summaryrefslogtreecommitdiffstats
path: root/kernel/locking/qspinlock.c
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/locking/qspinlock.c')
-rw-r--r--kernel/locking/qspinlock.c247
1 files changed, 119 insertions, 128 deletions
diff --git a/kernel/locking/qspinlock.c b/kernel/locking/qspinlock.c
index d880296..bfaeb05 100644
--- a/kernel/locking/qspinlock.c
+++ b/kernel/locking/qspinlock.c
@@ -12,11 +12,11 @@
* GNU General Public License for more details.
*
* (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
- * (C) Copyright 2013-2014 Red Hat, Inc.
+ * (C) Copyright 2013-2014,2018 Red Hat, Inc.
* (C) Copyright 2015 Intel Corp.
* (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
*
- * Authors: Waiman Long <waiman.long@hpe.com>
+ * Authors: Waiman Long <longman@redhat.com>
* Peter Zijlstra <peterz@infradead.org>
*/
@@ -33,6 +33,11 @@
#include <asm/qspinlock.h>
/*
+ * Include queued spinlock statistics code
+ */
+#include "qspinlock_stat.h"
+
+/*
* The basic principle of a queue-based spinlock can best be understood
* by studying a classic queue-based spinlock implementation called the
* MCS lock. The paper below provides a good description for this kind
@@ -77,6 +82,18 @@
#endif
/*
+ * The pending bit spinning loop count.
+ * This heuristic is used to limit the number of lockword accesses
+ * made by atomic_cond_read_relaxed when waiting for the lock to
+ * transition out of the "== _Q_PENDING_VAL" state. We don't spin
+ * indefinitely because there's no guarantee that we'll make forward
+ * progress.
+ */
+#ifndef _Q_PENDING_LOOPS
+#define _Q_PENDING_LOOPS 1
+#endif
+
+/*
* Per-CPU queue node structures; we can never have more than 4 nested
* contexts: task, softirq, hardirq, nmi.
*
@@ -114,41 +131,18 @@ static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)
-/*
- * By using the whole 2nd least significant byte for the pending bit, we
- * can allow better optimization of the lock acquisition for the pending
- * bit holder.
+#if _Q_PENDING_BITS == 8
+/**
+ * clear_pending - clear the pending bit.
+ * @lock: Pointer to queued spinlock structure
*
- * This internal structure is also used by the set_locked function which
- * is not restricted to _Q_PENDING_BITS == 8.
+ * *,1,* -> *,0,*
*/
-struct __qspinlock {
- union {
- atomic_t val;
-#ifdef __LITTLE_ENDIAN
- struct {
- u8 locked;
- u8 pending;
- };
- struct {
- u16 locked_pending;
- u16 tail;
- };
-#else
- struct {
- u16 tail;
- u16 locked_pending;
- };
- struct {
- u8 reserved[2];
- u8 pending;
- u8 locked;
- };
-#endif
- };
-};
+static __always_inline void clear_pending(struct qspinlock *lock)
+{
+ WRITE_ONCE(lock->pending, 0);
+}
-#if _Q_PENDING_BITS == 8
/**
* clear_pending_set_locked - take ownership and clear the pending bit.
* @lock: Pointer to queued spinlock structure
@@ -159,9 +153,7 @@ struct __qspinlock {
*/
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
- struct __qspinlock *l = (void *)lock;
-
- WRITE_ONCE(l->locked_pending, _Q_LOCKED_VAL);
+ WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
}
/*
@@ -176,19 +168,28 @@ static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
*/
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
- struct __qspinlock *l = (void *)lock;
-
/*
- * Use release semantics to make sure that the MCS node is properly
- * initialized before changing the tail code.
+ * We can use relaxed semantics since the caller ensures that the
+ * MCS node is properly initialized before updating the tail.
*/
- return (u32)xchg_release(&l->tail,
+ return (u32)xchg_relaxed(&lock->tail,
tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
}
#else /* _Q_PENDING_BITS == 8 */
/**
+ * clear_pending - clear the pending bit.
+ * @lock: Pointer to queued spinlock structure
+ *
+ * *,1,* -> *,0,*
+ */
+static __always_inline void clear_pending(struct qspinlock *lock)
+{
+ atomic_andnot(_Q_PENDING_VAL, &lock->val);
+}
+
+/**
* clear_pending_set_locked - take ownership and clear the pending bit.
* @lock: Pointer to queued spinlock structure
*
@@ -216,10 +217,11 @@ static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
for (;;) {
new = (val & _Q_LOCKED_PENDING_MASK) | tail;
/*
- * Use release semantics to make sure that the MCS node is
- * properly initialized before changing the tail code.
+ * We can use relaxed semantics since the caller ensures that
+ * the MCS node is properly initialized before updating the
+ * tail.
*/
- old = atomic_cmpxchg_release(&lock->val, val, new);
+ old = atomic_cmpxchg_relaxed(&lock->val, val, new);
if (old == val)
break;
@@ -237,9 +239,7 @@ static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
*/
static __always_inline void set_locked(struct qspinlock *lock)
{
- struct __qspinlock *l = (void *)lock;
-
- WRITE_ONCE(l->locked, _Q_LOCKED_VAL);
+ WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
}
@@ -294,86 +294,83 @@ static __always_inline u32 __pv_wait_head_or_lock(struct qspinlock *lock,
void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
{
struct mcs_spinlock *prev, *next, *node;
- u32 new, old, tail;
+ u32 old, tail;
int idx;
BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
if (pv_enabled())
- goto queue;
+ goto pv_queue;
if (virt_spin_lock(lock))
return;
/*
- * wait for in-progress pending->locked hand-overs
+ * Wait for in-progress pending->locked hand-overs with a bounded
+ * number of spins so that we guarantee forward progress.
*
* 0,1,0 -> 0,0,1
*/
if (val == _Q_PENDING_VAL) {
- while ((val = atomic_read(&lock->val)) == _Q_PENDING_VAL)
- cpu_relax();
+ int cnt = _Q_PENDING_LOOPS;
+ val = atomic_cond_read_relaxed(&lock->val,
+ (VAL != _Q_PENDING_VAL) || !cnt--);
}
/*
+ * If we observe any contention; queue.
+ */
+ if (val & ~_Q_LOCKED_MASK)
+ goto queue;
+
+ /*
* trylock || pending
*
* 0,0,0 -> 0,0,1 ; trylock
* 0,0,1 -> 0,1,1 ; pending
*/
- for (;;) {
+ val = atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
+ if (!(val & ~_Q_LOCKED_MASK)) {
/*
- * If we observe any contention; queue.
+ * We're pending, wait for the owner to go away.
+ *
+ * *,1,1 -> *,1,0
+ *
+ * this wait loop must be a load-acquire such that we match the
+ * store-release that clears the locked bit and create lock
+ * sequentiality; this is because not all
+ * clear_pending_set_locked() implementations imply full
+ * barriers.
*/
- if (val & ~_Q_LOCKED_MASK)
- goto queue;
-
- new = _Q_LOCKED_VAL;
- if (val == new)
- new |= _Q_PENDING_VAL;
+ if (val & _Q_LOCKED_MASK) {
+ atomic_cond_read_acquire(&lock->val,
+ !(VAL & _Q_LOCKED_MASK));
+ }
/*
- * Acquire semantic is required here as the function may
- * return immediately if the lock was free.
+ * take ownership and clear the pending bit.
+ *
+ * *,1,0 -> *,0,1
*/
- old = atomic_cmpxchg_acquire(&lock->val, val, new);
- if (old == val)
- break;
-
- val = old;
- }
-
- /*
- * we won the trylock
- */
- if (new == _Q_LOCKED_VAL)
+ clear_pending_set_locked(lock);
+ qstat_inc(qstat_lock_pending, true);
return;
+ }
/*
- * we're pending, wait for the owner to go away.
- *
- * *,1,1 -> *,1,0
- *
- * this wait loop must be a load-acquire such that we match the
- * store-release that clears the locked bit and create lock
- * sequentiality; this is because not all clear_pending_set_locked()
- * implementations imply full barriers.
- */
- smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));
-
- /*
- * take ownership and clear the pending bit.
- *
- * *,1,0 -> *,0,1
+ * If pending was clear but there are waiters in the queue, then
+ * we need to undo our setting of pending before we queue ourselves.
*/
- clear_pending_set_locked(lock);
- return;
+ if (!(val & _Q_PENDING_MASK))
+ clear_pending(lock);
/*
* End of pending bit optimistic spinning and beginning of MCS
* queuing.
*/
queue:
+ qstat_inc(qstat_lock_slowpath, true);
+pv_queue:
node = this_cpu_ptr(&mcs_nodes[0]);
idx = node->count++;
tail = encode_tail(smp_processor_id(), idx);
@@ -400,12 +397,18 @@ queue:
goto release;
/*
+ * Ensure that the initialisation of @node is complete before we
+ * publish the updated tail via xchg_tail() and potentially link
+ * @node into the waitqueue via WRITE_ONCE(prev->next, node) below.
+ */
+ smp_wmb();
+
+ /*
+ * Publish the updated tail.
* We have already touched the queueing cacheline; don't bother with
* pending stuff.
*
* p,*,* -> n,*,*
- *
- * RELEASE, such that the stores to @node must be complete.
*/
old = xchg_tail(lock, tail);
next = NULL;
@@ -417,14 +420,8 @@ queue:
if (old & _Q_TAIL_MASK) {
prev = decode_tail(old);
- /*
- * We must ensure that the stores to @node are observed before
- * the write to prev->next. The address dependency from
- * xchg_tail is not sufficient to ensure this because the read
- * component of xchg_tail is unordered with respect to the
- * initialisation of @node.
- */
- smp_store_release(&prev->next, node);
+ /* Link @node into the waitqueue. */
+ WRITE_ONCE(prev->next, node);
pv_wait_node(node, prev);
arch_mcs_spin_lock_contended(&node->locked);
@@ -453,8 +450,8 @@ queue:
*
* The PV pv_wait_head_or_lock function, if active, will acquire
* the lock and return a non-zero value. So we have to skip the
- * smp_cond_load_acquire() call. As the next PV queue head hasn't been
- * designated yet, there is no way for the locked value to become
+ * atomic_cond_read_acquire() call. As the next PV queue head hasn't
+ * been designated yet, there is no way for the locked value to become
* _Q_SLOW_VAL. So both the set_locked() and the
* atomic_cmpxchg_relaxed() calls will be safe.
*
@@ -464,44 +461,38 @@ queue:
if ((val = pv_wait_head_or_lock(lock, node)))
goto locked;
- val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));
+ val = atomic_cond_read_acquire(&lock->val, !(VAL & _Q_LOCKED_PENDING_MASK));
locked:
/*
* claim the lock:
*
* n,0,0 -> 0,0,1 : lock, uncontended
- * *,0,0 -> *,0,1 : lock, contended
+ * *,*,0 -> *,*,1 : lock, contended
*
- * If the queue head is the only one in the queue (lock value == tail),
- * clear the tail code and grab the lock. Otherwise, we only need
- * to grab the lock.
+ * If the queue head is the only one in the queue (lock value == tail)
+ * and nobody is pending, clear the tail code and grab the lock.
+ * Otherwise, we only need to grab the lock.
*/
- for (;;) {
- /* In the PV case we might already have _Q_LOCKED_VAL set */
- if ((val & _Q_TAIL_MASK) != tail) {
- set_locked(lock);
- break;
- }
- /*
- * The smp_cond_load_acquire() call above has provided the
- * necessary acquire semantics required for locking. At most
- * two iterations of this loop may be ran.
- */
- old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
- if (old == val)
- goto release; /* No contention */
- val = old;
- }
+ /*
+ * In the PV case we might already have _Q_LOCKED_VAL set.
+ *
+ * The atomic_cond_read_acquire() call above has provided the
+ * necessary acquire semantics required for locking.
+ */
+ if (((val & _Q_TAIL_MASK) == tail) &&
+ atomic_try_cmpxchg_relaxed(&lock->val, &val, _Q_LOCKED_VAL))
+ goto release; /* No contention */
+
+ /* Either somebody is queued behind us or _Q_PENDING_VAL is set */
+ set_locked(lock);
/*
* contended path; wait for next if not observed yet, release.
*/
- if (!next) {
- while (!(next = READ_ONCE(node->next)))
- cpu_relax();
- }
+ if (!next)
+ next = smp_cond_load_relaxed(&node->next, (VAL));
arch_mcs_spin_unlock_contended(&next->locked);
pv_kick_node(lock, next);
OpenPOWER on IntegriCloud