid(page), dst)); + } + if (PageHighMem(page)) gfp_mask |= __GFP_HIGHMEM; diff --git a/mm/pgtable-generic.c b/mm/pgtable-generic.c index e1a6e4f..3929a40 100644 --- a/mm/pgtable-generic.c +++ b/mm/pgtable-generic.c @@ -10,6 +10,30 @@ #include <asm/tlb.h> #include <asm-generic/pgtable.h> +/* + * If a p?d_bad entry is found while walking page tables, report + * the error, before resetting entry to p?d_none. Usually (but + * very seldom) called out from the p?d_none_or_clear_bad macros. + */ + +void pgd_clear_bad(pgd_t *pgd) +{ + pgd_ERROR(*pgd); + pgd_clear(pgd); +} + +void pud_clear_bad(pud_t *pud) +{ + pud_ERROR(*pud); + pud_clear(pud); +} + +void pmd_clear_bad(pmd_t *pmd) +{ + pmd_ERROR(*pmd); + pmd_clear(pmd); +} + #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS /* * Only sets the access flags (dirty, accessed), as well as write diff --git a/mm/readahead.c b/mm/readahead.c index 829a77c..e4ed041 100644 --- a/mm/readahead.c +++ b/mm/readahead.c @@ -371,10 +371,10 @@ static int try_context_readahead(struct address_space *mapping, size = count_history_pages(mapping, ra, offset, max); /* - * no history pages: + * not enough history pages: * it could be a random read */ - if (!size) + if (size <= req_size) return 0; /* @@ -385,8 +385,8 @@ static int try_context_readahead(struct address_space *mapping, size *= 2; ra->start = offset; - ra->size = get_init_ra_size(size + req_size, max); - ra->async_size = ra->size; + ra->size = min(size + req_size, max); + ra->async_size = 1; return 1; } @@ -873,9 +873,6 @@ int page_referenced(struct page *page, vm_flags); if (we_locked) unlock_page(page); - - if (page_test_and_clear_young(page_to_pfn(page))) - referenced++; } out: return referenced; @@ -1055,11 +1052,11 @@ void do_page_add_anon_rmap(struct page *page, { int first = atomic_inc_and_test(&page->_mapcount); if (first) { - if (!PageTransHuge(page)) - __inc_zone_page_state(page, NR_ANON_PAGES); - else + if (PageTransHuge(page)) __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); + __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, + hpage_nr_pages(page)); } if (unlikely(PageKsm(page))) return; @@ -1088,10 +1085,10 @@ void page_add_new_anon_rmap(struct page *page, VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end); SetPageSwapBacked(page); atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */ - if (!PageTransHuge(page)) - __inc_zone_page_state(page, NR_ANON_PAGES); - else + if (PageTransHuge(page)) __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); + __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, + hpage_nr_pages(page)); __page_set_anon_rmap(page, vma, address, 1); if (!mlocked_vma_newpage(vma, page)) { SetPageActive(page); @@ -1114,7 +1111,7 @@ void page_add_file_rmap(struct page *page) mem_cgroup_begin_update_page_stat(page, &locked, &flags); if (atomic_inc_and_test(&page->_mapcount)) { __inc_zone_page_state(page, NR_FILE_MAPPED); - mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED); + mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); } mem_cgroup_end_update_page_stat(page, &locked, &flags); } @@ -1151,14 +1148,14 @@ void page_remove_rmap(struct page *page) goto out; if (anon) { mem_cgroup_uncharge_page(page); - if (!PageTransHuge(page)) - __dec_zone_page_state(page, NR_ANON_PAGES); - else + if (PageTransHuge(page)) __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES); + __mod_zone_page_state(page_zone(page), NR_ANON_PAGES, + -hpage_nr_pages(page)); } else { __dec_zone_page_state(page, NR_FILE_MAPPED); - mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED); + mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED); mem_cgroup_end_update_page_stat(page, &locked, &flags); } if (unlikely(PageMlocked(page))) @@ -1236,6 +1233,7 @@ int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, swp_entry_to_pte(make_hwpoison_entry(page))); } else if (PageAnon(page)) { swp_entry_t entry = { .val = page_private(page) }; + pte_t swp_pte; if (PageSwapCache(page)) { /* @@ -1264,7 +1262,10 @@ int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION); entry = make_migration_entry(page, pte_write(pteval)); } - set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); + swp_pte = swp_entry_to_pte(entry); + if (pte_soft_dirty(pteval)) + swp_pte = pte_swp_mksoft_dirty(swp_pte); + set_pte_at(mm, address, pte, swp_pte); BUG_ON(pte_file(*pte)); } else if (IS_ENABLED(CONFIG_MIGRATION) && (TTU_ACTION(flags) == TTU_MIGRATION)) { @@ -1401,8 +1402,12 @@ static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount, pteval = ptep_clear_flush(vma, address, pte); /* If nonlinear, store the file page offset in the pte. */ - if (page->index != linear_page_index(vma, address)) - set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); + if (page->index != linear_page_index(vma, address)) { + pte_t ptfile = pgoff_to_pte(page->index); + if (pte_soft_dirty(pteval)) + pte_file_mksoft_dirty(ptfile); + set_pte_at(mm, address, pte, ptfile); + } /* Move the dirty bit to the physical page now the pte is gone. */ if (pte_dirty(pteval)) @@ -1205,7 +1205,7 @@ repeat: gfp & GFP_RECLAIM_MASK); if (error) goto decused; - error = radix_tree_preload(gfp & GFP_RECLAIM_MASK); + error = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK); if (!error) { error = shmem_add_to_page_cache(page, mapping, index, gfp, NULL); @@ -1798,7 +1798,8 @@ static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence) } } - offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); + if (offset >= 0) + offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE); mutex_unlock(&inode->i_mutex); return offset; } @@ -2614,13 +2615,15 @@ int shmem_fill_super(struct super_block *sb, void *data, int silent) * tmpfs instance, limiting inodes to one per page of lowmem; * but the internal instance is left unlimited. */ - if (!(sb->s_flags & MS_NOUSER)) { + if (!(sb->s_flags & MS_KERNMOUNT)) { sbinfo->max_blocks = shmem_default_max_blocks(); sbinfo->max_inodes = shmem_default_max_inodes(); if (shmem_parse_options(data, sbinfo, false)) { err = -EINVAL; goto failed; } + } else { + sb->s_flags |= MS_NOUSER; } sb->s_export_op = &shmem_export_ops; sb->s_flags |= MS_NOSEC; @@ -2816,6 +2819,10 @@ int __init shmem_init(void) { int error; + /* If rootfs called this, don't re-init */ + if (shmem_inode_cachep) + return 0; + error = bdi_init(&shmem_backing_dev_info); if (error) goto out4; @@ -2830,8 +2837,7 @@ int __init shmem_init(void) goto out2; } - shm_mnt = vfs_kern_mount(&shmem_fs_type, MS_NOUSER, - shmem_fs_type.name, NULL); + shm_mnt = kern_mount(&shmem_fs_type); if (IS_ERR(shm_mnt)) { error = PTR_ERR(shm_mnt); printk(KERN_ERR "Could not kern_mount tmpfs\n"); @@ -2908,14 +2914,8 @@ EXPORT_SYMBOL_GPL(shmem_truncate_range); /* common code */ -static char *shmem_dname(struct dentry *dentry, char *buffer, int buflen) -{ - return dynamic_dname(dentry, buffer, buflen, "/%s (deleted)", - dentry->d_name.name); -} - static struct dentry_operations anon_ops = { - .d_dname = shmem_dname + .d_dname = simple_dname }; /** @@ -787,7 +787,7 @@ static void next_reap_node(void) * the CPUs getting into lockstep and contending for the global cache chain * lock. */ -static void __cpuinit start_cpu_timer(int cpu) +static void start_cpu_timer(int cpu) { struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu); @@ -1186,7 +1186,7 @@ static inline int slabs_tofree(struct kmem_cache *cachep, return (n->free_objects + cachep->num - 1) / cachep->num; } -static void __cpuinit cpuup_canceled(long cpu) +static void cpuup_canceled(long cpu) { struct kmem_cache *cachep; struct kmem_cache_node *n = NULL; @@ -1251,7 +1251,7 @@ free_array_cache: } } -static int __cpuinit cpuup_prepare(long cpu) +static int cpuup_prepare(long cpu) { struct kmem_cache *cachep; struct kmem_cache_node *n = NULL; @@ -1334,7 +1334,7 @@ bad: return -ENOMEM; } -static int __cpuinit cpuup_callback(struct notifier_block *nfb, +static int cpuup_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { long cpu = (long)hcpu; @@ -1390,7 +1390,7 @@ static int __cpuinit cpuup_callback(struct notifier_block *nfb, return notifier_from_errno(err); } -static struct notifier_block __cpuinitdata cpucache_notifier = { +static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 }; @@ -162,6 +162,8 @@ static inline const char *cache_name(struct kmem_cache *s) static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx) { + if (!s->memcg_params) + return NULL; return s->memcg_params->memcg_caches[idx]; } @@ -1968,9 +1968,6 @@ static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) int pages; int pobjects; - if (!s->cpu_partial) - return; - do { pages = 0; pobjects = 0; @@ -3773,7 +3770,7 @@ int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) * Use the cpu notifier to insure that the cpu slabs are flushed when * necessary. */ -static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, +static int slab_cpuup_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { long cpu = (long)hcpu; @@ -3799,7 +3796,7 @@ static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, return NOTIFY_OK; } -static struct notifier_block __cpuinitdata slab_notifier = { +static struct notifier_block slab_notifier = { .notifier_call = slab_cpuup_callback }; @@ -4423,7 +4420,7 @@ static ssize_t order_store(struct kmem_cache *s, unsigned long order; int err; - err = strict_strtoul(buf, 10, &order); + err = kstrtoul(buf, 10, &order); if (err) return err; @@ -4451,7 +4448,7 @@ static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, unsigned long min; int err; - err = strict_strtoul(buf, 10, &min); + err = kstrtoul(buf, 10, &min); if (err) return err; @@ -4471,7 +4468,7 @@ static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, unsigned long objects; int err; - err = strict_strtoul(buf, 10, &objects); + err = kstrtoul(buf, 10, &objects); if (err) return err; if (objects && !kmem_cache_has_cpu_partial(s)) @@ -4787,7 +4784,7 @@ static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, unsigned long ratio; int err; - err = strict_strtoul(buf, 10, &ratio); + err = kstrtoul(buf, 10, &ratio); if (err) return err; diff --git a/mm/sparse.c b/mm/sparse.c index 308d5033..4ac1d7e 100644 --- a/mm/sparse.c +++ b/mm/sparse.c @@ -339,13 +339,14 @@ static void __init check_usemap_section_nr(int nid, unsigned long *usemap) } #endif /* CONFIG_MEMORY_HOTREMOVE */ -static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map, +static void __init sparse_early_usemaps_alloc_node(void *data, unsigned long pnum_begin, unsigned long pnum_end, unsigned long usemap_count, int nodeid) { void *usemap; unsigned long pnum; + unsigned long **usemap_map = (unsigned long **)data; int size = usemap_size(); usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid), @@ -430,11 +431,12 @@ void __init sparse_mem_maps_populate_node(struct page **map_map, #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER -static void __init sparse_early_mem_maps_alloc_node(struct page **map_map, +static void __init sparse_early_mem_maps_alloc_node(void *data, unsigned long pnum_begin, unsigned long pnum_end, unsigned long map_count, int nodeid) { + struct page **map_map = (struct page **)data; sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end, map_count, nodeid); } @@ -460,6 +462,55 @@ void __attribute__((weak)) __meminit vmemmap_populate_print_last(void) { } +/** + * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap + * @map: usemap_map for pageblock flags or mmap_map for vmemmap + */ +static void __init alloc_usemap_and_memmap(void (*alloc_func) + (void *, unsigned long, unsigned long, + unsigned long, int), void *data) +{ + unsigned long pnum; + unsigned long map_count; + int nodeid_begin = 0; + unsigned long pnum_begin = 0; + + for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { + struct mem_section *ms; + + if (!present_section_nr(pnum)) + continue; + ms = __nr_to_section(pnum); + nodeid_begin = sparse_early_nid(ms); + pnum_begin = pnum; + break; + } + map_count = 1; + for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { + struct mem_section *ms; + int nodeid; + + if (!present_section_nr(pnum)) + continue; + ms = __nr_to_section(pnum); + nodeid = sparse_early_nid(ms); + if (nodeid == nodeid_begin) { + map_count++; + continue; + } + /* ok, we need to take cake of from pnum_begin to pnum - 1*/ + alloc_func(data, pnum_begin, pnum, + map_count, nodeid_begin); + /* new start, update count etc*/ + nodeid_begin = nodeid; + pnum_begin = pnum; + map_count = 1; + } + /* ok, last chunk */ + alloc_func(data, pnum_begin, NR_MEM_SECTIONS, + map_count, nodeid_begin); +} + /* * Allocate the accumulated non-linear sections, allocate a mem_map * for each and record the physical to section mapping. @@ -471,11 +522,7 @@ void __init sparse_init(void) unsigned long *usemap; unsigned long **usemap_map; int size; - int nodeid_begin = 0; - unsigned long pnum_begin = 0; - unsigned long usemap_count; #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER - unsigned long map_count; int size2; struct page **map_map; #endif @@ -501,82 +548,16 @@ void __init sparse_init(void) usemap_map = alloc_bootmem(size); if (!usemap_map) panic("can not allocate usemap_map\n"); - - for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { - struct mem_section *ms; - - if (!present_section_nr(pnum)) - continue; - ms = __nr_to_section(pnum); - nodeid_begin = sparse_early_nid(ms); - pnum_begin = pnum; - break; - } - usemap_count = 1; - for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { - struct mem_section *ms; - int nodeid; - - if (!present_section_nr(pnum)) - continue; - ms = __nr_to_section(pnum); - nodeid = sparse_early_nid(ms); - if (nodeid == nodeid_begin) { - usemap_count++; - continue; - } - /* ok, we need to take cake of from pnum_begin to pnum - 1*/ - sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum, - usemap_count, nodeid_begin); - /* new start, update count etc*/ - nodeid_begin = nodeid; - pnum_begin = pnum; - usemap_count = 1; - } - /* ok, last chunk */ - sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS, - usemap_count, nodeid_begin); + alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node, + (void *)usemap_map); #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER size2 = sizeof(struct page *) * NR_MEM_SECTIONS; map_map = alloc_bootmem(size2); if (!map_map) panic("can not allocate map_map\n"); - - for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { - struct mem_section *ms; - - if (!present_section_nr(pnum)) - continue; - ms = __nr_to_section(pnum); - nodeid_begin = sparse_early_nid(ms); - pnum_begin = pnum; - break; - } - map_count = 1; - for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) { - struct mem_section *ms; - int nodeid; - - if (!present_section_nr(pnum)) - continue; - ms = __nr_to_section(pnum); - nodeid = sparse_early_nid(ms); - if (nodeid == nodeid_begin) { - map_count++; - continue; - } - /* ok, we need to take cake of from pnum_begin to pnum - 1*/ - sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum, - map_count, nodeid_begin); - /* new start, update count etc*/ - nodeid_begin = nodeid; - pnum_begin = pnum; - map_count = 1; - } - /* ok, last chunk */ - sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS, - map_count, nodeid_begin); + alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node, + (void *)map_map); #endif for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { @@ -31,6 +31,7 @@ #include <linux/memcontrol.h> #include <linux/gfp.h> #include <linux/uio.h> +#include <linux/hugetlb.h> #include "internal.h" @@ -81,6 +82,19 @@ static void __put_compound_page(struct page *page) static void put_compound_page(struct page *page) { + /* + * hugetlbfs pages cannot be split from under us. If this is a + * hugetlbfs page, check refcount on head page and release the page if + * the refcount becomes zero. + */ + if (PageHuge(page)) { + page = compound_head(page); + if (put_page_testzero(page)) + __put_compound_page(page); + + return; + } + if (unlikely(PageTail(page))) { /* __split_huge_page_refcount can run under us */ struct page *page_head = compound_trans_head(page); @@ -184,38 +198,51 @@ bool __get_page_tail(struct page *page) * proper PT lock that already serializes against * split_huge_page(). */ - unsigned long flags; bool got = false; - struct page *page_head = compound_trans_head(page); + struct page *page_head; - if (likely(page != page_head && get_page_unless_zero(page_head))) { + /* + * If this is a hugetlbfs page it cannot be split under us. Simply + * increment refcount for the head page. + */ + if (PageHuge(page)) { + page_head = compound_head(page); + atomic_inc(&page_head->_count); + got = true; + } else { + unsigned long flags; - /* Ref to put_compound_page() comment. */ - if (PageSlab(page_head)) { + page_head = compound_trans_head(page); + if (likely(page != page_head && + get_page_unless_zero(page_head))) { + + /* Ref to put_compound_page() comment. */ + if (PageSlab(page_head)) { + if (likely(PageTail(page))) { + __get_page_tail_foll(page, false); + return true; + } else { + put_page(page_head); + return false; + } + } + + /* + * page_head wasn't a dangling pointer but it + * may not be a head page anymore by the time + * we obtain the lock. That is ok as long as it + * can't be freed from under us. + */ + flags = compound_lock_irqsave(page_head); + /* here __split_huge_page_refcount won't run anymore */ if (likely(PageTail(page))) { __get_page_tail_foll(page, false); - return true; - } else { - put_page(page_head); - return false; + got = true; } + compound_unlock_irqrestore(page_head, flags); + if (unlikely(!got)) + put_page(page_head); } - - /* - * page_head wasn't a dangling pointer but it - * may not be a head page anymore by the time - * we obtain the lock. That is ok as long as it - * can't be freed from under us. - */ - flags = compound_lock_irqsave(page_head); - /* here __split_huge_page_refcount won't run anymore */ - if (likely(PageTail(page))) { - __get_page_tail_foll(page, false); - got = true; - } - compound_unlock_irqrestore(page_head, flags); - if (unlikely(!got)) - put_page(page_head); } return got; } @@ -405,6 +432,11 @@ static void activate_page_drain(int cpu) pagevec_lru_move_fn(pvec, __activate_page, NULL); } +static bool need_activate_page_drain(int cpu) +{ + return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0; +} + void activate_page(struct page *page) { if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) { @@ -422,6 +454,11 @@ static inline void activate_page_drain(int cpu) { } +static bool need_activate_page_drain(int cpu) +{ + return false; +} + void activate_page(struct page *page) { struct zone *zone = page_zone(page); @@ -512,12 +549,7 @@ EXPORT_SYMBOL(__lru_cache_add); */ void lru_cache_add(struct page *page) { - if (PageActive(page)) { - VM_BUG_ON(PageUnevictable(page)); - } else if (PageUnevictable(page)) { - VM_BUG_ON(PageActive(page)); - } - + VM_BUG_ON(PageActive(page) && PageUnevictable(page)); VM_BUG_ON(PageLRU(page)); __lru_cache_add(page); } @@ -539,6 +571,7 @@ void add_page_to_unevictable_list(struct page *page) spin_lock_irq(&zone->lru_lock); lruvec = mem_cgroup_page_lruvec(page, zone); + ClearPageActive(page); SetPageUnevictable(page); SetPageLRU(page); add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE); @@ -678,12 +711,36 @@ static void lru_add_drain_per_cpu(struct work_struct *dummy) lru_add_drain(); } -/* - * Returns 0 for success - */ -int lru_add_drain_all(void) +static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work); + +void lru_add_drain_all(void) { - return schedule_on_each_cpu(lru_add_drain_per_cpu); + static DEFINE_MUTEX(lock); + static struct cpumask has_work; + int cpu; + + mutex_lock(&lock); + get_online_cpus(); + cpumask_clear(&has_work); + + for_each_online_cpu(cpu) { + struct work_struct *work = &per_cpu(lru_add_drain_work, cpu); + + if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) || + pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) || + pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) || + need_activate_page_drain(cpu)) { + INIT_WORK(work, lru_add_drain_per_cpu); + schedule_work_on(cpu, work); + cpumask_set_cpu(cpu, &has_work); + } + } + + for_each_cpu(cpu, &has_work) + flush_work(&per_cpu(lru_add_drain_work, cpu)); + + put_online_cpus(); + mutex_unlock(&lock); } /* @@ -774,8 +831,6 @@ EXPORT_SYMBOL(__pagevec_release); void lru_add_page_tail(struct page *page, struct page *page_tail, struct lruvec *lruvec, struct list_head *list) { - int uninitialized_var(active); - enum lru_list lru; const int file = 0; VM_BUG_ON(!PageHead(page)); @@ -787,20 +842,6 @@ void lru_add_page_tail(struct page *page, struct page *page_tail, if (!list) SetPageLRU(page_tail); - if (page_evictable(page_tail)) { - if (PageActive(page)) { - SetPageActive(page_tail); - active = 1; - lru = LRU_ACTIVE_ANON; - } else { - active = 0; - lru = LRU_INACTIVE_ANON; - } - } else { - SetPageUnevictable(page_tail); - lru = LRU_UNEVICTABLE; - } - if (likely(PageLRU(page))) list_add_tail(&page_tail->lru, &page->lru); else if (list) { @@ -816,13 +857,13 @@ void lru_add_page_tail(struct page *page, struct page *page_tail, * Use the standard add function to put page_tail on the list, * but then correct its position so they all end up in order. */ - add_page_to_lru_list(page_tail, lruvec, lru); + add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail)); list_head = page_tail->lru.prev; list_move_tail(&page_tail->lru, list_head); } if (!PageUnevictable(page)) - update_page_reclaim_stat(lruvec, file, active); + update_page_reclaim_stat(lruvec, file, PageActive(page_tail)); } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ @@ -833,7 +874,6 @@ static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec, int active = PageActive(page); enum lru_list lru = page_lru(page); - VM_BUG_ON(PageUnevictable(page)); VM_BUG_ON(PageLRU(page)); SetPageLRU(page); diff --git a/mm/swap_state.c b/mm/swap_state.c index f24ab0d..e6f15f8 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c @@ -122,7 +122,7 @@ int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) { int error; - error = radix_tree_preload(gfp_mask); + error = radix_tree_maybe_preload(gfp_mask); if (!error) { error = __add_to_swap_cache(page, entry); radix_tree_preload_end(); @@ -328,7 +328,7 @@ struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, /* * call radix_tree_preload() while we can wait. */ - err = radix_tree_preload(gfp_mask & GFP_KERNEL); + err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL); if (err) break; diff --git a/mm/swapfile.c b/mm/swapfile.c index 36af6ee..3963fc2 100644 --- a/mm/swapfile.c +++ b/mm/swapfile.c @@ -175,14 +175,296 @@ static void discard_swap_cluster(struct swap_info_struct *si, } } -static int wait_for_discard(void *word) +#define SWAPFILE_CLUSTER 256 +#define LATENCY_LIMIT 256 + +static inline void cluster_set_flag(struct swap_cluster_info *info, + unsigned int flag) { - schedule(); - return 0; + info->flags = flag; } -#define SWAPFILE_CLUSTER 256 -#define LATENCY_LIMIT 256 +static inline unsigned int cluster_count(struct swap_cluster_info *info) +{ + return info->data; +} + +static inline void cluster_set_count(struct swap_cluster_info *info, + unsigned int c) +{ + info->data = c; +} + +static inline void cluster_set_count_flag(struct swap_cluster_info *info, + unsigned int c, unsigned int f) +{ + info->flags = f; + info->data = c; +} + +static inline unsigned int cluster_next(struct swap_cluster_info *info) +{ + return info->data; +} + +static inline void cluster_set_next(struct swap_cluster_info *info, + unsigned int n) +{ + info->data = n; +} + +static inline void cluster_set_next_flag(struct swap_cluster_info *info, + unsigned int n, unsigned int f) +{ + info->flags = f; + info->data = n; +} + +static inline bool cluster_is_free(struct swap_cluster_info *info) +{ + return info->flags & CLUSTER_FLAG_FREE; +} + +static inline bool cluster_is_null(struct swap_cluster_info *info) +{ + return info->flags & CLUSTER_FLAG_NEXT_NULL; +} + +static inline void cluster_set_null(struct swap_cluster_info *info) +{ + info->flags = CLUSTER_FLAG_NEXT_NULL; + info->data = 0; +} + +/* Add a cluster to discard list and schedule it to do discard */ +static void swap_cluster_schedule_discard(struct swap_info_struct *si, + unsigned int idx) +{ + /* + * If scan_swap_map() can't find a free cluster, it will check + * si->swap_map directly. To make sure the discarding cluster isn't + * taken by scan_swap_map(), mark the swap entries bad (occupied). It + * will be cleared after discard + */ + memset(si->swap_map + idx * SWAPFILE_CLUSTER, + SWAP_MAP_BAD, SWAPFILE_CLUSTER); + + if (cluster_is_null(&si->discard_cluster_head)) { + cluster_set_next_flag(&si->discard_cluster_head, + idx, 0); + cluster_set_next_flag(&si->discard_cluster_tail, + idx, 0); + } else { + unsigned int tail = cluster_next(&si->discard_cluster_tail); + cluster_set_next(&si->cluster_info[tail], idx); + cluster_set_next_flag(&si->discard_cluster_tail, + idx, 0); + } + + schedule_work(&si->discard_work); +} + +/* + * Doing discard actually. After a cluster discard is finished, the cluster + * will be added to free cluster list. caller should hold si->lock. +*/ +static void swap_do_scheduled_discard(struct swap_info_struct *si) +{ + struct swap_cluster_info *info; + unsigned int idx; + + info = si->cluster_info; + + while (!cluster_is_null(&si->discard_cluster_head)) { + idx = cluster_next(&si->discard_cluster_head); + + cluster_set_next_flag(&si->discard_cluster_head, + cluster_next(&info[idx]), 0); + if (cluster_next(&si->discard_cluster_tail) == idx) { + cluster_set_null(&si->discard_cluster_head); + cluster_set_null(&si->discard_cluster_tail); + } + spin_unlock(&si->lock); + + discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, + SWAPFILE_CLUSTER); + + spin_lock(&si->lock); + cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE); + if (cluster_is_null(&si->free_cluster_head)) { + cluster_set_next_flag(&si->free_cluster_head, + idx, 0); + cluster_set_next_flag(&si->free_cluster_tail, + idx, 0); + } else { + unsigned int tail; + + tail = cluster_next(&si->free_cluster_tail); + cluster_set_next(&info[tail], idx); + cluster_set_next_flag(&si->free_cluster_tail, + idx, 0); + } + memset(si->swap_map + idx * SWAPFILE_CLUSTER, + 0, SWAPFILE_CLUSTER); + } +} + +static void swap_discard_work(struct work_struct *work) +{ + struct swap_info_struct *si; + + si = container_of(work, struct swap_info_struct, discard_work); + + spin_lock(&si->lock); + swap_do_scheduled_discard(si); + spin_unlock(&si->lock); +} + +/* + * The cluster corresponding to page_nr will be used. The cluster will be + * removed from free cluster list and its usage counter will be increased. + */ +static void inc_cluster_info_page(struct swap_info_struct *p, + struct swap_cluster_info *cluster_info, unsigned long page_nr) +{ + unsigned long idx = page_nr / SWAPFILE_CLUSTER; + + if (!cluster_info) + return; + if (cluster_is_free(&cluster_info[idx])) { + VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx); + cluster_set_next_flag(&p->free_cluster_head, + cluster_next(&cluster_info[idx]), 0); + if (cluster_next(&p->free_cluster_tail) == idx) { + cluster_set_null(&p->free_cluster_tail); + cluster_set_null(&p->free_cluster_head); + } + cluster_set_count_flag(&cluster_info[idx], 0, 0); + } + + VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); + cluster_set_count(&cluster_info[idx], + cluster_count(&cluster_info[idx]) + 1); +} + +/* + * The cluster corresponding to page_nr decreases one usage. If the usage + * counter becomes 0, which means no page in the cluster is in using, we can + * optionally discard the cluster and add it to free cluster list. + */ +static void dec_cluster_info_page(struct swap_info_struct *p, + struct swap_cluster_info *cluster_info, unsigned long page_nr) +{ + unsigned long idx = page_nr / SWAPFILE_CLUSTER; + + if (!cluster_info) + return; + + VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); + cluster_set_count(&cluster_info[idx], + cluster_count(&cluster_info[idx]) - 1); + + if (cluster_count(&cluster_info[idx]) == 0) { + /* + * If the swap is discardable, prepare discard the cluster + * instead of free it immediately. The cluster will be freed + * after discard. + */ + if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == + (SWP_WRITEOK | SWP_PAGE_DISCARD)) { + swap_cluster_schedule_discard(p, idx); + return; + } + + cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); + if (cluster_is_null(&p->free_cluster_head)) { + cluster_set_next_flag(&p->free_cluster_head, idx, 0); + cluster_set_next_flag(&p->free_cluster_tail, idx, 0); + } else { + unsigned int tail = cluster_next(&p->free_cluster_tail); + cluster_set_next(&cluster_info[tail], idx); + cluster_set_next_flag(&p->free_cluster_tail, idx, 0); + } + } +} + +/* + * It's possible scan_swap_map() uses a free cluster in the middle of free + * cluster list. Avoiding such abuse to avoid list corruption. + */ +static bool +scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, + unsigned long offset) +{ + struct percpu_cluster *percpu_cluster; + bool conflict; + + offset /= SWAPFILE_CLUSTER; + conflict = !cluster_is_null(&si->free_cluster_head) && + offset != cluster_next(&si->free_cluster_head) && + cluster_is_free(&si->cluster_info[offset]); + + if (!conflict) + return false; + + percpu_cluster = this_cpu_ptr(si->percpu_cluster); + cluster_set_null(&percpu_cluster->index); + return true; +} + +/* + * Try to get a swap entry from current cpu's swap entry pool (a cluster). This + * might involve allocating a new cluster for current CPU too. + */ +static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, + unsigned long *offset, unsigned long *scan_base) +{ + struct percpu_cluster *cluster; + bool found_free; + unsigned long tmp; + +new_cluster: + cluster = this_cpu_ptr(si->percpu_cluster); + if (cluster_is_null(&cluster->index)) { + if (!cluster_is_null(&si->free_cluster_head)) { + cluster->index = si->free_cluster_head; + cluster->next = cluster_next(&cluster->index) * + SWAPFILE_CLUSTER; + } else if (!cluster_is_null(&si->discard_cluster_head)) { + /* + * we don't have free cluster but have some clusters in + * discarding, do discard now and reclaim them + */ + swap_do_scheduled_discard(si); + *scan_base = *offset = si->cluster_next; + goto new_cluster; + } else + return; + } + + found_free = false; + + /* + * Other CPUs can use our cluster if they can't find a free cluster, + * check if there is still free entry in the cluster + */ + tmp = cluster->next; + while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) * + SWAPFILE_CLUSTER) { + if (!si->swap_map[tmp]) { + found_free = true; + break; + } + tmp++; + } + if (!found_free) { + cluster_set_null(&cluster->index); + goto new_cluster; + } + cluster->next = tmp + 1; + *offset = tmp; + *scan_base = tmp; +} static unsigned long scan_swap_map(struct swap_info_struct *si, unsigned char usage) @@ -191,7 +473,6 @@ static unsigned long scan_swap_map(struct swap_info_struct *si, unsigned long scan_base; unsigned long last_in_cluster = 0; int latency_ration = LATENCY_LIMIT; - int found_free_cluster = 0; /* * We try to cluster swap pages by allocating them sequentially @@ -207,24 +488,18 @@ static unsigned long scan_swap_map(struct swap_info_struct *si, si->flags += SWP_SCANNING; scan_base = offset = si->cluster_next; + /* SSD algorithm */ + if (si->cluster_info) { + scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); + goto checks; + } + if (unlikely(!si->cluster_nr--)) { if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { si->cluster_nr = SWAPFILE_CLUSTER - 1; goto checks; } - if (si->flags & SWP_PAGE_DISCARD) { - /* - * Start range check on racing allocations, in case - * they overlap the cluster we eventually decide on - * (we scan without swap_lock to allow preemption). - * It's hardly conceivable that cluster_nr could be - * wrapped during our scan, but don't depend on it. - */ - if (si->lowest_alloc) - goto checks; - si->lowest_alloc = si->max; - si->highest_alloc = 0; - } + spin_unlock(&si->lock); /* @@ -248,7 +523,6 @@ static unsigned long scan_swap_map(struct swap_info_struct *si, offset -= SWAPFILE_CLUSTER - 1; si->cluster_next = offset; si->cluster_nr = SWAPFILE_CLUSTER - 1; - found_free_cluster = 1; goto checks; } if (unlikely(--latency_ration < 0)) { @@ -269,7 +543,6 @@ static unsigned long scan_swap_map(struct swap_info_struct *si, offset -= SWAPFILE_CLUSTER - 1; si->cluster_next = offset; si->cluster_nr = SWAPFILE_CLUSTER - 1; - found_free_cluster = 1; goto checks; } if (unlikely(--latency_ration < 0)) { @@ -281,10 +554,13 @@ static unsigned long scan_swap_map(struct swap_info_struct *si, offset = scan_base; spin_lock(&si->lock); si->cluster_nr = SWAPFILE_CLUSTER - 1; - si->lowest_alloc = 0; } checks: + if (si->cluster_info) { + while (scan_swap_map_ssd_cluster_conflict(si, offset)) + scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); + } if (!(si->flags & SWP_WRITEOK)) goto no_page; if (!si->highest_bit) @@ -317,62 +593,10 @@ checks: si->highest_bit = 0; } si->swap_map[offset] = usage; + inc_cluster_info_page(si, si->cluster_info, offset); si->cluster_next = offset + 1; si->flags -= SWP_SCANNING; - if (si->lowest_alloc) { - /* - * Only set when SWP_PAGE_DISCARD, and there's a scan - * for a free cluster in progress or just completed. - */ - if (found_free_cluster) { - /* - * To optimize wear-levelling, discard the - * old data of the cluster, taking care not to - * discard any of its pages that have already - * been allocated by racing tasks (offset has - * already stepped over any at the beginning). - */ - if (offset < si->highest_alloc && - si->lowest_alloc <= last_in_cluster) - last_in_cluster = si->lowest_alloc - 1; - si->flags |= SWP_DISCARDING; - spin_unlock(&si->lock); - - if (offset < last_in_cluster) - discard_swap_cluster(si, offset, - last_in_cluster - offset + 1); - - spin_lock(&si->lock); - si->lowest_alloc = 0; - si->flags &= ~SWP_DISCARDING; - - smp_mb(); /* wake_up_bit advises this */ - wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); - - } else if (si->flags & SWP_DISCARDING) { - /* - * Delay using pages allocated by racing tasks - * until the whole discard has been issued. We - * could defer that delay until swap_writepage, - * but it's easier to keep this self-contained. - */ - spin_unlock(&si->lock); - wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), - wait_for_discard, TASK_UNINTERRUPTIBLE); - spin_lock(&si->lock); - } else { - /* - * Note pages allocated by racing tasks while - * scan for a free cluster is in progress, so - * that its final discard can exclude them. - */ - if (offset < si->lowest_alloc) - si->lowest_alloc = offset; - if (offset > si->highest_alloc) - si->highest_alloc = offset; - } - } return offset; scan: @@ -527,16 +751,16 @@ static struct swap_info_struct *swap_info_get(swp_entry_t entry) return p; bad_free: - printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); + pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val); goto out; bad_offset: - printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); + pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val); goto out; bad_device: - printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); + pr_err("swap_free: %s%08lx\n", Unused_file, entry.val); goto out; bad_nofile: - printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); + pr_err("swap_free: %s%08lx\n", Bad_file, entry.val); out: return NULL; } @@ -600,6 +824,7 @@ static unsigned char swap_entry_free(struct swap_info_struct *p, /* free if no reference */ if (!usage) { + dec_cluster_info_page(p, p->cluster_info, offset); if (offset < p->lowest_bit) p->lowest_bit = offset; if (offset > p->highest_bit) @@ -866,6 +1091,21 @@ unsigned int count_swap_pages(int type, int free) } #endif /* CONFIG_HIBERNATION */ +static inline int maybe_same_pte(pte_t pte, pte_t swp_pte) +{ +#ifdef CONFIG_MEM_SOFT_DIRTY + /* + * When pte keeps soft dirty bit the pte generated + * from swap entry does not has it, still it's same + * pte from logical point of view. + */ + pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte); + return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty); +#else + return pte_same(pte, swp_pte); +#endif +} + /* * No need to decide whether this PTE shares the swap entry with others, * just let do_wp_page work it out if a write is requested later - to @@ -892,7 +1132,7 @@ static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, } pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); - if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { + if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) { mem_cgroup_cancel_charge_swapin(memcg); ret = 0; goto out; @@ -947,7 +1187,7 @@ static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, * swapoff spends a _lot_ of time in this loop! * Test inline before going to call unuse_pte. */ - if (unlikely(pte_same(*pte, swp_pte))) { + if (unlikely(maybe_same_pte(*pte, swp_pte))) { pte_unmap(pte); ret = unuse_pte(vma, pmd, addr, entry, page); if (ret) @@ -1092,7 +1332,7 @@ static unsigned int find_next_to_unuse(struct swap_info_struct *si, else continue; } - count = si->swap_map[i]; + count = ACCESS_ONCE(si->swap_map[i]); if (count && swap_count(count) != SWAP_MAP_BAD) break; } @@ -1112,7 +1352,11 @@ int try_to_unuse(unsigned int type, bool frontswap, { struct swap_info_struct *si = swap_info[type]; struct mm_struct *start_mm; - unsigned char *swap_map; + volatile unsigned char *swap_map; /* swap_map is accessed without + * locking. Mark it as volatile + * to prevent compiler doing + * something odd. + */ unsigned char swcount; struct page *page; swp_entry_t entry; @@ -1163,7 +1407,15 @@ int try_to_unuse(unsigned int type, bool frontswap, * reused since sys_swapoff() already disabled * allocation from here, or alloc_page() failed. */ - if (!*swap_map) + swcount = *swap_map; + /* + * We don't hold lock here, so the swap entry could be + * SWAP_MAP_BAD (when the cluster is discarding). + * Instead of fail out, We can just skip the swap + * entry because swapoff will wait for discarding + * finish anyway. + */ + if (!swcount || swcount == SWAP_MAP_BAD) continue; retval = -ENOMEM; break; @@ -1509,7 +1761,8 @@ static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) } static void _enable_swap_info(struct swap_info_struct *p, int prio, - unsigned char *swap_map) + unsigned char *swap_map, + struct swap_cluster_info *cluster_info) { int i, prev; @@ -1518,6 +1771,7 @@ static void _enable_swap_info(struct swap_info_struct *p, int prio, else p->prio = --least_priority; p->swap_map = swap_map; + p->cluster_info = cluster_info; p->flags |= SWP_WRITEOK; atomic_long_add(p->pages, &nr_swap_pages); total_swap_pages += p->pages; @@ -1538,12 +1792,13 @@ static void _enable_swap_info(struct swap_info_struct *p, int prio, static void enable_swap_info(struct swap_info_struct *p, int prio, unsigned char *swap_map, + struct swap_cluster_info *cluster_info, unsigned long *frontswap_map) { frontswap_init(p->type, frontswap_map); spin_lock(&swap_lock); spin_lock(&p->lock); - _enable_swap_info(p, prio, swap_map); + _enable_swap_info(p, prio, swap_map, cluster_info); spin_unlock(&p->lock); spin_unlock(&swap_lock); } @@ -1552,7 +1807,7 @@ static void reinsert_swap_info(struct swap_info_struct *p) { spin_lock(&swap_lock); spin_lock(&p->lock); - _enable_swap_info(p, p->prio, p->swap_map); + _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); spin_unlock(&p->lock); spin_unlock(&swap_lock); } @@ -1561,6 +1816,7 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) { struct swap_info_struct *p = NULL; unsigned char *swap_map; + struct swap_cluster_info *cluster_info; unsigned long *frontswap_map; struct file *swap_file, *victim; struct address_space *mapping; @@ -1636,6 +1892,8 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) goto out_dput; } + flush_work(&p->discard_work); + destroy_swap_extents(p); if (p->flags & SWP_CONTINUED) free_swap_count_continuations(p); @@ -1660,6 +1918,8 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) p->max = 0; swap_map = p->swap_map; p->swap_map = NULL; + cluster_info = p->cluster_info; + p->cluster_info = NULL; p->flags = 0; frontswap_map = frontswap_map_get(p); frontswap_map_set(p, NULL); @@ -1667,7 +1927,10 @@ SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) spin_unlock(&swap_lock); frontswap_invalidate_area(type); mutex_unlock(&swapon_mutex); + free_percpu(p->percpu_cluster); + p->percpu_cluster = NULL; vfree(swap_map); + vfree(cluster_info); vfree(frontswap_map); /* Destroy swap account informatin */ swap_cgroup_swapoff(type); @@ -1911,9 +2174,10 @@ static unsigned long read_swap_header(struct swap_info_struct *p, int i; unsigned long maxpages; unsigned long swapfilepages; + unsigned long last_page; if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { - printk(KERN_ERR "Unable to find swap-space signature\n"); + pr_err("Unable to find swap-space signature\n"); return 0; } @@ -1927,9 +2191,8 @@ static unsigned long read_swap_header(struct swap_info_struct *p, } /* Check the swap header's sub-version */ if (swap_header->info.version != 1) { - printk(KERN_WARNING - "Unable to handle swap header version %d\n", - swap_header->info.version); + pr_warn("Unable to handle swap header version %d\n", + swap_header->info.version); return 0; } @@ -1953,8 +2216,14 @@ static unsigned long read_swap_header(struct swap_info_struct *p, */ maxpages = swp_offset(pte_to_swp_entry( swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; - if (maxpages > swap_header->info.last_page) { - maxpages = swap_header->info.last_page + 1; + last_page = swap_header->info.last_page; + if (last_page > maxpages) { + pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", + maxpages << (PAGE_SHIFT - 10), + last_page << (PAGE_SHIFT - 10)); + } + if (maxpages > last_page) { + maxpages = last_page + 1; /* p->max is an unsigned int: don't overflow it */ if ((unsigned int)maxpages == 0) maxpages = UINT_MAX; @@ -1965,8 +2234,7 @@ static unsigned long read_swap_header(struct swap_info_struct *p, return 0; swapfilepages = i_size_read(inode) >> PAGE_SHIFT; if (swapfilepages && maxpages > swapfilepages) { - printk(KERN_WARNING - "Swap area shorter than signature indicates\n"); + pr_warn("Swap area shorter than signature indicates\n"); return 0; } if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) @@ -1980,15 +2248,23 @@ static unsigned long read_swap_header(struct swap_info_struct *p, static int setup_swap_map_and_extents(struct swap_info_struct *p, union swap_header *swap_header, unsigned char *swap_map, + struct swap_cluster_info *cluster_info, unsigned long maxpages, sector_t *span) { int i; unsigned int nr_good_pages; int nr_extents; + unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); + unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER; nr_good_pages = maxpages - 1; /* omit header page */ + cluster_set_null(&p->free_cluster_head); + cluster_set_null(&p->free_cluster_tail); + cluster_set_null(&p->discard_cluster_head); + cluster_set_null(&p->discard_cluster_tail); + for (i = 0; i < swap_header->info.nr_badpages; i++) { unsigned int page_nr = swap_header->info.badpages[i]; if (page_nr == 0 || page_nr > swap_header->info.last_page) @@ -1996,11 +2272,25 @@ static int setup_swap_map_and_extents(struct swap_info_struct *p, if (page_nr < maxpages) { swap_map[page_nr] = SWAP_MAP_BAD; nr_good_pages--; + /* + * Haven't marked the cluster free yet, no list + * operation involved + */ + inc_cluster_info_page(p, cluster_info, page_nr); } } + /* Haven't marked the cluster free yet, no list operation involved */ + for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) + inc_cluster_info_page(p, cluster_info, i); + if (nr_good_pages) { swap_map[0] = SWAP_MAP_BAD; + /* + * Not mark the cluster free yet, no list + * operation involved + */ + inc_cluster_info_page(p, cluster_info, 0); p->max = maxpages; p->pages = nr_good_pages; nr_extents = setup_swap_extents(p, span); @@ -2009,10 +2299,34 @@ static int setup_swap_map_and_extents(struct swap_info_struct *p, nr_good_pages = p->pages; } if (!nr_good_pages) { - printk(KERN_WARNING "Empty swap-file\n"); + pr_warn("Empty swap-file\n"); return -EINVAL; } + if (!cluster_info) + return nr_extents; + + for (i = 0; i < nr_clusters; i++) { + if (!cluster_count(&cluster_info[idx])) { + cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); + if (cluster_is_null(&p->free_cluster_head)) { + cluster_set_next_flag(&p->free_cluster_head, + idx, 0); + cluster_set_next_flag(&p->free_cluster_tail, + idx, 0); + } else { + unsigned int tail; + + tail = cluster_next(&p->free_cluster_tail); + cluster_set_next(&cluster_info[tail], idx); + cluster_set_next_flag(&p->free_cluster_tail, + idx, 0); + } + } + idx++; + if (idx == nr_clusters) + idx = 0; + } return nr_extents; } @@ -2044,6 +2358,7 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) sector_t span; unsigned long maxpages; unsigned char *swap_map = NULL; + struct swap_cluster_info *cluster_info = NULL; unsigned long *frontswap_map = NULL; struct page *page = NULL; struct inode *inode = NULL; @@ -2058,6 +2373,8 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) if (IS_ERR(p)) return PTR_ERR(p); + INIT_WORK(&p->discard_work, swap_discard_work); + name = getname(specialfile); if (IS_ERR(name)) { error = PTR_ERR(name); @@ -2117,13 +2434,38 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) error = -ENOMEM; goto bad_swap; } + if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { + p->flags |= SWP_SOLIDSTATE; + /* + * select a random position to start with to help wear leveling + * SSD + */ + p->cluster_next = 1 + (prandom_u32() % p->highest_bit); + + cluster_info = vzalloc(DIV_ROUND_UP(maxpages, + SWAPFILE_CLUSTER) * sizeof(*cluster_info)); + if (!cluster_info) { + error = -ENOMEM; + goto bad_swap; + } + p->percpu_cluster = alloc_percpu(struct percpu_cluster); + if (!p->percpu_cluster) { + error = -ENOMEM; + goto bad_swap; + } + for_each_possible_cpu(i) { + struct percpu_cluster *cluster; + cluster = per_cpu_ptr(p->percpu_cluster, i); + cluster_set_null(&cluster->index); + } + } error = swap_cgroup_swapon(p->type, maxpages); if (error) goto bad_swap; nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, - maxpages, &span); + cluster_info, maxpages, &span); if (unlikely(nr_extents < 0)) { error = nr_extents; goto bad_swap; @@ -2132,41 +2474,33 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) if (frontswap_enabled) frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); - if (p->bdev) { - if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { - p->flags |= SWP_SOLIDSTATE; - p->cluster_next = 1 + (prandom_u32() % p->highest_bit); - } - - if ((swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { - /* - * When discard is enabled for swap with no particular - * policy flagged, we set all swap discard flags here in - * order to sustain backward compatibility with older - * swapon(8) releases. - */ - p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | - SWP_PAGE_DISCARD); + if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { + /* + * When discard is enabled for swap with no particular + * policy flagged, we set all swap discard flags here in + * order to sustain backward compatibility with older + * swapon(8) releases. + */ + p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | + SWP_PAGE_DISCARD); - /* - * By flagging sys_swapon, a sysadmin can tell us to - * either do single-time area discards only, or to just - * perform discards for released swap page-clusters. - * Now it's time to adjust the p->flags accordingly. - */ - if (swap_flags & SWAP_FLAG_DISCARD_ONCE) - p->flags &= ~SWP_PAGE_DISCARD; - else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) - p->flags &= ~SWP_AREA_DISCARD; - - /* issue a swapon-time discard if it's still required */ - if (p->flags & SWP_AREA_DISCARD) { - int err = discard_swap(p); - if (unlikely(err)) - printk(KERN_ERR - "swapon: discard_swap(%p): %d\n", - p, err); - } + /* + * By flagging sys_swapon, a sysadmin can tell us to + * either do single-time area discards only, or to just + * perform discards for released swap page-clusters. + * Now it's time to adjust the p->flags accordingly. + */ + if (swap_flags & SWAP_FLAG_DISCARD_ONCE) + p->flags &= ~SWP_PAGE_DISCARD; + else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) + p->flags &= ~SWP_AREA_DISCARD; + + /* issue a swapon-time discard if it's still required */ + if (p->flags & SWP_AREA_DISCARD) { + int err = discard_swap(p); + if (unlikely(err)) + pr_err("swapon: discard_swap(%p): %d\n", + p, err); } } @@ -2175,9 +2509,9 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) if (swap_flags & SWAP_FLAG_PREFER) prio = (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; - enable_swap_info(p, prio, swap_map, frontswap_map); + enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); - printk(KERN_INFO "Adding %uk swap on %s. " + pr_info("Adding %uk swap on %s. " "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", p->pages<<(PAGE_SHIFT-10), name->name, p->prio, nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), @@ -2196,6 +2530,8 @@ SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) error = 0; goto out; bad_swap: + free_percpu(p->percpu_cluster); + p->percpu_cluster = NULL; if (inode && S_ISBLK(inode->i_mode) && p->bdev) { set_blocksize(p->bdev, p->old_block_size); blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); @@ -2207,6 +2543,7 @@ bad_swap: p->flags = 0; spin_unlock(&swap_lock); vfree(swap_map); + vfree(cluster_info); if (swap_file) { if (inode && S_ISREG(inode->i_mode)) { mutex_unlock(&inode->i_mutex); @@ -2276,6 +2613,16 @@ static int __swap_duplicate(swp_entry_t entry, unsigned char usage) goto unlock_out; count = p->swap_map[offset]; + + /* + * swapin_readahead() doesn't check if a swap entry is valid, so the + * swap entry could be SWAP_MAP_BAD. Check here with lock held. + */ + if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { + err = -ENOENT; + goto unlock_out; + } + has_cache = count & SWAP_HAS_CACHE; count &= ~SWAP_HAS_CACHE; err = 0; @@ -2311,7 +2658,7 @@ out: return err; bad_file: - printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); + pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); goto out; } diff --git a/mm/truncate.c b/mm/truncate.c index e2e8a8a..353b683 100644 --- a/mm/truncate.c +++ b/mm/truncate.c @@ -567,7 +567,6 @@ EXPORT_SYMBOL_GPL(invalidate_inode_pages2); /** * truncate_pagecache - unmap and remove pagecache that has been truncated * @inode: inode - * @oldsize: old file size * @newsize: new file size * * inode's new i_size must already be written before truncate_pagecache @@ -580,7 +579,7 @@ EXPORT_SYMBOL_GPL(invalidate_inode_pages2); * situations such as writepage being called for a page that has already * had its underlying blocks deallocated. */ -void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize) +void truncate_pagecache(struct inode *inode, loff_t newsize) { struct address_space *mapping = inode->i_mapping; loff_t holebegin = round_up(newsize, PAGE_SIZE); @@ -614,12 +613,8 @@ EXPORT_SYMBOL(truncate_pagecache); */ void truncate_setsize(struct inode *inode, loff_t newsize) { - loff_t oldsize; - - oldsize = inode->i_size; i_size_write(inode, newsize); - - truncate_pagecache(inode, oldsize, newsize); + truncate_pagecache(inode, newsize); } EXPORT_SYMBOL(truncate_setsize); @@ -388,15 +388,12 @@ struct address_space *page_mapping(struct page *page) struct address_space *mapping = page->mapping; VM_BUG_ON(PageSlab(page)); -#ifdef CONFIG_SWAP if (unlikely(PageSwapCache(page))) { swp_entry_t entry; entry.val = page_private(page); mapping = swap_address_space(entry); - } else -#endif - if ((unsigned long)mapping & PAGE_MAPPING_ANON) + } else if ((unsigned long)mapping & PAGE_MAPPING_ANON) mapping = NULL; return mapping; } diff --git a/mm/vmalloc.c b/mm/vmalloc.c index 13a5495..1074543 100644 --- a/mm/vmalloc.c +++ b/mm/vmalloc.c @@ -752,7 +752,6 @@ struct vmap_block_queue { struct vmap_block { spinlock_t lock; struct vmap_area *va; - struct vmap_block_queue *vbq; unsigned long free, dirty; DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS); struct list_head free_list; @@ -830,7 +829,6 @@ static struct vmap_block *new_vmap_block(gfp_t gfp_mask) radix_tree_preload_end(); vbq = &get_cpu_var(vmap_block_queue); - vb->vbq = vbq; spin_lock(&vbq->lock); list_add_rcu(&vb->free_list, &vbq->free); spin_unlock(&vbq->lock); @@ -1018,15 +1016,16 @@ void vm_unmap_aliases(void) rcu_read_lock(); list_for_each_entry_rcu(vb, &vbq->free, free_list) { - int i; + int i, j; spin_lock(&vb->lock); i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS); - while (i < VMAP_BBMAP_BITS) { + if (i < VMAP_BBMAP_BITS) { unsigned long s, e; - int j; - j = find_next_zero_bit(vb->dirty_map, - VMAP_BBMAP_BITS, i); + + j = find_last_bit(vb->dirty_map, + VMAP_BBMAP_BITS); + j = j + 1; /* need exclusive index */ s = vb->va->va_start + (i << PAGE_SHIFT); e = vb->va->va_start + (j << PAGE_SHIFT); @@ -1036,10 +1035,6 @@ void vm_unmap_aliases(void) start = s; if (e > end) end = e; - - i = j; - i = find_next_bit(vb->dirty_map, - VMAP_BBMAP_BITS, i); } spin_unlock(&vb->lock); } @@ -1263,7 +1258,7 @@ void unmap_kernel_range(unsigned long addr, unsigned long size) int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages) { unsigned long addr = (unsigned long)area->addr; - unsigned long end = addr + area->size - PAGE_SIZE; + unsigned long end = addr + get_vm_area_size(area); int err; err = vmap_page_range(addr, end, prot, *pages); @@ -1558,7 +1553,7 @@ static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, unsigned int nr_pages, array_size, i; gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO; - nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT; + nr_pages = get_vm_area_size(area) >> PAGE_SHIFT; array_size = (nr_pages * sizeof(struct page *)); area->nr_pages = nr_pages; @@ -1990,7 +1985,7 @@ long vread(char *buf, char *addr, unsigned long count) vm = va->vm; vaddr = (char *) vm->addr; - if (addr >= vaddr + vm->size - PAGE_SIZE) + if (addr >= vaddr + get_vm_area_size(vm)) continue; while (addr < vaddr) { if (count == 0) @@ -2000,7 +1995,7 @@ long vread(char *buf, char *addr, unsigned long count) addr++; count--; } - n = vaddr + vm->size - PAGE_SIZE - addr; + n = vaddr + get_vm_area_size(vm) - addr; if (n > count) n = count; if (!(vm->flags & VM_IOREMAP)) @@ -2072,7 +2067,7 @@ long vwrite(char *buf, char *addr, unsigned long count) vm = va->vm; vaddr = (char *) vm->addr; - if (addr >= vaddr + vm->size - PAGE_SIZE) + if (addr >= vaddr + get_vm_area_size(vm)) continue; while (addr < vaddr) { if (count == 0) @@ -2081,7 +2076,7 @@ long vwrite(char *buf, char *addr, unsigned long count) addr++; count--; } - n = vaddr + vm->size - PAGE_SIZE - addr; + n = vaddr + get_vm_area_size(vm) - addr; if (n > count) n = count; if (!(vm->flags & VM_IOREMAP)) { diff --git a/mm/vmpressure.c b/mm/vmpressure.c index 736a601..e0f6283 100644 --- a/mm/vmpressure.c +++ b/mm/vmpressure.c @@ -74,15 +74,10 @@ static struct vmpressure *work_to_vmpressure(struct work_struct *work) return container_of(work, struct vmpressure, work); } -static struct vmpressure *cg_to_vmpressure(struct cgroup *cg) -{ - return css_to_vmpressure(cgroup_subsys_state(cg, mem_cgroup_subsys_id)); -} - static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr) { - struct cgroup *cg = vmpressure_to_css(vmpr)->cgroup; - struct mem_cgroup *memcg = mem_cgroup_from_cont(cg); + struct cgroup_subsys_state *css = vmpressure_to_css(vmpr); + struct mem_cgroup *memcg = mem_cgroup_from_css(css); memcg = parent_mem_cgroup(memcg); if (!memcg) @@ -180,12 +175,12 @@ static void vmpressure_work_fn(struct work_struct *work) if (!vmpr->scanned) return; - mutex_lock(&vmpr->sr_lock); + spin_lock(&vmpr->sr_lock); scanned = vmpr->scanned; reclaimed = vmpr->reclaimed; vmpr->scanned = 0; vmpr->reclaimed = 0; - mutex_unlock(&vmpr->sr_lock); + spin_unlock(&vmpr->sr_lock); do { if (vmpressure_event(vmpr, scanned, reclaimed)) @@ -240,13 +235,13 @@ void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, if (!scanned) return; - mutex_lock(&vmpr->sr_lock); + spin_lock(&vmpr->sr_lock); vmpr->scanned += scanned; vmpr->reclaimed += reclaimed; scanned = vmpr->scanned; - mutex_unlock(&vmpr->sr_lock); + spin_unlock(&vmpr->sr_lock); - if (scanned < vmpressure_win || work_pending(&vmpr->work)) + if (scanned < vmpressure_win) return; schedule_work(&vmpr->work); } @@ -283,7 +278,7 @@ void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio) /** * vmpressure_register_event() - Bind vmpressure notifications to an eventfd - * @cg: cgroup that is interested in vmpressure notifications + * @css: css that is interested in vmpressure notifications * @cft: cgroup control files handle * @eventfd: eventfd context to link notifications with * @args: event arguments (used to set up a pressure level threshold) @@ -298,10 +293,11 @@ void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio) * cftype).register_event, and then cgroup core will handle everything by * itself. */ -int vmpressure_register_event(struct cgroup *cg, struct cftype *cft, - struct eventfd_ctx *eventfd, const char *args) +int vmpressure_register_event(struct cgroup_subsys_state *css, + struct cftype *cft, struct eventfd_ctx *eventfd, + const char *args) { - struct vmpressure *vmpr = cg_to_vmpressure(cg); + struct vmpressure *vmpr = css_to_vmpressure(css); struct vmpressure_event *ev; int level; @@ -329,7 +325,7 @@ int vmpressure_register_event(struct cgroup *cg, struct cftype *cft, /** * vmpressure_unregister_event() - Unbind eventfd from vmpressure - * @cg: cgroup handle + * @css: css handle * @cft: cgroup control files handle * @eventfd: eventfd context that was used to link vmpressure with the @cg * @@ -341,10 +337,11 @@ int vmpressure_register_event(struct cgroup *cg, struct cftype *cft, * cftype).unregister_event, and then cgroup core will handle everything * by itself. */ -void vmpressure_unregister_event(struct cgroup *cg, struct cftype *cft, +void vmpressure_unregister_event(struct cgroup_subsys_state *css, + struct cftype *cft, struct eventfd_ctx *eventfd) { - struct vmpressure *vmpr = cg_to_vmpressure(cg); + struct vmpressure *vmpr = css_to_vmpressure(css); struct vmpressure_event *ev; mutex_lock(&vmpr->events_lock); @@ -367,8 +364,24 @@ void vmpressure_unregister_event(struct cgroup *cg, struct cftype *cft, */ void vmpressure_init(struct vmpressure *vmpr) { - mutex_init(&vmpr->sr_lock); + spin_lock_init(&vmpr->sr_lock); mutex_init(&vmpr->events_lock); INIT_LIST_HEAD(&vmpr->events); INIT_WORK(&vmpr->work, vmpressure_work_fn); } + +/** + * vmpressure_cleanup() - shuts down vmpressure control structure + * @vmpr: Structure to be cleaned up + * + * This function should be called before the structure in which it is + * embedded is cleaned up. + */ +void vmpressure_cleanup(struct vmpressure *vmpr) +{ + /* + * Make sure there is no pending work before eventfd infrastructure + * goes away. + */ + flush_work(&vmpr->work); +} diff --git a/mm/vmscan.c b/mm/vmscan.c index 2cff0d4..8ed1b77 100644 --- a/mm/vmscan.c +++ b/mm/vmscan.c @@ -139,13 +139,44 @@ static bool global_reclaim(struct scan_control *sc) { return !sc->target_mem_cgroup; } + +static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc) +{ + struct mem_cgroup *root = sc->target_mem_cgroup; + return !mem_cgroup_disabled() && + mem_cgroup_soft_reclaim_eligible(root, root) != SKIP_TREE; +} #else static bool global_reclaim(struct scan_control *sc) { return true; } + +static bool mem_cgroup_should_soft_reclaim(struct scan_control *sc) +{ + return false; +} #endif +unsigned long zone_reclaimable_pages(struct zone *zone) +{ + int nr; + + nr = zone_page_state(zone, NR_ACTIVE_FILE) + + zone_page_state(zone, NR_INACTIVE_FILE); + + if (get_nr_swap_pages() > 0) + nr += zone_page_state(zone, NR_ACTIVE_ANON) + + zone_page_state(zone, NR_INACTIVE_ANON); + + return nr; +} + +bool zone_reclaimable(struct zone *zone) +{ + return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; +} + static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) { if (!mem_cgroup_disabled()) @@ -155,14 +186,31 @@ static unsigned long get_lru_size(struct lruvec *lruvec, enum lru_list lru) } /* - * Add a shrinker callback to be called from the vm + * Add a shrinker callback to be called from the vm. */ -void register_shrinker(struct shrinker *shrinker) +int register_shrinker(struct shrinker *shrinker) { - atomic_long_set(&shrinker->nr_in_batch, 0); + size_t size = sizeof(*shrinker->nr_deferred); + + /* + * If we only have one possible node in the system anyway, save + * ourselves the trouble and disable NUMA aware behavior. This way we + * will save memory and some small loop time later. + */ + if (nr_node_ids == 1) + shrinker->flags &= ~SHRINKER_NUMA_AWARE; + + if (shrinker->flags & SHRINKER_NUMA_AWARE) + size *= nr_node_ids; + + shrinker->nr_deferred = kzalloc(size, GFP_KERNEL); + if (!shrinker->nr_deferred) + return -ENOMEM; + down_write(&shrinker_rwsem); list_add_tail(&shrinker->list, &shrinker_list); up_write(&shrinker_rwsem); + return 0; } EXPORT_SYMBOL(register_shrinker); @@ -177,15 +225,102 @@ void unregister_shrinker(struct shrinker *shrinker) } EXPORT_SYMBOL(unregister_shrinker); -static inline int do_shrinker_shrink(struct shrinker *shrinker, - struct shrink_control *sc, - unsigned long nr_to_scan) -{ - sc->nr_to_scan = nr_to_scan; - return (*shrinker->shrink)(shrinker, sc); +#define SHRINK_BATCH 128 + +static unsigned long +shrink_slab_node(struct shrink_control *shrinkctl, struct shrinker *shrinker, + unsigned long nr_pages_scanned, unsigned long lru_pages) +{ + unsigned long freed = 0; + unsigned long long delta; + long total_scan; + long max_pass; + long nr; + long new_nr; + int nid = shrinkctl->nid; + long batch_size = shrinker->batch ? shrinker->batch + : SHRINK_BATCH; + + max_pass = shrinker->count_objects(shrinker, shrinkctl); + if (max_pass == 0) + return 0; + + /* + * copy the current shrinker scan count into a local variable + * and zero it so that other concurrent shrinker invocations + * don't also do this scanning work. + */ + nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0); + + total_scan = nr; + delta = (4 * nr_pages_scanned) / shrinker->seeks; + delta *= max_pass; + do_div(delta, lru_pages + 1); + total_scan += delta; + if (total_scan < 0) { + printk(KERN_ERR + "shrink_slab: %pF negative objects to delete nr=%ld\n", + shrinker->scan_objects, total_scan); + total_scan = max_pass; + } + + /* + * We need to avoid excessive windup on filesystem shrinkers + * due to large numbers of GFP_NOFS allocations causing the + * shrinkers to return -1 all the time. This results in a large + * nr being built up so when a shrink that can do some work + * comes along it empties the entire cache due to nr >>> + * max_pass. This is bad for sustaining a working set in + * memory. + * + * Hence only allow the shrinker to scan the entire cache when + * a large delta change is calculated directly. + */ + if (delta < max_pass / 4) + total_scan = min(total_scan, max_pass / 2); + + /* + * Avoid risking looping forever due to too large nr value: + * never try to free more than twice the estimate number of + * freeable entries. + */ + if (total_scan > max_pass * 2) + total_scan = max_pass * 2; + + trace_mm_shrink_slab_start(shrinker, shrinkctl, nr, + nr_pages_scanned, lru_pages, + max_pass, delta, total_scan); + + while (total_scan >= batch_size) { + unsigned long ret; + + shrinkctl->nr_to_scan = batch_size; + ret = shrinker->scan_objects(shrinker, shrinkctl); + if (ret == SHRINK_STOP) + break; + freed += ret; + + count_vm_events(SLABS_SCANNED, batch_size); + total_scan -= batch_size; + + cond_resched(); + } + + /* + * move the unused scan count back into the shrinker in a + * manner that handles concurrent updates. If we exhausted the + * scan, there is no need to do an update. + */ + if (total_scan > 0) + new_nr = atomic_long_add_return(total_scan, + &shrinker->nr_deferred[nid]); + else + new_nr = atomic_long_read(&shrinker->nr_deferred[nid]); + + trace_mm_shrink_slab_end(shrinker, freed, nr, new_nr); + return freed; } -#define SHRINK_BATCH 128 /* * Call the shrink functions to age shrinkable caches * @@ -205,115 +340,45 @@ static inline int do_shrinker_shrink(struct shrinker *shrinker, * * Returns the number of slab objects which we shrunk. */ -unsigned long shrink_slab(struct shrink_control *shrink, +unsigned long shrink_slab(struct shrink_control *shrinkctl, unsigned long nr_pages_scanned, unsigned long lru_pages) { struct shrinker *shrinker; - unsigned long ret = 0; + unsigned long freed = 0; if (nr_pages_scanned == 0) nr_pages_scanned = SWAP_CLUSTER_MAX; if (!down_read_trylock(&shrinker_rwsem)) { - /* Assume we'll be able to shrink next time */ - ret = 1; + /* + * If we would return 0, our callers would understand that we + * have nothing else to shrink and give up trying. By returning + * 1 we keep it going and assume we'll be able to shrink next + * time. + */ + freed = 1; goto out; } list_for_each_entry(shrinker, &shrinker_list, list) { - unsigned long long delta; - long total_scan; - long max_pass; - int shrink_ret = 0; - long nr; - long new_nr; - long batch_size = shrinker->batch ? shrinker->batch - : SHRINK_BATCH; - - max_pass = do_shrinker_shrink(shrinker, shrink, 0); - if (max_pass <= 0) - continue; - - /* - * copy the current shrinker scan count into a local variable - * and zero it so that other concurrent shrinker invocations - * don't also do this scanning work. - */ - nr = atomic_long_xchg(&shrinker->nr_in_batch, 0); - - total_scan = nr; - delta = (4 * nr_pages_scanned) / shrinker->seeks; - delta *= max_pass; - do_div(delta, lru_pages + 1); - total_scan += delta; - if (total_scan < 0) { - printk(KERN_ERR "shrink_slab: %pF negative objects to " - "delete nr=%ld\n", - shrinker->shrink, total_scan); - total_scan = max_pass; - } - - /* - * We need to avoid excessive windup on filesystem shrinkers - * due to large numbers of GFP_NOFS allocations causing the - * shrinkers to return -1 all the time. This results in a large - * nr being built up so when a shrink that can do some work - * comes along it empties the entire cache due to nr >>> - * max_pass. This is bad for sustaining a working set in - * memory. - * - * Hence only allow the shrinker to scan the entire cache when - * a large delta change is calculated directly. - */ - if (delta < max_pass / 4) - total_scan = min(total_scan, max_pass / 2); - - /* - * Avoid risking looping forever due to too large nr value: - * never try to free more than twice the estimate number of - * freeable entries. - */ - if (total_scan > max_pass * 2) - total_scan = max_pass * 2; - - trace_mm_shrink_slab_start(shrinker, shrink, nr, - nr_pages_scanned, lru_pages, - max_pass, delta, total_scan); - - while (total_scan >= batch_size) { - int nr_before; + for_each_node_mask(shrinkctl->nid, shrinkctl->nodes_to_scan) { + if (!node_online(shrinkctl->nid)) + continue; - nr_before = do_shrinker_shrink(shrinker, shrink, 0); - shrink_ret = do_shrinker_shrink(shrinker, shrink, - batch_size); - if (shrink_ret == -1) + if (!(shrinker->flags & SHRINKER_NUMA_AWARE) && + (shrinkctl->nid != 0)) break; - if (shrink_ret < nr_before) - ret += nr_before - shrink_ret; - count_vm_events(SLABS_SCANNED, batch_size); - total_scan -= batch_size; - - cond_resched(); - } - /* - * move the unused scan count back into the shrinker in a - * manner that handles concurrent updates. If we exhausted the - * scan, there is no need to do an update. - */ - if (total_scan > 0) - new_nr = atomic_long_add_return(total_scan, - &shrinker->nr_in_batch); - else - new_nr = atomic_long_read(&shrinker->nr_in_batch); + freed += shrink_slab_node(shrinkctl, shrinker, + nr_pages_scanned, lru_pages); - trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr); + } } up_read(&shrinker_rwsem); out: cond_resched(); - return ret; + return freed; } static inline int is_page_cache_freeable(struct page *page) @@ -545,7 +610,7 @@ int remove_mapping(struct address_space *mapping, struct page *page) */ void putback_lru_page(struct page *page) { - int lru; + bool is_unevictable; int was_unevictable = PageUnevictable(page); VM_BUG_ON(PageLRU(page)); @@ -560,14 +625,14 @@ redo: * unevictable page on [in]active list. * We know how to handle that. */ - lru = page_lru_base_type(page); + is_unevictable = false; lru_cache_add(page); } else { /* * Put unevictable pages directly on zone's unevictable * list. */ - lru = LRU_UNEVICTABLE; + is_unevictable = true; add_page_to_unevictable_list(page); /* * When racing with an mlock or AS_UNEVICTABLE clearing @@ -587,7 +652,7 @@ redo: * page is on unevictable list, it never be freed. To avoid that, * check after we added it to the list, again. */ - if (lru == LRU_UNEVICTABLE && page_evictable(page)) { + if (is_unevictable && page_evictable(page)) { if (!isolate_lru_page(page)) { put_page(page); goto redo; @@ -598,9 +663,9 @@ redo: */ } - if (was_unevictable && lru != LRU_UNEVICTABLE) + if (was_unevictable && !is_unevictable) count_vm_event(UNEVICTABLE_PGRESCUED); - else if (!was_unevictable && lru == LRU_UNEVICTABLE) + else if (!was_unevictable && is_unevictable) count_vm_event(UNEVICTABLE_PGCULLED); put_page(page); /* drop ref from isolate */ @@ -1789,7 +1854,7 @@ static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc, * latencies, so it's better to scan a minimum amount there as * well. */ - if (current_is_kswapd() && zone->all_unreclaimable) + if (current_is_kswapd() && !zone_reclaimable(zone)) force_scan = true; if (!global_reclaim(sc)) force_scan = true; @@ -2111,9 +2176,11 @@ static inline bool should_continue_reclaim(struct zone *zone, } } -static void shrink_zone(struct zone *zone, struct scan_control *sc) +static int +__shrink_zone(struct zone *zone, struct scan_control *sc, bool soft_reclaim) { unsigned long nr_reclaimed, nr_scanned; + int groups_scanned = 0; do { struct mem_cgroup *root = sc->target_mem_cgroup; @@ -2121,15 +2188,17 @@ static void shrink_zone(struct zone *zone, struct scan_control *sc) .zone = zone, .priority = sc->priority, }; - struct mem_cgroup *memcg; + struct mem_cgroup *memcg = NULL; + mem_cgroup_iter_filter filter = (soft_reclaim) ? + mem_cgroup_soft_reclaim_eligible : NULL; nr_reclaimed = sc->nr_reclaimed; nr_scanned = sc->nr_scanned; - memcg = mem_cgroup_iter(root, NULL, &reclaim); - do { + while ((memcg = mem_cgroup_iter_cond(root, memcg, &reclaim, filter))) { struct lruvec *lruvec; + groups_scanned++; lruvec = mem_cgroup_zone_lruvec(zone, memcg); shrink_lruvec(lruvec, sc); @@ -2149,8 +2218,7 @@ static void shrink_zone(struct zone *zone, struct scan_control *sc) mem_cgroup_iter_break(root, memcg); break; } - memcg = mem_cgroup_iter(root, memcg, &reclaim); - } while (memcg); + } vmpressure(sc->gfp_mask, sc->target_mem_cgroup, sc->nr_scanned - nr_scanned, @@ -2158,6 +2226,37 @@ static void shrink_zone(struct zone *zone, struct scan_control *sc) } while (should_continue_reclaim(zone, sc->nr_reclaimed - nr_reclaimed, sc->nr_scanned - nr_scanned, sc)); + + return groups_scanned; +} + + +static void shrink_zone(struct zone *zone, struct scan_control *sc) +{ + bool do_soft_reclaim = mem_cgroup_should_soft_reclaim(sc); + unsigned long nr_scanned = sc->nr_scanned; + int scanned_groups; + + scanned_groups = __shrink_zone(zone, sc, do_soft_reclaim); + /* + * memcg iterator might race with other reclaimer or start from + * a incomplete tree walk so the tree walk in __shrink_zone + * might have missed groups that are above the soft limit. Try + * another loop to catch up with others. Do it just once to + * prevent from reclaim latencies when other reclaimers always + * preempt this one. + */ + if (do_soft_reclaim && !scanned_groups) + __shrink_zone(zone, sc, do_soft_reclaim); + + /* + * No group is over the soft limit or those that are do not have + * pages in the zone we are reclaiming so we have to reclaim everybody + */ + if (do_soft_reclaim && (sc->nr_scanned == nr_scanned)) { + __shrink_zone(zone, sc, false); + return; + } } /* Returns true if compaction should go ahead for a high-order request */ @@ -2221,8 +2320,6 @@ static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) { struct zoneref *z; struct zone *zone; - unsigned long nr_soft_reclaimed; - unsigned long nr_soft_scanned; bool aborted_reclaim = false; /* @@ -2244,8 +2341,8 @@ static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) if (global_reclaim(sc)) { if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) continue; - if (zone->all_unreclaimable && - sc->priority != DEF_PRIORITY) + if (sc->priority != DEF_PRIORITY && + !zone_reclaimable(zone)) continue; /* Let kswapd poll it */ if (IS_ENABLED(CONFIG_COMPACTION)) { /* @@ -2262,18 +2359,6 @@ static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) continue; } } - /* - * This steals pages from memory cgroups over softlimit - * and returns the number of reclaimed pages and - * scanned pages. This works for global memory pressure - * and balancing, not for a memcg's limit. - */ - nr_soft_scanned = 0; - nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, - sc->order, sc->gfp_mask, - &nr_soft_scanned); - sc->nr_reclaimed += nr_soft_reclaimed; - sc->nr_scanned += nr_soft_scanned; /* need some check for avoid more shrink_zone() */ } @@ -2283,11 +2368,6 @@ static bool shrink_zones(struct zonelist *zonelist, struct scan_control *sc) return aborted_reclaim; } -static bool zone_reclaimable(struct zone *zone) -{ - return zone->pages_scanned < zone_reclaimable_pages(zone) * 6; -} - /* All zones in zonelist are unreclaimable? */ static bool all_unreclaimable(struct zonelist *zonelist, struct scan_control *sc) @@ -2301,7 +2381,7 @@ static bool all_unreclaimable(struct zonelist *zonelist, continue; if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) continue; - if (!zone->all_unreclaimable) + if (zone_reclaimable(zone)) return false; } @@ -2354,12 +2434,16 @@ static unsigned long do_try_to_free_pages(struct zonelist *zonelist, */ if (global_reclaim(sc)) { unsigned long lru_pages = 0; + + nodes_clear(shrink->nodes_to_scan); for_each_zone_zonelist(zone, z, zonelist, gfp_zone(sc->gfp_mask)) { if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL)) continue; lru_pages += zone_reclaimable_pages(zone); + node_set(zone_to_nid(zone), + shrink->nodes_to_scan); } shrink_slab(shrink, sc->nr_scanned, lru_pages); @@ -2712,7 +2796,7 @@ static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx) * DEF_PRIORITY. Effectively, it considers them balanced so * they must be considered balanced here as well! */ - if (zone->all_unreclaimable) { + if (!zone_reclaimable(zone)) { balanced_pages += zone->managed_pages; continue; } @@ -2773,7 +2857,6 @@ static bool kswapd_shrink_zone(struct zone *zone, unsigned long lru_pages, unsigned long *nr_attempted) { - unsigned long nr_slab; int testorder = sc->order; unsigned long balance_gap; struct reclaim_state *reclaim_state = current->reclaim_state; @@ -2816,17 +2899,16 @@ static bool kswapd_shrink_zone(struct zone *zone, return true; shrink_zone(zone, sc); + nodes_clear(shrink.nodes_to_scan); + node_set(zone_to_nid(zone), shrink.nodes_to_scan); reclaim_state->reclaimed_slab = 0; - nr_slab = shrink_slab(&shrink, sc->nr_scanned, lru_pages); + shrink_slab(&shrink, sc->nr_scanned, lru_pages); sc->nr_reclaimed += reclaim_state->reclaimed_slab; /* Account for the number of pages attempted to reclaim */ *nr_attempted += sc->nr_to_reclaim; - if (nr_slab == 0 && !zone_reclaimable(zone)) - zone->all_unreclaimable = 1; - zone_clear_flag(zone, ZONE_WRITEBACK); /* @@ -2835,7 +2917,7 @@ static bool kswapd_shrink_zone(struct zone *zone, * BDIs but as pressure is relieved, speculatively avoid congestion * waits. */ - if (!zone->all_unreclaimable && + if (zone_reclaimable(zone) && zone_balanced(zone, testorder, 0, classzone_idx)) { zone_clear_flag(zone, ZONE_CONGESTED); zone_clear_flag(zone, ZONE_TAIL_LRU_DIRTY); @@ -2870,8 +2952,6 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order, { int i; int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */ - unsigned long nr_soft_reclaimed; - unsigned long nr_soft_scanned; struct scan_control sc = { .gfp_mask = GFP_KERNEL, .priority = DEF_PRIORITY, @@ -2901,8 +2981,8 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order, if (!populated_zone(zone)) continue; - if (zone->all_unreclaimable && - sc.priority != DEF_PRIORITY) + if (sc.priority != DEF_PRIORITY && + !zone_reclaimable(zone)) continue; /* @@ -2980,21 +3060,12 @@ static unsigned long balance_pgdat(pg_data_t *pgdat, int order, if (!populated_zone(zone)) continue; - if (zone->all_unreclaimable && - sc.priority != DEF_PRIORITY) + if (sc.priority != DEF_PRIORITY && + !zone_reclaimable(zone)) continue; sc.nr_scanned = 0; - nr_soft_scanned = 0; - /* - * Call soft limit reclaim before calling shrink_zone. - */ - nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, - order, sc.gfp_mask, - &nr_soft_scanned); - sc.nr_reclaimed += nr_soft_reclaimed; - /* * There should be no need to raise the scanning * priority if enough pages are already being scanned @@ -3237,7 +3308,7 @@ void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx) } if (!waitqueue_active(&pgdat->kswapd_wait)) return; - if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0)) + if (zone_balanced(zone, order, 0, 0)) return; trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order); @@ -3265,20 +3336,6 @@ unsigned long global_reclaimable_pages(void) return nr; } -unsigned long zone_reclaimable_pages(struct zone *zone) -{ - int nr; - - nr = zone_page_state(zone, NR_ACTIVE_FILE) + - zone_page_state(zone, NR_INACTIVE_FILE); - - if (get_nr_swap_pages() > 0) - nr += zone_page_state(zone, NR_ACTIVE_ANON) + - zone_page_state(zone, NR_INACTIVE_ANON); - - return nr; -} - #ifdef CONFIG_HIBERNATION /* * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of @@ -3524,10 +3581,9 @@ static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) * number of slab pages and shake the slab until it is reduced * by the same nr_pages that we used for reclaiming unmapped * pages. - * - * Note that shrink_slab will free memory on all zones and may - * take a long time. */ + nodes_clear(shrink.nodes_to_scan); + node_set(zone_to_nid(zone), shrink.nodes_to_scan); for (;;) { unsigned long lru_pages = zone_reclaimable_pages(zone); @@ -3576,7 +3632,7 @@ int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order) zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages) return ZONE_RECLAIM_FULL; - if (zone->all_unreclaimable) + if (!zone_reclaimable(zone)) return ZONE_RECLAIM_FULL; /* diff --git a/mm/vmstat.c b/mm/vmstat.c index f42745e..9bb3145 100644 --- a/mm/vmstat.c +++ b/mm/vmstat.c @@ -19,6 +19,9 @@ #include <linux/math64.h> #include <linux/writeback.h> #include <linux/compaction.h> +#include <linux/mm_inline.h> + +#include "internal.h" #ifdef CONFIG_VM_EVENT_COUNTERS DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; @@ -414,12 +417,17 @@ void dec_zone_page_state(struct page *page, enum zone_stat_item item) EXPORT_SYMBOL(dec_zone_page_state); #endif +static inline void fold_diff(int *diff) +{ + int i; + + for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) + if (diff[i]) + atomic_long_add(diff[i], &vm_stat[i]); +} + /* - * Update the zone counters for one cpu. - * - * The cpu specified must be either the current cpu or a processor that - * is not online. If it is the current cpu then the execution thread must - * be pinned to the current cpu. + * Update the zone counters for the current cpu. * * Note that refresh_cpu_vm_stats strives to only access * node local memory. The per cpu pagesets on remote zones are placed @@ -432,33 +440,29 @@ EXPORT_SYMBOL(dec_zone_page_state); * with the global counters. These could cause remote node cache line * bouncing and will have to be only done when necessary. */ -void refresh_cpu_vm_stats(int cpu) +static void refresh_cpu_vm_stats(void) { struct zone *zone; int i; int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; for_each_populated_zone(zone) { - struct per_cpu_pageset *p; + struct per_cpu_pageset __percpu *p = zone->pageset; - p = per_cpu_ptr(zone->pageset, cpu); + for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { + int v; - for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) - if (p->vm_stat_diff[i]) { - unsigned long flags; - int v; + v = this_cpu_xchg(p->vm_stat_diff[i], 0); + if (v) { - local_irq_save(flags); - v = p->vm_stat_diff[i]; - p->vm_stat_diff[i] = 0; - local_irq_restore(flags); atomic_long_add(v, &zone->vm_stat[i]); global_diff[i] += v; #ifdef CONFIG_NUMA /* 3 seconds idle till flush */ - p->expire = 3; + __this_cpu_write(p->expire, 3); #endif } + } cond_resched(); #ifdef CONFIG_NUMA /* @@ -468,29 +472,57 @@ void refresh_cpu_vm_stats(int cpu) * Check if there are pages remaining in this pageset * if not then there is nothing to expire. */ - if (!p->expire || !p->pcp.count) + if (!__this_cpu_read(p->expire) || + !__this_cpu_read(p->pcp.count)) continue; /* * We never drain zones local to this processor. */ if (zone_to_nid(zone) == numa_node_id()) { - p->expire = 0; + __this_cpu_write(p->expire, 0); continue; } - p->expire--; - if (p->expire) + + if (__this_cpu_dec_return(p->expire)) continue; - if (p->pcp.count) - drain_zone_pages(zone, &p->pcp); + if (__this_cpu_read(p->pcp.count)) + drain_zone_pages(zone, __this_cpu_ptr(&p->pcp)); #endif } + fold_diff(global_diff); +} - for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) - if (global_diff[i]) - atomic_long_add(global_diff[i], &vm_stat[i]); +/* + * Fold the data for an offline cpu into the global array. + * There cannot be any access by the offline cpu and therefore + * synchronization is simplified. + */ +void cpu_vm_stats_fold(int cpu) +{ + struct zone *zone; + int i; + int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; + + for_each_populated_zone(zone) { + struct per_cpu_pageset *p; + + p = per_cpu_ptr(zone->pageset, cpu); + + for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) + if (p->vm_stat_diff[i]) { + int v; + + v = p->vm_stat_diff[i]; + p->vm_stat_diff[i] = 0; + atomic_long_add(v, &zone->vm_stat[i]); + global_diff[i] += v; + } + } + + fold_diff(global_diff); } /* @@ -703,6 +735,7 @@ static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, const char * const vmstat_text[] = { /* Zoned VM counters */ "nr_free_pages", + "nr_alloc_batch", "nr_inactive_anon", "nr_active_anon", "nr_inactive_file", @@ -817,6 +850,12 @@ const char * const vmstat_text[] = { "thp_zero_page_alloc", "thp_zero_page_alloc_failed", #endif +#ifdef CONFIG_SMP + "nr_tlb_remote_flush", + "nr_tlb_remote_flush_received", +#endif + "nr_tlb_local_flush_all", + "nr_tlb_local_flush_one", #endif /* CONFIG_VM_EVENTS_COUNTERS */ }; @@ -1052,7 +1091,7 @@ static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, "\n all_unreclaimable: %u" "\n start_pfn: %lu" "\n inactive_ratio: %u", - zone->all_unreclaimable, + !zone_reclaimable(zone), zone->zone_start_pfn, zone->inactive_ratio); seq_putc(m, '\n'); @@ -1177,12 +1216,12 @@ int sysctl_stat_interval __read_mostly = HZ; static void vmstat_update(struct work_struct *w) { - refresh_cpu_vm_stats(smp_processor_id()); + refresh_cpu_vm_stats(); schedule_delayed_work(&__get_cpu_var(vmstat_work), round_jiffies_relative(sysctl_stat_interval)); } -static void __cpuinit start_cpu_timer(int cpu) +static void start_cpu_timer(int cpu) { struct delayed_work *work = &per_cpu(vmstat_work, cpu); @@ -1194,7 +1233,7 @@ static void __cpuinit start_cpu_timer(int cpu) * Use the cpu notifier to insure that the thresholds are recalculated * when necessary. */ -static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, +static int vmstat_cpuup_callback(struct notifier_block *nfb, unsigned long action, void *hcpu) { @@ -1226,7 +1265,7 @@ static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb, return NOTIFY_OK; } -static struct notifier_block __cpuinitdata vmstat_notifier = +static struct notifier_block vmstat_notifier = { &vmstat_cpuup_callback, NULL, 0 }; #endif @@ -16,7 +16,7 @@ * * zbud works by storing compressed pages, or "zpages", together in pairs in a * single memory page called a "zbud page". The first buddy is "left - * justifed" at the beginning of the zbud page, and the last buddy is "right + * justified" at the beginning of the zbud page, and the last buddy is "right * justified" at the end of the zbud page. The benefit is that if either * buddy is freed, the freed buddy space, coalesced with whatever slack space * that existed between the buddies, results in the largest possible free region @@ -243,7 +243,7 @@ void zbud_destroy_pool(struct zbud_pool *pool) * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used * as zbud pool pages. * - * Return: 0 if success and handle is set, otherwise -EINVAL is the size or + * Return: 0 if success and handle is set, otherwise -EINVAL if the size or * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate * a new page. */ @@ -257,7 +257,7 @@ int zbud_alloc(struct zbud_pool *pool, int size, gfp_t gfp, if (size <= 0 || gfp & __GFP_HIGHMEM) return -EINVAL; - if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED) + if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE) return -ENOSPC; chunks = size_to_chunks(size); spin_lock(&pool->lock); @@ -409,7 +409,7 @@ static int zswap_get_swap_cache_page(swp_entry_t entry, struct page **retpage) { struct page *found_page, *new_page = NULL; - struct address_space *swapper_space = &swapper_spaces[swp_type(entry)]; + struct address_space *swapper_space = swap_address_space(entry); int err; *retpage = NULL; @@ -790,26 +790,14 @@ static void zswap_frontswap_invalidate_page(unsigned type, pgoff_t offset) static void zswap_frontswap_invalidate_area(unsigned type) { struct zswap_tree *tree = zswap_trees[type]; - struct rb_node *node; - struct zswap_entry *entry; + struct zswap_entry *entry, *n; if (!tree) return; /* walk the tree and free everything */ spin_lock(&tree->lock); - /* - * TODO: Even though this code should not be executed because - * the try_to_unuse() in swapoff should have emptied the tree, - * it is very wasteful to rebalance the tree after every - * removal when we are freeing the whole tree. - * - * If post-order traversal code is ever added to the rbtree - * implementation, it should be used here. - */ - while ((node = rb_first(&tree->rbroot))) { - entry = rb_entry(node, struct zswap_entry, rbnode); - rb_erase(&entry->rbnode, &tree->rbroot); + rbtree_postorder_for_each_entry_safe(entry, n, &tree->rbroot, rbnode) { zbud_free(tree->pool, entry->handle); zswap_entry_cache_free(entry); atomic_dec(&zswap_stored_pages); |