diff options
Diffstat (limited to 'kernel/sched.c')
-rw-r--r-- | kernel/sched.c | 982 |
1 files changed, 692 insertions, 290 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index 8e2558c..9f8506d 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -331,6 +331,13 @@ static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; */ static DEFINE_SPINLOCK(task_group_lock); +#ifdef CONFIG_SMP +static int root_task_group_empty(void) +{ + return list_empty(&root_task_group.children); +} +#endif + #ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_USER_SCHED # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) @@ -391,6 +398,13 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) #else +#ifdef CONFIG_SMP +static int root_task_group_empty(void) +{ + return 1; +} +#endif + static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } static inline struct task_group *task_group(struct task_struct *p) { @@ -467,11 +481,17 @@ struct rt_rq { struct rt_prio_array active; unsigned long rt_nr_running; #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED - int highest_prio; /* highest queued rt task prio */ + struct { + int curr; /* highest queued rt task prio */ +#ifdef CONFIG_SMP + int next; /* next highest */ +#endif + } highest_prio; #endif #ifdef CONFIG_SMP unsigned long rt_nr_migratory; int overloaded; + struct plist_head pushable_tasks; #endif int rt_throttled; u64 rt_time; @@ -549,7 +569,6 @@ struct rq { unsigned long nr_running; #define CPU_LOAD_IDX_MAX 5 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; - unsigned char idle_at_tick; #ifdef CONFIG_NO_HZ unsigned long last_tick_seen; unsigned char in_nohz_recently; @@ -590,6 +609,7 @@ struct rq { struct root_domain *rd; struct sched_domain *sd; + unsigned char idle_at_tick; /* For active balancing */ int active_balance; int push_cpu; @@ -618,9 +638,6 @@ struct rq { /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ /* sys_sched_yield() stats */ - unsigned int yld_exp_empty; - unsigned int yld_act_empty; - unsigned int yld_both_empty; unsigned int yld_count; /* schedule() stats */ @@ -1183,10 +1200,10 @@ static void resched_task(struct task_struct *p) assert_spin_locked(&task_rq(p)->lock); - if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) + if (test_tsk_need_resched(p)) return; - set_tsk_thread_flag(p, TIF_NEED_RESCHED); + set_tsk_need_resched(p); cpu = task_cpu(p); if (cpu == smp_processor_id()) @@ -1242,7 +1259,7 @@ void wake_up_idle_cpu(int cpu) * lockless. The worst case is that the other CPU runs the * idle task through an additional NOOP schedule() */ - set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); + set_tsk_need_resched(rq->idle); /* NEED_RESCHED must be visible before we test polling */ smp_mb(); @@ -1610,21 +1627,42 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) #endif +#ifdef CONFIG_PREEMPT + /* - * double_lock_balance - lock the busiest runqueue, this_rq is locked already. + * fair double_lock_balance: Safely acquires both rq->locks in a fair + * way at the expense of forcing extra atomic operations in all + * invocations. This assures that the double_lock is acquired using the + * same underlying policy as the spinlock_t on this architecture, which + * reduces latency compared to the unfair variant below. However, it + * also adds more overhead and therefore may reduce throughput. */ -static int double_lock_balance(struct rq *this_rq, struct rq *busiest) +static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) + __releases(this_rq->lock) + __acquires(busiest->lock) + __acquires(this_rq->lock) +{ + spin_unlock(&this_rq->lock); + double_rq_lock(this_rq, busiest); + + return 1; +} + +#else +/* + * Unfair double_lock_balance: Optimizes throughput at the expense of + * latency by eliminating extra atomic operations when the locks are + * already in proper order on entry. This favors lower cpu-ids and will + * grant the double lock to lower cpus over higher ids under contention, + * regardless of entry order into the function. + */ +static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock) __acquires(busiest->lock) __acquires(this_rq->lock) { int ret = 0; - if (unlikely(!irqs_disabled())) { - /* printk() doesn't work good under rq->lock */ - spin_unlock(&this_rq->lock); - BUG_ON(1); - } if (unlikely(!spin_trylock(&busiest->lock))) { if (busiest < this_rq) { spin_unlock(&this_rq->lock); @@ -1637,6 +1675,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) return ret; } +#endif /* CONFIG_PREEMPT */ + +/* + * double_lock_balance - lock the busiest runqueue, this_rq is locked already. + */ +static int double_lock_balance(struct rq *this_rq, struct rq *busiest) +{ + if (unlikely(!irqs_disabled())) { + /* printk() doesn't work good under rq->lock */ + spin_unlock(&this_rq->lock); + BUG_ON(1); + } + + return _double_lock_balance(this_rq, busiest); +} + static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) __releases(busiest->lock) { @@ -1705,6 +1759,9 @@ static void update_avg(u64 *avg, u64 sample) static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) { + if (wakeup) + p->se.start_runtime = p->se.sum_exec_runtime; + sched_info_queued(p); p->sched_class->enqueue_task(rq, p, wakeup); p->se.on_rq = 1; @@ -1712,10 +1769,15 @@ static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) { - if (sleep && p->se.last_wakeup) { - update_avg(&p->se.avg_overlap, - p->se.sum_exec_runtime - p->se.last_wakeup); - p->se.last_wakeup = 0; + if (sleep) { + if (p->se.last_wakeup) { + update_avg(&p->se.avg_overlap, + p->se.sum_exec_runtime - p->se.last_wakeup); + p->se.last_wakeup = 0; + } else { + update_avg(&p->se.avg_wakeup, + sysctl_sched_wakeup_granularity); + } } sched_info_dequeued(p); @@ -2017,7 +2079,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) * it must be off the runqueue _entirely_, and not * preempted! * - * So if it wa still runnable (but just not actively + * So if it was still runnable (but just not actively * running right now), it's preempted, and we should * yield - it could be a while. */ @@ -2267,7 +2329,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) sync = 0; #ifdef CONFIG_SMP - if (sched_feat(LB_WAKEUP_UPDATE)) { + if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { struct sched_domain *sd; this_cpu = raw_smp_processor_id(); @@ -2345,6 +2407,22 @@ out_activate: activate_task(rq, p, 1); success = 1; + /* + * Only attribute actual wakeups done by this task. + */ + if (!in_interrupt()) { + struct sched_entity *se = ¤t->se; + u64 sample = se->sum_exec_runtime; + + if (se->last_wakeup) + sample -= se->last_wakeup; + else + sample -= se->start_runtime; + update_avg(&se->avg_wakeup, sample); + + se->last_wakeup = se->sum_exec_runtime; + } + out_running: trace_sched_wakeup(rq, p, success); check_preempt_curr(rq, p, sync); @@ -2355,8 +2433,6 @@ out_running: p->sched_class->task_wake_up(rq, p); #endif out: - current->se.last_wakeup = current->se.sum_exec_runtime; - task_rq_unlock(rq, &flags); return success; @@ -2386,6 +2462,8 @@ static void __sched_fork(struct task_struct *p) p->se.prev_sum_exec_runtime = 0; p->se.last_wakeup = 0; p->se.avg_overlap = 0; + p->se.start_runtime = 0; + p->se.avg_wakeup = sysctl_sched_wakeup_granularity; #ifdef CONFIG_SCHEDSTATS p->se.wait_start = 0; @@ -2448,6 +2526,8 @@ void sched_fork(struct task_struct *p, int clone_flags) /* Want to start with kernel preemption disabled. */ task_thread_info(p)->preempt_count = 1; #endif + plist_node_init(&p->pushable_tasks, MAX_PRIO); + put_cpu(); } @@ -2491,7 +2571,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) #ifdef CONFIG_PREEMPT_NOTIFIERS /** - * preempt_notifier_register - tell me when current is being being preempted & rescheduled + * preempt_notifier_register - tell me when current is being preempted & rescheduled * @notifier: notifier struct to register */ void preempt_notifier_register(struct preempt_notifier *notifier) @@ -2588,6 +2668,12 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) { struct mm_struct *mm = rq->prev_mm; long prev_state; +#ifdef CONFIG_SMP + int post_schedule = 0; + + if (current->sched_class->needs_post_schedule) + post_schedule = current->sched_class->needs_post_schedule(rq); +#endif rq->prev_mm = NULL; @@ -2606,7 +2692,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) finish_arch_switch(prev); finish_lock_switch(rq, prev); #ifdef CONFIG_SMP - if (current->sched_class->post_schedule) + if (post_schedule) current->sched_class->post_schedule(rq); #endif @@ -2913,6 +2999,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, struct sched_domain *sd, enum cpu_idle_type idle, int *all_pinned) { + int tsk_cache_hot = 0; /* * We do not migrate tasks that are: * 1) running (obviously), or @@ -2936,10 +3023,11 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, * 2) too many balance attempts have failed. */ - if (!task_hot(p, rq->clock, sd) || - sd->nr_balance_failed > sd->cache_nice_tries) { + tsk_cache_hot = task_hot(p, rq->clock, sd); + if (!tsk_cache_hot || + sd->nr_balance_failed > sd->cache_nice_tries) { #ifdef CONFIG_SCHEDSTATS - if (task_hot(p, rq->clock, sd)) { + if (tsk_cache_hot) { schedstat_inc(sd, lb_hot_gained[idle]); schedstat_inc(p, se.nr_forced_migrations); } @@ -2947,7 +3035,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, return 1; } - if (task_hot(p, rq->clock, sd)) { + if (tsk_cache_hot) { schedstat_inc(p, se.nr_failed_migrations_hot); return 0; } @@ -2987,6 +3075,16 @@ next: pulled++; rem_load_move -= p->se.load.weight; +#ifdef CONFIG_PREEMPT + /* + * NEWIDLE balancing is a source of latency, so preemptible kernels + * will stop after the first task is pulled to minimize the critical + * section. + */ + if (idle == CPU_NEWLY_IDLE) + goto out; +#endif + /* * We only want to steal up to the prescribed amount of weighted load. */ @@ -3033,9 +3131,15 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, sd, idle, all_pinned, &this_best_prio); class = class->next; +#ifdef CONFIG_PREEMPT + /* + * NEWIDLE balancing is a source of latency, so preemptible + * kernels will stop after the first task is pulled to minimize + * the critical section. + */ if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) break; - +#endif } while (class && max_load_move > total_load_moved); return total_load_moved > 0; @@ -3085,246 +3189,479 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, return 0; } +/********** Helpers for find_busiest_group ************************/ +/** + * sd_lb_stats - Structure to store the statistics of a sched_domain + * during load balancing. + */ +struct sd_lb_stats { + struct sched_group *busiest; /* Busiest group in this sd */ + struct sched_group *this; /* Local group in this sd */ + unsigned long total_load; /* Total load of all groups in sd */ + unsigned long total_pwr; /* Total power of all groups in sd */ + unsigned long avg_load; /* Average load across all groups in sd */ + + /** Statistics of this group */ + unsigned long this_load; + unsigned long this_load_per_task; + unsigned long this_nr_running; + + /* Statistics of the busiest group */ + unsigned long max_load; + unsigned long busiest_load_per_task; + unsigned long busiest_nr_running; + + int group_imb; /* Is there imbalance in this sd */ +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) + int power_savings_balance; /* Is powersave balance needed for this sd */ + struct sched_group *group_min; /* Least loaded group in sd */ + struct sched_group *group_leader; /* Group which relieves group_min */ + unsigned long min_load_per_task; /* load_per_task in group_min */ + unsigned long leader_nr_running; /* Nr running of group_leader */ + unsigned long min_nr_running; /* Nr running of group_min */ +#endif +}; -/* - * find_busiest_group finds and returns the busiest CPU group within the - * domain. It calculates and returns the amount of weighted load which - * should be moved to restore balance via the imbalance parameter. +/** + * sg_lb_stats - stats of a sched_group required for load_balancing + */ +struct sg_lb_stats { + unsigned long avg_load; /*Avg load across the CPUs of the group */ + unsigned long group_load; /* Total load over the CPUs of the group */ + unsigned long sum_nr_running; /* Nr tasks running in the group */ + unsigned long sum_weighted_load; /* Weighted load of group's tasks */ + unsigned long group_capacity; + int group_imb; /* Is there an imbalance in the group ? */ +}; + +/** + * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. + * @group: The group whose first cpu is to be returned. */ -static struct sched_group * -find_busiest_group(struct sched_domain *sd, int this_cpu, - unsigned long *imbalance, enum cpu_idle_type idle, - int *sd_idle, const struct cpumask *cpus, int *balance) +static inline unsigned int group_first_cpu(struct sched_group *group) { - struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; - unsigned long max_load, avg_load, total_load, this_load, total_pwr; - unsigned long max_pull; - unsigned long busiest_load_per_task, busiest_nr_running; - unsigned long this_load_per_task, this_nr_running; - int load_idx, group_imb = 0; -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) - int power_savings_balance = 1; - unsigned long leader_nr_running = 0, min_load_per_task = 0; - unsigned long min_nr_running = ULONG_MAX; - struct sched_group *group_min = NULL, *group_leader = NULL; -#endif + return cpumask_first(sched_group_cpus(group)); +} - max_load = this_load = total_load = total_pwr = 0; - busiest_load_per_task = busiest_nr_running = 0; - this_load_per_task = this_nr_running = 0; +/** + * get_sd_load_idx - Obtain the load index for a given sched domain. + * @sd: The sched_domain whose load_idx is to be obtained. + * @idle: The Idle status of the CPU for whose sd load_icx is obtained. + */ +static inline int get_sd_load_idx(struct sched_domain *sd, + enum cpu_idle_type idle) +{ + int load_idx; - if (idle == CPU_NOT_IDLE) + switch (idle) { + case CPU_NOT_IDLE: load_idx = sd->busy_idx; - else if (idle == CPU_NEWLY_IDLE) + break; + + case CPU_NEWLY_IDLE: load_idx = sd->newidle_idx; - else + break; + default: load_idx = sd->idle_idx; + break; + } - do { - unsigned long load, group_capacity, max_cpu_load, min_cpu_load; - int local_group; - int i; - int __group_imb = 0; - unsigned int balance_cpu = -1, first_idle_cpu = 0; - unsigned long sum_nr_running, sum_weighted_load; - unsigned long sum_avg_load_per_task; - unsigned long avg_load_per_task; + return load_idx; +} - local_group = cpumask_test_cpu(this_cpu, - sched_group_cpus(group)); - if (local_group) - balance_cpu = cpumask_first(sched_group_cpus(group)); +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +/** + * init_sd_power_savings_stats - Initialize power savings statistics for + * the given sched_domain, during load balancing. + * + * @sd: Sched domain whose power-savings statistics are to be initialized. + * @sds: Variable containing the statistics for sd. + * @idle: Idle status of the CPU at which we're performing load-balancing. + */ +static inline void init_sd_power_savings_stats(struct sched_domain *sd, + struct sd_lb_stats *sds, enum cpu_idle_type idle) +{ + /* + * Busy processors will not participate in power savings + * balance. + */ + if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) + sds->power_savings_balance = 0; + else { + sds->power_savings_balance = 1; + sds->min_nr_running = ULONG_MAX; + sds->leader_nr_running = 0; + } +} - /* Tally up the load of all CPUs in the group */ - sum_weighted_load = sum_nr_running = avg_load = 0; - sum_avg_load_per_task = avg_load_per_task = 0; +/** + * update_sd_power_savings_stats - Update the power saving stats for a + * sched_domain while performing load balancing. + * + * @group: sched_group belonging to the sched_domain under consideration. + * @sds: Variable containing the statistics of the sched_domain + * @local_group: Does group contain the CPU for which we're performing + * load balancing ? + * @sgs: Variable containing the statistics of the group. + */ +static inline void update_sd_power_savings_stats(struct sched_group *group, + struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) +{ - max_cpu_load = 0; - min_cpu_load = ~0UL; + if (!sds->power_savings_balance) + return; - for_each_cpu_and(i, sched_group_cpus(group), cpus) { - struct rq *rq = cpu_rq(i); + /* + * If the local group is idle or completely loaded + * no need to do power savings balance at this domain + */ + if (local_group && (sds->this_nr_running >= sgs->group_capacity || + !sds->this_nr_running)) + sds->power_savings_balance = 0; - if (*sd_idle && rq->nr_running) - *sd_idle = 0; + /* + * If a group is already running at full capacity or idle, + * don't include that group in power savings calculations + */ + if (!sds->power_savings_balance || + sgs->sum_nr_running >= sgs->group_capacity || + !sgs->sum_nr_running) + return; - /* Bias balancing toward cpus of our domain */ - if (local_group) { - if (idle_cpu(i) && !first_idle_cpu) { - first_idle_cpu = 1; - balance_cpu = i; - } + /* + * Calculate the group which has the least non-idle load. + * This is the group from where we need to pick up the load + * for saving power + */ + if ((sgs->sum_nr_running < sds->min_nr_running) || + (sgs->sum_nr_running == sds->min_nr_running && + group_first_cpu(group) > group_first_cpu(sds->group_min))) { + sds->group_min = group; + sds->min_nr_running = sgs->sum_nr_running; + sds->min_load_per_task = sgs->sum_weighted_load / + sgs->sum_nr_running; + } - load = target_load(i, load_idx); - } else { - load = source_load(i, load_idx); - if (load > max_cpu_load) - max_cpu_load = load; - if (min_cpu_load > load) - min_cpu_load = load; - } + /* + * Calculate the group which is almost near its + * capacity but still has some space to pick up some load + * from other group and save more power + */ + if (sgs->sum_nr_running > sgs->group_capacity - 1) + return; - avg_load += load; - sum_nr_running += rq->nr_running; - sum_weighted_load += weighted_cpuload(i); + if (sgs->sum_nr_running > sds->leader_nr_running || + (sgs->sum_nr_running == sds->leader_nr_running && + group_first_cpu(group) < group_first_cpu(sds->group_leader))) { + sds->group_leader = group; + sds->leader_nr_running = sgs->sum_nr_running; + } +} - sum_avg_load_per_task += cpu_avg_load_per_task(i); - } +/** + * check_power_save_busiest_group - Check if we have potential to perform + * some power-savings balance. If yes, set the busiest group to be + * the least loaded group in the sched_domain, so that it's CPUs can + * be put to idle. + * + * @sds: Variable containing the statistics of the sched_domain + * under consideration. + * @this_cpu: Cpu at which we're currently performing load-balancing. + * @imbalance: Variable to store the imbalance. + * + * Returns 1 if there is potential to perform power-savings balance. + * Else returns 0. + */ +static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + if (!sds->power_savings_balance) + return 0; - /* - * First idle cpu or the first cpu(busiest) in this sched group - * is eligible for doing load balancing at this and above - * domains. In the newly idle case, we will allow all the cpu's - * to do the newly idle load balance. - */ - if (idle != CPU_NEWLY_IDLE && local_group && - balance_cpu != this_cpu && balance) { - *balance = 0; - goto ret; - } + if (sds->this != sds->group_leader || + sds->group_leader == sds->group_min) + return 0; - total_load += avg_load; - total_pwr += group->__cpu_power; + *imbalance = sds->min_load_per_task; + sds->busiest = sds->group_min; - /* Adjust by relative CPU power of the group */ - avg_load = sg_div_cpu_power(group, - avg_load * SCHED_LOAD_SCALE); + if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { + cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = + group_first_cpu(sds->group_leader); + } + return 1; - /* - * Consider the group unbalanced when the imbalance is larger - * than the average weight of two tasks. - * - * APZ: with cgroup the avg task weight can vary wildly and - * might not be a suitable number - should we keep a - * normalized nr_running number somewhere that negates - * the hierarchy? - */ - avg_load_per_task = sg_div_cpu_power(group, - sum_avg_load_per_task * SCHED_LOAD_SCALE); +} +#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ +static inline void init_sd_power_savings_stats(struct sched_domain *sd, + struct sd_lb_stats *sds, enum cpu_idle_type idle) +{ + return; +} - if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) - __group_imb = 1; +static inline void update_sd_power_savings_stats(struct sched_group *group, + struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) +{ + return; +} + +static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + return 0; +} +#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ - group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; +/** + * update_sg_lb_stats - Update sched_group's statistics for load balancing. + * @group: sched_group whose statistics are to be updated. + * @this_cpu: Cpu for which load balance is currently performed. + * @idle: Idle status of this_cpu + * @load_idx: Load index of sched_domain of this_cpu for load calc. + * @sd_idle: Idle status of the sched_domain containing group. + * @local_group: Does group contain this_cpu. + * @cpus: Set of cpus considered for load balancing. + * @balance: Should we balance. + * @sgs: variable to hold the statistics for this group. + */ +static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, + enum cpu_idle_type idle, int load_idx, int *sd_idle, + int local_group, const struct cpumask *cpus, + int *balance, struct sg_lb_stats *sgs) +{ + unsigned long load, max_cpu_load, min_cpu_load; + int i; + unsigned int balance_cpu = -1, first_idle_cpu = 0; + unsigned long sum_avg_load_per_task; + unsigned long avg_load_per_task; + + if (local_group) + balance_cpu = group_first_cpu(group); + + /* Tally up the load of all CPUs in the group */ + sum_avg_load_per_task = avg_load_per_task = 0; + max_cpu_load = 0; + min_cpu_load = ~0UL; + + for_each_cpu_and(i, sched_group_cpus(group), cpus) { + struct rq *rq = cpu_rq(i); + + if (*sd_idle && rq->nr_running) + *sd_idle = 0; + + /* Bias balancing toward cpus of our domain */ if (local_group) { - this_load = avg_load; - this = group; - this_nr_running = sum_nr_running; - this_load_per_task = sum_weighted_load; - } else if (avg_load > max_load && - (sum_nr_running > group_capacity || __group_imb)) { - max_load = avg_load; - busiest = group; - busiest_nr_running = sum_nr_running; - busiest_load_per_task = sum_weighted_load; - group_imb = __group_imb; + if (idle_cpu(i) && !first_idle_cpu) { + first_idle_cpu = 1; + balance_cpu = i; + } + + load = target_load(i, load_idx); + } else { + load = source_load(i, load_idx); + if (load > max_cpu_load) + max_cpu_load = load; + if (min_cpu_load > load) + min_cpu_load = load; } -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) - /* - * Busy processors will not participate in power savings - * balance. - */ - if (idle == CPU_NOT_IDLE || - !(sd->flags & SD_POWERSAVINGS_BALANCE)) - goto group_next; + sgs->group_load += load; + sgs->sum_nr_running += rq->nr_running; + sgs->sum_weighted_load += weighted_cpuload(i); - /* - * If the local group is idle or completely loaded - * no need to do power savings balance at this domain - */ - if (local_group && (this_nr_running >= group_capacity || - !this_nr_running)) - power_savings_balance = 0; + sum_avg_load_per_task += cpu_avg_load_per_task(i); + } - /* - * If a group is already running at full capacity or idle, - * don't include that group in power savings calculations - */ - if (!power_savings_balance || sum_nr_running >= group_capacity - || !sum_nr_running) - goto group_next; + /* + * First idle cpu or the first cpu(busiest) in this sched group + * is eligible for doing load balancing at this and above + * domains. In the newly idle case, we will allow all the cpu's + * to do the newly idle load balance. + */ + if (idle != CPU_NEWLY_IDLE && local_group && + balance_cpu != this_cpu && balance) { + *balance = 0; + return; + } - /* - * Calculate the group which has the least non-idle load. - * This is the group from where we need to pick up the load - * for saving power - */ - if ((sum_nr_running < min_nr_running) || - (sum_nr_running == min_nr_running && - cpumask_first(sched_group_cpus(group)) > - cpumask_first(sched_group_cpus(group_min)))) { - group_min = group; - min_nr_running = sum_nr_running; - min_load_per_task = sum_weighted_load / - sum_nr_running; - } + /* Adjust by relative CPU power of the group */ + sgs->avg_load = sg_div_cpu_power(group, + sgs->group_load * SCHED_LOAD_SCALE); - /* - * Calculate the group which is almost near its - * capacity but still has some space to pick up some load - * from other group and save more power - */ - if (sum_nr_running <= group_capacity - 1) { - if (sum_nr_running > leader_nr_running || - (sum_nr_running == leader_nr_running && - cpumask_first(sched_group_cpus(group)) < - cpumask_first(sched_group_cpus(group_leader)))) { - group_leader = group; - leader_nr_running = sum_nr_running; - } + + /* + * Consider the group unbalanced when the imbalance is larger + * than the average weight of two tasks. + * + * APZ: with cgroup the avg task weight can vary wildly and + * might not be a suitable number - should we keep a + * normalized nr_running number somewhere that negates + * the hierarchy? + */ + avg_load_per_task = sg_div_cpu_power(group, + sum_avg_load_per_task * SCHED_LOAD_SCALE); + + if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) + sgs->group_imb = 1; + + sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; + +} + +/** + * update_sd_lb_stats - Update sched_group's statistics for load balancing. + * @sd: sched_domain whose statistics are to be updated. + * @this_cpu: Cpu for which load balance is currently performed. + * @idle: Idle status of this_cpu + * @sd_idle: Idle status of the sched_domain containing group. + * @cpus: Set of cpus considered for load balancing. + * @balance: Should we balance. + * @sds: variable to hold the statistics for this sched_domain. + */ +static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, + enum cpu_idle_type idle, int *sd_idle, + const struct cpumask *cpus, int *balance, + struct sd_lb_stats *sds) +{ + struct sched_group *group = sd->groups; + struct sg_lb_stats sgs; + int load_idx; + + init_sd_power_savings_stats(sd, sds, idle); + load_idx = get_sd_load_idx(sd, idle); + + do { + int local_group; + + local_group = cpumask_test_cpu(this_cpu, + sched_group_cpus(group)); + memset(&sgs, 0, sizeof(sgs)); + update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, + local_group, cpus, balance, &sgs); + + if (local_group && balance && !(*balance)) + return; + + sds->total_load += sgs.group_load; + sds->total_pwr += group->__cpu_power; + + if (local_group) { + sds->this_load = sgs.avg_load; + sds->this = group; + sds->this_nr_running = sgs.sum_nr_running; + sds->this_load_per_task = sgs.sum_weighted_load; + } else if (sgs.avg_load > sds->max_load && + (sgs.sum_nr_running > sgs.group_capacity || + sgs.group_imb)) { + sds->max_load = sgs.avg_load; + sds->busiest = group; + sds->busiest_nr_running = sgs.sum_nr_running; + sds->busiest_load_per_task = sgs.sum_weighted_load; + sds->group_imb = sgs.group_imb; } -group_next: -#endif + + update_sd_power_savings_stats(group, sds, local_group, &sgs); group = group->next; } while (group != sd->groups); - if (!busiest || this_load >= max_load || busiest_nr_running == 0) - goto out_balanced; - - avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; +} - if (this_load >= avg_load || - 100*max_load <= sd->imbalance_pct*this_load) - goto out_balanced; +/** + * fix_small_imbalance - Calculate the minor imbalance that exists + * amongst the groups of a sched_domain, during + * load balancing. + * @sds: Statistics of the sched_domain whose imbalance is to be calculated. + * @this_cpu: The cpu at whose sched_domain we're performing load-balance. + * @imbalance: Variable to store the imbalance. + */ +static inline void fix_small_imbalance(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + unsigned long tmp, pwr_now = 0, pwr_move = 0; + unsigned int imbn = 2; + + if (sds->this_nr_running) { + sds->this_load_per_task /= sds->this_nr_running; + if (sds->busiest_load_per_task > + sds->this_load_per_task) + imbn = 1; + } else + sds->this_load_per_task = + cpu_avg_load_per_task(this_cpu); - busiest_load_per_task /= busiest_nr_running; - if (group_imb) - busiest_load_per_task = min(busiest_load_per_task, avg_load); + if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= + sds->busiest_load_per_task * imbn) { + *imbalance = sds->busiest_load_per_task; + return; + } /* - * We're trying to get all the cpus to the average_load, so we don't - * want to push ourselves above the average load, nor do we wish to - * reduce the max loaded cpu below the average load, as either of these - * actions would just result in more rebalancing later, and ping-pong - * tasks around. Thus we look for the minimum possible imbalance. - * Negative imbalances (*we* are more loaded than anyone else) will - * be counted as no imbalance for these purposes -- we can't fix that - * by pulling tasks to us. Be careful of negative numbers as they'll - * appear as very large values with unsigned longs. + * OK, we don't have enough imbalance to justify moving tasks, + * however we may be able to increase total CPU power used by + * moving them. */ - if (max_load <= busiest_load_per_task) - goto out_balanced; + pwr_now += sds->busiest->__cpu_power * + min(sds->busiest_load_per_task, sds->max_load); + pwr_now += sds->this->__cpu_power * + min(sds->this_load_per_task, sds->this_load); + pwr_now /= SCHED_LOAD_SCALE; + + /* Amount of load we'd subtract */ + tmp = sg_div_cpu_power(sds->busiest, + sds->busiest_load_per_task * SCHED_LOAD_SCALE); + if (sds->max_load > tmp) + pwr_move += sds->busiest->__cpu_power * + min(sds->busiest_load_per_task, sds->max_load - tmp); + + /* Amount of load we'd add */ + if (sds->max_load * sds->busiest->__cpu_power < + sds->busiest_load_per_task * SCHED_LOAD_SCALE) + tmp = sg_div_cpu_power(sds->this, + sds->max_load * sds->busiest->__cpu_power); + else + tmp = sg_div_cpu_power(sds->this, + sds->busiest_load_per_task * SCHED_LOAD_SCALE); + pwr_move += sds->this->__cpu_power * + min(sds->this_load_per_task, sds->this_load + tmp); + pwr_move /= SCHED_LOAD_SCALE; + + /* Move if we gain throughput */ + if (pwr_move > pwr_now) + *imbalance = sds->busiest_load_per_task; +} + +/** + * calculate_imbalance - Calculate the amount of imbalance present within the + * groups of a given sched_domain during load balance. + * @sds: statistics of the sched_domain whose imbalance is to be calculated. + * @this_cpu: Cpu for which currently load balance is being performed. + * @imbalance: The variable to store the imbalance. + */ +static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, + unsigned long *imbalance) +{ + unsigned long max_pull; /* * In the presence of smp nice balancing, certain scenarios can have * max load less than avg load(as we skip the groups at or below * its cpu_power, while calculating max_load..) */ - if (max_load < avg_load) { + if (sds->max_load < sds->avg_load) { *imbalance = 0; - goto small_imbalance; + return fix_small_imbalance(sds, this_cpu, imbalance); } /* Don't want to pull so many tasks that a group would go idle */ - max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); + max_pull = min(sds->max_load - sds->avg_load, + sds->max_load - sds->busiest_load_per_task); /* How much load to actually move to equalise the imbalance */ - *imbalance = min(max_pull * busiest->__cpu_power, - (avg_load - this_load) * this->__cpu_power) + *imbalance = min(max_pull * sds->busiest->__cpu_power, + (sds->avg_load - sds->this_load) * sds->this->__cpu_power) / SCHED_LOAD_SCALE; /* @@ -3333,78 +3670,110 @@ group_next: * a think about bumping its value to force at least one task to be * moved */ - if (*imbalance < busiest_load_per_task) { - unsigned long tmp, pwr_now, pwr_move; - unsigned int imbn; - -small_imbalance: - pwr_move = pwr_now = 0; - imbn = 2; - if (this_nr_running) { - this_load_per_task /= this_nr_running; - if (busiest_load_per_task > this_load_per_task) - imbn = 1; - } else - this_load_per_task = cpu_avg_load_per_task(this_cpu); + if (*imbalance < sds->busiest_load_per_task) + return fix_small_imbalance(sds, this_cpu, imbalance); - if (max_load - this_load + busiest_load_per_task >= - busiest_load_per_task * imbn) { - *imbalance = busiest_load_per_task; - return busiest; - } +} +/******* find_busiest_group() helpers end here *********************/ - /* - * OK, we don't have enough imbalance to justify moving tasks, - * however we may be able to increase total CPU power used by - * moving them. - */ +/** + * find_busiest_group - Returns the busiest group within the sched_domain + * if there is an imbalance. If there isn't an imbalance, and + * the user has opted for power-savings, it returns a group whose + * CPUs can be put to idle by rebalancing those tasks elsewhere, if + * such a group exists. + * + * Also calculates the amount of weighted load which should be moved + * to restore balance. + * + * @sd: The sched_domain whose busiest group is to be returned. + * @this_cpu: The cpu for which load balancing is currently being performed. + * @imbalance: Variable which stores amount of weighted load which should + * be moved to restore balance/put a group to idle. + * @idle: The idle status of this_cpu. + * @sd_idle: The idleness of sd + * @cpus: The set of CPUs under consideration for load-balancing. + * @balance: Pointer to a variable indicating if this_cpu + * is the appropriate cpu to perform load balancing at this_level. + * + * Returns: - the busiest group if imbalance exists. + * - If no imbalance and user has opted for power-savings balance, + * return the least loaded group whose CPUs can be + * put to idle by rebalancing its tasks onto our group. + */ +static struct sched_group * +find_busiest_group(struct sched_domain *sd, int this_cpu, + unsigned long *imbalance, enum cpu_idle_type idle, + int *sd_idle, const struct cpumask *cpus, int *balance) +{ + struct sd_lb_stats sds; - pwr_now += busiest->__cpu_power * - min(busiest_load_per_task, max_load); - pwr_now += this->__cpu_power * - min(this_load_per_task, this_load); - pwr_now /= SCHED_LOAD_SCALE; - - /* Amount of load we'd subtract */ - tmp = sg_div_cpu_power(busiest, - busiest_load_per_task * SCHED_LOAD_SCALE); - if (max_load > tmp) - pwr_move += busiest->__cpu_power * - min(busiest_load_per_task, max_load - tmp); - - /* Amount of load we'd add */ - if (max_load * busiest->__cpu_power < - busiest_load_per_task * SCHED_LOAD_SCALE) - tmp = sg_div_cpu_power(this, - max_load * busiest->__cpu_power); - else - tmp = sg_div_cpu_power(this, - busiest_load_per_task * SCHED_LOAD_SCALE); - pwr_move += this->__cpu_power * - min(this_load_per_task, this_load + tmp); - pwr_move /= SCHED_LOAD_SCALE; + memset(&sds, 0, sizeof(sds)); - /* Move if we gain throughput */ - if (pwr_move > pwr_now) - *imbalance = busiest_load_per_task; - } + /* + * Compute the various statistics relavent for load balancing at + * this level. + */ + update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, + balance, &sds); + + /* Cases where imbalance does not exist from POV of this_cpu */ + /* 1) this_cpu is not the appropriate cpu to perform load balancing + * at this level. + * 2) There is no busy sibling group to pull from. + * 3) This group is the busiest group. + * 4) This group is more busy than the avg busieness at this + * sched_domain. + * 5) The imbalance is within the specified limit. + * 6) Any rebalance would lead to ping-pong + */ + if (balance && !(*balance)) + goto ret; - return busiest; + if (!sds.busiest || sds.busiest_nr_running == 0) + goto out_balanced; -out_balanced: -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) - if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) - goto ret; + if (sds.this_load >= sds.max_load) + goto out_balanced; - if (this == group_leader && group_leader != group_min) { - *imbalance = min_load_per_task; - if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { - cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = - cpumask_first(sched_group_cpus(group_leader)); - } - return group_min; - } -#endif + sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; + + if (sds.this_load >= sds.avg_load) + goto out_balanced; + + if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) + goto out_balanced; + + sds.busiest_load_per_task /= sds.busiest_nr_running; + if (sds.group_imb) + sds.busiest_load_per_task = + min(sds.busiest_load_per_task, sds.avg_load); + + /* + * We're trying to get all the cpus to the average_load, so we don't + * want to push ourselves above the average load, nor do we wish to + * reduce the max loaded cpu below the average load, as either of these + * actions would just result in more rebalancing later, and ping-pong + * tasks around. Thus we look for the minimum possible imbalance. + * Negative imbalances (*we* are more loaded than anyone else) will + * be counted as no imbalance for these purposes -- we can't fix that + * by pulling tasks to us. Be careful of negative numbers as they'll + * appear as very large values with unsigned longs. + */ + if (sds.max_load <= sds.busiest_load_per_task) + goto out_balanced; + + /* Looks like there is an imbalance. Compute it */ + calculate_imbalance(&sds, this_cpu, imbalance); + return sds.busiest; + +out_balanced: + /* + * There is no obvious imbalance. But check if we can do some balancing + * to save power. + */ + if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) + return sds.busiest; ret: *imbalance = 0; return NULL; @@ -4057,6 +4426,11 @@ static void run_rebalance_domains(struct softirq_action *h) #endif } +static inline int on_null_domain(int cpu) +{ + return !rcu_dereference(cpu_rq(cpu)->sd); +} + /* * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. * @@ -4114,7 +4488,9 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) cpumask_test_cpu(cpu, nohz.cpu_mask)) return; #endif - if (time_after_eq(jiffies, rq->next_balance)) + /* Don't need to rebalance while attached to NULL domain */ + if (time_after_eq(jiffies, rq->next_balance) && + likely(!on_null_domain(cpu))) raise_softirq(SCHED_SOFTIRQ); } @@ -4508,11 +4884,33 @@ static inline void schedule_debug(struct task_struct *prev) #endif } +static void put_prev_task(struct rq *rq, struct task_struct *prev) +{ + if (prev->state == TASK_RUNNING) { + u64 runtime = prev->se.sum_exec_runtime; + + runtime -= prev->se.prev_sum_exec_runtime; + runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); + + /* + * In order to avoid avg_overlap growing stale when we are + * indeed overlapping and hence not getting put to sleep, grow + * the avg_overlap on preemption. + * + * We use the average preemption runtime because that + * correlates to the amount of cache footprint a task can + * build up. + */ + update_avg(&prev->se.avg_overlap, runtime); + } + prev->sched_class->put_prev_task(rq, prev); +} + /* * Pick up the highest-prio task: */ static inline struct task_struct * -pick_next_task(struct rq *rq, struct task_struct *prev) +pick_next_task(struct rq *rq) { const struct sched_class *class; struct task_struct *p; @@ -4586,8 +4984,8 @@ need_resched_nonpreemptible: if (unlikely(!rq->nr_running)) idle_balance(cpu, rq); - prev->sched_class->put_prev_task(rq, prev); - next = pick_next_task(rq, prev); + put_prev_task(rq, prev); + next = pick_next_task(rq); if (likely(prev != next)) { sched_info_switch(prev, next); @@ -4642,7 +5040,7 @@ asmlinkage void __sched preempt_schedule(void) * between schedule and now. */ barrier(); - } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); + } while (need_resched()); } EXPORT_SYMBOL(preempt_schedule); @@ -4671,7 +5069,7 @@ asmlinkage void __sched preempt_schedule_irq(void) * between schedule and now. */ barrier(); - } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); + } while (need_resched()); } #endif /* CONFIG_PREEMPT */ @@ -5145,7 +5543,7 @@ SYSCALL_DEFINE1(nice, int, increment) if (increment > 40) increment = 40; - nice = PRIO_TO_NICE(current->static_prio) + increment; + nice = TASK_NICE(current) + increment; if (nice < -20) nice = -20; if (nice > 19) @@ -6423,7 +6821,7 @@ static void migrate_dead_tasks(unsigned int dead_cpu) if (!rq->nr_running) break; update_rq_clock(rq); - next = pick_next_task(rq, rq->curr); + next = pick_next_task(rq); if (!next) break; next->sched_class->put_prev_task(rq, next); @@ -8218,11 +8616,15 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) __set_bit(MAX_RT_PRIO, array->bitmap); #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED - rt_rq->highest_prio = MAX_RT_PRIO; + rt_rq->highest_prio.curr = MAX_RT_PRIO; +#ifdef CONFIG_SMP + rt_rq->highest_prio.next = MAX_RT_PRIO; +#endif #endif #ifdef CONFIG_SMP rt_rq->rt_nr_migratory = 0; rt_rq->overloaded = 0; + plist_head_init(&rq->rt.pushable_tasks, &rq->lock); #endif rt_rq->rt_time = 0; @@ -9598,7 +10000,7 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) struct cpuacct *ca; int cpu; - if (!cpuacct_subsys.active) + if (unlikely(!cpuacct_subsys.active)) return; cpu = task_cpu(tsk); |