diff options
Diffstat (limited to 'kernel/locking/qspinlock.c')
-rw-r--r-- | kernel/locking/qspinlock.c | 247 |
1 files changed, 119 insertions, 128 deletions
diff --git a/kernel/locking/qspinlock.c b/kernel/locking/qspinlock.c index d880296..bfaeb05 100644 --- a/kernel/locking/qspinlock.c +++ b/kernel/locking/qspinlock.c @@ -12,11 +12,11 @@ * GNU General Public License for more details. * * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P. - * (C) Copyright 2013-2014 Red Hat, Inc. + * (C) Copyright 2013-2014,2018 Red Hat, Inc. * (C) Copyright 2015 Intel Corp. * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP * - * Authors: Waiman Long <waiman.long@hpe.com> + * Authors: Waiman Long <longman@redhat.com> * Peter Zijlstra <peterz@infradead.org> */ @@ -33,6 +33,11 @@ #include <asm/qspinlock.h> /* + * Include queued spinlock statistics code + */ +#include "qspinlock_stat.h" + +/* * The basic principle of a queue-based spinlock can best be understood * by studying a classic queue-based spinlock implementation called the * MCS lock. The paper below provides a good description for this kind @@ -77,6 +82,18 @@ #endif /* + * The pending bit spinning loop count. + * This heuristic is used to limit the number of lockword accesses + * made by atomic_cond_read_relaxed when waiting for the lock to + * transition out of the "== _Q_PENDING_VAL" state. We don't spin + * indefinitely because there's no guarantee that we'll make forward + * progress. + */ +#ifndef _Q_PENDING_LOOPS +#define _Q_PENDING_LOOPS 1 +#endif + +/* * Per-CPU queue node structures; we can never have more than 4 nested * contexts: task, softirq, hardirq, nmi. * @@ -114,41 +131,18 @@ static inline __pure struct mcs_spinlock *decode_tail(u32 tail) #define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK) -/* - * By using the whole 2nd least significant byte for the pending bit, we - * can allow better optimization of the lock acquisition for the pending - * bit holder. +#if _Q_PENDING_BITS == 8 +/** + * clear_pending - clear the pending bit. + * @lock: Pointer to queued spinlock structure * - * This internal structure is also used by the set_locked function which - * is not restricted to _Q_PENDING_BITS == 8. + * *,1,* -> *,0,* */ -struct __qspinlock { - union { - atomic_t val; -#ifdef __LITTLE_ENDIAN - struct { - u8 locked; - u8 pending; - }; - struct { - u16 locked_pending; - u16 tail; - }; -#else - struct { - u16 tail; - u16 locked_pending; - }; - struct { - u8 reserved[2]; - u8 pending; - u8 locked; - }; -#endif - }; -}; +static __always_inline void clear_pending(struct qspinlock *lock) +{ + WRITE_ONCE(lock->pending, 0); +} -#if _Q_PENDING_BITS == 8 /** * clear_pending_set_locked - take ownership and clear the pending bit. * @lock: Pointer to queued spinlock structure @@ -159,9 +153,7 @@ struct __qspinlock { */ static __always_inline void clear_pending_set_locked(struct qspinlock *lock) { - struct __qspinlock *l = (void *)lock; - - WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL); + WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL); } /* @@ -176,19 +168,28 @@ static __always_inline void clear_pending_set_locked(struct qspinlock *lock) */ static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) { - struct __qspinlock *l = (void *)lock; - /* - * Use release semantics to make sure that the MCS node is properly - * initialized before changing the tail code. + * We can use relaxed semantics since the caller ensures that the + * MCS node is properly initialized before updating the tail. */ - return (u32)xchg_release(&l->tail, + return (u32)xchg_relaxed(&lock->tail, tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET; } #else /* _Q_PENDING_BITS == 8 */ /** + * clear_pending - clear the pending bit. + * @lock: Pointer to queued spinlock structure + * + * *,1,* -> *,0,* + */ +static __always_inline void clear_pending(struct qspinlock *lock) +{ + atomic_andnot(_Q_PENDING_VAL, &lock->val); +} + +/** * clear_pending_set_locked - take ownership and clear the pending bit. * @lock: Pointer to queued spinlock structure * @@ -216,10 +217,11 @@ static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) for (;;) { new = (val & _Q_LOCKED_PENDING_MASK) | tail; /* - * Use release semantics to make sure that the MCS node is - * properly initialized before changing the tail code. + * We can use relaxed semantics since the caller ensures that + * the MCS node is properly initialized before updating the + * tail. */ - old = atomic_cmpxchg_release(&lock->val, val, new); + old = atomic_cmpxchg_relaxed(&lock->val, val, new); if (old == val) break; @@ -237,9 +239,7 @@ static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail) */ static __always_inline void set_locked(struct qspinlock *lock) { - struct __qspinlock *l = (void *)lock; - - WRITE_ONCE(l->locked, _Q_LOCKED_VAL); + WRITE_ONCE(lock->locked, _Q_LOCKED_VAL); } @@ -294,86 +294,83 @@ static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock, void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val) { struct mcs_spinlock *prev, *next, *node; - u32 new, old, tail; + u32 old, tail; int idx; BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS)); if (pv_enabled()) - goto queue; + goto pv_queue; if (virt_spin_lock(lock)) return; /* - * wait for in-progress pending->locked hand-overs + * Wait for in-progress pending->locked hand-overs with a bounded + * number of spins so that we guarantee forward progress. * * 0,1,0 -> 0,0,1 */ if (val == _Q_PENDING_VAL) { - while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL) - cpu_relax(); + int cnt = _Q_PENDING_LOOPS; + val = atomic_cond_read_relaxed(&lock->val, + (VAL != _Q_PENDING_VAL) || !cnt--); } /* + * If we observe any contention; queue. + */ + if (val & ~_Q_LOCKED_MASK) + goto queue; + + /* * trylock || pending * * 0,0,0 -> 0,0,1 ; trylock * 0,0,1 -> 0,1,1 ; pending */ - for (;;) { + val = atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val); + if (!(val & ~_Q_LOCKED_MASK)) { /* - * If we observe any contention; queue. + * We're pending, wait for the owner to go away. + * + * *,1,1 -> *,1,0 + * + * this wait loop must be a load-acquire such that we match the + * store-release that clears the locked bit and create lock + * sequentiality; this is because not all + * clear_pending_set_locked() implementations imply full + * barriers. */ - if (val & ~_Q_LOCKED_MASK) - goto queue; - - new = _Q_LOCKED_VAL; - if (val == new) - new |= _Q_PENDING_VAL; + if (val & _Q_LOCKED_MASK) { + atomic_cond_read_acquire(&lock->val, + !(VAL & _Q_LOCKED_MASK)); + } /* - * Acquire semantic is required here as the function may - * return immediately if the lock was free. + * take ownership and clear the pending bit. + * + * *,1,0 -> *,0,1 */ - old = atomic_cmpxchg_acquire(&lock->val, val, new); - if (old == val) - break; - - val = old; - } - - /* - * we won the trylock - */ - if (new == _Q_LOCKED_VAL) + clear_pending_set_locked(lock); + qstat_inc(qstat_lock_pending, true); return; + } /* - * we're pending, wait for the owner to go away. - * - * *,1,1 -> *,1,0 - * - * this wait loop must be a load-acquire such that we match the - * store-release that clears the locked bit and create lock - * sequentiality; this is because not all clear_pending_set_locked() - * implementations imply full barriers. - */ - smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK)); - - /* - * take ownership and clear the pending bit. - * - * *,1,0 -> *,0,1 + * If pending was clear but there are waiters in the queue, then + * we need to undo our setting of pending before we queue ourselves. */ - clear_pending_set_locked(lock); - return; + if (!(val & _Q_PENDING_MASK)) + clear_pending(lock); /* * End of pending bit optimistic spinning and beginning of MCS * queuing. */ queue: + qstat_inc(qstat_lock_slowpath, true); +pv_queue: node = this_cpu_ptr(&mcs_nodes[0]); idx = node->count++; tail = encode_tail(smp_processor_id(), idx); @@ -400,12 +397,18 @@ queue: goto release; /* + * Ensure that the initialisation of @node is complete before we + * publish the updated tail via xchg_tail() and potentially link + * @node into the waitqueue via WRITE_ONCE(prev->next, node) below. + */ + smp_wmb(); + + /* + * Publish the updated tail. * We have already touched the queueing cacheline; don't bother with * pending stuff. * * p,*,* -> n,*,* - * - * RELEASE, such that the stores to @node must be complete. */ old = xchg_tail(lock, tail); next = NULL; @@ -417,14 +420,8 @@ queue: if (old & _Q_TAIL_MASK) { prev = decode_tail(old); - /* - * We must ensure that the stores to @node are observed before - * the write to prev->next. The address dependency from - * xchg_tail is not sufficient to ensure this because the read - * component of xchg_tail is unordered with respect to the - * initialisation of @node. - */ - smp_store_release(&prev->next, node); + /* Link @node into the waitqueue. */ + WRITE_ONCE(prev->next, node); pv_wait_node(node, prev); arch_mcs_spin_lock_contended(&node->locked); @@ -453,8 +450,8 @@ queue: * * The PV pv_wait_head_or_lock function, if active, will acquire * the lock and return a non-zero value. So we have to skip the - * smp_cond_load_acquire() call. As the next PV queue head hasn't been - * designated yet, there is no way for the locked value to become + * atomic_cond_read_acquire() call. As the next PV queue head hasn't + * been designated yet, there is no way for the locked value to become * _Q_SLOW_VAL. So both the set_locked() and the * atomic_cmpxchg_relaxed() calls will be safe. * @@ -464,44 +461,38 @@ queue: if ((val = pv_wait_head_or_lock(lock, node))) goto locked; - val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK)); + val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK)); locked: /* * claim the lock: * * n,0,0 -> 0,0,1 : lock, uncontended - * *,0,0 -> *,0,1 : lock, contended + * *,*,0 -> *,*,1 : lock, contended * - * If the queue head is the only one in the queue (lock value == tail), - * clear the tail code and grab the lock. Otherwise, we only need - * to grab the lock. + * If the queue head is the only one in the queue (lock value == tail) + * and nobody is pending, clear the tail code and grab the lock. + * Otherwise, we only need to grab the lock. */ - for (;;) { - /* In the PV case we might already have _Q_LOCKED_VAL set */ - if ((val & _Q_TAIL_MASK) != tail) { - set_locked(lock); - break; - } - /* - * The smp_cond_load_acquire() call above has provided the - * necessary acquire semantics required for locking. At most - * two iterations of this loop may be ran. - */ - old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL); - if (old == val) - goto release; /* No contention */ - val = old; - } + /* + * In the PV case we might already have _Q_LOCKED_VAL set. + * + * The atomic_cond_read_acquire() call above has provided the + * necessary acquire semantics required for locking. + */ + if (((val & _Q_TAIL_MASK) == tail) && + atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL)) + goto release; /* No contention */ + + /* Either somebody is queued behind us or _Q_PENDING_VAL is set */ + set_locked(lock); /* * contended path; wait for next if not observed yet, release. */ - if (!next) { - while (!(next = READ_ONCE(node->next))) - cpu_relax(); - } + if (!next) + next = smp_cond_load_relaxed(&node->next, (VAL)); arch_mcs_spin_unlock_contended(&next->locked); pv_kick_node(lock, next); |