diff options
Diffstat (limited to 'include/asm-x86/uv/uv_bau.h')
-rw-r--r-- | include/asm-x86/uv/uv_bau.h | 337 |
1 files changed, 337 insertions, 0 deletions
diff --git a/include/asm-x86/uv/uv_bau.h b/include/asm-x86/uv/uv_bau.h new file mode 100644 index 0000000..91ac0df --- /dev/null +++ b/include/asm-x86/uv/uv_bau.h @@ -0,0 +1,337 @@ +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * SGI UV Broadcast Assist Unit definitions + * + * Copyright (C) 2008 Silicon Graphics, Inc. All rights reserved. + */ + +#ifndef __ASM_X86_UV_BAU__ +#define __ASM_X86_UV_BAU__ + +#include <linux/bitmap.h> +#define BITSPERBYTE 8 + +/* + * Broadcast Assist Unit messaging structures + * + * Selective Broadcast activations are induced by software action + * specifying a particular 8-descriptor "set" via a 6-bit index written + * to an MMR. + * Thus there are 64 unique 512-byte sets of SB descriptors - one set for + * each 6-bit index value. These descriptor sets are mapped in sequence + * starting with set 0 located at the address specified in the + * BAU_SB_DESCRIPTOR_BASE register, set 1 is located at BASE + 512, + * set 2 is at BASE + 2*512, set 3 at BASE + 3*512, and so on. + * + * We will use 31 sets, one for sending BAU messages from each of the 32 + * cpu's on the node. + * + * TLB shootdown will use the first of the 8 descriptors of each set. + * Each of the descriptors is 64 bytes in size (8*64 = 512 bytes in a set). + */ + +#define UV_ITEMS_PER_DESCRIPTOR 8 +#define UV_CPUS_PER_ACT_STATUS 32 +#define UV_ACT_STATUS_MASK 0x3 +#define UV_ACT_STATUS_SIZE 2 +#define UV_ACTIVATION_DESCRIPTOR_SIZE 32 +#define UV_DISTRIBUTION_SIZE 256 +#define UV_SW_ACK_NPENDING 8 +#define UV_BAU_MESSAGE 200 +/* + * Messaging irq; see irq_64.h and include/asm-x86/hw_irq_64.h + * To be dynamically allocated in the future + */ +#define UV_NET_ENDPOINT_INTD 0x38 +#define UV_DESC_BASE_PNODE_SHIFT 49 +#define UV_PAYLOADQ_PNODE_SHIFT 49 +#define UV_PTC_BASENAME "sgi_uv/ptc_statistics" +#define uv_physnodeaddr(x) ((__pa((unsigned long)(x)) & uv_mmask)) + +/* + * bits in UVH_LB_BAU_SB_ACTIVATION_STATUS_0/1 + */ +#define DESC_STATUS_IDLE 0 +#define DESC_STATUS_ACTIVE 1 +#define DESC_STATUS_DESTINATION_TIMEOUT 2 +#define DESC_STATUS_SOURCE_TIMEOUT 3 + +/* + * source side threshholds at which message retries print a warning + */ +#define SOURCE_TIMEOUT_LIMIT 20 +#define DESTINATION_TIMEOUT_LIMIT 20 + +/* + * number of entries in the destination side payload queue + */ +#define DEST_Q_SIZE 17 +/* + * number of destination side software ack resources + */ +#define DEST_NUM_RESOURCES 8 +#define MAX_CPUS_PER_NODE 32 +/* + * completion statuses for sending a TLB flush message + */ +#define FLUSH_RETRY 1 +#define FLUSH_GIVEUP 2 +#define FLUSH_COMPLETE 3 + +/* + * Distribution: 32 bytes (256 bits) (bytes 0-0x1f of descriptor) + * If the 'multilevel' flag in the header portion of the descriptor + * has been set to 0, then endpoint multi-unicast mode is selected. + * The distribution specification (32 bytes) is interpreted as a 256-bit + * distribution vector. Adjacent bits correspond to consecutive even numbered + * nodeIDs. The result of adding the index of a given bit to the 15-bit + * 'base_dest_nodeid' field of the header corresponds to the + * destination nodeID associated with that specified bit. + */ +struct bau_target_nodemask { + unsigned long bits[BITS_TO_LONGS(256)]; +}; + +/* + * mask of cpu's on a node + * (during initialization we need to check that unsigned long has + * enough bits for max. cpu's per node) + */ +struct bau_local_cpumask { + unsigned long bits; +}; + +/* + * Payload: 16 bytes (128 bits) (bytes 0x20-0x2f of descriptor) + * only 12 bytes (96 bits) of the payload area are usable. + * An additional 3 bytes (bits 27:4) of the header address are carried + * to the next bytes of the destination payload queue. + * And an additional 2 bytes of the header Suppl_A field are also + * carried to the destination payload queue. + * But the first byte of the Suppl_A becomes bits 127:120 (the 16th byte) + * of the destination payload queue, which is written by the hardware + * with the s/w ack resource bit vector. + * [ effective message contents (16 bytes (128 bits) maximum), not counting + * the s/w ack bit vector ] + */ + +/* + * The payload is software-defined for INTD transactions + */ +struct bau_msg_payload { + unsigned long address; /* signifies a page or all TLB's + of the cpu */ + /* 64 bits */ + unsigned short sending_cpu; /* filled in by sender */ + /* 16 bits */ + unsigned short acknowledge_count;/* filled in by destination */ + /* 16 bits */ + unsigned int reserved1:32; /* not usable */ +}; + + +/* + * Message header: 16 bytes (128 bits) (bytes 0x30-0x3f of descriptor) + * see table 4.2.3.0.1 in broacast_assist spec. + */ +struct bau_msg_header { + int dest_subnodeid:6; /* must be zero */ + /* bits 5:0 */ + int base_dest_nodeid:15; /* nasid>>1 (pnode) of first bit in node_map */ + /* bits 20:6 */ + int command:8; /* message type */ + /* bits 28:21 */ + /* 0x38: SN3net EndPoint Message */ + int rsvd_1:3; /* must be zero */ + /* bits 31:29 */ + /* int will align on 32 bits */ + int rsvd_2:9; /* must be zero */ + /* bits 40:32 */ + /* Suppl_A is 56-41 */ + int payload_2a:8; /* becomes byte 16 of msg */ + /* bits 48:41 */ /* not currently using */ + int payload_2b:8; /* becomes byte 17 of msg */ + /* bits 56:49 */ /* not currently using */ + /* Address field (96:57) is never used as an + address (these are address bits 42:3) */ + int rsvd_3:1; /* must be zero */ + /* bit 57 */ + /* address bits 27:4 are payload */ + /* these 24 bits become bytes 12-14 of msg */ + int replied_to:1; /* sent as 0 by the source to byte 12 */ + /* bit 58 */ + + int payload_1a:5; /* not currently used */ + /* bits 63:59 */ + int payload_1b:8; /* not currently used */ + /* bits 71:64 */ + int payload_1c:8; /* not currently used */ + /* bits 79:72 */ + int payload_1d:2; /* not currently used */ + /* bits 81:80 */ + + int rsvd_4:7; /* must be zero */ + /* bits 88:82 */ + int sw_ack_flag:1; /* software acknowledge flag */ + /* bit 89 */ + /* INTD trasactions at destination are to + wait for software acknowledge */ + int rsvd_5:6; /* must be zero */ + /* bits 95:90 */ + int rsvd_6:5; /* must be zero */ + /* bits 100:96 */ + int int_both:1; /* if 1, interrupt both sockets on the blade */ + /* bit 101*/ + int fairness:3; /* usually zero */ + /* bits 104:102 */ + int multilevel:1; /* multi-level multicast format */ + /* bit 105 */ + /* 0 for TLB: endpoint multi-unicast messages */ + int chaining:1; /* next descriptor is part of this activation*/ + /* bit 106 */ + int rsvd_7:21; /* must be zero */ + /* bits 127:107 */ +}; + +/* + * The activation descriptor: + * The format of the message to send, plus all accompanying control + * Should be 64 bytes + */ +struct bau_desc { + struct bau_target_nodemask distribution; + /* + * message template, consisting of header and payload: + */ + struct bau_msg_header header; + struct bau_msg_payload payload; +}; +/* + * -payload-- ---------header------ + * bytes 0-11 bits 41-56 bits 58-81 + * A B (2) C (3) + * + * A/B/C are moved to: + * A C B + * bytes 0-11 bytes 12-14 bytes 16-17 (byte 15 filled in by hw as vector) + * ------------payload queue----------- + */ + +/* + * The payload queue on the destination side is an array of these. + * With BAU_MISC_CONTROL set for software acknowledge mode, the messages + * are 32 bytes (2 micropackets) (256 bits) in length, but contain only 17 + * bytes of usable data, including the sw ack vector in byte 15 (bits 127:120) + * (12 bytes come from bau_msg_payload, 3 from payload_1, 2 from + * sw_ack_vector and payload_2) + * "Enabling Software Acknowledgment mode (see Section 4.3.3 Software + * Acknowledge Processing) also selects 32 byte (17 bytes usable) payload + * operation." + */ +struct bau_payload_queue_entry { + unsigned long address; /* signifies a page or all TLB's + of the cpu */ + /* 64 bits, bytes 0-7 */ + + unsigned short sending_cpu; /* cpu that sent the message */ + /* 16 bits, bytes 8-9 */ + + unsigned short acknowledge_count; /* filled in by destination */ + /* 16 bits, bytes 10-11 */ + + unsigned short replied_to:1; /* sent as 0 by the source */ + /* 1 bit */ + unsigned short unused1:7; /* not currently using */ + /* 7 bits: byte 12) */ + + unsigned char unused2[2]; /* not currently using */ + /* bytes 13-14 */ + + unsigned char sw_ack_vector; /* filled in by the hardware */ + /* byte 15 (bits 127:120) */ + + unsigned char unused4[3]; /* not currently using bytes 17-19 */ + /* bytes 17-19 */ + + int number_of_cpus; /* filled in at destination */ + /* 32 bits, bytes 20-23 (aligned) */ + + unsigned char unused5[8]; /* not using */ + /* bytes 24-31 */ +}; + +/* + * one for every slot in the destination payload queue + */ +struct bau_msg_status { + struct bau_local_cpumask seen_by; /* map of cpu's */ +}; + +/* + * one for every slot in the destination software ack resources + */ +struct bau_sw_ack_status { + struct bau_payload_queue_entry *msg; /* associated message */ + int watcher; /* cpu monitoring, or -1 */ +}; + +/* + * one on every node and per-cpu; to locate the software tables + */ +struct bau_control { + struct bau_desc *descriptor_base; + struct bau_payload_queue_entry *bau_msg_head; + struct bau_payload_queue_entry *va_queue_first; + struct bau_payload_queue_entry *va_queue_last; + struct bau_msg_status *msg_statuses; + int *watching; /* pointer to array */ +}; + +/* + * This structure is allocated per_cpu for UV TLB shootdown statistics. + */ +struct ptc_stats { + unsigned long ptc_i; /* number of IPI-style flushes */ + unsigned long requestor; /* number of nodes this cpu sent to */ + unsigned long requestee; /* times cpu was remotely requested */ + unsigned long alltlb; /* times all tlb's on this cpu were flushed */ + unsigned long onetlb; /* times just one tlb on this cpu was flushed */ + unsigned long s_retry; /* retries on source side timeouts */ + unsigned long d_retry; /* retries on destination side timeouts */ + unsigned long sflush; /* cycles spent in uv_flush_tlb_others */ + unsigned long dflush; /* cycles spent on destination side */ + unsigned long retriesok; /* successes on retries */ + unsigned long nomsg; /* interrupts with no message */ + unsigned long multmsg; /* interrupts with multiple messages */ + unsigned long ntargeted;/* nodes targeted */ +}; + +static inline int bau_node_isset(int node, struct bau_target_nodemask *dstp) +{ + return constant_test_bit(node, &dstp->bits[0]); +} +static inline void bau_node_set(int node, struct bau_target_nodemask *dstp) +{ + __set_bit(node, &dstp->bits[0]); +} +static inline void bau_nodes_clear(struct bau_target_nodemask *dstp, int nbits) +{ + bitmap_zero(&dstp->bits[0], nbits); +} + +static inline void bau_cpubits_clear(struct bau_local_cpumask *dstp, int nbits) +{ + bitmap_zero(&dstp->bits, nbits); +} + +#define cpubit_isset(cpu, bau_local_cpumask) \ + test_bit((cpu), (bau_local_cpumask).bits) + +extern int uv_flush_tlb_others(cpumask_t *, struct mm_struct *, unsigned long); +extern void uv_bau_message_intr1(void); +extern void uv_bau_timeout_intr1(void); + +#endif /* __ASM_X86_UV_BAU__ */ |