summaryrefslogtreecommitdiffstats
path: root/mm/memcontrol.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/memcontrol.c')
-rw-r--r--mm/memcontrol.c1846
1 files changed, 1477 insertions, 369 deletions
diff --git a/mm/memcontrol.c b/mm/memcontrol.c
index 51ee965..e2996b8 100644
--- a/mm/memcontrol.c
+++ b/mm/memcontrol.c
@@ -21,11 +21,13 @@
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
#include <linux/mm.h>
+#include <linux/pagemap.h>
#include <linux/smp.h>
#include <linux/page-flags.h>
#include <linux/backing-dev.h>
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
+#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/spinlock.h>
@@ -34,12 +36,23 @@
#include <linux/vmalloc.h>
#include <linux/mm_inline.h>
#include <linux/page_cgroup.h>
+#include "internal.h"
#include <asm/uaccess.h>
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
#define MEM_CGROUP_RECLAIM_RETRIES 5
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
+/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
+int do_swap_account __read_mostly;
+static int really_do_swap_account __initdata = 1; /* for remember boot option*/
+#else
+#define do_swap_account (0)
+#endif
+
+static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
+
/*
* Statistics for memory cgroup.
*/
@@ -60,7 +73,7 @@ struct mem_cgroup_stat_cpu {
} ____cacheline_aligned_in_smp;
struct mem_cgroup_stat {
- struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
+ struct mem_cgroup_stat_cpu cpustat[0];
};
/*
@@ -89,9 +102,10 @@ struct mem_cgroup_per_zone {
/*
* spin_lock to protect the per cgroup LRU
*/
- spinlock_t lru_lock;
struct list_head lists[NR_LRU_LISTS];
unsigned long count[NR_LRU_LISTS];
+
+ struct zone_reclaim_stat reclaim_stat;
};
/* Macro for accessing counter */
#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
@@ -122,44 +136,73 @@ struct mem_cgroup {
*/
struct res_counter res;
/*
+ * the counter to account for mem+swap usage.
+ */
+ struct res_counter memsw;
+ /*
* Per cgroup active and inactive list, similar to the
* per zone LRU lists.
*/
struct mem_cgroup_lru_info info;
+ /*
+ protect against reclaim related member.
+ */
+ spinlock_t reclaim_param_lock;
+
int prev_priority; /* for recording reclaim priority */
+
+ /*
+ * While reclaiming in a hiearchy, we cache the last child we
+ * reclaimed from. Protected by hierarchy_mutex
+ */
+ struct mem_cgroup *last_scanned_child;
/*
- * statistics.
+ * Should the accounting and control be hierarchical, per subtree?
+ */
+ bool use_hierarchy;
+ unsigned long last_oom_jiffies;
+ atomic_t refcnt;
+
+ unsigned int swappiness;
+
+ /*
+ * statistics. This must be placed at the end of memcg.
*/
struct mem_cgroup_stat stat;
};
-static struct mem_cgroup init_mem_cgroup;
enum charge_type {
MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
MEM_CGROUP_CHARGE_TYPE_MAPPED,
MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
+ MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
NR_CHARGE_TYPE,
};
/* only for here (for easy reading.) */
#define PCGF_CACHE (1UL << PCG_CACHE)
#define PCGF_USED (1UL << PCG_USED)
-#define PCGF_ACTIVE (1UL << PCG_ACTIVE)
#define PCGF_LOCK (1UL << PCG_LOCK)
-#define PCGF_FILE (1UL << PCG_FILE)
static const unsigned long
pcg_default_flags[NR_CHARGE_TYPE] = {
- PCGF_CACHE | PCGF_FILE | PCGF_USED | PCGF_LOCK, /* File Cache */
- PCGF_ACTIVE | PCGF_USED | PCGF_LOCK, /* Anon */
- PCGF_ACTIVE | PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
+ PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
+ PCGF_USED | PCGF_LOCK, /* Anon */
+ PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
0, /* FORCE */
};
-/*
- * Always modified under lru lock. Then, not necessary to preempt_disable()
- */
+/* for encoding cft->private value on file */
+#define _MEM (0)
+#define _MEMSWAP (1)
+#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
+#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
+#define MEMFILE_ATTR(val) ((val) & 0xffff)
+
+static void mem_cgroup_get(struct mem_cgroup *mem);
+static void mem_cgroup_put(struct mem_cgroup *mem);
+
static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
struct page_cgroup *pc,
bool charge)
@@ -167,10 +210,9 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
int val = (charge)? 1 : -1;
struct mem_cgroup_stat *stat = &mem->stat;
struct mem_cgroup_stat_cpu *cpustat;
+ int cpu = get_cpu();
- VM_BUG_ON(!irqs_disabled());
-
- cpustat = &stat->cpustat[smp_processor_id()];
+ cpustat = &stat->cpustat[cpu];
if (PageCgroupCache(pc))
__mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
else
@@ -182,6 +224,7 @@ static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
else
__mem_cgroup_stat_add_safe(cpustat,
MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
+ put_cpu();
}
static struct mem_cgroup_per_zone *
@@ -197,6 +240,9 @@ page_cgroup_zoneinfo(struct page_cgroup *pc)
int nid = page_cgroup_nid(pc);
int zid = page_cgroup_zid(pc);
+ if (!mem)
+ return NULL;
+
return mem_cgroup_zoneinfo(mem, nid, zid);
}
@@ -236,77 +282,152 @@ struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
struct mem_cgroup, css);
}
-static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
- struct page_cgroup *pc)
+static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
{
- int lru = LRU_BASE;
+ struct mem_cgroup *mem = NULL;
+ /*
+ * Because we have no locks, mm->owner's may be being moved to other
+ * cgroup. We use css_tryget() here even if this looks
+ * pessimistic (rather than adding locks here).
+ */
+ rcu_read_lock();
+ do {
+ mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
+ if (unlikely(!mem))
+ break;
+ } while (!css_tryget(&mem->css));
+ rcu_read_unlock();
+ return mem;
+}
- if (PageCgroupUnevictable(pc))
- lru = LRU_UNEVICTABLE;
- else {
- if (PageCgroupActive(pc))
- lru += LRU_ACTIVE;
- if (PageCgroupFile(pc))
- lru += LRU_FILE;
- }
+static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
+{
+ if (!mem)
+ return true;
+ return css_is_removed(&mem->css);
+}
- MEM_CGROUP_ZSTAT(mz, lru) -= 1;
+/*
+ * Following LRU functions are allowed to be used without PCG_LOCK.
+ * Operations are called by routine of global LRU independently from memcg.
+ * What we have to take care of here is validness of pc->mem_cgroup.
+ *
+ * Changes to pc->mem_cgroup happens when
+ * 1. charge
+ * 2. moving account
+ * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
+ * It is added to LRU before charge.
+ * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
+ * When moving account, the page is not on LRU. It's isolated.
+ */
- mem_cgroup_charge_statistics(pc->mem_cgroup, pc, false);
- list_del(&pc->lru);
+void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
+{
+ struct page_cgroup *pc;
+ struct mem_cgroup *mem;
+ struct mem_cgroup_per_zone *mz;
+
+ if (mem_cgroup_disabled())
+ return;
+ pc = lookup_page_cgroup(page);
+ /* can happen while we handle swapcache. */
+ if (list_empty(&pc->lru) || !pc->mem_cgroup)
+ return;
+ /*
+ * We don't check PCG_USED bit. It's cleared when the "page" is finally
+ * removed from global LRU.
+ */
+ mz = page_cgroup_zoneinfo(pc);
+ mem = pc->mem_cgroup;
+ MEM_CGROUP_ZSTAT(mz, lru) -= 1;
+ list_del_init(&pc->lru);
+ return;
}
-static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
- struct page_cgroup *pc)
+void mem_cgroup_del_lru(struct page *page)
{
- int lru = LRU_BASE;
+ mem_cgroup_del_lru_list(page, page_lru(page));
+}
- if (PageCgroupUnevictable(pc))
- lru = LRU_UNEVICTABLE;
- else {
- if (PageCgroupActive(pc))
- lru += LRU_ACTIVE;
- if (PageCgroupFile(pc))
- lru += LRU_FILE;
- }
+void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
+{
+ struct mem_cgroup_per_zone *mz;
+ struct page_cgroup *pc;
- MEM_CGROUP_ZSTAT(mz, lru) += 1;
- list_add(&pc->lru, &mz->lists[lru]);
+ if (mem_cgroup_disabled())
+ return;
- mem_cgroup_charge_statistics(pc->mem_cgroup, pc, true);
+ pc = lookup_page_cgroup(page);
+ smp_rmb();
+ /* unused page is not rotated. */
+ if (!PageCgroupUsed(pc))
+ return;
+ mz = page_cgroup_zoneinfo(pc);
+ list_move(&pc->lru, &mz->lists[lru]);
}
-static void __mem_cgroup_move_lists(struct page_cgroup *pc, enum lru_list lru)
+void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
{
- struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
- int active = PageCgroupActive(pc);
- int file = PageCgroupFile(pc);
- int unevictable = PageCgroupUnevictable(pc);
- enum lru_list from = unevictable ? LRU_UNEVICTABLE :
- (LRU_FILE * !!file + !!active);
+ struct page_cgroup *pc;
+ struct mem_cgroup_per_zone *mz;
- if (lru == from)
+ if (mem_cgroup_disabled())
+ return;
+ pc = lookup_page_cgroup(page);
+ /* barrier to sync with "charge" */
+ smp_rmb();
+ if (!PageCgroupUsed(pc))
return;
- MEM_CGROUP_ZSTAT(mz, from) -= 1;
+ mz = page_cgroup_zoneinfo(pc);
+ MEM_CGROUP_ZSTAT(mz, lru) += 1;
+ list_add(&pc->lru, &mz->lists[lru]);
+}
+
+/*
+ * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
+ * lru because the page may.be reused after it's fully uncharged (because of
+ * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
+ * it again. This function is only used to charge SwapCache. It's done under
+ * lock_page and expected that zone->lru_lock is never held.
+ */
+static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
+{
+ unsigned long flags;
+ struct zone *zone = page_zone(page);
+ struct page_cgroup *pc = lookup_page_cgroup(page);
+
+ spin_lock_irqsave(&zone->lru_lock, flags);
/*
- * However this is done under mz->lru_lock, another flags, which
- * are not related to LRU, will be modified from out-of-lock.
- * We have to use atomic set/clear flags.
+ * Forget old LRU when this page_cgroup is *not* used. This Used bit
+ * is guarded by lock_page() because the page is SwapCache.
*/
- if (is_unevictable_lru(lru)) {
- ClearPageCgroupActive(pc);
- SetPageCgroupUnevictable(pc);
- } else {
- if (is_active_lru(lru))
- SetPageCgroupActive(pc);
- else
- ClearPageCgroupActive(pc);
- ClearPageCgroupUnevictable(pc);
- }
+ if (!PageCgroupUsed(pc))
+ mem_cgroup_del_lru_list(page, page_lru(page));
+ spin_unlock_irqrestore(&zone->lru_lock, flags);
+}
- MEM_CGROUP_ZSTAT(mz, lru) += 1;
- list_move(&pc->lru, &mz->lists[lru]);
+static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
+{
+ unsigned long flags;
+ struct zone *zone = page_zone(page);
+ struct page_cgroup *pc = lookup_page_cgroup(page);
+
+ spin_lock_irqsave(&zone->lru_lock, flags);
+ /* link when the page is linked to LRU but page_cgroup isn't */
+ if (PageLRU(page) && list_empty(&pc->lru))
+ mem_cgroup_add_lru_list(page, page_lru(page));
+ spin_unlock_irqrestore(&zone->lru_lock, flags);
+}
+
+
+void mem_cgroup_move_lists(struct page *page,
+ enum lru_list from, enum lru_list to)
+{
+ if (mem_cgroup_disabled())
+ return;
+ mem_cgroup_del_lru_list(page, from);
+ mem_cgroup_add_lru_list(page, to);
}
int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
@@ -320,37 +441,6 @@ int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
}
/*
- * This routine assumes that the appropriate zone's lru lock is already held
- */
-void mem_cgroup_move_lists(struct page *page, enum lru_list lru)
-{
- struct page_cgroup *pc;
- struct mem_cgroup_per_zone *mz;
- unsigned long flags;
-
- if (mem_cgroup_subsys.disabled)
- return;
-
- /*
- * We cannot lock_page_cgroup while holding zone's lru_lock,
- * because other holders of lock_page_cgroup can be interrupted
- * with an attempt to rotate_reclaimable_page. But we cannot
- * safely get to page_cgroup without it, so just try_lock it:
- * mem_cgroup_isolate_pages allows for page left on wrong list.
- */
- pc = lookup_page_cgroup(page);
- if (!trylock_page_cgroup(pc))
- return;
- if (pc && PageCgroupUsed(pc)) {
- mz = page_cgroup_zoneinfo(pc);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_move_lists(pc, lru);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
- }
- unlock_page_cgroup(pc);
-}
-
-/*
* Calculate mapped_ratio under memory controller. This will be used in
* vmscan.c for deteremining we have to reclaim mapped pages.
*/
@@ -372,39 +462,108 @@ int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
*/
int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
{
- return mem->prev_priority;
+ int prev_priority;
+
+ spin_lock(&mem->reclaim_param_lock);
+ prev_priority = mem->prev_priority;
+ spin_unlock(&mem->reclaim_param_lock);
+
+ return prev_priority;
}
void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
{
+ spin_lock(&mem->reclaim_param_lock);
if (priority < mem->prev_priority)
mem->prev_priority = priority;
+ spin_unlock(&mem->reclaim_param_lock);
}
void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
{
+ spin_lock(&mem->reclaim_param_lock);
mem->prev_priority = priority;
+ spin_unlock(&mem->reclaim_param_lock);
}
-/*
- * Calculate # of pages to be scanned in this priority/zone.
- * See also vmscan.c
- *
- * priority starts from "DEF_PRIORITY" and decremented in each loop.
- * (see include/linux/mmzone.h)
- */
+static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
+{
+ unsigned long active;
+ unsigned long inactive;
+ unsigned long gb;
+ unsigned long inactive_ratio;
+
+ inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
+ active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
+
+ gb = (inactive + active) >> (30 - PAGE_SHIFT);
+ if (gb)
+ inactive_ratio = int_sqrt(10 * gb);
+ else
+ inactive_ratio = 1;
+
+ if (present_pages) {
+ present_pages[0] = inactive;
+ present_pages[1] = active;
+ }
+
+ return inactive_ratio;
+}
+
+int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
+{
+ unsigned long active;
+ unsigned long inactive;
+ unsigned long present_pages[2];
+ unsigned long inactive_ratio;
-long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
- int priority, enum lru_list lru)
+ inactive_ratio = calc_inactive_ratio(memcg, present_pages);
+
+ inactive = present_pages[0];
+ active = present_pages[1];
+
+ if (inactive * inactive_ratio < active)
+ return 1;
+
+ return 0;
+}
+
+unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
+ struct zone *zone,
+ enum lru_list lru)
{
- long nr_pages;
int nid = zone->zone_pgdat->node_id;
int zid = zone_idx(zone);
- struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
+ struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
- nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
+ return MEM_CGROUP_ZSTAT(mz, lru);
+}
- return (nr_pages >> priority);
+struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
+ struct zone *zone)
+{
+ int nid = zone->zone_pgdat->node_id;
+ int zid = zone_idx(zone);
+ struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
+
+ return &mz->reclaim_stat;
+}
+
+struct zone_reclaim_stat *
+mem_cgroup_get_reclaim_stat_from_page(struct page *page)
+{
+ struct page_cgroup *pc;
+ struct mem_cgroup_per_zone *mz;
+
+ if (mem_cgroup_disabled())
+ return NULL;
+
+ pc = lookup_page_cgroup(page);
+ mz = page_cgroup_zoneinfo(pc);
+ if (!mz)
+ return NULL;
+
+ return &mz->reclaim_stat;
}
unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
@@ -429,95 +588,281 @@ unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
src = &mz->lists[lru];
- spin_lock(&mz->lru_lock);
scan = 0;
list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
if (scan >= nr_to_scan)
break;
+
+ page = pc->page;
if (unlikely(!PageCgroupUsed(pc)))
continue;
- page = pc->page;
-
if (unlikely(!PageLRU(page)))
continue;
- /*
- * TODO: play better with lumpy reclaim, grabbing anything.
- */
- if (PageUnevictable(page) ||
- (PageActive(page) && !active) ||
- (!PageActive(page) && active)) {
- __mem_cgroup_move_lists(pc, page_lru(page));
- continue;
- }
-
scan++;
- list_move(&pc->lru, &pc_list);
-
if (__isolate_lru_page(page, mode, file) == 0) {
list_move(&page->lru, dst);
nr_taken++;
}
}
- list_splice(&pc_list, src);
- spin_unlock(&mz->lru_lock);
-
*scanned = scan;
return nr_taken;
}
+#define mem_cgroup_from_res_counter(counter, member) \
+ container_of(counter, struct mem_cgroup, member)
+
/*
- * Charge the memory controller for page usage.
- * Return
- * 0 if the charge was successful
- * < 0 if the cgroup is over its limit
+ * This routine finds the DFS walk successor. This routine should be
+ * called with hierarchy_mutex held
*/
-static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
- gfp_t gfp_mask, enum charge_type ctype,
- struct mem_cgroup *memcg)
+static struct mem_cgroup *
+mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
{
+ struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
+
+ curr_cgroup = curr->css.cgroup;
+ root_cgroup = root_mem->css.cgroup;
+
+ if (!list_empty(&curr_cgroup->children)) {
+ /*
+ * Walk down to children
+ */
+ mem_cgroup_put(curr);
+ cgroup = list_entry(curr_cgroup->children.next,
+ struct cgroup, sibling);
+ curr = mem_cgroup_from_cont(cgroup);
+ mem_cgroup_get(curr);
+ goto done;
+ }
+
+visit_parent:
+ if (curr_cgroup == root_cgroup) {
+ mem_cgroup_put(curr);
+ curr = root_mem;
+ mem_cgroup_get(curr);
+ goto done;
+ }
+
+ /*
+ * Goto next sibling
+ */
+ if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
+ mem_cgroup_put(curr);
+ cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
+ sibling);
+ curr = mem_cgroup_from_cont(cgroup);
+ mem_cgroup_get(curr);
+ goto done;
+ }
+
+ /*
+ * Go up to next parent and next parent's sibling if need be
+ */
+ curr_cgroup = curr_cgroup->parent;
+ goto visit_parent;
+
+done:
+ root_mem->last_scanned_child = curr;
+ return curr;
+}
+
+/*
+ * Visit the first child (need not be the first child as per the ordering
+ * of the cgroup list, since we track last_scanned_child) of @mem and use
+ * that to reclaim free pages from.
+ */
+static struct mem_cgroup *
+mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
+{
+ struct cgroup *cgroup;
+ struct mem_cgroup *ret;
+ bool obsolete;
+
+ obsolete = mem_cgroup_is_obsolete(root_mem->last_scanned_child);
+
+ /*
+ * Scan all children under the mem_cgroup mem
+ */
+ mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
+ if (list_empty(&root_mem->css.cgroup->children)) {
+ ret = root_mem;
+ goto done;
+ }
+
+ if (!root_mem->last_scanned_child || obsolete) {
+
+ if (obsolete && root_mem->last_scanned_child)
+ mem_cgroup_put(root_mem->last_scanned_child);
+
+ cgroup = list_first_entry(&root_mem->css.cgroup->children,
+ struct cgroup, sibling);
+ ret = mem_cgroup_from_cont(cgroup);
+ mem_cgroup_get(ret);
+ } else
+ ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
+ root_mem);
+
+done:
+ root_mem->last_scanned_child = ret;
+ mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
+ return ret;
+}
+
+static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
+{
+ if (do_swap_account) {
+ if (res_counter_check_under_limit(&mem->res) &&
+ res_counter_check_under_limit(&mem->memsw))
+ return true;
+ } else
+ if (res_counter_check_under_limit(&mem->res))
+ return true;
+ return false;
+}
+
+static unsigned int get_swappiness(struct mem_cgroup *memcg)
+{
+ struct cgroup *cgrp = memcg->css.cgroup;
+ unsigned int swappiness;
+
+ /* root ? */
+ if (cgrp->parent == NULL)
+ return vm_swappiness;
+
+ spin_lock(&memcg->reclaim_param_lock);
+ swappiness = memcg->swappiness;
+ spin_unlock(&memcg->reclaim_param_lock);
+
+ return swappiness;
+}
+
+/*
+ * Dance down the hierarchy if needed to reclaim memory. We remember the
+ * last child we reclaimed from, so that we don't end up penalizing
+ * one child extensively based on its position in the children list.
+ *
+ * root_mem is the original ancestor that we've been reclaim from.
+ */
+static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
+ gfp_t gfp_mask, bool noswap)
+{
+ struct mem_cgroup *next_mem;
+ int ret = 0;
+
+ /*
+ * Reclaim unconditionally and don't check for return value.
+ * We need to reclaim in the current group and down the tree.
+ * One might think about checking for children before reclaiming,
+ * but there might be left over accounting, even after children
+ * have left.
+ */
+ ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
+ get_swappiness(root_mem));
+ if (mem_cgroup_check_under_limit(root_mem))
+ return 0;
+ if (!root_mem->use_hierarchy)
+ return ret;
+
+ next_mem = mem_cgroup_get_first_node(root_mem);
+
+ while (next_mem != root_mem) {
+ if (mem_cgroup_is_obsolete(next_mem)) {
+ mem_cgroup_put(next_mem);
+ next_mem = mem_cgroup_get_first_node(root_mem);
+ continue;
+ }
+ ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
+ get_swappiness(next_mem));
+ if (mem_cgroup_check_under_limit(root_mem))
+ return 0;
+ mutex_lock(&mem_cgroup_subsys.hierarchy_mutex);
+ next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
+ mutex_unlock(&mem_cgroup_subsys.hierarchy_mutex);
+ }
+ return ret;
+}
+
+bool mem_cgroup_oom_called(struct task_struct *task)
+{
+ bool ret = false;
struct mem_cgroup *mem;
- struct page_cgroup *pc;
- unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
- struct mem_cgroup_per_zone *mz;
- unsigned long flags;
+ struct mm_struct *mm;
- pc = lookup_page_cgroup(page);
- /* can happen at boot */
- if (unlikely(!pc))
+ rcu_read_lock();
+ mm = task->mm;
+ if (!mm)
+ mm = &init_mm;
+ mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
+ if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
+ ret = true;
+ rcu_read_unlock();
+ return ret;
+}
+/*
+ * Unlike exported interface, "oom" parameter is added. if oom==true,
+ * oom-killer can be invoked.
+ */
+static int __mem_cgroup_try_charge(struct mm_struct *mm,
+ gfp_t gfp_mask, struct mem_cgroup **memcg,
+ bool oom)
+{
+ struct mem_cgroup *mem, *mem_over_limit;
+ int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ struct res_counter *fail_res;
+
+ if (unlikely(test_thread_flag(TIF_MEMDIE))) {
+ /* Don't account this! */
+ *memcg = NULL;
return 0;
- prefetchw(pc);
+ }
+
/*
* We always charge the cgroup the mm_struct belongs to.
* The mm_struct's mem_cgroup changes on task migration if the
* thread group leader migrates. It's possible that mm is not
* set, if so charge the init_mm (happens for pagecache usage).
*/
-
- if (likely(!memcg)) {
- rcu_read_lock();
- mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
- if (unlikely(!mem)) {
- rcu_read_unlock();
- return 0;
- }
- /*
- * For every charge from the cgroup, increment reference count
- */
- css_get(&mem->css);
- rcu_read_unlock();
+ mem = *memcg;
+ if (likely(!mem)) {
+ mem = try_get_mem_cgroup_from_mm(mm);
+ *memcg = mem;
} else {
- mem = memcg;
- css_get(&memcg->css);
+ css_get(&mem->css);
}
+ if (unlikely(!mem))
+ return 0;
+
+ VM_BUG_ON(mem_cgroup_is_obsolete(mem));
+
+ while (1) {
+ int ret;
+ bool noswap = false;
+
+ ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
+ if (likely(!ret)) {
+ if (!do_swap_account)
+ break;
+ ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
+ &fail_res);
+ if (likely(!ret))
+ break;
+ /* mem+swap counter fails */
+ res_counter_uncharge(&mem->res, PAGE_SIZE);
+ noswap = true;
+ mem_over_limit = mem_cgroup_from_res_counter(fail_res,
+ memsw);
+ } else
+ /* mem counter fails */
+ mem_over_limit = mem_cgroup_from_res_counter(fail_res,
+ res);
- while (unlikely(res_counter_charge(&mem->res, PAGE_SIZE))) {
if (!(gfp_mask & __GFP_WAIT))
- goto out;
+ goto nomem;
- if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
- continue;
+ ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
+ noswap);
/*
* try_to_free_mem_cgroup_pages() might not give us a full
@@ -525,49 +870,214 @@ static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
* moved to swap cache or just unmapped from the cgroup.
* Check the limit again to see if the reclaim reduced the
* current usage of the cgroup before giving up
+ *
*/
- if (res_counter_check_under_limit(&mem->res))
+ if (mem_cgroup_check_under_limit(mem_over_limit))
continue;
if (!nr_retries--) {
- mem_cgroup_out_of_memory(mem, gfp_mask);
- goto out;
+ if (oom) {
+ mutex_lock(&memcg_tasklist);
+ mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
+ mutex_unlock(&memcg_tasklist);
+ mem_over_limit->last_oom_jiffies = jiffies;
+ }
+ goto nomem;
}
}
+ return 0;
+nomem:
+ css_put(&mem->css);
+ return -ENOMEM;
+}
+static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
+{
+ struct mem_cgroup *mem;
+ swp_entry_t ent;
+
+ if (!PageSwapCache(page))
+ return NULL;
+
+ ent.val = page_private(page);
+ mem = lookup_swap_cgroup(ent);
+ if (!mem)
+ return NULL;
+ if (!css_tryget(&mem->css))
+ return NULL;
+ return mem;
+}
+
+/*
+ * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
+ * USED state. If already USED, uncharge and return.
+ */
+
+static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
+ struct page_cgroup *pc,
+ enum charge_type ctype)
+{
+ /* try_charge() can return NULL to *memcg, taking care of it. */
+ if (!mem)
+ return;
lock_page_cgroup(pc);
if (unlikely(PageCgroupUsed(pc))) {
unlock_page_cgroup(pc);
res_counter_uncharge(&mem->res, PAGE_SIZE);
+ if (do_swap_account)
+ res_counter_uncharge(&mem->memsw, PAGE_SIZE);
css_put(&mem->css);
-
- goto done;
+ return;
}
pc->mem_cgroup = mem;
- /*
- * If a page is accounted as a page cache, insert to inactive list.
- * If anon, insert to active list.
- */
+ smp_wmb();
pc->flags = pcg_default_flags[ctype];
- mz = page_cgroup_zoneinfo(pc);
+ mem_cgroup_charge_statistics(mem, pc, true);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_add_list(mz, pc);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
unlock_page_cgroup(pc);
+}
-done:
- return 0;
+/**
+ * mem_cgroup_move_account - move account of the page
+ * @pc: page_cgroup of the page.
+ * @from: mem_cgroup which the page is moved from.
+ * @to: mem_cgroup which the page is moved to. @from != @to.
+ *
+ * The caller must confirm following.
+ * - page is not on LRU (isolate_page() is useful.)
+ *
+ * returns 0 at success,
+ * returns -EBUSY when lock is busy or "pc" is unstable.
+ *
+ * This function does "uncharge" from old cgroup but doesn't do "charge" to
+ * new cgroup. It should be done by a caller.
+ */
+
+static int mem_cgroup_move_account(struct page_cgroup *pc,
+ struct mem_cgroup *from, struct mem_cgroup *to)
+{
+ struct mem_cgroup_per_zone *from_mz, *to_mz;
+ int nid, zid;
+ int ret = -EBUSY;
+
+ VM_BUG_ON(from == to);
+ VM_BUG_ON(PageLRU(pc->page));
+
+ nid = page_cgroup_nid(pc);
+ zid = page_cgroup_zid(pc);
+ from_mz = mem_cgroup_zoneinfo(from, nid, zid);
+ to_mz = mem_cgroup_zoneinfo(to, nid, zid);
+
+ if (!trylock_page_cgroup(pc))
+ return ret;
+
+ if (!PageCgroupUsed(pc))
+ goto out;
+
+ if (pc->mem_cgroup != from)
+ goto out;
+
+ css_put(&from->css);
+ res_counter_uncharge(&from->res, PAGE_SIZE);
+ mem_cgroup_charge_statistics(from, pc, false);
+ if (do_swap_account)
+ res_counter_uncharge(&from->memsw, PAGE_SIZE);
+ pc->mem_cgroup = to;
+ mem_cgroup_charge_statistics(to, pc, true);
+ css_get(&to->css);
+ ret = 0;
out:
- css_put(&mem->css);
- return -ENOMEM;
+ unlock_page_cgroup(pc);
+ return ret;
+}
+
+/*
+ * move charges to its parent.
+ */
+
+static int mem_cgroup_move_parent(struct page_cgroup *pc,
+ struct mem_cgroup *child,
+ gfp_t gfp_mask)
+{
+ struct page *page = pc->page;
+ struct cgroup *cg = child->css.cgroup;
+ struct cgroup *pcg = cg->parent;
+ struct mem_cgroup *parent;
+ int ret;
+
+ /* Is ROOT ? */
+ if (!pcg)
+ return -EINVAL;
+
+
+ parent = mem_cgroup_from_cont(pcg);
+
+
+ ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
+ if (ret || !parent)
+ return ret;
+
+ if (!get_page_unless_zero(page))
+ return -EBUSY;
+
+ ret = isolate_lru_page(page);
+
+ if (ret)
+ goto cancel;
+
+ ret = mem_cgroup_move_account(pc, child, parent);
+
+ /* drop extra refcnt by try_charge() (move_account increment one) */
+ css_put(&parent->css);
+ putback_lru_page(page);
+ if (!ret) {
+ put_page(page);
+ return 0;
+ }
+ /* uncharge if move fails */
+cancel:
+ res_counter_uncharge(&parent->res, PAGE_SIZE);
+ if (do_swap_account)
+ res_counter_uncharge(&parent->memsw, PAGE_SIZE);
+ put_page(page);
+ return ret;
+}
+
+/*
+ * Charge the memory controller for page usage.
+ * Return
+ * 0 if the charge was successful
+ * < 0 if the cgroup is over its limit
+ */
+static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
+ gfp_t gfp_mask, enum charge_type ctype,
+ struct mem_cgroup *memcg)
+{
+ struct mem_cgroup *mem;
+ struct page_cgroup *pc;
+ int ret;
+
+ pc = lookup_page_cgroup(page);
+ /* can happen at boot */
+ if (unlikely(!pc))
+ return 0;
+ prefetchw(pc);
+
+ mem = memcg;
+ ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
+ if (ret || !mem)
+ return ret;
+
+ __mem_cgroup_commit_charge(mem, pc, ctype);
+ return 0;
}
-int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
+int mem_cgroup_newpage_charge(struct page *page,
+ struct mm_struct *mm, gfp_t gfp_mask)
{
- if (mem_cgroup_subsys.disabled)
+ if (mem_cgroup_disabled())
return 0;
if (PageCompound(page))
return 0;
@@ -589,7 +1099,10 @@ int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
gfp_t gfp_mask)
{
- if (mem_cgroup_subsys.disabled)
+ struct mem_cgroup *mem = NULL;
+ int ret;
+
+ if (mem_cgroup_disabled())
return 0;
if (PageCompound(page))
return 0;
@@ -601,6 +1114,8 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
* For GFP_NOWAIT case, the page may be pre-charged before calling
* add_to_page_cache(). (See shmem.c) check it here and avoid to call
* charge twice. (It works but has to pay a bit larger cost.)
+ * And when the page is SwapCache, it should take swap information
+ * into account. This is under lock_page() now.
*/
if (!(gfp_mask & __GFP_WAIT)) {
struct page_cgroup *pc;
@@ -617,58 +1132,198 @@ int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
unlock_page_cgroup(pc);
}
- if (unlikely(!mm))
+ if (do_swap_account && PageSwapCache(page)) {
+ mem = try_get_mem_cgroup_from_swapcache(page);
+ if (mem)
+ mm = NULL;
+ else
+ mem = NULL;
+ /* SwapCache may be still linked to LRU now. */
+ mem_cgroup_lru_del_before_commit_swapcache(page);
+ }
+
+ if (unlikely(!mm && !mem))
mm = &init_mm;
if (page_is_file_cache(page))
return mem_cgroup_charge_common(page, mm, gfp_mask,
MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
- else
- return mem_cgroup_charge_common(page, mm, gfp_mask,
- MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
+
+ ret = mem_cgroup_charge_common(page, mm, gfp_mask,
+ MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
+ if (mem)
+ css_put(&mem->css);
+ if (PageSwapCache(page))
+ mem_cgroup_lru_add_after_commit_swapcache(page);
+
+ if (do_swap_account && !ret && PageSwapCache(page)) {
+ swp_entry_t ent = {.val = page_private(page)};
+ /* avoid double counting */
+ mem = swap_cgroup_record(ent, NULL);
+ if (mem) {
+ res_counter_uncharge(&mem->memsw, PAGE_SIZE);
+ mem_cgroup_put(mem);
+ }
+ }
+ return ret;
+}
+
+/*
+ * While swap-in, try_charge -> commit or cancel, the page is locked.
+ * And when try_charge() successfully returns, one refcnt to memcg without
+ * struct page_cgroup is aquired. This refcnt will be cumsumed by
+ * "commit()" or removed by "cancel()"
+ */
+int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
+ struct page *page,
+ gfp_t mask, struct mem_cgroup **ptr)
+{
+ struct mem_cgroup *mem;
+ int ret;
+
+ if (mem_cgroup_disabled())
+ return 0;
+
+ if (!do_swap_account)
+ goto charge_cur_mm;
+ /*
+ * A racing thread's fault, or swapoff, may have already updated
+ * the pte, and even removed page from swap cache: return success
+ * to go on to do_swap_page()'s pte_same() test, which should fail.
+ */
+ if (!PageSwapCache(page))
+ return 0;
+ mem = try_get_mem_cgroup_from_swapcache(page);
+ if (!mem)
+ goto charge_cur_mm;
+ *ptr = mem;
+ ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
+ /* drop extra refcnt from tryget */
+ css_put(&mem->css);
+ return ret;
+charge_cur_mm:
+ if (unlikely(!mm))
+ mm = &init_mm;
+ return __mem_cgroup_try_charge(mm, mask, ptr, true);
+}
+
+void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
+{
+ struct page_cgroup *pc;
+
+ if (mem_cgroup_disabled())
+ return;
+ if (!ptr)
+ return;
+ pc = lookup_page_cgroup(page);
+ mem_cgroup_lru_del_before_commit_swapcache(page);
+ __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
+ mem_cgroup_lru_add_after_commit_swapcache(page);
+ /*
+ * Now swap is on-memory. This means this page may be
+ * counted both as mem and swap....double count.
+ * Fix it by uncharging from memsw. Basically, this SwapCache is stable
+ * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
+ * may call delete_from_swap_cache() before reach here.
+ */
+ if (do_swap_account && PageSwapCache(page)) {
+ swp_entry_t ent = {.val = page_private(page)};
+ struct mem_cgroup *memcg;
+ memcg = swap_cgroup_record(ent, NULL);
+ if (memcg) {
+ res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
+ mem_cgroup_put(memcg);
+ }
+
+ }
+ /* add this page(page_cgroup) to the LRU we want. */
+
}
+void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
+{
+ if (mem_cgroup_disabled())
+ return;
+ if (!mem)
+ return;
+ res_counter_uncharge(&mem->res, PAGE_SIZE);
+ if (do_swap_account)
+ res_counter_uncharge(&mem->memsw, PAGE_SIZE);
+ css_put(&mem->css);
+}
+
+
/*
* uncharge if !page_mapped(page)
*/
-static void
+static struct mem_cgroup *
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
{
struct page_cgroup *pc;
- struct mem_cgroup *mem;
+ struct mem_cgroup *mem = NULL;
struct mem_cgroup_per_zone *mz;
- unsigned long flags;
- if (mem_cgroup_subsys.disabled)
- return;
+ if (mem_cgroup_disabled())
+ return NULL;
+
+ if (PageSwapCache(page))
+ return NULL;
/*
* Check if our page_cgroup is valid
*/
pc = lookup_page_cgroup(page);
if (unlikely(!pc || !PageCgroupUsed(pc)))
- return;
+ return NULL;
lock_page_cgroup(pc);
- if ((ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED && page_mapped(page))
- || !PageCgroupUsed(pc)) {
- /* This happens at race in zap_pte_range() and do_swap_page()*/
- unlock_page_cgroup(pc);
- return;
+
+ mem = pc->mem_cgroup;
+
+ if (!PageCgroupUsed(pc))
+ goto unlock_out;
+
+ switch (ctype) {
+ case MEM_CGROUP_CHARGE_TYPE_MAPPED:
+ if (page_mapped(page))
+ goto unlock_out;
+ break;
+ case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
+ if (!PageAnon(page)) { /* Shared memory */
+ if (page->mapping && !page_is_file_cache(page))
+ goto unlock_out;
+ } else if (page_mapped(page)) /* Anon */
+ goto unlock_out;
+ break;
+ default:
+ break;
}
+
+ res_counter_uncharge(&mem->res, PAGE_SIZE);
+ if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
+ res_counter_uncharge(&mem->memsw, PAGE_SIZE);
+
+ mem_cgroup_charge_statistics(mem, pc, false);
ClearPageCgroupUsed(pc);
- mem = pc->mem_cgroup;
+ /*
+ * pc->mem_cgroup is not cleared here. It will be accessed when it's
+ * freed from LRU. This is safe because uncharged page is expected not
+ * to be reused (freed soon). Exception is SwapCache, it's handled by
+ * special functions.
+ */
mz = page_cgroup_zoneinfo(pc);
- spin_lock_irqsave(&mz->lru_lock, flags);
- __mem_cgroup_remove_list(mz, pc);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
unlock_page_cgroup(pc);
- res_counter_uncharge(&mem->res, PAGE_SIZE);
- css_put(&mem->css);
+ /* at swapout, this memcg will be accessed to record to swap */
+ if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
+ css_put(&mem->css);
- return;
+ return mem;
+
+unlock_out:
+ unlock_page_cgroup(pc);
+ return NULL;
}
void mem_cgroup_uncharge_page(struct page *page)
@@ -689,16 +1344,55 @@ void mem_cgroup_uncharge_cache_page(struct page *page)
}
/*
- * Before starting migration, account against new page.
+ * called from __delete_from_swap_cache() and drop "page" account.
+ * memcg information is recorded to swap_cgroup of "ent"
+ */
+void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
+{
+ struct mem_cgroup *memcg;
+
+ memcg = __mem_cgroup_uncharge_common(page,
+ MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
+ /* record memcg information */
+ if (do_swap_account && memcg) {
+ swap_cgroup_record(ent, memcg);
+ mem_cgroup_get(memcg);
+ }
+ if (memcg)
+ css_put(&memcg->css);
+}
+
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
+/*
+ * called from swap_entry_free(). remove record in swap_cgroup and
+ * uncharge "memsw" account.
*/
-int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
+void mem_cgroup_uncharge_swap(swp_entry_t ent)
+{
+ struct mem_cgroup *memcg;
+
+ if (!do_swap_account)
+ return;
+
+ memcg = swap_cgroup_record(ent, NULL);
+ if (memcg) {
+ res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
+ mem_cgroup_put(memcg);
+ }
+}
+#endif
+
+/*
+ * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
+ * page belongs to.
+ */
+int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
{
struct page_cgroup *pc;
struct mem_cgroup *mem = NULL;
- enum charge_type ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
int ret = 0;
- if (mem_cgroup_subsys.disabled)
+ if (mem_cgroup_disabled())
return 0;
pc = lookup_page_cgroup(page);
@@ -706,41 +1400,67 @@ int mem_cgroup_prepare_migration(struct page *page, struct page *newpage)
if (PageCgroupUsed(pc)) {
mem = pc->mem_cgroup;
css_get(&mem->css);
- if (PageCgroupCache(pc)) {
- if (page_is_file_cache(page))
- ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
- else
- ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
- }
}
unlock_page_cgroup(pc);
+
if (mem) {
- ret = mem_cgroup_charge_common(newpage, NULL, GFP_KERNEL,
- ctype, mem);
+ ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
css_put(&mem->css);
}
+ *ptr = mem;
return ret;
}
/* remove redundant charge if migration failed*/
-void mem_cgroup_end_migration(struct page *newpage)
+void mem_cgroup_end_migration(struct mem_cgroup *mem,
+ struct page *oldpage, struct page *newpage)
{
+ struct page *target, *unused;
+ struct page_cgroup *pc;
+ enum charge_type ctype;
+
+ if (!mem)
+ return;
+
+ /* at migration success, oldpage->mapping is NULL. */
+ if (oldpage->mapping) {
+ target = oldpage;
+ unused = NULL;
+ } else {
+ target = newpage;
+ unused = oldpage;
+ }
+
+ if (PageAnon(target))
+ ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
+ else if (page_is_file_cache(target))
+ ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
+ else
+ ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
+
+ /* unused page is not on radix-tree now. */
+ if (unused)
+ __mem_cgroup_uncharge_common(unused, ctype);
+
+ pc = lookup_page_cgroup(target);
/*
- * At success, page->mapping is not NULL.
- * special rollback care is necessary when
- * 1. at migration failure. (newpage->mapping is cleared in this case)
- * 2. the newpage was moved but not remapped again because the task
- * exits and the newpage is obsolete. In this case, the new page
- * may be a swapcache. So, we just call mem_cgroup_uncharge_page()
- * always for avoiding mess. The page_cgroup will be removed if
- * unnecessary. File cache pages is still on radix-tree. Don't
- * care it.
+ * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
+ * So, double-counting is effectively avoided.
*/
- if (!newpage->mapping)
- __mem_cgroup_uncharge_common(newpage,
- MEM_CGROUP_CHARGE_TYPE_FORCE);
- else if (PageAnon(newpage))
- mem_cgroup_uncharge_page(newpage);
+ __mem_cgroup_commit_charge(mem, pc, ctype);
+
+ /*
+ * Both of oldpage and newpage are still under lock_page().
+ * Then, we don't have to care about race in radix-tree.
+ * But we have to be careful that this page is unmapped or not.
+ *
+ * There is a case for !page_mapped(). At the start of
+ * migration, oldpage was mapped. But now, it's zapped.
+ * But we know *target* page is not freed/reused under us.
+ * mem_cgroup_uncharge_page() does all necessary checks.
+ */
+ if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
+ mem_cgroup_uncharge_page(target);
}
/*
@@ -748,29 +1468,26 @@ void mem_cgroup_end_migration(struct page *newpage)
* This is typically used for page reclaiming for shmem for reducing side
* effect of page allocation from shmem, which is used by some mem_cgroup.
*/
-int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
+int mem_cgroup_shrink_usage(struct page *page,
+ struct mm_struct *mm,
+ gfp_t gfp_mask)
{
- struct mem_cgroup *mem;
+ struct mem_cgroup *mem = NULL;
int progress = 0;
int retry = MEM_CGROUP_RECLAIM_RETRIES;
- if (mem_cgroup_subsys.disabled)
+ if (mem_cgroup_disabled())
return 0;
- if (!mm)
+ if (page)
+ mem = try_get_mem_cgroup_from_swapcache(page);
+ if (!mem && mm)
+ mem = try_get_mem_cgroup_from_mm(mm);
+ if (unlikely(!mem))
return 0;
- rcu_read_lock();
- mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
- if (unlikely(!mem)) {
- rcu_read_unlock();
- return 0;
- }
- css_get(&mem->css);
- rcu_read_unlock();
-
do {
- progress = try_to_free_mem_cgroup_pages(mem, gfp_mask);
- progress += res_counter_check_under_limit(&mem->res);
+ progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
+ progress += mem_cgroup_check_under_limit(mem);
} while (!progress && --retry);
css_put(&mem->css);
@@ -779,117 +1496,295 @@ int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
return 0;
}
+static DEFINE_MUTEX(set_limit_mutex);
+
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
- unsigned long long val)
+ unsigned long long val)
{
int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
int progress;
+ u64 memswlimit;
int ret = 0;
- while (res_counter_set_limit(&memcg->res, val)) {
+ while (retry_count) {
if (signal_pending(current)) {
ret = -EINTR;
break;
}
- if (!retry_count) {
- ret = -EBUSY;
+ /*
+ * Rather than hide all in some function, I do this in
+ * open coded manner. You see what this really does.
+ * We have to guarantee mem->res.limit < mem->memsw.limit.
+ */
+ mutex_lock(&set_limit_mutex);
+ memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
+ if (memswlimit < val) {
+ ret = -EINVAL;
+ mutex_unlock(&set_limit_mutex);
break;
}
- progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL);
- if (!progress)
- retry_count--;
+ ret = res_counter_set_limit(&memcg->res, val);
+ mutex_unlock(&set_limit_mutex);
+
+ if (!ret)
+ break;
+
+ progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
+ false);
+ if (!progress) retry_count--;
}
+
return ret;
}
+int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
+ unsigned long long val)
+{
+ int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
+ u64 memlimit, oldusage, curusage;
+ int ret;
+
+ if (!do_swap_account)
+ return -EINVAL;
+
+ while (retry_count) {
+ if (signal_pending(current)) {
+ ret = -EINTR;
+ break;
+ }
+ /*
+ * Rather than hide all in some function, I do this in
+ * open coded manner. You see what this really does.
+ * We have to guarantee mem->res.limit < mem->memsw.limit.
+ */
+ mutex_lock(&set_limit_mutex);
+ memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
+ if (memlimit > val) {
+ ret = -EINVAL;
+ mutex_unlock(&set_limit_mutex);
+ break;
+ }
+ ret = res_counter_set_limit(&memcg->memsw, val);
+ mutex_unlock(&set_limit_mutex);
+
+ if (!ret)
+ break;
+
+ oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
+ mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
+ curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
+ if (curusage >= oldusage)
+ retry_count--;
+ }
+ return ret;
+}
/*
* This routine traverse page_cgroup in given list and drop them all.
* *And* this routine doesn't reclaim page itself, just removes page_cgroup.
*/
-#define FORCE_UNCHARGE_BATCH (128)
-static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
- struct mem_cgroup_per_zone *mz,
- enum lru_list lru)
+static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
+ int node, int zid, enum lru_list lru)
{
- struct page_cgroup *pc;
- struct page *page;
- int count = FORCE_UNCHARGE_BATCH;
- unsigned long flags;
+ struct zone *zone;
+ struct mem_cgroup_per_zone *mz;
+ struct page_cgroup *pc, *busy;
+ unsigned long flags, loop;
struct list_head *list;
+ int ret = 0;
+ zone = &NODE_DATA(node)->node_zones[zid];
+ mz = mem_cgroup_zoneinfo(mem, node, zid);
list = &mz->lists[lru];
- spin_lock_irqsave(&mz->lru_lock, flags);
- while (!list_empty(list)) {
- pc = list_entry(list->prev, struct page_cgroup, lru);
- page = pc->page;
- if (!PageCgroupUsed(pc))
- break;
- get_page(page);
- spin_unlock_irqrestore(&mz->lru_lock, flags);
- /*
- * Check if this page is on LRU. !LRU page can be found
- * if it's under page migration.
- */
- if (PageLRU(page)) {
- __mem_cgroup_uncharge_common(page,
- MEM_CGROUP_CHARGE_TYPE_FORCE);
- put_page(page);
- if (--count <= 0) {
- count = FORCE_UNCHARGE_BATCH;
- cond_resched();
- }
- } else {
- spin_lock_irqsave(&mz->lru_lock, flags);
+ loop = MEM_CGROUP_ZSTAT(mz, lru);
+ /* give some margin against EBUSY etc...*/
+ loop += 256;
+ busy = NULL;
+ while (loop--) {
+ ret = 0;
+ spin_lock_irqsave(&zone->lru_lock, flags);
+ if (list_empty(list)) {
+ spin_unlock_irqrestore(&zone->lru_lock, flags);
break;
}
- spin_lock_irqsave(&mz->lru_lock, flags);
+ pc = list_entry(list->prev, struct page_cgroup, lru);
+ if (busy == pc) {
+ list_move(&pc->lru, list);
+ busy = 0;
+ spin_unlock_irqrestore(&zone->lru_lock, flags);
+ continue;
+ }
+ spin_unlock_irqrestore(&zone->lru_lock, flags);
+
+ ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
+ if (ret == -ENOMEM)
+ break;
+
+ if (ret == -EBUSY || ret == -EINVAL) {
+ /* found lock contention or "pc" is obsolete. */
+ busy = pc;
+ cond_resched();
+ } else
+ busy = NULL;
}
- spin_unlock_irqrestore(&mz->lru_lock, flags);
+
+ if (!ret && !list_empty(list))
+ return -EBUSY;
+ return ret;
}
/*
* make mem_cgroup's charge to be 0 if there is no task.
* This enables deleting this mem_cgroup.
*/
-static int mem_cgroup_force_empty(struct mem_cgroup *mem)
+static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
{
- int ret = -EBUSY;
- int node, zid;
+ int ret;
+ int node, zid, shrink;
+ int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
+ struct cgroup *cgrp = mem->css.cgroup;
css_get(&mem->css);
- /*
- * page reclaim code (kswapd etc..) will move pages between
- * active_list <-> inactive_list while we don't take a lock.
- * So, we have to do loop here until all lists are empty.
- */
+
+ shrink = 0;
+ /* should free all ? */
+ if (free_all)
+ goto try_to_free;
+move_account:
while (mem->res.usage > 0) {
- if (atomic_read(&mem->css.cgroup->count) > 0)
+ ret = -EBUSY;
+ if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
+ goto out;
+ ret = -EINTR;
+ if (signal_pending(current))
goto out;
/* This is for making all *used* pages to be on LRU. */
lru_add_drain_all();
- for_each_node_state(node, N_POSSIBLE)
- for (zid = 0; zid < MAX_NR_ZONES; zid++) {
- struct mem_cgroup_per_zone *mz;
+ ret = 0;
+ for_each_node_state(node, N_POSSIBLE) {
+ for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
enum lru_list l;
- mz = mem_cgroup_zoneinfo(mem, node, zid);
- for_each_lru(l)
- mem_cgroup_force_empty_list(mem, mz, l);
+ for_each_lru(l) {
+ ret = mem_cgroup_force_empty_list(mem,
+ node, zid, l);
+ if (ret)
+ break;
+ }
}
+ if (ret)
+ break;
+ }
+ /* it seems parent cgroup doesn't have enough mem */
+ if (ret == -ENOMEM)
+ goto try_to_free;
cond_resched();
}
ret = 0;
out:
css_put(&mem->css);
return ret;
+
+try_to_free:
+ /* returns EBUSY if there is a task or if we come here twice. */
+ if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
+ ret = -EBUSY;
+ goto out;
+ }
+ /* we call try-to-free pages for make this cgroup empty */
+ lru_add_drain_all();
+ /* try to free all pages in this cgroup */
+ shrink = 1;
+ while (nr_retries && mem->res.usage > 0) {
+ int progress;
+
+ if (signal_pending(current)) {
+ ret = -EINTR;
+ goto out;
+ }
+ progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
+ false, get_swappiness(mem));
+ if (!progress) {
+ nr_retries--;
+ /* maybe some writeback is necessary */
+ congestion_wait(WRITE, HZ/10);
+ }
+
+ }
+ lru_add_drain();
+ /* try move_account...there may be some *locked* pages. */
+ if (mem->res.usage)
+ goto move_account;
+ ret = 0;
+ goto out;
+}
+
+int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
+{
+ return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
+}
+
+
+static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
+{
+ return mem_cgroup_from_cont(cont)->use_hierarchy;
+}
+
+static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
+ u64 val)
+{
+ int retval = 0;
+ struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
+ struct cgroup *parent = cont->parent;
+ struct mem_cgroup *parent_mem = NULL;
+
+ if (parent)
+ parent_mem = mem_cgroup_from_cont(parent);
+
+ cgroup_lock();
+ /*
+ * If parent's use_hiearchy is set, we can't make any modifications
+ * in the child subtrees. If it is unset, then the change can
+ * occur, provided the current cgroup has no children.
+ *
+ * For the root cgroup, parent_mem is NULL, we allow value to be
+ * set if there are no children.
+ */
+ if ((!parent_mem || !parent_mem->use_hierarchy) &&
+ (val == 1 || val == 0)) {
+ if (list_empty(&cont->children))
+ mem->use_hierarchy = val;
+ else
+ retval = -EBUSY;
+ } else
+ retval = -EINVAL;
+ cgroup_unlock();
+
+ return retval;
}
static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
{
- return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
- cft->private);
+ struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
+ u64 val = 0;
+ int type, name;
+
+ type = MEMFILE_TYPE(cft->private);
+ name = MEMFILE_ATTR(cft->private);
+ switch (type) {
+ case _MEM:
+ val = res_counter_read_u64(&mem->res, name);
+ break;
+ case _MEMSWAP:
+ if (do_swap_account)
+ val = res_counter_read_u64(&mem->memsw, name);
+ break;
+ default:
+ BUG();
+ break;
+ }
+ return val;
}
/*
* The user of this function is...
@@ -899,15 +1794,22 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
const char *buffer)
{
struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
+ int type, name;
unsigned long long val;
int ret;
- switch (cft->private) {
+ type = MEMFILE_TYPE(cft->private);
+ name = MEMFILE_ATTR(cft->private);
+ switch (name) {
case RES_LIMIT:
/* This function does all necessary parse...reuse it */
ret = res_counter_memparse_write_strategy(buffer, &val);
- if (!ret)
+ if (ret)
+ break;
+ if (type == _MEM)
ret = mem_cgroup_resize_limit(memcg, val);
+ else
+ ret = mem_cgroup_resize_memsw_limit(memcg, val);
break;
default:
ret = -EINVAL; /* should be BUG() ? */
@@ -916,27 +1818,59 @@ static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
return ret;
}
+static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
+ unsigned long long *mem_limit, unsigned long long *memsw_limit)
+{
+ struct cgroup *cgroup;
+ unsigned long long min_limit, min_memsw_limit, tmp;
+
+ min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
+ min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
+ cgroup = memcg->css.cgroup;
+ if (!memcg->use_hierarchy)
+ goto out;
+
+ while (cgroup->parent) {
+ cgroup = cgroup->parent;
+ memcg = mem_cgroup_from_cont(cgroup);
+ if (!memcg->use_hierarchy)
+ break;
+ tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
+ min_limit = min(min_limit, tmp);
+ tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
+ min_memsw_limit = min(min_memsw_limit, tmp);
+ }
+out:
+ *mem_limit = min_limit;
+ *memsw_limit = min_memsw_limit;
+ return;
+}
+
static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
{
struct mem_cgroup *mem;
+ int type, name;
mem = mem_cgroup_from_cont(cont);
- switch (event) {
+ type = MEMFILE_TYPE(event);
+ name = MEMFILE_ATTR(event);
+ switch (name) {
case RES_MAX_USAGE:
- res_counter_reset_max(&mem->res);
+ if (type == _MEM)
+ res_counter_reset_max(&mem->res);
+ else
+ res_counter_reset_max(&mem->memsw);
break;
case RES_FAILCNT:
- res_counter_reset_failcnt(&mem->res);
+ if (type == _MEM)
+ res_counter_reset_failcnt(&mem->res);
+ else
+ res_counter_reset_failcnt(&mem->memsw);
break;
}
return 0;
}
-static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
-{
- return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
-}
-
static const struct mem_cgroup_stat_desc {
const char *msg;
u64 unit;
@@ -985,43 +1919,163 @@ static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
}
+ {
+ unsigned long long limit, memsw_limit;
+ memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
+ cb->fill(cb, "hierarchical_memory_limit", limit);
+ if (do_swap_account)
+ cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
+ }
+
+#ifdef CONFIG_DEBUG_VM
+ cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
+
+ {
+ int nid, zid;
+ struct mem_cgroup_per_zone *mz;
+ unsigned long recent_rotated[2] = {0, 0};
+ unsigned long recent_scanned[2] = {0, 0};
+
+ for_each_online_node(nid)
+ for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+ mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
+
+ recent_rotated[0] +=
+ mz->reclaim_stat.recent_rotated[0];
+ recent_rotated[1] +=
+ mz->reclaim_stat.recent_rotated[1];
+ recent_scanned[0] +=
+ mz->reclaim_stat.recent_scanned[0];
+ recent_scanned[1] +=
+ mz->reclaim_stat.recent_scanned[1];
+ }
+ cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
+ cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
+ cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
+ cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
+ }
+#endif
+
+ return 0;
+}
+
+static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
+
+ return get_swappiness(memcg);
+}
+
+static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
+ u64 val)
+{
+ struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
+ struct mem_cgroup *parent;
+ if (val > 100)
+ return -EINVAL;
+
+ if (cgrp->parent == NULL)
+ return -EINVAL;
+
+ parent = mem_cgroup_from_cont(cgrp->parent);
+ /* If under hierarchy, only empty-root can set this value */
+ if ((parent->use_hierarchy) ||
+ (memcg->use_hierarchy && !list_empty(&cgrp->children)))
+ return -EINVAL;
+
+ spin_lock(&memcg->reclaim_param_lock);
+ memcg->swappiness = val;
+ spin_unlock(&memcg->reclaim_param_lock);
+
return 0;
}
+
static struct cftype mem_cgroup_files[] = {
{
.name = "usage_in_bytes",
- .private = RES_USAGE,
+ .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
.read_u64 = mem_cgroup_read,
},
{
.name = "max_usage_in_bytes",
- .private = RES_MAX_USAGE,
+ .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
.trigger = mem_cgroup_reset,
.read_u64 = mem_cgroup_read,
},
{
.name = "limit_in_bytes",
- .private = RES_LIMIT,
+ .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
.write_string = mem_cgroup_write,
.read_u64 = mem_cgroup_read,
},
{
.name = "failcnt",
- .private = RES_FAILCNT,
+ .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
.trigger = mem_cgroup_reset,
.read_u64 = mem_cgroup_read,
},
{
+ .name = "stat",
+ .read_map = mem_control_stat_show,
+ },
+ {
.name = "force_empty",
- .trigger = mem_force_empty_write,
+ .trigger = mem_cgroup_force_empty_write,
},
{
- .name = "stat",
- .read_map = mem_control_stat_show,
+ .name = "use_hierarchy",
+ .write_u64 = mem_cgroup_hierarchy_write,
+ .read_u64 = mem_cgroup_hierarchy_read,
+ },
+ {
+ .name = "swappiness",
+ .read_u64 = mem_cgroup_swappiness_read,
+ .write_u64 = mem_cgroup_swappiness_write,
},
};
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
+static struct cftype memsw_cgroup_files[] = {
+ {
+ .name = "memsw.usage_in_bytes",
+ .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
+ .read_u64 = mem_cgroup_read,
+ },
+ {
+ .name = "memsw.max_usage_in_bytes",
+ .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
+ .trigger = mem_cgroup_reset,
+ .read_u64 = mem_cgroup_read,
+ },
+ {
+ .name = "memsw.limit_in_bytes",
+ .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
+ .write_string = mem_cgroup_write,
+ .read_u64 = mem_cgroup_read,
+ },
+ {
+ .name = "memsw.failcnt",
+ .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
+ .trigger = mem_cgroup_reset,
+ .read_u64 = mem_cgroup_read,
+ },
+};
+
+static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
+{
+ if (!do_swap_account)
+ return 0;
+ return cgroup_add_files(cont, ss, memsw_cgroup_files,
+ ARRAY_SIZE(memsw_cgroup_files));
+};
+#else
+static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
+{
+ return 0;
+}
+#endif
+
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
{
struct mem_cgroup_per_node *pn;
@@ -1047,7 +2101,6 @@ static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
for (zone = 0; zone < MAX_NR_ZONES; zone++) {
mz = &pn->zoneinfo[zone];
- spin_lock_init(&mz->lru_lock);
for_each_lru(l)
INIT_LIST_HEAD(&mz->lists[l]);
}
@@ -1059,55 +2112,113 @@ static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
kfree(mem->info.nodeinfo[node]);
}
+static int mem_cgroup_size(void)
+{
+ int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
+ return sizeof(struct mem_cgroup) + cpustat_size;
+}
+
static struct mem_cgroup *mem_cgroup_alloc(void)
{
struct mem_cgroup *mem;
+ int size = mem_cgroup_size();
- if (sizeof(*mem) < PAGE_SIZE)
- mem = kmalloc(sizeof(*mem), GFP_KERNEL);
+ if (size < PAGE_SIZE)
+ mem = kmalloc(size, GFP_KERNEL);
else
- mem = vmalloc(sizeof(*mem));
+ mem = vmalloc(size);
if (mem)
- memset(mem, 0, sizeof(*mem));
+ memset(mem, 0, size);
return mem;
}
-static void mem_cgroup_free(struct mem_cgroup *mem)
+/*
+ * At destroying mem_cgroup, references from swap_cgroup can remain.
+ * (scanning all at force_empty is too costly...)
+ *
+ * Instead of clearing all references at force_empty, we remember
+ * the number of reference from swap_cgroup and free mem_cgroup when
+ * it goes down to 0.
+ *
+ * Removal of cgroup itself succeeds regardless of refs from swap.
+ */
+
+static void __mem_cgroup_free(struct mem_cgroup *mem)
{
- if (sizeof(*mem) < PAGE_SIZE)
+ int node;
+
+ for_each_node_state(node, N_POSSIBLE)
+ free_mem_cgroup_per_zone_info(mem, node);
+
+ if (mem_cgroup_size() < PAGE_SIZE)
kfree(mem);
else
vfree(mem);
}
+static void mem_cgroup_get(struct mem_cgroup *mem)
+{
+ atomic_inc(&mem->refcnt);
+}
+
+static void mem_cgroup_put(struct mem_cgroup *mem)
+{
+ if (atomic_dec_and_test(&mem->refcnt))
+ __mem_cgroup_free(mem);
+}
+
+
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
+static void __init enable_swap_cgroup(void)
+{
+ if (!mem_cgroup_disabled() && really_do_swap_account)
+ do_swap_account = 1;
+}
+#else
+static void __init enable_swap_cgroup(void)
+{
+}
+#endif
static struct cgroup_subsys_state *
mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
{
- struct mem_cgroup *mem;
+ struct mem_cgroup *mem, *parent;
int node;
- if (unlikely((cont->parent) == NULL)) {
- mem = &init_mem_cgroup;
- } else {
- mem = mem_cgroup_alloc();
- if (!mem)
- return ERR_PTR(-ENOMEM);
- }
-
- res_counter_init(&mem->res);
+ mem = mem_cgroup_alloc();
+ if (!mem)
+ return ERR_PTR(-ENOMEM);
for_each_node_state(node, N_POSSIBLE)
if (alloc_mem_cgroup_per_zone_info(mem, node))
goto free_out;
+ /* root ? */
+ if (cont->parent == NULL) {
+ enable_swap_cgroup();
+ parent = NULL;
+ } else {
+ parent = mem_cgroup_from_cont(cont->parent);
+ mem->use_hierarchy = parent->use_hierarchy;
+ }
+ if (parent && parent->use_hierarchy) {
+ res_counter_init(&mem->res, &parent->res);
+ res_counter_init(&mem->memsw, &parent->memsw);
+ } else {
+ res_counter_init(&mem->res, NULL);
+ res_counter_init(&mem->memsw, NULL);
+ }
+ mem->last_scanned_child = NULL;
+ spin_lock_init(&mem->reclaim_param_lock);
+
+ if (parent)
+ mem->swappiness = get_swappiness(parent);
+ atomic_set(&mem->refcnt, 1);
return &mem->css;
free_out:
- for_each_node_state(node, N_POSSIBLE)
- free_mem_cgroup_per_zone_info(mem, node);
- if (cont->parent != NULL)
- mem_cgroup_free(mem);
+ __mem_cgroup_free(mem);
return ERR_PTR(-ENOMEM);
}
@@ -1115,26 +2226,26 @@ static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
struct cgroup *cont)
{
struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
- mem_cgroup_force_empty(mem);
+ mem_cgroup_force_empty(mem, false);
}
static void mem_cgroup_destroy(struct cgroup_subsys *ss,
struct cgroup *cont)
{
- int node;
- struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
-
- for_each_node_state(node, N_POSSIBLE)
- free_mem_cgroup_per_zone_info(mem, node);
-
- mem_cgroup_free(mem_cgroup_from_cont(cont));
+ mem_cgroup_put(mem_cgroup_from_cont(cont));
}
static int mem_cgroup_populate(struct cgroup_subsys *ss,
struct cgroup *cont)
{
- return cgroup_add_files(cont, ss, mem_cgroup_files,
- ARRAY_SIZE(mem_cgroup_files));
+ int ret;
+
+ ret = cgroup_add_files(cont, ss, mem_cgroup_files,
+ ARRAY_SIZE(mem_cgroup_files));
+
+ if (!ret)
+ ret = register_memsw_files(cont, ss);
+ return ret;
}
static void mem_cgroup_move_task(struct cgroup_subsys *ss,
@@ -1142,25 +2253,12 @@ static void mem_cgroup_move_task(struct cgroup_subsys *ss,
struct cgroup *old_cont,
struct task_struct *p)
{
- struct mm_struct *mm;
- struct mem_cgroup *mem, *old_mem;
-
- mm = get_task_mm(p);
- if (mm == NULL)
- return;
-
- mem = mem_cgroup_from_cont(cont);
- old_mem = mem_cgroup_from_cont(old_cont);
-
+ mutex_lock(&memcg_tasklist);
/*
- * Only thread group leaders are allowed to migrate, the mm_struct is
- * in effect owned by the leader
+ * FIXME: It's better to move charges of this process from old
+ * memcg to new memcg. But it's just on TODO-List now.
*/
- if (!thread_group_leader(p))
- goto out;
-
-out:
- mmput(mm);
+ mutex_unlock(&memcg_tasklist);
}
struct cgroup_subsys mem_cgroup_subsys = {
@@ -1173,3 +2271,13 @@ struct cgroup_subsys mem_cgroup_subsys = {
.attach = mem_cgroup_move_task,
.early_init = 0,
};
+
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
+
+static int __init disable_swap_account(char *s)
+{
+ really_do_swap_account = 0;
+ return 1;
+}
+__setup("noswapaccount", disable_swap_account);
+#endif
OpenPOWER on IntegriCloud