diff options
Diffstat (limited to 'include/drm/ttm/ttm_bo_api.h')
-rw-r--r-- | include/drm/ttm/ttm_bo_api.h | 618 |
1 files changed, 618 insertions, 0 deletions
diff --git a/include/drm/ttm/ttm_bo_api.h b/include/drm/ttm/ttm_bo_api.h new file mode 100644 index 0000000..cd22ab4 --- /dev/null +++ b/include/drm/ttm/ttm_bo_api.h @@ -0,0 +1,618 @@ +/************************************************************************** + * + * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sub license, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice (including the + * next paragraph) shall be included in all copies or substantial portions + * of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL + * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, + * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR + * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE + * USE OR OTHER DEALINGS IN THE SOFTWARE. + * + **************************************************************************/ +/* + * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com> + */ + +#ifndef _TTM_BO_API_H_ +#define _TTM_BO_API_H_ + +#include "drm_hashtab.h" +#include <linux/kref.h> +#include <linux/list.h> +#include <linux/wait.h> +#include <linux/mutex.h> +#include <linux/mm.h> +#include <linux/rbtree.h> +#include <linux/bitmap.h> + +struct ttm_bo_device; + +struct drm_mm_node; + +/** + * struct ttm_mem_reg + * + * @mm_node: Memory manager node. + * @size: Requested size of memory region. + * @num_pages: Actual size of memory region in pages. + * @page_alignment: Page alignment. + * @placement: Placement flags. + * + * Structure indicating the placement and space resources used by a + * buffer object. + */ + +struct ttm_mem_reg { + struct drm_mm_node *mm_node; + unsigned long size; + unsigned long num_pages; + uint32_t page_alignment; + uint32_t mem_type; + uint32_t placement; +}; + +/** + * enum ttm_bo_type + * + * @ttm_bo_type_device: These are 'normal' buffers that can + * be mmapped by user space. Each of these bos occupy a slot in the + * device address space, that can be used for normal vm operations. + * + * @ttm_bo_type_user: These are user-space memory areas that are made + * available to the GPU by mapping the buffer pages into the GPU aperture + * space. These buffers cannot be mmaped from the device address space. + * + * @ttm_bo_type_kernel: These buffers are like ttm_bo_type_device buffers, + * but they cannot be accessed from user-space. For kernel-only use. + */ + +enum ttm_bo_type { + ttm_bo_type_device, + ttm_bo_type_user, + ttm_bo_type_kernel +}; + +struct ttm_tt; + +/** + * struct ttm_buffer_object + * + * @bdev: Pointer to the buffer object device structure. + * @buffer_start: The virtual user-space start address of ttm_bo_type_user + * buffers. + * @type: The bo type. + * @destroy: Destruction function. If NULL, kfree is used. + * @num_pages: Actual number of pages. + * @addr_space_offset: Address space offset. + * @acc_size: Accounted size for this object. + * @kref: Reference count of this buffer object. When this refcount reaches + * zero, the object is put on the delayed delete list. + * @list_kref: List reference count of this buffer object. This member is + * used to avoid destruction while the buffer object is still on a list. + * Lru lists may keep one refcount, the delayed delete list, and kref != 0 + * keeps one refcount. When this refcount reaches zero, + * the object is destroyed. + * @event_queue: Queue for processes waiting on buffer object status change. + * @lock: spinlock protecting mostly synchronization members. + * @proposed_placement: Proposed placement for the buffer. Changed only by the + * creator prior to validation as opposed to bo->mem.proposed_flags which is + * changed by the implementation prior to a buffer move if it wants to outsmart + * the buffer creator / user. This latter happens, for example, at eviction. + * @mem: structure describing current placement. + * @persistant_swap_storage: Usually the swap storage is deleted for buffers + * pinned in physical memory. If this behaviour is not desired, this member + * holds a pointer to a persistant shmem object. + * @ttm: TTM structure holding system pages. + * @evicted: Whether the object was evicted without user-space knowing. + * @cpu_writes: For synchronization. Number of cpu writers. + * @lru: List head for the lru list. + * @ddestroy: List head for the delayed destroy list. + * @swap: List head for swap LRU list. + * @val_seq: Sequence of the validation holding the @reserved lock. + * Used to avoid starvation when many processes compete to validate the + * buffer. This member is protected by the bo_device::lru_lock. + * @seq_valid: The value of @val_seq is valid. This value is protected by + * the bo_device::lru_lock. + * @reserved: Deadlock-free lock used for synchronization state transitions. + * @sync_obj_arg: Opaque argument to synchronization object function. + * @sync_obj: Pointer to a synchronization object. + * @priv_flags: Flags describing buffer object internal state. + * @vm_rb: Rb node for the vm rb tree. + * @vm_node: Address space manager node. + * @offset: The current GPU offset, which can have different meanings + * depending on the memory type. For SYSTEM type memory, it should be 0. + * @cur_placement: Hint of current placement. + * + * Base class for TTM buffer object, that deals with data placement and CPU + * mappings. GPU mappings are really up to the driver, but for simpler GPUs + * the driver can usually use the placement offset @offset directly as the + * GPU virtual address. For drivers implementing multiple + * GPU memory manager contexts, the driver should manage the address space + * in these contexts separately and use these objects to get the correct + * placement and caching for these GPU maps. This makes it possible to use + * these objects for even quite elaborate memory management schemes. + * The destroy member, the API visibility of this object makes it possible + * to derive driver specific types. + */ + +struct ttm_buffer_object { + /** + * Members constant at init. + */ + + struct ttm_bo_device *bdev; + unsigned long buffer_start; + enum ttm_bo_type type; + void (*destroy) (struct ttm_buffer_object *); + unsigned long num_pages; + uint64_t addr_space_offset; + size_t acc_size; + + /** + * Members not needing protection. + */ + + struct kref kref; + struct kref list_kref; + wait_queue_head_t event_queue; + spinlock_t lock; + + /** + * Members protected by the bo::reserved lock. + */ + + uint32_t proposed_placement; + struct ttm_mem_reg mem; + struct file *persistant_swap_storage; + struct ttm_tt *ttm; + bool evicted; + + /** + * Members protected by the bo::reserved lock only when written to. + */ + + atomic_t cpu_writers; + + /** + * Members protected by the bdev::lru_lock. + */ + + struct list_head lru; + struct list_head ddestroy; + struct list_head swap; + uint32_t val_seq; + bool seq_valid; + + /** + * Members protected by the bdev::lru_lock + * only when written to. + */ + + atomic_t reserved; + + + /** + * Members protected by the bo::lock + */ + + void *sync_obj_arg; + void *sync_obj; + unsigned long priv_flags; + + /** + * Members protected by the bdev::vm_lock + */ + + struct rb_node vm_rb; + struct drm_mm_node *vm_node; + + + /** + * Special members that are protected by the reserve lock + * and the bo::lock when written to. Can be read with + * either of these locks held. + */ + + unsigned long offset; + uint32_t cur_placement; +}; + +/** + * struct ttm_bo_kmap_obj + * + * @virtual: The current kernel virtual address. + * @page: The page when kmap'ing a single page. + * @bo_kmap_type: Type of bo_kmap. + * + * Object describing a kernel mapping. Since a TTM bo may be located + * in various memory types with various caching policies, the + * mapping can either be an ioremap, a vmap, a kmap or part of a + * premapped region. + */ + +struct ttm_bo_kmap_obj { + void *virtual; + struct page *page; + enum { + ttm_bo_map_iomap, + ttm_bo_map_vmap, + ttm_bo_map_kmap, + ttm_bo_map_premapped, + } bo_kmap_type; +}; + +/** + * ttm_bo_reference - reference a struct ttm_buffer_object + * + * @bo: The buffer object. + * + * Returns a refcounted pointer to a buffer object. + */ + +static inline struct ttm_buffer_object * +ttm_bo_reference(struct ttm_buffer_object *bo) +{ + kref_get(&bo->kref); + return bo; +} + +/** + * ttm_bo_wait - wait for buffer idle. + * + * @bo: The buffer object. + * @interruptible: Use interruptible wait. + * @no_wait: Return immediately if buffer is busy. + * + * This function must be called with the bo::mutex held, and makes + * sure any previous rendering to the buffer is completed. + * Note: It might be necessary to block validations before the + * wait by reserving the buffer. + * Returns -EBUSY if no_wait is true and the buffer is busy. + * Returns -ERESTART if interrupted by a signal. + */ +extern int ttm_bo_wait(struct ttm_buffer_object *bo, bool lazy, + bool interruptible, bool no_wait); +/** + * ttm_buffer_object_validate + * + * @bo: The buffer object. + * @proposed_placement: Proposed_placement for the buffer object. + * @interruptible: Sleep interruptible if sleeping. + * @no_wait: Return immediately if the buffer is busy. + * + * Changes placement and caching policy of the buffer object + * according to bo::proposed_flags. + * Returns + * -EINVAL on invalid proposed_flags. + * -ENOMEM on out-of-memory condition. + * -EBUSY if no_wait is true and buffer busy. + * -ERESTART if interrupted by a signal. + */ +extern int ttm_buffer_object_validate(struct ttm_buffer_object *bo, + uint32_t proposed_placement, + bool interruptible, bool no_wait); +/** + * ttm_bo_unref + * + * @bo: The buffer object. + * + * Unreference and clear a pointer to a buffer object. + */ +extern void ttm_bo_unref(struct ttm_buffer_object **bo); + +/** + * ttm_bo_synccpu_write_grab + * + * @bo: The buffer object: + * @no_wait: Return immediately if buffer is busy. + * + * Synchronizes a buffer object for CPU RW access. This means + * blocking command submission that affects the buffer and + * waiting for buffer idle. This lock is recursive. + * Returns + * -EBUSY if the buffer is busy and no_wait is true. + * -ERESTART if interrupted by a signal. + */ + +extern int +ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait); +/** + * ttm_bo_synccpu_write_release: + * + * @bo : The buffer object. + * + * Releases a synccpu lock. + */ +extern void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo); + +/** + * ttm_buffer_object_init + * + * @bdev: Pointer to a ttm_bo_device struct. + * @bo: Pointer to a ttm_buffer_object to be initialized. + * @size: Requested size of buffer object. + * @type: Requested type of buffer object. + * @flags: Initial placement flags. + * @page_alignment: Data alignment in pages. + * @buffer_start: Virtual address of user space data backing a + * user buffer object. + * @interruptible: If needing to sleep to wait for GPU resources, + * sleep interruptible. + * @persistant_swap_storage: Usually the swap storage is deleted for buffers + * pinned in physical memory. If this behaviour is not desired, this member + * holds a pointer to a persistant shmem object. Typically, this would + * point to the shmem object backing a GEM object if TTM is used to back a + * GEM user interface. + * @acc_size: Accounted size for this object. + * @destroy: Destroy function. Use NULL for kfree(). + * + * This function initializes a pre-allocated struct ttm_buffer_object. + * As this object may be part of a larger structure, this function, + * together with the @destroy function, + * enables driver-specific objects derived from a ttm_buffer_object. + * On successful return, the object kref and list_kref are set to 1. + * Returns + * -ENOMEM: Out of memory. + * -EINVAL: Invalid placement flags. + * -ERESTART: Interrupted by signal while sleeping waiting for resources. + */ + +extern int ttm_buffer_object_init(struct ttm_bo_device *bdev, + struct ttm_buffer_object *bo, + unsigned long size, + enum ttm_bo_type type, + uint32_t flags, + uint32_t page_alignment, + unsigned long buffer_start, + bool interrubtible, + struct file *persistant_swap_storage, + size_t acc_size, + void (*destroy) (struct ttm_buffer_object *)); +/** + * ttm_bo_synccpu_object_init + * + * @bdev: Pointer to a ttm_bo_device struct. + * @bo: Pointer to a ttm_buffer_object to be initialized. + * @size: Requested size of buffer object. + * @type: Requested type of buffer object. + * @flags: Initial placement flags. + * @page_alignment: Data alignment in pages. + * @buffer_start: Virtual address of user space data backing a + * user buffer object. + * @interruptible: If needing to sleep while waiting for GPU resources, + * sleep interruptible. + * @persistant_swap_storage: Usually the swap storage is deleted for buffers + * pinned in physical memory. If this behaviour is not desired, this member + * holds a pointer to a persistant shmem object. Typically, this would + * point to the shmem object backing a GEM object if TTM is used to back a + * GEM user interface. + * @p_bo: On successful completion *p_bo points to the created object. + * + * This function allocates a ttm_buffer_object, and then calls + * ttm_buffer_object_init on that object. + * The destroy function is set to kfree(). + * Returns + * -ENOMEM: Out of memory. + * -EINVAL: Invalid placement flags. + * -ERESTART: Interrupted by signal while waiting for resources. + */ + +extern int ttm_buffer_object_create(struct ttm_bo_device *bdev, + unsigned long size, + enum ttm_bo_type type, + uint32_t flags, + uint32_t page_alignment, + unsigned long buffer_start, + bool interruptible, + struct file *persistant_swap_storage, + struct ttm_buffer_object **p_bo); + +/** + * ttm_bo_check_placement + * + * @bo: the buffer object. + * @set_flags: placement flags to set. + * @clr_flags: placement flags to clear. + * + * Performs minimal validity checking on an intended change of + * placement flags. + * Returns + * -EINVAL: Intended change is invalid or not allowed. + */ + +extern int ttm_bo_check_placement(struct ttm_buffer_object *bo, + uint32_t set_flags, uint32_t clr_flags); + +/** + * ttm_bo_init_mm + * + * @bdev: Pointer to a ttm_bo_device struct. + * @mem_type: The memory type. + * @p_offset: offset for managed area in pages. + * @p_size: size managed area in pages. + * + * Initialize a manager for a given memory type. + * Note: if part of driver firstopen, it must be protected from a + * potentially racing lastclose. + * Returns: + * -EINVAL: invalid size or memory type. + * -ENOMEM: Not enough memory. + * May also return driver-specified errors. + */ + +extern int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type, + unsigned long p_offset, unsigned long p_size); +/** + * ttm_bo_clean_mm + * + * @bdev: Pointer to a ttm_bo_device struct. + * @mem_type: The memory type. + * + * Take down a manager for a given memory type after first walking + * the LRU list to evict any buffers left alive. + * + * Normally, this function is part of lastclose() or unload(), and at that + * point there shouldn't be any buffers left created by user-space, since + * there should've been removed by the file descriptor release() method. + * However, before this function is run, make sure to signal all sync objects, + * and verify that the delayed delete queue is empty. The driver must also + * make sure that there are no NO_EVICT buffers present in this memory type + * when the call is made. + * + * If this function is part of a VT switch, the caller must make sure that + * there are no appications currently validating buffers before this + * function is called. The caller can do that by first taking the + * struct ttm_bo_device::ttm_lock in write mode. + * + * Returns: + * -EINVAL: invalid or uninitialized memory type. + * -EBUSY: There are still buffers left in this memory type. + */ + +extern int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type); + +/** + * ttm_bo_evict_mm + * + * @bdev: Pointer to a ttm_bo_device struct. + * @mem_type: The memory type. + * + * Evicts all buffers on the lru list of the memory type. + * This is normally part of a VT switch or an + * out-of-memory-space-due-to-fragmentation handler. + * The caller must make sure that there are no other processes + * currently validating buffers, and can do that by taking the + * struct ttm_bo_device::ttm_lock in write mode. + * + * Returns: + * -EINVAL: Invalid or uninitialized memory type. + * -ERESTART: The call was interrupted by a signal while waiting to + * evict a buffer. + */ + +extern int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type); + +/** + * ttm_kmap_obj_virtual + * + * @map: A struct ttm_bo_kmap_obj returned from ttm_bo_kmap. + * @is_iomem: Pointer to an integer that on return indicates 1 if the + * virtual map is io memory, 0 if normal memory. + * + * Returns the virtual address of a buffer object area mapped by ttm_bo_kmap. + * If *is_iomem is 1 on return, the virtual address points to an io memory area, + * that should strictly be accessed by the iowriteXX() and similar functions. + */ + +static inline void *ttm_kmap_obj_virtual(struct ttm_bo_kmap_obj *map, + bool *is_iomem) +{ + *is_iomem = (map->bo_kmap_type == ttm_bo_map_iomap || + map->bo_kmap_type == ttm_bo_map_premapped); + return map->virtual; +} + +/** + * ttm_bo_kmap + * + * @bo: The buffer object. + * @start_page: The first page to map. + * @num_pages: Number of pages to map. + * @map: pointer to a struct ttm_bo_kmap_obj representing the map. + * + * Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the + * data in the buffer object. The ttm_kmap_obj_virtual function can then be + * used to obtain a virtual address to the data. + * + * Returns + * -ENOMEM: Out of memory. + * -EINVAL: Invalid range. + */ + +extern int ttm_bo_kmap(struct ttm_buffer_object *bo, unsigned long start_page, + unsigned long num_pages, struct ttm_bo_kmap_obj *map); + +/** + * ttm_bo_kunmap + * + * @map: Object describing the map to unmap. + * + * Unmaps a kernel map set up by ttm_bo_kmap. + */ + +extern void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map); + +#if 0 +#endif + +/** + * ttm_fbdev_mmap - mmap fbdev memory backed by a ttm buffer object. + * + * @vma: vma as input from the fbdev mmap method. + * @bo: The bo backing the address space. The address space will + * have the same size as the bo, and start at offset 0. + * + * This function is intended to be called by the fbdev mmap method + * if the fbdev address space is to be backed by a bo. + */ + +extern int ttm_fbdev_mmap(struct vm_area_struct *vma, + struct ttm_buffer_object *bo); + +/** + * ttm_bo_mmap - mmap out of the ttm device address space. + * + * @filp: filp as input from the mmap method. + * @vma: vma as input from the mmap method. + * @bdev: Pointer to the ttm_bo_device with the address space manager. + * + * This function is intended to be called by the device mmap method. + * if the device address space is to be backed by the bo manager. + */ + +extern int ttm_bo_mmap(struct file *filp, struct vm_area_struct *vma, + struct ttm_bo_device *bdev); + +/** + * ttm_bo_io + * + * @bdev: Pointer to the struct ttm_bo_device. + * @filp: Pointer to the struct file attempting to read / write. + * @wbuf: User-space pointer to address of buffer to write. NULL on read. + * @rbuf: User-space pointer to address of buffer to read into. + * Null on write. + * @count: Number of bytes to read / write. + * @f_pos: Pointer to current file position. + * @write: 1 for read, 0 for write. + * + * This function implements read / write into ttm buffer objects, and is + * intended to + * be called from the fops::read and fops::write method. + * Returns: + * See man (2) write, man(2) read. In particular, + * the function may return -EINTR if + * interrupted by a signal. + */ + +extern ssize_t ttm_bo_io(struct ttm_bo_device *bdev, struct file *filp, + const char __user *wbuf, char __user *rbuf, + size_t count, loff_t *f_pos, bool write); + +extern void ttm_bo_swapout_all(struct ttm_bo_device *bdev); + +#endif |