diff options
Diffstat (limited to 'include/asm-powerpc/mmu-hash64.h')
-rw-r--r-- | include/asm-powerpc/mmu-hash64.h | 478 |
1 files changed, 0 insertions, 478 deletions
diff --git a/include/asm-powerpc/mmu-hash64.h b/include/asm-powerpc/mmu-hash64.h deleted file mode 100644 index 19c7a94..0000000 --- a/include/asm-powerpc/mmu-hash64.h +++ /dev/null @@ -1,478 +0,0 @@ -#ifndef _ASM_POWERPC_MMU_HASH64_H_ -#define _ASM_POWERPC_MMU_HASH64_H_ -/* - * PowerPC64 memory management structures - * - * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com> - * PPC64 rework. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version - * 2 of the License, or (at your option) any later version. - */ - -#include <asm/asm-compat.h> -#include <asm/page.h> - -/* - * Segment table - */ - -#define STE_ESID_V 0x80 -#define STE_ESID_KS 0x20 -#define STE_ESID_KP 0x10 -#define STE_ESID_N 0x08 - -#define STE_VSID_SHIFT 12 - -/* Location of cpu0's segment table */ -#define STAB0_PAGE 0x6 -#define STAB0_OFFSET (STAB0_PAGE << 12) -#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START) - -#ifndef __ASSEMBLY__ -extern char initial_stab[]; -#endif /* ! __ASSEMBLY */ - -/* - * SLB - */ - -#define SLB_NUM_BOLTED 3 -#define SLB_CACHE_ENTRIES 8 - -/* Bits in the SLB ESID word */ -#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */ - -/* Bits in the SLB VSID word */ -#define SLB_VSID_SHIFT 12 -#define SLB_VSID_SHIFT_1T 24 -#define SLB_VSID_SSIZE_SHIFT 62 -#define SLB_VSID_B ASM_CONST(0xc000000000000000) -#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000) -#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000) -#define SLB_VSID_KS ASM_CONST(0x0000000000000800) -#define SLB_VSID_KP ASM_CONST(0x0000000000000400) -#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */ -#define SLB_VSID_L ASM_CONST(0x0000000000000100) -#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */ -#define SLB_VSID_LP ASM_CONST(0x0000000000000030) -#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000) -#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010) -#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020) -#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030) -#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP) - -#define SLB_VSID_KERNEL (SLB_VSID_KP) -#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C) - -#define SLBIE_C (0x08000000) -#define SLBIE_SSIZE_SHIFT 25 - -/* - * Hash table - */ - -#define HPTES_PER_GROUP 8 - -#define HPTE_V_SSIZE_SHIFT 62 -#define HPTE_V_AVPN_SHIFT 7 -#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80) -#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT) -#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL)) -#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010) -#define HPTE_V_LOCK ASM_CONST(0x0000000000000008) -#define HPTE_V_LARGE ASM_CONST(0x0000000000000004) -#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002) -#define HPTE_V_VALID ASM_CONST(0x0000000000000001) - -#define HPTE_R_PP0 ASM_CONST(0x8000000000000000) -#define HPTE_R_TS ASM_CONST(0x4000000000000000) -#define HPTE_R_RPN_SHIFT 12 -#define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000) -#define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff) -#define HPTE_R_PP ASM_CONST(0x0000000000000003) -#define HPTE_R_N ASM_CONST(0x0000000000000004) -#define HPTE_R_C ASM_CONST(0x0000000000000080) -#define HPTE_R_R ASM_CONST(0x0000000000000100) - -#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000) -#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000) - -/* Values for PP (assumes Ks=0, Kp=1) */ -/* pp0 will always be 0 for linux */ -#define PP_RWXX 0 /* Supervisor read/write, User none */ -#define PP_RWRX 1 /* Supervisor read/write, User read */ -#define PP_RWRW 2 /* Supervisor read/write, User read/write */ -#define PP_RXRX 3 /* Supervisor read, User read */ - -#ifndef __ASSEMBLY__ - -struct hash_pte { - unsigned long v; - unsigned long r; -}; - -extern struct hash_pte *htab_address; -extern unsigned long htab_size_bytes; -extern unsigned long htab_hash_mask; - -/* - * Page size definition - * - * shift : is the "PAGE_SHIFT" value for that page size - * sllp : is a bit mask with the value of SLB L || LP to be or'ed - * directly to a slbmte "vsid" value - * penc : is the HPTE encoding mask for the "LP" field: - * - */ -struct mmu_psize_def -{ - unsigned int shift; /* number of bits */ - unsigned int penc; /* HPTE encoding */ - unsigned int tlbiel; /* tlbiel supported for that page size */ - unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */ - unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */ -}; - -#endif /* __ASSEMBLY__ */ - -/* - * The kernel use the constants below to index in the page sizes array. - * The use of fixed constants for this purpose is better for performances - * of the low level hash refill handlers. - * - * A non supported page size has a "shift" field set to 0 - * - * Any new page size being implemented can get a new entry in here. Whether - * the kernel will use it or not is a different matter though. The actual page - * size used by hugetlbfs is not defined here and may be made variable - */ - -#define MMU_PAGE_4K 0 /* 4K */ -#define MMU_PAGE_64K 1 /* 64K */ -#define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */ -#define MMU_PAGE_1M 3 /* 1M */ -#define MMU_PAGE_16M 4 /* 16M */ -#define MMU_PAGE_16G 5 /* 16G */ -#define MMU_PAGE_COUNT 6 - -/* - * Segment sizes. - * These are the values used by hardware in the B field of - * SLB entries and the first dword of MMU hashtable entries. - * The B field is 2 bits; the values 2 and 3 are unused and reserved. - */ -#define MMU_SEGSIZE_256M 0 -#define MMU_SEGSIZE_1T 1 - - -#ifndef __ASSEMBLY__ - -/* - * The current system page and segment sizes - */ -extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT]; -extern int mmu_linear_psize; -extern int mmu_virtual_psize; -extern int mmu_vmalloc_psize; -extern int mmu_vmemmap_psize; -extern int mmu_io_psize; -extern int mmu_kernel_ssize; -extern int mmu_highuser_ssize; -extern u16 mmu_slb_size; -extern unsigned long tce_alloc_start, tce_alloc_end; - -/* - * If the processor supports 64k normal pages but not 64k cache - * inhibited pages, we have to be prepared to switch processes - * to use 4k pages when they create cache-inhibited mappings. - * If this is the case, mmu_ci_restrictions will be set to 1. - */ -extern int mmu_ci_restrictions; - -#ifdef CONFIG_HUGETLB_PAGE -/* - * The page size indexes of the huge pages for use by hugetlbfs - */ -extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT]; - -#endif /* CONFIG_HUGETLB_PAGE */ - -/* - * This function sets the AVPN and L fields of the HPTE appropriately - * for the page size - */ -static inline unsigned long hpte_encode_v(unsigned long va, int psize, - int ssize) -{ - unsigned long v; - v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm); - v <<= HPTE_V_AVPN_SHIFT; - if (psize != MMU_PAGE_4K) - v |= HPTE_V_LARGE; - v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT; - return v; -} - -/* - * This function sets the ARPN, and LP fields of the HPTE appropriately - * for the page size. We assume the pa is already "clean" that is properly - * aligned for the requested page size - */ -static inline unsigned long hpte_encode_r(unsigned long pa, int psize) -{ - unsigned long r; - - /* A 4K page needs no special encoding */ - if (psize == MMU_PAGE_4K) - return pa & HPTE_R_RPN; - else { - unsigned int penc = mmu_psize_defs[psize].penc; - unsigned int shift = mmu_psize_defs[psize].shift; - return (pa & ~((1ul << shift) - 1)) | (penc << 12); - } - return r; -} - -/* - * Build a VA given VSID, EA and segment size - */ -static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid, - int ssize) -{ - if (ssize == MMU_SEGSIZE_256M) - return (vsid << 28) | (ea & 0xfffffffUL); - return (vsid << 40) | (ea & 0xffffffffffUL); -} - -/* - * This hashes a virtual address - */ - -static inline unsigned long hpt_hash(unsigned long va, unsigned int shift, - int ssize) -{ - unsigned long hash, vsid; - - if (ssize == MMU_SEGSIZE_256M) { - hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift); - } else { - vsid = va >> 40; - hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift); - } - return hash & 0x7fffffffffUL; -} - -extern int __hash_page_4K(unsigned long ea, unsigned long access, - unsigned long vsid, pte_t *ptep, unsigned long trap, - unsigned int local, int ssize, int subpage_prot); -extern int __hash_page_64K(unsigned long ea, unsigned long access, - unsigned long vsid, pte_t *ptep, unsigned long trap, - unsigned int local, int ssize); -struct mm_struct; -extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap); -extern int hash_huge_page(struct mm_struct *mm, unsigned long access, - unsigned long ea, unsigned long vsid, int local, - unsigned long trap); - -extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend, - unsigned long pstart, unsigned long mode, - int psize, int ssize); -extern void set_huge_psize(int psize); -extern void add_gpage(unsigned long addr, unsigned long page_size, - unsigned long number_of_pages); -extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr); - -extern void htab_initialize(void); -extern void htab_initialize_secondary(void); -extern void hpte_init_native(void); -extern void hpte_init_lpar(void); -extern void hpte_init_iSeries(void); -extern void hpte_init_beat(void); -extern void hpte_init_beat_v3(void); - -extern void stabs_alloc(void); -extern void slb_initialize(void); -extern void slb_flush_and_rebolt(void); -extern void stab_initialize(unsigned long stab); - -extern void slb_vmalloc_update(void); -#endif /* __ASSEMBLY__ */ - -/* - * VSID allocation - * - * We first generate a 36-bit "proto-VSID". For kernel addresses this - * is equal to the ESID, for user addresses it is: - * (context << 15) | (esid & 0x7fff) - * - * The two forms are distinguishable because the top bit is 0 for user - * addresses, whereas the top two bits are 1 for kernel addresses. - * Proto-VSIDs with the top two bits equal to 0b10 are reserved for - * now. - * - * The proto-VSIDs are then scrambled into real VSIDs with the - * multiplicative hash: - * - * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS - * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7 - * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF - * - * This scramble is only well defined for proto-VSIDs below - * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are - * reserved. VSID_MULTIPLIER is prime, so in particular it is - * co-prime to VSID_MODULUS, making this a 1:1 scrambling function. - * Because the modulus is 2^n-1 we can compute it efficiently without - * a divide or extra multiply (see below). - * - * This scheme has several advantages over older methods: - * - * - We have VSIDs allocated for every kernel address - * (i.e. everything above 0xC000000000000000), except the very top - * segment, which simplifies several things. - * - * - We allow for 15 significant bits of ESID and 20 bits of - * context for user addresses. i.e. 8T (43 bits) of address space for - * up to 1M contexts (although the page table structure and context - * allocation will need changes to take advantage of this). - * - * - The scramble function gives robust scattering in the hash - * table (at least based on some initial results). The previous - * method was more susceptible to pathological cases giving excessive - * hash collisions. - */ -/* - * WARNING - If you change these you must make sure the asm - * implementations in slb_allocate (slb_low.S), do_stab_bolted - * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly. - * - * You'll also need to change the precomputed VSID values in head.S - * which are used by the iSeries firmware. - */ - -#define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */ -#define VSID_BITS_256M 36 -#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1) - -#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */ -#define VSID_BITS_1T 24 -#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1) - -#define CONTEXT_BITS 19 -#define USER_ESID_BITS 16 -#define USER_ESID_BITS_1T 4 - -#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT)) - -/* - * This macro generates asm code to compute the VSID scramble - * function. Used in slb_allocate() and do_stab_bolted. The function - * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS - * - * rt = register continaing the proto-VSID and into which the - * VSID will be stored - * rx = scratch register (clobbered) - * - * - rt and rx must be different registers - * - The answer will end up in the low VSID_BITS bits of rt. The higher - * bits may contain other garbage, so you may need to mask the - * result. - */ -#define ASM_VSID_SCRAMBLE(rt, rx, size) \ - lis rx,VSID_MULTIPLIER_##size@h; \ - ori rx,rx,VSID_MULTIPLIER_##size@l; \ - mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \ - \ - srdi rx,rt,VSID_BITS_##size; \ - clrldi rt,rt,(64-VSID_BITS_##size); \ - add rt,rt,rx; /* add high and low bits */ \ - /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \ - * 2^36-1+2^28-1. That in particular means that if r3 >= \ - * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \ - * the bit clear, r3 already has the answer we want, if it \ - * doesn't, the answer is the low 36 bits of r3+1. So in all \ - * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\ - addi rx,rt,1; \ - srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \ - add rt,rt,rx - - -#ifndef __ASSEMBLY__ - -typedef unsigned long mm_context_id_t; - -typedef struct { - mm_context_id_t id; - u16 user_psize; /* page size index */ - -#ifdef CONFIG_PPC_MM_SLICES - u64 low_slices_psize; /* SLB page size encodings */ - u64 high_slices_psize; /* 4 bits per slice for now */ -#else - u16 sllp; /* SLB page size encoding */ -#endif - unsigned long vdso_base; -} mm_context_t; - - -#if 0 -/* - * The code below is equivalent to this function for arguments - * < 2^VSID_BITS, which is all this should ever be called - * with. However gcc is not clever enough to compute the - * modulus (2^n-1) without a second multiply. - */ -#define vsid_scrample(protovsid, size) \ - ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size)) - -#else /* 1 */ -#define vsid_scramble(protovsid, size) \ - ({ \ - unsigned long x; \ - x = (protovsid) * VSID_MULTIPLIER_##size; \ - x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \ - (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \ - }) -#endif /* 1 */ - -/* This is only valid for addresses >= KERNELBASE */ -static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize) -{ - if (ssize == MMU_SEGSIZE_256M) - return vsid_scramble(ea >> SID_SHIFT, 256M); - return vsid_scramble(ea >> SID_SHIFT_1T, 1T); -} - -/* Returns the segment size indicator for a user address */ -static inline int user_segment_size(unsigned long addr) -{ - /* Use 1T segments if possible for addresses >= 1T */ - if (addr >= (1UL << SID_SHIFT_1T)) - return mmu_highuser_ssize; - return MMU_SEGSIZE_256M; -} - -/* This is only valid for user addresses (which are below 2^44) */ -static inline unsigned long get_vsid(unsigned long context, unsigned long ea, - int ssize) -{ - if (ssize == MMU_SEGSIZE_256M) - return vsid_scramble((context << USER_ESID_BITS) - | (ea >> SID_SHIFT), 256M); - return vsid_scramble((context << USER_ESID_BITS_1T) - | (ea >> SID_SHIFT_1T), 1T); -} - -/* - * This is only used on legacy iSeries in lparmap.c, - * hence the 256MB segment assumption. - */ -#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \ - VSID_MODULUS_256M) -#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea)) - -#endif /* __ASSEMBLY__ */ - -#endif /* _ASM_POWERPC_MMU_HASH64_H_ */ |