diff options
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r-- | mm/memcontrol.c | 143 |
1 files changed, 55 insertions, 88 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c index 28243f7..9c9c685 100644 --- a/mm/memcontrol.c +++ b/mm/memcontrol.c @@ -866,6 +866,7 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, unsigned long val = 0; int cpu; + get_online_cpus(); for_each_online_cpu(cpu) val += per_cpu(memcg->stat->events[idx], cpu); #ifdef CONFIG_HOTPLUG_CPU @@ -873,6 +874,7 @@ static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, val += memcg->nocpu_base.events[idx]; spin_unlock(&memcg->pcp_counter_lock); #endif + put_online_cpus(); return val; } @@ -2159,110 +2161,59 @@ static void memcg_oom_recover(struct mem_cgroup *memcg) memcg_wakeup_oom(memcg); } -/* - * try to call OOM killer - */ static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) { - bool locked; - int wakeups; - if (!current->memcg_oom.may_oom) return; - - current->memcg_oom.in_memcg_oom = 1; - /* - * As with any blocking lock, a contender needs to start - * listening for wakeups before attempting the trylock, - * otherwise it can miss the wakeup from the unlock and sleep - * indefinitely. This is just open-coded because our locking - * is so particular to memcg hierarchies. + * We are in the middle of the charge context here, so we + * don't want to block when potentially sitting on a callstack + * that holds all kinds of filesystem and mm locks. + * + * Also, the caller may handle a failed allocation gracefully + * (like optional page cache readahead) and so an OOM killer + * invocation might not even be necessary. + * + * That's why we don't do anything here except remember the + * OOM context and then deal with it at the end of the page + * fault when the stack is unwound, the locks are released, + * and when we know whether the fault was overall successful. */ - wakeups = atomic_read(&memcg->oom_wakeups); - mem_cgroup_mark_under_oom(memcg); - - locked = mem_cgroup_oom_trylock(memcg); - - if (locked) - mem_cgroup_oom_notify(memcg); - - if (locked && !memcg->oom_kill_disable) { - mem_cgroup_unmark_under_oom(memcg); - mem_cgroup_out_of_memory(memcg, mask, order); - mem_cgroup_oom_unlock(memcg); - /* - * There is no guarantee that an OOM-lock contender - * sees the wakeups triggered by the OOM kill - * uncharges. Wake any sleepers explicitely. - */ - memcg_oom_recover(memcg); - } else { - /* - * A system call can just return -ENOMEM, but if this - * is a page fault and somebody else is handling the - * OOM already, we need to sleep on the OOM waitqueue - * for this memcg until the situation is resolved. - * Which can take some time because it might be - * handled by a userspace task. - * - * However, this is the charge context, which means - * that we may sit on a large call stack and hold - * various filesystem locks, the mmap_sem etc. and we - * don't want the OOM handler to deadlock on them - * while we sit here and wait. Store the current OOM - * context in the task_struct, then return -ENOMEM. - * At the end of the page fault handler, with the - * stack unwound, pagefault_out_of_memory() will check - * back with us by calling - * mem_cgroup_oom_synchronize(), possibly putting the - * task to sleep. - */ - current->memcg_oom.oom_locked = locked; - current->memcg_oom.wakeups = wakeups; - css_get(&memcg->css); - current->memcg_oom.wait_on_memcg = memcg; - } + css_get(&memcg->css); + current->memcg_oom.memcg = memcg; + current->memcg_oom.gfp_mask = mask; + current->memcg_oom.order = order; } /** * mem_cgroup_oom_synchronize - complete memcg OOM handling + * @handle: actually kill/wait or just clean up the OOM state * - * This has to be called at the end of a page fault if the the memcg - * OOM handler was enabled and the fault is returning %VM_FAULT_OOM. + * This has to be called at the end of a page fault if the memcg OOM + * handler was enabled. * - * Memcg supports userspace OOM handling, so failed allocations must + * Memcg supports userspace OOM handling where failed allocations must * sleep on a waitqueue until the userspace task resolves the * situation. Sleeping directly in the charge context with all kinds * of locks held is not a good idea, instead we remember an OOM state * in the task and mem_cgroup_oom_synchronize() has to be called at - * the end of the page fault to put the task to sleep and clean up the - * OOM state. + * the end of the page fault to complete the OOM handling. * * Returns %true if an ongoing memcg OOM situation was detected and - * finalized, %false otherwise. + * completed, %false otherwise. */ -bool mem_cgroup_oom_synchronize(void) +bool mem_cgroup_oom_synchronize(bool handle) { + struct mem_cgroup *memcg = current->memcg_oom.memcg; struct oom_wait_info owait; - struct mem_cgroup *memcg; + bool locked; /* OOM is global, do not handle */ - if (!current->memcg_oom.in_memcg_oom) - return false; - - /* - * We invoked the OOM killer but there is a chance that a kill - * did not free up any charges. Everybody else might already - * be sleeping, so restart the fault and keep the rampage - * going until some charges are released. - */ - memcg = current->memcg_oom.wait_on_memcg; if (!memcg) - goto out; + return false; - if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current)) - goto out_memcg; + if (!handle) + goto cleanup; owait.memcg = memcg; owait.wait.flags = 0; @@ -2271,13 +2222,25 @@ bool mem_cgroup_oom_synchronize(void) INIT_LIST_HEAD(&owait.wait.task_list); prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); - /* Only sleep if we didn't miss any wakeups since OOM */ - if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups) + mem_cgroup_mark_under_oom(memcg); + + locked = mem_cgroup_oom_trylock(memcg); + + if (locked) + mem_cgroup_oom_notify(memcg); + + if (locked && !memcg->oom_kill_disable) { + mem_cgroup_unmark_under_oom(memcg); + finish_wait(&memcg_oom_waitq, &owait.wait); + mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, + current->memcg_oom.order); + } else { schedule(); - finish_wait(&memcg_oom_waitq, &owait.wait); -out_memcg: - mem_cgroup_unmark_under_oom(memcg); - if (current->memcg_oom.oom_locked) { + mem_cgroup_unmark_under_oom(memcg); + finish_wait(&memcg_oom_waitq, &owait.wait); + } + + if (locked) { mem_cgroup_oom_unlock(memcg); /* * There is no guarantee that an OOM-lock contender @@ -2286,10 +2249,9 @@ out_memcg: */ memcg_oom_recover(memcg); } +cleanup: + current->memcg_oom.memcg = NULL; css_put(&memcg->css); - current->memcg_oom.wait_on_memcg = NULL; -out: - current->memcg_oom.in_memcg_oom = 0; return true; } @@ -2703,6 +2665,9 @@ static int __mem_cgroup_try_charge(struct mm_struct *mm, || fatal_signal_pending(current))) goto bypass; + if (unlikely(task_in_memcg_oom(current))) + goto bypass; + /* * We always charge the cgroup the mm_struct belongs to. * The mm_struct's mem_cgroup changes on task migration if the @@ -2801,6 +2766,8 @@ done: return 0; nomem: *ptr = NULL; + if (gfp_mask & __GFP_NOFAIL) + return 0; return -ENOMEM; bypass: *ptr = root_mem_cgroup; |