summaryrefslogtreecommitdiffstats
path: root/fs
diff options
context:
space:
mode:
Diffstat (limited to 'fs')
-rw-r--r--fs/Makefile3
-rw-r--r--fs/afs/cmservice.c19
-rw-r--r--fs/afs/internal.h2
-rw-r--r--fs/afs/rxrpc.c86
-rw-r--r--fs/bio-integrity.c657
-rw-r--r--fs/bio.c2037
-rw-r--r--fs/btrfs/btrfs_inode.h2
-rw-r--r--fs/btrfs/extent_io.c2
-rw-r--r--fs/btrfs/inode.c6
-rw-r--r--fs/btrfs/ioctl.c2
-rw-r--r--fs/buffer.c2
-rw-r--r--fs/dcache.c153
-rw-r--r--fs/ext4/resize.c2
-rw-r--r--fs/gfs2/glock.c8
-rw-r--r--fs/gfs2/glops.c2
-rw-r--r--fs/gfs2/lock_dlm.c4
-rw-r--r--fs/gfs2/recovery.c2
-rw-r--r--fs/gfs2/sys.c4
-rw-r--r--fs/ioprio.c241
-rw-r--r--fs/jbd2/commit.c6
-rw-r--r--fs/kernfs/dir.c1
-rw-r--r--fs/kernfs/file.c41
-rw-r--r--fs/kernfs/kernfs-internal.h5
-rw-r--r--fs/kernfs/mount.c22
-rw-r--r--fs/nfs/dir.c12
-rw-r--r--fs/nfs/inode.c2
-rw-r--r--fs/nfs/nfs4filelayoutdev.c4
-rw-r--r--fs/nfs/nfs4state.c4
-rw-r--r--fs/nfs/pagelist.c6
-rw-r--r--fs/nfs/pnfs.c2
-rw-r--r--fs/nfs/pnfs.h2
-rw-r--r--fs/nfs/write.c4
-rw-r--r--fs/nfsd/nfs4acl.c2
-rw-r--r--fs/nfsd/nfs4state.c15
-rw-r--r--fs/ocfs2/dlm/dlmmaster.c8
-rw-r--r--fs/splice.c6
-rw-r--r--fs/sysfs/group.c10
-rw-r--r--fs/sysfs/mount.c4
-rw-r--r--fs/ubifs/lpt_commit.c4
-rw-r--r--fs/ubifs/tnc_commit.c4
40 files changed, 304 insertions, 3094 deletions
diff --git a/fs/Makefile b/fs/Makefile
index f9cb987..4030cbf 100644
--- a/fs/Makefile
+++ b/fs/Makefile
@@ -14,14 +14,13 @@ obj-y := open.o read_write.o file_table.o super.o \
stack.o fs_struct.o statfs.o
ifeq ($(CONFIG_BLOCK),y)
-obj-y += buffer.o bio.o block_dev.o direct-io.o mpage.o ioprio.o
+obj-y += buffer.o block_dev.o direct-io.o mpage.o
else
obj-y += no-block.o
endif
obj-$(CONFIG_PROC_FS) += proc_namespace.o
-obj-$(CONFIG_BLK_DEV_INTEGRITY) += bio-integrity.o
obj-y += notify/
obj-$(CONFIG_EPOLL) += eventpoll.o
obj-$(CONFIG_ANON_INODES) += anon_inodes.o
diff --git a/fs/afs/cmservice.c b/fs/afs/cmservice.c
index 1c8c6cc..4b0eff6 100644
--- a/fs/afs/cmservice.c
+++ b/fs/afs/cmservice.c
@@ -130,6 +130,15 @@ static void afs_cm_destructor(struct afs_call *call)
{
_enter("");
+ /* Break the callbacks here so that we do it after the final ACK is
+ * received. The step number here must match the final number in
+ * afs_deliver_cb_callback().
+ */
+ if (call->unmarshall == 6) {
+ ASSERT(call->server && call->count && call->request);
+ afs_break_callbacks(call->server, call->count, call->request);
+ }
+
afs_put_server(call->server);
call->server = NULL;
kfree(call->buffer);
@@ -272,6 +281,16 @@ static int afs_deliver_cb_callback(struct afs_call *call, struct sk_buff *skb,
_debug("trailer");
if (skb->len != 0)
return -EBADMSG;
+
+ /* Record that the message was unmarshalled successfully so
+ * that the call destructor can know do the callback breaking
+ * work, even if the final ACK isn't received.
+ *
+ * If the step number changes, then afs_cm_destructor() must be
+ * updated also.
+ */
+ call->unmarshall++;
+ case 6:
break;
}
diff --git a/fs/afs/internal.h b/fs/afs/internal.h
index be75b50..590b55f 100644
--- a/fs/afs/internal.h
+++ b/fs/afs/internal.h
@@ -75,7 +75,7 @@ struct afs_call {
const struct afs_call_type *type; /* type of call */
const struct afs_wait_mode *wait_mode; /* completion wait mode */
wait_queue_head_t waitq; /* processes awaiting completion */
- work_func_t async_workfn;
+ void (*async_workfn)(struct afs_call *call); /* asynchronous work function */
struct work_struct async_work; /* asynchronous work processor */
struct work_struct work; /* actual work processor */
struct sk_buff_head rx_queue; /* received packets */
diff --git a/fs/afs/rxrpc.c b/fs/afs/rxrpc.c
index ef943df..03a3beb 100644
--- a/fs/afs/rxrpc.c
+++ b/fs/afs/rxrpc.c
@@ -25,7 +25,7 @@ static void afs_wake_up_call_waiter(struct afs_call *);
static int afs_wait_for_call_to_complete(struct afs_call *);
static void afs_wake_up_async_call(struct afs_call *);
static int afs_dont_wait_for_call_to_complete(struct afs_call *);
-static void afs_process_async_call(struct work_struct *);
+static void afs_process_async_call(struct afs_call *);
static void afs_rx_interceptor(struct sock *, unsigned long, struct sk_buff *);
static int afs_deliver_cm_op_id(struct afs_call *, struct sk_buff *, bool);
@@ -58,6 +58,13 @@ static void afs_collect_incoming_call(struct work_struct *);
static struct sk_buff_head afs_incoming_calls;
static DECLARE_WORK(afs_collect_incoming_call_work, afs_collect_incoming_call);
+static void afs_async_workfn(struct work_struct *work)
+{
+ struct afs_call *call = container_of(work, struct afs_call, async_work);
+
+ call->async_workfn(call);
+}
+
/*
* open an RxRPC socket and bind it to be a server for callback notifications
* - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
@@ -184,6 +191,28 @@ static void afs_free_call(struct afs_call *call)
}
/*
+ * End a call but do not free it
+ */
+static void afs_end_call_nofree(struct afs_call *call)
+{
+ if (call->rxcall) {
+ rxrpc_kernel_end_call(call->rxcall);
+ call->rxcall = NULL;
+ }
+ if (call->type->destructor)
+ call->type->destructor(call);
+}
+
+/*
+ * End a call and free it
+ */
+static void afs_end_call(struct afs_call *call)
+{
+ afs_end_call_nofree(call);
+ afs_free_call(call);
+}
+
+/*
* allocate a call with flat request and reply buffers
*/
struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
@@ -326,7 +355,8 @@ int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
atomic_read(&afs_outstanding_calls));
call->wait_mode = wait_mode;
- INIT_WORK(&call->async_work, afs_process_async_call);
+ call->async_workfn = afs_process_async_call;
+ INIT_WORK(&call->async_work, afs_async_workfn);
memset(&srx, 0, sizeof(srx));
srx.srx_family = AF_RXRPC;
@@ -383,11 +413,8 @@ error_do_abort:
rxrpc_kernel_abort_call(rxcall, RX_USER_ABORT);
while ((skb = skb_dequeue(&call->rx_queue)))
afs_free_skb(skb);
- rxrpc_kernel_end_call(rxcall);
- call->rxcall = NULL;
error_kill_call:
- call->type->destructor(call);
- afs_free_call(call);
+ afs_end_call(call);
_leave(" = %d", ret);
return ret;
}
@@ -509,12 +536,8 @@ static void afs_deliver_to_call(struct afs_call *call)
if (call->state >= AFS_CALL_COMPLETE) {
while ((skb = skb_dequeue(&call->rx_queue)))
afs_free_skb(skb);
- if (call->incoming) {
- rxrpc_kernel_end_call(call->rxcall);
- call->rxcall = NULL;
- call->type->destructor(call);
- afs_free_call(call);
- }
+ if (call->incoming)
+ afs_end_call(call);
}
_leave("");
@@ -564,10 +587,7 @@ static int afs_wait_for_call_to_complete(struct afs_call *call)
}
_debug("call complete");
- rxrpc_kernel_end_call(call->rxcall);
- call->rxcall = NULL;
- call->type->destructor(call);
- afs_free_call(call);
+ afs_end_call(call);
_leave(" = %d", ret);
return ret;
}
@@ -603,11 +623,8 @@ static int afs_dont_wait_for_call_to_complete(struct afs_call *call)
/*
* delete an asynchronous call
*/
-static void afs_delete_async_call(struct work_struct *work)
+static void afs_delete_async_call(struct afs_call *call)
{
- struct afs_call *call =
- container_of(work, struct afs_call, async_work);
-
_enter("");
afs_free_call(call);
@@ -620,11 +637,8 @@ static void afs_delete_async_call(struct work_struct *work)
* - on a multiple-thread workqueue this work item may try to run on several
* CPUs at the same time
*/
-static void afs_process_async_call(struct work_struct *work)
+static void afs_process_async_call(struct afs_call *call)
{
- struct afs_call *call =
- container_of(work, struct afs_call, async_work);
-
_enter("");
if (!skb_queue_empty(&call->rx_queue))
@@ -637,10 +651,7 @@ static void afs_process_async_call(struct work_struct *work)
call->reply = NULL;
/* kill the call */
- rxrpc_kernel_end_call(call->rxcall);
- call->rxcall = NULL;
- if (call->type->destructor)
- call->type->destructor(call);
+ afs_end_call_nofree(call);
/* we can't just delete the call because the work item may be
* queued */
@@ -663,13 +674,6 @@ void afs_transfer_reply(struct afs_call *call, struct sk_buff *skb)
call->reply_size += len;
}
-static void afs_async_workfn(struct work_struct *work)
-{
- struct afs_call *call = container_of(work, struct afs_call, async_work);
-
- call->async_workfn(work);
-}
-
/*
* accept the backlog of incoming calls
*/
@@ -790,10 +794,7 @@ void afs_send_empty_reply(struct afs_call *call)
_debug("oom");
rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT);
default:
- rxrpc_kernel_end_call(call->rxcall);
- call->rxcall = NULL;
- call->type->destructor(call);
- afs_free_call(call);
+ afs_end_call(call);
_leave(" [error]");
return;
}
@@ -823,17 +824,16 @@ void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
call->state = AFS_CALL_AWAIT_ACK;
n = rxrpc_kernel_send_data(call->rxcall, &msg, len);
if (n >= 0) {
+ /* Success */
_leave(" [replied]");
return;
}
+
if (n == -ENOMEM) {
_debug("oom");
rxrpc_kernel_abort_call(call->rxcall, RX_USER_ABORT);
}
- rxrpc_kernel_end_call(call->rxcall);
- call->rxcall = NULL;
- call->type->destructor(call);
- afs_free_call(call);
+ afs_end_call(call);
_leave(" [error]");
}
diff --git a/fs/bio-integrity.c b/fs/bio-integrity.c
deleted file mode 100644
index 1c2ce0c..0000000
--- a/fs/bio-integrity.c
+++ /dev/null
@@ -1,657 +0,0 @@
-/*
- * bio-integrity.c - bio data integrity extensions
- *
- * Copyright (C) 2007, 2008, 2009 Oracle Corporation
- * Written by: Martin K. Petersen <martin.petersen@oracle.com>
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License version
- * 2 as published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; see the file COPYING. If not, write to
- * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
- * USA.
- *
- */
-
-#include <linux/blkdev.h>
-#include <linux/mempool.h>
-#include <linux/export.h>
-#include <linux/bio.h>
-#include <linux/workqueue.h>
-#include <linux/slab.h>
-
-#define BIP_INLINE_VECS 4
-
-static struct kmem_cache *bip_slab;
-static struct workqueue_struct *kintegrityd_wq;
-
-/**
- * bio_integrity_alloc - Allocate integrity payload and attach it to bio
- * @bio: bio to attach integrity metadata to
- * @gfp_mask: Memory allocation mask
- * @nr_vecs: Number of integrity metadata scatter-gather elements
- *
- * Description: This function prepares a bio for attaching integrity
- * metadata. nr_vecs specifies the maximum number of pages containing
- * integrity metadata that can be attached.
- */
-struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
- gfp_t gfp_mask,
- unsigned int nr_vecs)
-{
- struct bio_integrity_payload *bip;
- struct bio_set *bs = bio->bi_pool;
- unsigned long idx = BIO_POOL_NONE;
- unsigned inline_vecs;
-
- if (!bs) {
- bip = kmalloc(sizeof(struct bio_integrity_payload) +
- sizeof(struct bio_vec) * nr_vecs, gfp_mask);
- inline_vecs = nr_vecs;
- } else {
- bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
- inline_vecs = BIP_INLINE_VECS;
- }
-
- if (unlikely(!bip))
- return NULL;
-
- memset(bip, 0, sizeof(*bip));
-
- if (nr_vecs > inline_vecs) {
- bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx,
- bs->bvec_integrity_pool);
- if (!bip->bip_vec)
- goto err;
- } else {
- bip->bip_vec = bip->bip_inline_vecs;
- }
-
- bip->bip_slab = idx;
- bip->bip_bio = bio;
- bio->bi_integrity = bip;
-
- return bip;
-err:
- mempool_free(bip, bs->bio_integrity_pool);
- return NULL;
-}
-EXPORT_SYMBOL(bio_integrity_alloc);
-
-/**
- * bio_integrity_free - Free bio integrity payload
- * @bio: bio containing bip to be freed
- *
- * Description: Used to free the integrity portion of a bio. Usually
- * called from bio_free().
- */
-void bio_integrity_free(struct bio *bio)
-{
- struct bio_integrity_payload *bip = bio->bi_integrity;
- struct bio_set *bs = bio->bi_pool;
-
- if (bip->bip_owns_buf)
- kfree(bip->bip_buf);
-
- if (bs) {
- if (bip->bip_slab != BIO_POOL_NONE)
- bvec_free(bs->bvec_integrity_pool, bip->bip_vec,
- bip->bip_slab);
-
- mempool_free(bip, bs->bio_integrity_pool);
- } else {
- kfree(bip);
- }
-
- bio->bi_integrity = NULL;
-}
-EXPORT_SYMBOL(bio_integrity_free);
-
-static inline unsigned int bip_integrity_vecs(struct bio_integrity_payload *bip)
-{
- if (bip->bip_slab == BIO_POOL_NONE)
- return BIP_INLINE_VECS;
-
- return bvec_nr_vecs(bip->bip_slab);
-}
-
-/**
- * bio_integrity_add_page - Attach integrity metadata
- * @bio: bio to update
- * @page: page containing integrity metadata
- * @len: number of bytes of integrity metadata in page
- * @offset: start offset within page
- *
- * Description: Attach a page containing integrity metadata to bio.
- */
-int bio_integrity_add_page(struct bio *bio, struct page *page,
- unsigned int len, unsigned int offset)
-{
- struct bio_integrity_payload *bip = bio->bi_integrity;
- struct bio_vec *iv;
-
- if (bip->bip_vcnt >= bip_integrity_vecs(bip)) {
- printk(KERN_ERR "%s: bip_vec full\n", __func__);
- return 0;
- }
-
- iv = bip->bip_vec + bip->bip_vcnt;
-
- iv->bv_page = page;
- iv->bv_len = len;
- iv->bv_offset = offset;
- bip->bip_vcnt++;
-
- return len;
-}
-EXPORT_SYMBOL(bio_integrity_add_page);
-
-static int bdev_integrity_enabled(struct block_device *bdev, int rw)
-{
- struct blk_integrity *bi = bdev_get_integrity(bdev);
-
- if (bi == NULL)
- return 0;
-
- if (rw == READ && bi->verify_fn != NULL &&
- (bi->flags & INTEGRITY_FLAG_READ))
- return 1;
-
- if (rw == WRITE && bi->generate_fn != NULL &&
- (bi->flags & INTEGRITY_FLAG_WRITE))
- return 1;
-
- return 0;
-}
-
-/**
- * bio_integrity_enabled - Check whether integrity can be passed
- * @bio: bio to check
- *
- * Description: Determines whether bio_integrity_prep() can be called
- * on this bio or not. bio data direction and target device must be
- * set prior to calling. The functions honors the write_generate and
- * read_verify flags in sysfs.
- */
-int bio_integrity_enabled(struct bio *bio)
-{
- if (!bio_is_rw(bio))
- return 0;
-
- /* Already protected? */
- if (bio_integrity(bio))
- return 0;
-
- return bdev_integrity_enabled(bio->bi_bdev, bio_data_dir(bio));
-}
-EXPORT_SYMBOL(bio_integrity_enabled);
-
-/**
- * bio_integrity_hw_sectors - Convert 512b sectors to hardware ditto
- * @bi: blk_integrity profile for device
- * @sectors: Number of 512 sectors to convert
- *
- * Description: The block layer calculates everything in 512 byte
- * sectors but integrity metadata is done in terms of the hardware
- * sector size of the storage device. Convert the block layer sectors
- * to physical sectors.
- */
-static inline unsigned int bio_integrity_hw_sectors(struct blk_integrity *bi,
- unsigned int sectors)
-{
- /* At this point there are only 512b or 4096b DIF/EPP devices */
- if (bi->sector_size == 4096)
- return sectors >>= 3;
-
- return sectors;
-}
-
-static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
- unsigned int sectors)
-{
- return bio_integrity_hw_sectors(bi, sectors) * bi->tuple_size;
-}
-
-/**
- * bio_integrity_tag_size - Retrieve integrity tag space
- * @bio: bio to inspect
- *
- * Description: Returns the maximum number of tag bytes that can be
- * attached to this bio. Filesystems can use this to determine how
- * much metadata to attach to an I/O.
- */
-unsigned int bio_integrity_tag_size(struct bio *bio)
-{
- struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
-
- BUG_ON(bio->bi_iter.bi_size == 0);
-
- return bi->tag_size * (bio->bi_iter.bi_size / bi->sector_size);
-}
-EXPORT_SYMBOL(bio_integrity_tag_size);
-
-static int bio_integrity_tag(struct bio *bio, void *tag_buf, unsigned int len,
- int set)
-{
- struct bio_integrity_payload *bip = bio->bi_integrity;
- struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
- unsigned int nr_sectors;
-
- BUG_ON(bip->bip_buf == NULL);
-
- if (bi->tag_size == 0)
- return -1;
-
- nr_sectors = bio_integrity_hw_sectors(bi,
- DIV_ROUND_UP(len, bi->tag_size));
-
- if (nr_sectors * bi->tuple_size > bip->bip_iter.bi_size) {
- printk(KERN_ERR "%s: tag too big for bio: %u > %u\n", __func__,
- nr_sectors * bi->tuple_size, bip->bip_iter.bi_size);
- return -1;
- }
-
- if (set)
- bi->set_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
- else
- bi->get_tag_fn(bip->bip_buf, tag_buf, nr_sectors);
-
- return 0;
-}
-
-/**
- * bio_integrity_set_tag - Attach a tag buffer to a bio
- * @bio: bio to attach buffer to
- * @tag_buf: Pointer to a buffer containing tag data
- * @len: Length of the included buffer
- *
- * Description: Use this function to tag a bio by leveraging the extra
- * space provided by devices formatted with integrity protection. The
- * size of the integrity buffer must be <= to the size reported by
- * bio_integrity_tag_size().
- */
-int bio_integrity_set_tag(struct bio *bio, void *tag_buf, unsigned int len)
-{
- BUG_ON(bio_data_dir(bio) != WRITE);
-
- return bio_integrity_tag(bio, tag_buf, len, 1);
-}
-EXPORT_SYMBOL(bio_integrity_set_tag);
-
-/**
- * bio_integrity_get_tag - Retrieve a tag buffer from a bio
- * @bio: bio to retrieve buffer from
- * @tag_buf: Pointer to a buffer for the tag data
- * @len: Length of the target buffer
- *
- * Description: Use this function to retrieve the tag buffer from a
- * completed I/O. The size of the integrity buffer must be <= to the
- * size reported by bio_integrity_tag_size().
- */
-int bio_integrity_get_tag(struct bio *bio, void *tag_buf, unsigned int len)
-{
- BUG_ON(bio_data_dir(bio) != READ);
-
- return bio_integrity_tag(bio, tag_buf, len, 0);
-}
-EXPORT_SYMBOL(bio_integrity_get_tag);
-
-/**
- * bio_integrity_generate_verify - Generate/verify integrity metadata for a bio
- * @bio: bio to generate/verify integrity metadata for
- * @operate: operate number, 1 for generate, 0 for verify
- */
-static int bio_integrity_generate_verify(struct bio *bio, int operate)
-{
- struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
- struct blk_integrity_exchg bix;
- struct bio_vec *bv;
- sector_t sector;
- unsigned int sectors, ret = 0, i;
- void *prot_buf = bio->bi_integrity->bip_buf;
-
- if (operate)
- sector = bio->bi_iter.bi_sector;
- else
- sector = bio->bi_integrity->bip_iter.bi_sector;
-
- bix.disk_name = bio->bi_bdev->bd_disk->disk_name;
- bix.sector_size = bi->sector_size;
-
- bio_for_each_segment_all(bv, bio, i) {
- void *kaddr = kmap_atomic(bv->bv_page);
- bix.data_buf = kaddr + bv->bv_offset;
- bix.data_size = bv->bv_len;
- bix.prot_buf = prot_buf;
- bix.sector = sector;
-
- if (operate)
- bi->generate_fn(&bix);
- else {
- ret = bi->verify_fn(&bix);
- if (ret) {
- kunmap_atomic(kaddr);
- return ret;
- }
- }
-
- sectors = bv->bv_len / bi->sector_size;
- sector += sectors;
- prot_buf += sectors * bi->tuple_size;
-
- kunmap_atomic(kaddr);
- }
- return ret;
-}
-
-/**
- * bio_integrity_generate - Generate integrity metadata for a bio
- * @bio: bio to generate integrity metadata for
- *
- * Description: Generates integrity metadata for a bio by calling the
- * block device's generation callback function. The bio must have a
- * bip attached with enough room to accommodate the generated
- * integrity metadata.
- */
-static void bio_integrity_generate(struct bio *bio)
-{
- bio_integrity_generate_verify(bio, 1);
-}
-
-static inline unsigned short blk_integrity_tuple_size(struct blk_integrity *bi)
-{
- if (bi)
- return bi->tuple_size;
-
- return 0;
-}
-
-/**
- * bio_integrity_prep - Prepare bio for integrity I/O
- * @bio: bio to prepare
- *
- * Description: Allocates a buffer for integrity metadata, maps the
- * pages and attaches them to a bio. The bio must have data
- * direction, target device and start sector set priot to calling. In
- * the WRITE case, integrity metadata will be generated using the
- * block device's integrity function. In the READ case, the buffer
- * will be prepared for DMA and a suitable end_io handler set up.
- */
-int bio_integrity_prep(struct bio *bio)
-{
- struct bio_integrity_payload *bip;
- struct blk_integrity *bi;
- struct request_queue *q;
- void *buf;
- unsigned long start, end;
- unsigned int len, nr_pages;
- unsigned int bytes, offset, i;
- unsigned int sectors;
-
- bi = bdev_get_integrity(bio->bi_bdev);
- q = bdev_get_queue(bio->bi_bdev);
- BUG_ON(bi == NULL);
- BUG_ON(bio_integrity(bio));
-
- sectors = bio_integrity_hw_sectors(bi, bio_sectors(bio));
-
- /* Allocate kernel buffer for protection data */
- len = sectors * blk_integrity_tuple_size(bi);
- buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
- if (unlikely(buf == NULL)) {
- printk(KERN_ERR "could not allocate integrity buffer\n");
- return -ENOMEM;
- }
-
- end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
- start = ((unsigned long) buf) >> PAGE_SHIFT;
- nr_pages = end - start;
-
- /* Allocate bio integrity payload and integrity vectors */
- bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
- if (unlikely(bip == NULL)) {
- printk(KERN_ERR "could not allocate data integrity bioset\n");
- kfree(buf);
- return -EIO;
- }
-
- bip->bip_owns_buf = 1;
- bip->bip_buf = buf;
- bip->bip_iter.bi_size = len;
- bip->bip_iter.bi_sector = bio->bi_iter.bi_sector;
-
- /* Map it */
- offset = offset_in_page(buf);
- for (i = 0 ; i < nr_pages ; i++) {
- int ret;
- bytes = PAGE_SIZE - offset;
-
- if (len <= 0)
- break;
-
- if (bytes > len)
- bytes = len;
-
- ret = bio_integrity_add_page(bio, virt_to_page(buf),
- bytes, offset);
-
- if (ret == 0)
- return 0;
-
- if (ret < bytes)
- break;
-
- buf += bytes;
- len -= bytes;
- offset = 0;
- }
-
- /* Install custom I/O completion handler if read verify is enabled */
- if (bio_data_dir(bio) == READ) {
- bip->bip_end_io = bio->bi_end_io;
- bio->bi_end_io = bio_integrity_endio;
- }
-
- /* Auto-generate integrity metadata if this is a write */
- if (bio_data_dir(bio) == WRITE)
- bio_integrity_generate(bio);
-
- return 0;
-}
-EXPORT_SYMBOL(bio_integrity_prep);
-
-/**
- * bio_integrity_verify - Verify integrity metadata for a bio
- * @bio: bio to verify
- *
- * Description: This function is called to verify the integrity of a
- * bio. The data in the bio io_vec is compared to the integrity
- * metadata returned by the HBA.
- */
-static int bio_integrity_verify(struct bio *bio)
-{
- return bio_integrity_generate_verify(bio, 0);
-}
-
-/**
- * bio_integrity_verify_fn - Integrity I/O completion worker
- * @work: Work struct stored in bio to be verified
- *
- * Description: This workqueue function is called to complete a READ
- * request. The function verifies the transferred integrity metadata
- * and then calls the original bio end_io function.
- */
-static void bio_integrity_verify_fn(struct work_struct *work)
-{
- struct bio_integrity_payload *bip =
- container_of(work, struct bio_integrity_payload, bip_work);
- struct bio *bio = bip->bip_bio;
- int error;
-
- error = bio_integrity_verify(bio);
-
- /* Restore original bio completion handler */
- bio->bi_end_io = bip->bip_end_io;
- bio_endio_nodec(bio, error);
-}
-
-/**
- * bio_integrity_endio - Integrity I/O completion function
- * @bio: Protected bio
- * @error: Pointer to errno
- *
- * Description: Completion for integrity I/O
- *
- * Normally I/O completion is done in interrupt context. However,
- * verifying I/O integrity is a time-consuming task which must be run
- * in process context. This function postpones completion
- * accordingly.
- */
-void bio_integrity_endio(struct bio *bio, int error)
-{
- struct bio_integrity_payload *bip = bio->bi_integrity;
-
- BUG_ON(bip->bip_bio != bio);
-
- /* In case of an I/O error there is no point in verifying the
- * integrity metadata. Restore original bio end_io handler
- * and run it.
- */
- if (error) {
- bio->bi_end_io = bip->bip_end_io;
- bio_endio(bio, error);
-
- return;
- }
-
- INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
- queue_work(kintegrityd_wq, &bip->bip_work);
-}
-EXPORT_SYMBOL(bio_integrity_endio);
-
-/**
- * bio_integrity_advance - Advance integrity vector
- * @bio: bio whose integrity vector to update
- * @bytes_done: number of data bytes that have been completed
- *
- * Description: This function calculates how many integrity bytes the
- * number of completed data bytes correspond to and advances the
- * integrity vector accordingly.
- */
-void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
-{
- struct bio_integrity_payload *bip = bio->bi_integrity;
- struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
- unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
-
- bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
-}
-EXPORT_SYMBOL(bio_integrity_advance);
-
-/**
- * bio_integrity_trim - Trim integrity vector
- * @bio: bio whose integrity vector to update
- * @offset: offset to first data sector
- * @sectors: number of data sectors
- *
- * Description: Used to trim the integrity vector in a cloned bio.
- * The ivec will be advanced corresponding to 'offset' data sectors
- * and the length will be truncated corresponding to 'len' data
- * sectors.
- */
-void bio_integrity_trim(struct bio *bio, unsigned int offset,
- unsigned int sectors)
-{
- struct bio_integrity_payload *bip = bio->bi_integrity;
- struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
-
- bio_integrity_advance(bio, offset << 9);
- bip->bip_iter.bi_size = bio_integrity_bytes(bi, sectors);
-}
-EXPORT_SYMBOL(bio_integrity_trim);
-
-/**
- * bio_integrity_clone - Callback for cloning bios with integrity metadata
- * @bio: New bio
- * @bio_src: Original bio
- * @gfp_mask: Memory allocation mask
- *
- * Description: Called to allocate a bip when cloning a bio
- */
-int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
- gfp_t gfp_mask)
-{
- struct bio_integrity_payload *bip_src = bio_src->bi_integrity;
- struct bio_integrity_payload *bip;
-
- BUG_ON(bip_src == NULL);
-
- bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
-
- if (bip == NULL)
- return -EIO;
-
- memcpy(bip->bip_vec, bip_src->bip_vec,
- bip_src->bip_vcnt * sizeof(struct bio_vec));
-
- bip->bip_vcnt = bip_src->bip_vcnt;
- bip->bip_iter = bip_src->bip_iter;
-
- return 0;
-}
-EXPORT_SYMBOL(bio_integrity_clone);
-
-int bioset_integrity_create(struct bio_set *bs, int pool_size)
-{
- if (bs->bio_integrity_pool)
- return 0;
-
- bs->bio_integrity_pool = mempool_create_slab_pool(pool_size, bip_slab);
- if (!bs->bio_integrity_pool)
- return -1;
-
- bs->bvec_integrity_pool = biovec_create_pool(bs, pool_size);
- if (!bs->bvec_integrity_pool) {
- mempool_destroy(bs->bio_integrity_pool);
- return -1;
- }
-
- return 0;
-}
-EXPORT_SYMBOL(bioset_integrity_create);
-
-void bioset_integrity_free(struct bio_set *bs)
-{
- if (bs->bio_integrity_pool)
- mempool_destroy(bs->bio_integrity_pool);
-
- if (bs->bvec_integrity_pool)
- mempool_destroy(bs->bvec_integrity_pool);
-}
-EXPORT_SYMBOL(bioset_integrity_free);
-
-void __init bio_integrity_init(void)
-{
- /*
- * kintegrityd won't block much but may burn a lot of CPU cycles.
- * Make it highpri CPU intensive wq with max concurrency of 1.
- */
- kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
- WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
- if (!kintegrityd_wq)
- panic("Failed to create kintegrityd\n");
-
- bip_slab = kmem_cache_create("bio_integrity_payload",
- sizeof(struct bio_integrity_payload) +
- sizeof(struct bio_vec) * BIP_INLINE_VECS,
- 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
- if (!bip_slab)
- panic("Failed to create slab\n");
-}
diff --git a/fs/bio.c b/fs/bio.c
deleted file mode 100644
index 6f0362b..0000000
--- a/fs/bio.c
+++ /dev/null
@@ -1,2037 +0,0 @@
-/*
- * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public Licens
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
- *
- */
-#include <linux/mm.h>
-#include <linux/swap.h>
-#include <linux/bio.h>
-#include <linux/blkdev.h>
-#include <linux/uio.h>
-#include <linux/iocontext.h>
-#include <linux/slab.h>
-#include <linux/init.h>
-#include <linux/kernel.h>
-#include <linux/export.h>
-#include <linux/mempool.h>
-#include <linux/workqueue.h>
-#include <linux/cgroup.h>
-#include <scsi/sg.h> /* for struct sg_iovec */
-
-#include <trace/events/block.h>
-
-/*
- * Test patch to inline a certain number of bi_io_vec's inside the bio
- * itself, to shrink a bio data allocation from two mempool calls to one
- */
-#define BIO_INLINE_VECS 4
-
-/*
- * if you change this list, also change bvec_alloc or things will
- * break badly! cannot be bigger than what you can fit into an
- * unsigned short
- */
-#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
-static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
- BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
-};
-#undef BV
-
-/*
- * fs_bio_set is the bio_set containing bio and iovec memory pools used by
- * IO code that does not need private memory pools.
- */
-struct bio_set *fs_bio_set;
-EXPORT_SYMBOL(fs_bio_set);
-
-/*
- * Our slab pool management
- */
-struct bio_slab {
- struct kmem_cache *slab;
- unsigned int slab_ref;
- unsigned int slab_size;
- char name[8];
-};
-static DEFINE_MUTEX(bio_slab_lock);
-static struct bio_slab *bio_slabs;
-static unsigned int bio_slab_nr, bio_slab_max;
-
-static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
-{
- unsigned int sz = sizeof(struct bio) + extra_size;
- struct kmem_cache *slab = NULL;
- struct bio_slab *bslab, *new_bio_slabs;
- unsigned int new_bio_slab_max;
- unsigned int i, entry = -1;
-
- mutex_lock(&bio_slab_lock);
-
- i = 0;
- while (i < bio_slab_nr) {
- bslab = &bio_slabs[i];
-
- if (!bslab->slab && entry == -1)
- entry = i;
- else if (bslab->slab_size == sz) {
- slab = bslab->slab;
- bslab->slab_ref++;
- break;
- }
- i++;
- }
-
- if (slab)
- goto out_unlock;
-
- if (bio_slab_nr == bio_slab_max && entry == -1) {
- new_bio_slab_max = bio_slab_max << 1;
- new_bio_slabs = krealloc(bio_slabs,
- new_bio_slab_max * sizeof(struct bio_slab),
- GFP_KERNEL);
- if (!new_bio_slabs)
- goto out_unlock;
- bio_slab_max = new_bio_slab_max;
- bio_slabs = new_bio_slabs;
- }
- if (entry == -1)
- entry = bio_slab_nr++;
-
- bslab = &bio_slabs[entry];
-
- snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
- slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
- if (!slab)
- goto out_unlock;
-
- bslab->slab = slab;
- bslab->slab_ref = 1;
- bslab->slab_size = sz;
-out_unlock:
- mutex_unlock(&bio_slab_lock);
- return slab;
-}
-
-static void bio_put_slab(struct bio_set *bs)
-{
- struct bio_slab *bslab = NULL;
- unsigned int i;
-
- mutex_lock(&bio_slab_lock);
-
- for (i = 0; i < bio_slab_nr; i++) {
- if (bs->bio_slab == bio_slabs[i].slab) {
- bslab = &bio_slabs[i];
- break;
- }
- }
-
- if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
- goto out;
-
- WARN_ON(!bslab->slab_ref);
-
- if (--bslab->slab_ref)
- goto out;
-
- kmem_cache_destroy(bslab->slab);
- bslab->slab = NULL;
-
-out:
- mutex_unlock(&bio_slab_lock);
-}
-
-unsigned int bvec_nr_vecs(unsigned short idx)
-{
- return bvec_slabs[idx].nr_vecs;
-}
-
-void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
-{
- BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
-
- if (idx == BIOVEC_MAX_IDX)
- mempool_free(bv, pool);
- else {
- struct biovec_slab *bvs = bvec_slabs + idx;
-
- kmem_cache_free(bvs->slab, bv);
- }
-}
-
-struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
- mempool_t *pool)
-{
- struct bio_vec *bvl;
-
- /*
- * see comment near bvec_array define!
- */
- switch (nr) {
- case 1:
- *idx = 0;
- break;
- case 2 ... 4:
- *idx = 1;
- break;
- case 5 ... 16:
- *idx = 2;
- break;
- case 17 ... 64:
- *idx = 3;
- break;
- case 65 ... 128:
- *idx = 4;
- break;
- case 129 ... BIO_MAX_PAGES:
- *idx = 5;
- break;
- default:
- return NULL;
- }
-
- /*
- * idx now points to the pool we want to allocate from. only the
- * 1-vec entry pool is mempool backed.
- */
- if (*idx == BIOVEC_MAX_IDX) {
-fallback:
- bvl = mempool_alloc(pool, gfp_mask);
- } else {
- struct biovec_slab *bvs = bvec_slabs + *idx;
- gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
-
- /*
- * Make this allocation restricted and don't dump info on
- * allocation failures, since we'll fallback to the mempool
- * in case of failure.
- */
- __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
-
- /*
- * Try a slab allocation. If this fails and __GFP_WAIT
- * is set, retry with the 1-entry mempool
- */
- bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
- if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
- *idx = BIOVEC_MAX_IDX;
- goto fallback;
- }
- }
-
- return bvl;
-}
-
-static void __bio_free(struct bio *bio)
-{
- bio_disassociate_task(bio);
-
- if (bio_integrity(bio))
- bio_integrity_free(bio);
-}
-
-static void bio_free(struct bio *bio)
-{
- struct bio_set *bs = bio->bi_pool;
- void *p;
-
- __bio_free(bio);
-
- if (bs) {
- if (bio_flagged(bio, BIO_OWNS_VEC))
- bvec_free(bs->bvec_pool, bio->bi_io_vec, BIO_POOL_IDX(bio));
-
- /*
- * If we have front padding, adjust the bio pointer before freeing
- */
- p = bio;
- p -= bs->front_pad;
-
- mempool_free(p, bs->bio_pool);
- } else {
- /* Bio was allocated by bio_kmalloc() */
- kfree(bio);
- }
-}
-
-void bio_init(struct bio *bio)
-{
- memset(bio, 0, sizeof(*bio));
- bio->bi_flags = 1 << BIO_UPTODATE;
- atomic_set(&bio->bi_remaining, 1);
- atomic_set(&bio->bi_cnt, 1);
-}
-EXPORT_SYMBOL(bio_init);
-
-/**
- * bio_reset - reinitialize a bio
- * @bio: bio to reset
- *
- * Description:
- * After calling bio_reset(), @bio will be in the same state as a freshly
- * allocated bio returned bio bio_alloc_bioset() - the only fields that are
- * preserved are the ones that are initialized by bio_alloc_bioset(). See
- * comment in struct bio.
- */
-void bio_reset(struct bio *bio)
-{
- unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
-
- __bio_free(bio);
-
- memset(bio, 0, BIO_RESET_BYTES);
- bio->bi_flags = flags|(1 << BIO_UPTODATE);
- atomic_set(&bio->bi_remaining, 1);
-}
-EXPORT_SYMBOL(bio_reset);
-
-static void bio_chain_endio(struct bio *bio, int error)
-{
- bio_endio(bio->bi_private, error);
- bio_put(bio);
-}
-
-/**
- * bio_chain - chain bio completions
- *
- * The caller won't have a bi_end_io called when @bio completes - instead,
- * @parent's bi_end_io won't be called until both @parent and @bio have
- * completed; the chained bio will also be freed when it completes.
- *
- * The caller must not set bi_private or bi_end_io in @bio.
- */
-void bio_chain(struct bio *bio, struct bio *parent)
-{
- BUG_ON(bio->bi_private || bio->bi_end_io);
-
- bio->bi_private = parent;
- bio->bi_end_io = bio_chain_endio;
- atomic_inc(&parent->bi_remaining);
-}
-EXPORT_SYMBOL(bio_chain);
-
-static void bio_alloc_rescue(struct work_struct *work)
-{
- struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
- struct bio *bio;
-
- while (1) {
- spin_lock(&bs->rescue_lock);
- bio = bio_list_pop(&bs->rescue_list);
- spin_unlock(&bs->rescue_lock);
-
- if (!bio)
- break;
-
- generic_make_request(bio);
- }
-}
-
-static void punt_bios_to_rescuer(struct bio_set *bs)
-{
- struct bio_list punt, nopunt;
- struct bio *bio;
-
- /*
- * In order to guarantee forward progress we must punt only bios that
- * were allocated from this bio_set; otherwise, if there was a bio on
- * there for a stacking driver higher up in the stack, processing it
- * could require allocating bios from this bio_set, and doing that from
- * our own rescuer would be bad.
- *
- * Since bio lists are singly linked, pop them all instead of trying to
- * remove from the middle of the list:
- */
-
- bio_list_init(&punt);
- bio_list_init(&nopunt);
-
- while ((bio = bio_list_pop(current->bio_list)))
- bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
-
- *current->bio_list = nopunt;
-
- spin_lock(&bs->rescue_lock);
- bio_list_merge(&bs->rescue_list, &punt);
- spin_unlock(&bs->rescue_lock);
-
- queue_work(bs->rescue_workqueue, &bs->rescue_work);
-}
-
-/**
- * bio_alloc_bioset - allocate a bio for I/O
- * @gfp_mask: the GFP_ mask given to the slab allocator
- * @nr_iovecs: number of iovecs to pre-allocate
- * @bs: the bio_set to allocate from.
- *
- * Description:
- * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
- * backed by the @bs's mempool.
- *
- * When @bs is not NULL, if %__GFP_WAIT is set then bio_alloc will always be
- * able to allocate a bio. This is due to the mempool guarantees. To make this
- * work, callers must never allocate more than 1 bio at a time from this pool.
- * Callers that need to allocate more than 1 bio must always submit the
- * previously allocated bio for IO before attempting to allocate a new one.
- * Failure to do so can cause deadlocks under memory pressure.
- *
- * Note that when running under generic_make_request() (i.e. any block
- * driver), bios are not submitted until after you return - see the code in
- * generic_make_request() that converts recursion into iteration, to prevent
- * stack overflows.
- *
- * This would normally mean allocating multiple bios under
- * generic_make_request() would be susceptible to deadlocks, but we have
- * deadlock avoidance code that resubmits any blocked bios from a rescuer
- * thread.
- *
- * However, we do not guarantee forward progress for allocations from other
- * mempools. Doing multiple allocations from the same mempool under
- * generic_make_request() should be avoided - instead, use bio_set's front_pad
- * for per bio allocations.
- *
- * RETURNS:
- * Pointer to new bio on success, NULL on failure.
- */
-struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
-{
- gfp_t saved_gfp = gfp_mask;
- unsigned front_pad;
- unsigned inline_vecs;
- unsigned long idx = BIO_POOL_NONE;
- struct bio_vec *bvl = NULL;
- struct bio *bio;
- void *p;
-
- if (!bs) {
- if (nr_iovecs > UIO_MAXIOV)
- return NULL;
-
- p = kmalloc(sizeof(struct bio) +
- nr_iovecs * sizeof(struct bio_vec),
- gfp_mask);
- front_pad = 0;
- inline_vecs = nr_iovecs;
- } else {
- /*
- * generic_make_request() converts recursion to iteration; this
- * means if we're running beneath it, any bios we allocate and
- * submit will not be submitted (and thus freed) until after we
- * return.
- *
- * This exposes us to a potential deadlock if we allocate
- * multiple bios from the same bio_set() while running
- * underneath generic_make_request(). If we were to allocate
- * multiple bios (say a stacking block driver that was splitting
- * bios), we would deadlock if we exhausted the mempool's
- * reserve.
- *
- * We solve this, and guarantee forward progress, with a rescuer
- * workqueue per bio_set. If we go to allocate and there are
- * bios on current->bio_list, we first try the allocation
- * without __GFP_WAIT; if that fails, we punt those bios we
- * would be blocking to the rescuer workqueue before we retry
- * with the original gfp_flags.
- */
-
- if (current->bio_list && !bio_list_empty(current->bio_list))
- gfp_mask &= ~__GFP_WAIT;
-
- p = mempool_alloc(bs->bio_pool, gfp_mask);
- if (!p && gfp_mask != saved_gfp) {
- punt_bios_to_rescuer(bs);
- gfp_mask = saved_gfp;
- p = mempool_alloc(bs->bio_pool, gfp_mask);
- }
-
- front_pad = bs->front_pad;
- inline_vecs = BIO_INLINE_VECS;
- }
-
- if (unlikely(!p))
- return NULL;
-
- bio = p + front_pad;
- bio_init(bio);
-
- if (nr_iovecs > inline_vecs) {
- bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
- if (!bvl && gfp_mask != saved_gfp) {
- punt_bios_to_rescuer(bs);
- gfp_mask = saved_gfp;
- bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
- }
-
- if (unlikely(!bvl))
- goto err_free;
-
- bio->bi_flags |= 1 << BIO_OWNS_VEC;
- } else if (nr_iovecs) {
- bvl = bio->bi_inline_vecs;
- }
-
- bio->bi_pool = bs;
- bio->bi_flags |= idx << BIO_POOL_OFFSET;
- bio->bi_max_vecs = nr_iovecs;
- bio->bi_io_vec = bvl;
- return bio;
-
-err_free:
- mempool_free(p, bs->bio_pool);
- return NULL;
-}
-EXPORT_SYMBOL(bio_alloc_bioset);
-
-void zero_fill_bio(struct bio *bio)
-{
- unsigned long flags;
- struct bio_vec bv;
- struct bvec_iter iter;
-
- bio_for_each_segment(bv, bio, iter) {
- char *data = bvec_kmap_irq(&bv, &flags);
- memset(data, 0, bv.bv_len);
- flush_dcache_page(bv.bv_page);
- bvec_kunmap_irq(data, &flags);
- }
-}
-EXPORT_SYMBOL(zero_fill_bio);
-
-/**
- * bio_put - release a reference to a bio
- * @bio: bio to release reference to
- *
- * Description:
- * Put a reference to a &struct bio, either one you have gotten with
- * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
- **/
-void bio_put(struct bio *bio)
-{
- BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
-
- /*
- * last put frees it
- */
- if (atomic_dec_and_test(&bio->bi_cnt))
- bio_free(bio);
-}
-EXPORT_SYMBOL(bio_put);
-
-inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
-{
- if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
- blk_recount_segments(q, bio);
-
- return bio->bi_phys_segments;
-}
-EXPORT_SYMBOL(bio_phys_segments);
-
-/**
- * __bio_clone_fast - clone a bio that shares the original bio's biovec
- * @bio: destination bio
- * @bio_src: bio to clone
- *
- * Clone a &bio. Caller will own the returned bio, but not
- * the actual data it points to. Reference count of returned
- * bio will be one.
- *
- * Caller must ensure that @bio_src is not freed before @bio.
- */
-void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
-{
- BUG_ON(bio->bi_pool && BIO_POOL_IDX(bio) != BIO_POOL_NONE);
-
- /*
- * most users will be overriding ->bi_bdev with a new target,
- * so we don't set nor calculate new physical/hw segment counts here
- */
- bio->bi_bdev = bio_src->bi_bdev;
- bio->bi_flags |= 1 << BIO_CLONED;
- bio->bi_rw = bio_src->bi_rw;
- bio->bi_iter = bio_src->bi_iter;
- bio->bi_io_vec = bio_src->bi_io_vec;
-}
-EXPORT_SYMBOL(__bio_clone_fast);
-
-/**
- * bio_clone_fast - clone a bio that shares the original bio's biovec
- * @bio: bio to clone
- * @gfp_mask: allocation priority
- * @bs: bio_set to allocate from
- *
- * Like __bio_clone_fast, only also allocates the returned bio
- */
-struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
-{
- struct bio *b;
-
- b = bio_alloc_bioset(gfp_mask, 0, bs);
- if (!b)
- return NULL;
-
- __bio_clone_fast(b, bio);
-
- if (bio_integrity(bio)) {
- int ret;
-
- ret = bio_integrity_clone(b, bio, gfp_mask);
-
- if (ret < 0) {
- bio_put(b);
- return NULL;
- }
- }
-
- return b;
-}
-EXPORT_SYMBOL(bio_clone_fast);
-
-/**
- * bio_clone_bioset - clone a bio
- * @bio_src: bio to clone
- * @gfp_mask: allocation priority
- * @bs: bio_set to allocate from
- *
- * Clone bio. Caller will own the returned bio, but not the actual data it
- * points to. Reference count of returned bio will be one.
- */
-struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
- struct bio_set *bs)
-{
- struct bvec_iter iter;
- struct bio_vec bv;
- struct bio *bio;
-
- /*
- * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
- * bio_src->bi_io_vec to bio->bi_io_vec.
- *
- * We can't do that anymore, because:
- *
- * - The point of cloning the biovec is to produce a bio with a biovec
- * the caller can modify: bi_idx and bi_bvec_done should be 0.
- *
- * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
- * we tried to clone the whole thing bio_alloc_bioset() would fail.
- * But the clone should succeed as long as the number of biovecs we
- * actually need to allocate is fewer than BIO_MAX_PAGES.
- *
- * - Lastly, bi_vcnt should not be looked at or relied upon by code
- * that does not own the bio - reason being drivers don't use it for
- * iterating over the biovec anymore, so expecting it to be kept up
- * to date (i.e. for clones that share the parent biovec) is just
- * asking for trouble and would force extra work on
- * __bio_clone_fast() anyways.
- */
-
- bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
- if (!bio)
- return NULL;
-
- bio->bi_bdev = bio_src->bi_bdev;
- bio->bi_rw = bio_src->bi_rw;
- bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
- bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
-
- if (bio->bi_rw & REQ_DISCARD)
- goto integrity_clone;
-
- if (bio->bi_rw & REQ_WRITE_SAME) {
- bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
- goto integrity_clone;
- }
-
- bio_for_each_segment(bv, bio_src, iter)
- bio->bi_io_vec[bio->bi_vcnt++] = bv;
-
-integrity_clone:
- if (bio_integrity(bio_src)) {
- int ret;
-
- ret = bio_integrity_clone(bio, bio_src, gfp_mask);
- if (ret < 0) {
- bio_put(bio);
- return NULL;
- }
- }
-
- return bio;
-}
-EXPORT_SYMBOL(bio_clone_bioset);
-
-/**
- * bio_get_nr_vecs - return approx number of vecs
- * @bdev: I/O target
- *
- * Return the approximate number of pages we can send to this target.
- * There's no guarantee that you will be able to fit this number of pages
- * into a bio, it does not account for dynamic restrictions that vary
- * on offset.
- */
-int bio_get_nr_vecs(struct block_device *bdev)
-{
- struct request_queue *q = bdev_get_queue(bdev);
- int nr_pages;
-
- nr_pages = min_t(unsigned,
- queue_max_segments(q),
- queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
-
- return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
-
-}
-EXPORT_SYMBOL(bio_get_nr_vecs);
-
-static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
- *page, unsigned int len, unsigned int offset,
- unsigned int max_sectors)
-{
- int retried_segments = 0;
- struct bio_vec *bvec;
-
- /*
- * cloned bio must not modify vec list
- */
- if (unlikely(bio_flagged(bio, BIO_CLONED)))
- return 0;
-
- if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
- return 0;
-
- /*
- * For filesystems with a blocksize smaller than the pagesize
- * we will often be called with the same page as last time and
- * a consecutive offset. Optimize this special case.
- */
- if (bio->bi_vcnt > 0) {
- struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
-
- if (page == prev->bv_page &&
- offset == prev->bv_offset + prev->bv_len) {
- unsigned int prev_bv_len = prev->bv_len;
- prev->bv_len += len;
-
- if (q->merge_bvec_fn) {
- struct bvec_merge_data bvm = {
- /* prev_bvec is already charged in
- bi_size, discharge it in order to
- simulate merging updated prev_bvec
- as new bvec. */
- .bi_bdev = bio->bi_bdev,
- .bi_sector = bio->bi_iter.bi_sector,
- .bi_size = bio->bi_iter.bi_size -
- prev_bv_len,
- .bi_rw = bio->bi_rw,
- };
-
- if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
- prev->bv_len -= len;
- return 0;
- }
- }
-
- goto done;
- }
- }
-
- if (bio->bi_vcnt >= bio->bi_max_vecs)
- return 0;
-
- /*
- * we might lose a segment or two here, but rather that than
- * make this too complex.
- */
-
- while (bio->bi_phys_segments >= queue_max_segments(q)) {
-
- if (retried_segments)
- return 0;
-
- retried_segments = 1;
- blk_recount_segments(q, bio);
- }
-
- /*
- * setup the new entry, we might clear it again later if we
- * cannot add the page
- */
- bvec = &bio->bi_io_vec[bio->bi_vcnt];
- bvec->bv_page = page;
- bvec->bv_len = len;
- bvec->bv_offset = offset;
-
- /*
- * if queue has other restrictions (eg varying max sector size
- * depending on offset), it can specify a merge_bvec_fn in the
- * queue to get further control
- */
- if (q->merge_bvec_fn) {
- struct bvec_merge_data bvm = {
- .bi_bdev = bio->bi_bdev,
- .bi_sector = bio->bi_iter.bi_sector,
- .bi_size = bio->bi_iter.bi_size,
- .bi_rw = bio->bi_rw,
- };
-
- /*
- * merge_bvec_fn() returns number of bytes it can accept
- * at this offset
- */
- if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
- bvec->bv_page = NULL;
- bvec->bv_len = 0;
- bvec->bv_offset = 0;
- return 0;
- }
- }
-
- /* If we may be able to merge these biovecs, force a recount */
- if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
- bio->bi_flags &= ~(1 << BIO_SEG_VALID);
-
- bio->bi_vcnt++;
- bio->bi_phys_segments++;
- done:
- bio->bi_iter.bi_size += len;
- return len;
-}
-
-/**
- * bio_add_pc_page - attempt to add page to bio
- * @q: the target queue
- * @bio: destination bio
- * @page: page to add
- * @len: vec entry length
- * @offset: vec entry offset
- *
- * Attempt to add a page to the bio_vec maplist. This can fail for a
- * number of reasons, such as the bio being full or target block device
- * limitations. The target block device must allow bio's up to PAGE_SIZE,
- * so it is always possible to add a single page to an empty bio.
- *
- * This should only be used by REQ_PC bios.
- */
-int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
- unsigned int len, unsigned int offset)
-{
- return __bio_add_page(q, bio, page, len, offset,
- queue_max_hw_sectors(q));
-}
-EXPORT_SYMBOL(bio_add_pc_page);
-
-/**
- * bio_add_page - attempt to add page to bio
- * @bio: destination bio
- * @page: page to add
- * @len: vec entry length
- * @offset: vec entry offset
- *
- * Attempt to add a page to the bio_vec maplist. This can fail for a
- * number of reasons, such as the bio being full or target block device
- * limitations. The target block device must allow bio's up to PAGE_SIZE,
- * so it is always possible to add a single page to an empty bio.
- */
-int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
- unsigned int offset)
-{
- struct request_queue *q = bdev_get_queue(bio->bi_bdev);
- return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
-}
-EXPORT_SYMBOL(bio_add_page);
-
-struct submit_bio_ret {
- struct completion event;
- int error;
-};
-
-static void submit_bio_wait_endio(struct bio *bio, int error)
-{
- struct submit_bio_ret *ret = bio->bi_private;
-
- ret->error = error;
- complete(&ret->event);
-}
-
-/**
- * submit_bio_wait - submit a bio, and wait until it completes
- * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
- * @bio: The &struct bio which describes the I/O
- *
- * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
- * bio_endio() on failure.
- */
-int submit_bio_wait(int rw, struct bio *bio)
-{
- struct submit_bio_ret ret;
-
- rw |= REQ_SYNC;
- init_completion(&ret.event);
- bio->bi_private = &ret;
- bio->bi_end_io = submit_bio_wait_endio;
- submit_bio(rw, bio);
- wait_for_completion(&ret.event);
-
- return ret.error;
-}
-EXPORT_SYMBOL(submit_bio_wait);
-
-/**
- * bio_advance - increment/complete a bio by some number of bytes
- * @bio: bio to advance
- * @bytes: number of bytes to complete
- *
- * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
- * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
- * be updated on the last bvec as well.
- *
- * @bio will then represent the remaining, uncompleted portion of the io.
- */
-void bio_advance(struct bio *bio, unsigned bytes)
-{
- if (bio_integrity(bio))
- bio_integrity_advance(bio, bytes);
-
- bio_advance_iter(bio, &bio->bi_iter, bytes);
-}
-EXPORT_SYMBOL(bio_advance);
-
-/**
- * bio_alloc_pages - allocates a single page for each bvec in a bio
- * @bio: bio to allocate pages for
- * @gfp_mask: flags for allocation
- *
- * Allocates pages up to @bio->bi_vcnt.
- *
- * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
- * freed.
- */
-int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
-{
- int i;
- struct bio_vec *bv;
-
- bio_for_each_segment_all(bv, bio, i) {
- bv->bv_page = alloc_page(gfp_mask);
- if (!bv->bv_page) {
- while (--bv >= bio->bi_io_vec)
- __free_page(bv->bv_page);
- return -ENOMEM;
- }
- }
-
- return 0;
-}
-EXPORT_SYMBOL(bio_alloc_pages);
-
-/**
- * bio_copy_data - copy contents of data buffers from one chain of bios to
- * another
- * @src: source bio list
- * @dst: destination bio list
- *
- * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
- * @src and @dst as linked lists of bios.
- *
- * Stops when it reaches the end of either @src or @dst - that is, copies
- * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
- */
-void bio_copy_data(struct bio *dst, struct bio *src)
-{
- struct bvec_iter src_iter, dst_iter;
- struct bio_vec src_bv, dst_bv;
- void *src_p, *dst_p;
- unsigned bytes;
-
- src_iter = src->bi_iter;
- dst_iter = dst->bi_iter;
-
- while (1) {
- if (!src_iter.bi_size) {
- src = src->bi_next;
- if (!src)
- break;
-
- src_iter = src->bi_iter;
- }
-
- if (!dst_iter.bi_size) {
- dst = dst->bi_next;
- if (!dst)
- break;
-
- dst_iter = dst->bi_iter;
- }
-
- src_bv = bio_iter_iovec(src, src_iter);
- dst_bv = bio_iter_iovec(dst, dst_iter);
-
- bytes = min(src_bv.bv_len, dst_bv.bv_len);
-
- src_p = kmap_atomic(src_bv.bv_page);
- dst_p = kmap_atomic(dst_bv.bv_page);
-
- memcpy(dst_p + dst_bv.bv_offset,
- src_p + src_bv.bv_offset,
- bytes);
-
- kunmap_atomic(dst_p);
- kunmap_atomic(src_p);
-
- bio_advance_iter(src, &src_iter, bytes);
- bio_advance_iter(dst, &dst_iter, bytes);
- }
-}
-EXPORT_SYMBOL(bio_copy_data);
-
-struct bio_map_data {
- int nr_sgvecs;
- int is_our_pages;
- struct sg_iovec sgvecs[];
-};
-
-static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
- const struct sg_iovec *iov, int iov_count,
- int is_our_pages)
-{
- memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
- bmd->nr_sgvecs = iov_count;
- bmd->is_our_pages = is_our_pages;
- bio->bi_private = bmd;
-}
-
-static struct bio_map_data *bio_alloc_map_data(int nr_segs,
- unsigned int iov_count,
- gfp_t gfp_mask)
-{
- if (iov_count > UIO_MAXIOV)
- return NULL;
-
- return kmalloc(sizeof(struct bio_map_data) +
- sizeof(struct sg_iovec) * iov_count, gfp_mask);
-}
-
-static int __bio_copy_iov(struct bio *bio, const struct sg_iovec *iov, int iov_count,
- int to_user, int from_user, int do_free_page)
-{
- int ret = 0, i;
- struct bio_vec *bvec;
- int iov_idx = 0;
- unsigned int iov_off = 0;
-
- bio_for_each_segment_all(bvec, bio, i) {
- char *bv_addr = page_address(bvec->bv_page);
- unsigned int bv_len = bvec->bv_len;
-
- while (bv_len && iov_idx < iov_count) {
- unsigned int bytes;
- char __user *iov_addr;
-
- bytes = min_t(unsigned int,
- iov[iov_idx].iov_len - iov_off, bv_len);
- iov_addr = iov[iov_idx].iov_base + iov_off;
-
- if (!ret) {
- if (to_user)
- ret = copy_to_user(iov_addr, bv_addr,
- bytes);
-
- if (from_user)
- ret = copy_from_user(bv_addr, iov_addr,
- bytes);
-
- if (ret)
- ret = -EFAULT;
- }
-
- bv_len -= bytes;
- bv_addr += bytes;
- iov_addr += bytes;
- iov_off += bytes;
-
- if (iov[iov_idx].iov_len == iov_off) {
- iov_idx++;
- iov_off = 0;
- }
- }
-
- if (do_free_page)
- __free_page(bvec->bv_page);
- }
-
- return ret;
-}
-
-/**
- * bio_uncopy_user - finish previously mapped bio
- * @bio: bio being terminated
- *
- * Free pages allocated from bio_copy_user() and write back data
- * to user space in case of a read.
- */
-int bio_uncopy_user(struct bio *bio)
-{
- struct bio_map_data *bmd = bio->bi_private;
- struct bio_vec *bvec;
- int ret = 0, i;
-
- if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
- /*
- * if we're in a workqueue, the request is orphaned, so
- * don't copy into a random user address space, just free.
- */
- if (current->mm)
- ret = __bio_copy_iov(bio, bmd->sgvecs, bmd->nr_sgvecs,
- bio_data_dir(bio) == READ,
- 0, bmd->is_our_pages);
- else if (bmd->is_our_pages)
- bio_for_each_segment_all(bvec, bio, i)
- __free_page(bvec->bv_page);
- }
- kfree(bmd);
- bio_put(bio);
- return ret;
-}
-EXPORT_SYMBOL(bio_uncopy_user);
-
-/**
- * bio_copy_user_iov - copy user data to bio
- * @q: destination block queue
- * @map_data: pointer to the rq_map_data holding pages (if necessary)
- * @iov: the iovec.
- * @iov_count: number of elements in the iovec
- * @write_to_vm: bool indicating writing to pages or not
- * @gfp_mask: memory allocation flags
- *
- * Prepares and returns a bio for indirect user io, bouncing data
- * to/from kernel pages as necessary. Must be paired with
- * call bio_uncopy_user() on io completion.
- */
-struct bio *bio_copy_user_iov(struct request_queue *q,
- struct rq_map_data *map_data,
- const struct sg_iovec *iov, int iov_count,
- int write_to_vm, gfp_t gfp_mask)
-{
- struct bio_map_data *bmd;
- struct bio_vec *bvec;
- struct page *page;
- struct bio *bio;
- int i, ret;
- int nr_pages = 0;
- unsigned int len = 0;
- unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
-
- for (i = 0; i < iov_count; i++) {
- unsigned long uaddr;
- unsigned long end;
- unsigned long start;
-
- uaddr = (unsigned long)iov[i].iov_base;
- end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
- start = uaddr >> PAGE_SHIFT;
-
- /*
- * Overflow, abort
- */
- if (end < start)
- return ERR_PTR(-EINVAL);
-
- nr_pages += end - start;
- len += iov[i].iov_len;
- }
-
- if (offset)
- nr_pages++;
-
- bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
- if (!bmd)
- return ERR_PTR(-ENOMEM);
-
- ret = -ENOMEM;
- bio = bio_kmalloc(gfp_mask, nr_pages);
- if (!bio)
- goto out_bmd;
-
- if (!write_to_vm)
- bio->bi_rw |= REQ_WRITE;
-
- ret = 0;
-
- if (map_data) {
- nr_pages = 1 << map_data->page_order;
- i = map_data->offset / PAGE_SIZE;
- }
- while (len) {
- unsigned int bytes = PAGE_SIZE;
-
- bytes -= offset;
-
- if (bytes > len)
- bytes = len;
-
- if (map_data) {
- if (i == map_data->nr_entries * nr_pages) {
- ret = -ENOMEM;
- break;
- }
-
- page = map_data->pages[i / nr_pages];
- page += (i % nr_pages);
-
- i++;
- } else {
- page = alloc_page(q->bounce_gfp | gfp_mask);
- if (!page) {
- ret = -ENOMEM;
- break;
- }
- }
-
- if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
- break;
-
- len -= bytes;
- offset = 0;
- }
-
- if (ret)
- goto cleanup;
-
- /*
- * success
- */
- if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
- (map_data && map_data->from_user)) {
- ret = __bio_copy_iov(bio, iov, iov_count, 0, 1, 0);
- if (ret)
- goto cleanup;
- }
-
- bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
- return bio;
-cleanup:
- if (!map_data)
- bio_for_each_segment_all(bvec, bio, i)
- __free_page(bvec->bv_page);
-
- bio_put(bio);
-out_bmd:
- kfree(bmd);
- return ERR_PTR(ret);
-}
-
-/**
- * bio_copy_user - copy user data to bio
- * @q: destination block queue
- * @map_data: pointer to the rq_map_data holding pages (if necessary)
- * @uaddr: start of user address
- * @len: length in bytes
- * @write_to_vm: bool indicating writing to pages or not
- * @gfp_mask: memory allocation flags
- *
- * Prepares and returns a bio for indirect user io, bouncing data
- * to/from kernel pages as necessary. Must be paired with
- * call bio_uncopy_user() on io completion.
- */
-struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
- unsigned long uaddr, unsigned int len,
- int write_to_vm, gfp_t gfp_mask)
-{
- struct sg_iovec iov;
-
- iov.iov_base = (void __user *)uaddr;
- iov.iov_len = len;
-
- return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
-}
-EXPORT_SYMBOL(bio_copy_user);
-
-static struct bio *__bio_map_user_iov(struct request_queue *q,
- struct block_device *bdev,
- const struct sg_iovec *iov, int iov_count,
- int write_to_vm, gfp_t gfp_mask)
-{
- int i, j;
- int nr_pages = 0;
- struct page **pages;
- struct bio *bio;
- int cur_page = 0;
- int ret, offset;
-
- for (i = 0; i < iov_count; i++) {
- unsigned long uaddr = (unsigned long)iov[i].iov_base;
- unsigned long len = iov[i].iov_len;
- unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
- unsigned long start = uaddr >> PAGE_SHIFT;
-
- /*
- * Overflow, abort
- */
- if (end < start)
- return ERR_PTR(-EINVAL);
-
- nr_pages += end - start;
- /*
- * buffer must be aligned to at least hardsector size for now
- */
- if (uaddr & queue_dma_alignment(q))
- return ERR_PTR(-EINVAL);
- }
-
- if (!nr_pages)
- return ERR_PTR(-EINVAL);
-
- bio = bio_kmalloc(gfp_mask, nr_pages);
- if (!bio)
- return ERR_PTR(-ENOMEM);
-
- ret = -ENOMEM;
- pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
- if (!pages)
- goto out;
-
- for (i = 0; i < iov_count; i++) {
- unsigned long uaddr = (unsigned long)iov[i].iov_base;
- unsigned long len = iov[i].iov_len;
- unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
- unsigned long start = uaddr >> PAGE_SHIFT;
- const int local_nr_pages = end - start;
- const int page_limit = cur_page + local_nr_pages;
-
- ret = get_user_pages_fast(uaddr, local_nr_pages,
- write_to_vm, &pages[cur_page]);
- if (ret < local_nr_pages) {
- ret = -EFAULT;
- goto out_unmap;
- }
-
- offset = uaddr & ~PAGE_MASK;
- for (j = cur_page; j < page_limit; j++) {
- unsigned int bytes = PAGE_SIZE - offset;
-
- if (len <= 0)
- break;
-
- if (bytes > len)
- bytes = len;
-
- /*
- * sorry...
- */
- if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
- bytes)
- break;
-
- len -= bytes;
- offset = 0;
- }
-
- cur_page = j;
- /*
- * release the pages we didn't map into the bio, if any
- */
- while (j < page_limit)
- page_cache_release(pages[j++]);
- }
-
- kfree(pages);
-
- /*
- * set data direction, and check if mapped pages need bouncing
- */
- if (!write_to_vm)
- bio->bi_rw |= REQ_WRITE;
-
- bio->bi_bdev = bdev;
- bio->bi_flags |= (1 << BIO_USER_MAPPED);
- return bio;
-
- out_unmap:
- for (i = 0; i < nr_pages; i++) {
- if(!pages[i])
- break;
- page_cache_release(pages[i]);
- }
- out:
- kfree(pages);
- bio_put(bio);
- return ERR_PTR(ret);
-}
-
-/**
- * bio_map_user - map user address into bio
- * @q: the struct request_queue for the bio
- * @bdev: destination block device
- * @uaddr: start of user address
- * @len: length in bytes
- * @write_to_vm: bool indicating writing to pages or not
- * @gfp_mask: memory allocation flags
- *
- * Map the user space address into a bio suitable for io to a block
- * device. Returns an error pointer in case of error.
- */
-struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
- unsigned long uaddr, unsigned int len, int write_to_vm,
- gfp_t gfp_mask)
-{
- struct sg_iovec iov;
-
- iov.iov_base = (void __user *)uaddr;
- iov.iov_len = len;
-
- return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
-}
-EXPORT_SYMBOL(bio_map_user);
-
-/**
- * bio_map_user_iov - map user sg_iovec table into bio
- * @q: the struct request_queue for the bio
- * @bdev: destination block device
- * @iov: the iovec.
- * @iov_count: number of elements in the iovec
- * @write_to_vm: bool indicating writing to pages or not
- * @gfp_mask: memory allocation flags
- *
- * Map the user space address into a bio suitable for io to a block
- * device. Returns an error pointer in case of error.
- */
-struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
- const struct sg_iovec *iov, int iov_count,
- int write_to_vm, gfp_t gfp_mask)
-{
- struct bio *bio;
-
- bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
- gfp_mask);
- if (IS_ERR(bio))
- return bio;
-
- /*
- * subtle -- if __bio_map_user() ended up bouncing a bio,
- * it would normally disappear when its bi_end_io is run.
- * however, we need it for the unmap, so grab an extra
- * reference to it
- */
- bio_get(bio);
-
- return bio;
-}
-
-static void __bio_unmap_user(struct bio *bio)
-{
- struct bio_vec *bvec;
- int i;
-
- /*
- * make sure we dirty pages we wrote to
- */
- bio_for_each_segment_all(bvec, bio, i) {
- if (bio_data_dir(bio) == READ)
- set_page_dirty_lock(bvec->bv_page);
-
- page_cache_release(bvec->bv_page);
- }
-
- bio_put(bio);
-}
-
-/**
- * bio_unmap_user - unmap a bio
- * @bio: the bio being unmapped
- *
- * Unmap a bio previously mapped by bio_map_user(). Must be called with
- * a process context.
- *
- * bio_unmap_user() may sleep.
- */
-void bio_unmap_user(struct bio *bio)
-{
- __bio_unmap_user(bio);
- bio_put(bio);
-}
-EXPORT_SYMBOL(bio_unmap_user);
-
-static void bio_map_kern_endio(struct bio *bio, int err)
-{
- bio_put(bio);
-}
-
-static struct bio *__bio_map_kern(struct request_queue *q, void *data,
- unsigned int len, gfp_t gfp_mask)
-{
- unsigned long kaddr = (unsigned long)data;
- unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
- unsigned long start = kaddr >> PAGE_SHIFT;
- const int nr_pages = end - start;
- int offset, i;
- struct bio *bio;
-
- bio = bio_kmalloc(gfp_mask, nr_pages);
- if (!bio)
- return ERR_PTR(-ENOMEM);
-
- offset = offset_in_page(kaddr);
- for (i = 0; i < nr_pages; i++) {
- unsigned int bytes = PAGE_SIZE - offset;
-
- if (len <= 0)
- break;
-
- if (bytes > len)
- bytes = len;
-
- if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
- offset) < bytes)
- break;
-
- data += bytes;
- len -= bytes;
- offset = 0;
- }
-
- bio->bi_end_io = bio_map_kern_endio;
- return bio;
-}
-
-/**
- * bio_map_kern - map kernel address into bio
- * @q: the struct request_queue for the bio
- * @data: pointer to buffer to map
- * @len: length in bytes
- * @gfp_mask: allocation flags for bio allocation
- *
- * Map the kernel address into a bio suitable for io to a block
- * device. Returns an error pointer in case of error.
- */
-struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
- gfp_t gfp_mask)
-{
- struct bio *bio;
-
- bio = __bio_map_kern(q, data, len, gfp_mask);
- if (IS_ERR(bio))
- return bio;
-
- if (bio->bi_iter.bi_size == len)
- return bio;
-
- /*
- * Don't support partial mappings.
- */
- bio_put(bio);
- return ERR_PTR(-EINVAL);
-}
-EXPORT_SYMBOL(bio_map_kern);
-
-static void bio_copy_kern_endio(struct bio *bio, int err)
-{
- struct bio_vec *bvec;
- const int read = bio_data_dir(bio) == READ;
- struct bio_map_data *bmd = bio->bi_private;
- int i;
- char *p = bmd->sgvecs[0].iov_base;
-
- bio_for_each_segment_all(bvec, bio, i) {
- char *addr = page_address(bvec->bv_page);
-
- if (read)
- memcpy(p, addr, bvec->bv_len);
-
- __free_page(bvec->bv_page);
- p += bvec->bv_len;
- }
-
- kfree(bmd);
- bio_put(bio);
-}
-
-/**
- * bio_copy_kern - copy kernel address into bio
- * @q: the struct request_queue for the bio
- * @data: pointer to buffer to copy
- * @len: length in bytes
- * @gfp_mask: allocation flags for bio and page allocation
- * @reading: data direction is READ
- *
- * copy the kernel address into a bio suitable for io to a block
- * device. Returns an error pointer in case of error.
- */
-struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
- gfp_t gfp_mask, int reading)
-{
- struct bio *bio;
- struct bio_vec *bvec;
- int i;
-
- bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
- if (IS_ERR(bio))
- return bio;
-
- if (!reading) {
- void *p = data;
-
- bio_for_each_segment_all(bvec, bio, i) {
- char *addr = page_address(bvec->bv_page);
-
- memcpy(addr, p, bvec->bv_len);
- p += bvec->bv_len;
- }
- }
-
- bio->bi_end_io = bio_copy_kern_endio;
-
- return bio;
-}
-EXPORT_SYMBOL(bio_copy_kern);
-
-/*
- * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
- * for performing direct-IO in BIOs.
- *
- * The problem is that we cannot run set_page_dirty() from interrupt context
- * because the required locks are not interrupt-safe. So what we can do is to
- * mark the pages dirty _before_ performing IO. And in interrupt context,
- * check that the pages are still dirty. If so, fine. If not, redirty them
- * in process context.
- *
- * We special-case compound pages here: normally this means reads into hugetlb
- * pages. The logic in here doesn't really work right for compound pages
- * because the VM does not uniformly chase down the head page in all cases.
- * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
- * handle them at all. So we skip compound pages here at an early stage.
- *
- * Note that this code is very hard to test under normal circumstances because
- * direct-io pins the pages with get_user_pages(). This makes
- * is_page_cache_freeable return false, and the VM will not clean the pages.
- * But other code (eg, flusher threads) could clean the pages if they are mapped
- * pagecache.
- *
- * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
- * deferred bio dirtying paths.
- */
-
-/*
- * bio_set_pages_dirty() will mark all the bio's pages as dirty.
- */
-void bio_set_pages_dirty(struct bio *bio)
-{
- struct bio_vec *bvec;
- int i;
-
- bio_for_each_segment_all(bvec, bio, i) {
- struct page *page = bvec->bv_page;
-
- if (page && !PageCompound(page))
- set_page_dirty_lock(page);
- }
-}
-
-static void bio_release_pages(struct bio *bio)
-{
- struct bio_vec *bvec;
- int i;
-
- bio_for_each_segment_all(bvec, bio, i) {
- struct page *page = bvec->bv_page;
-
- if (page)
- put_page(page);
- }
-}
-
-/*
- * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
- * If they are, then fine. If, however, some pages are clean then they must
- * have been written out during the direct-IO read. So we take another ref on
- * the BIO and the offending pages and re-dirty the pages in process context.
- *
- * It is expected that bio_check_pages_dirty() will wholly own the BIO from
- * here on. It will run one page_cache_release() against each page and will
- * run one bio_put() against the BIO.
- */
-
-static void bio_dirty_fn(struct work_struct *work);
-
-static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
-static DEFINE_SPINLOCK(bio_dirty_lock);
-static struct bio *bio_dirty_list;
-
-/*
- * This runs in process context
- */
-static void bio_dirty_fn(struct work_struct *work)
-{
- unsigned long flags;
- struct bio *bio;
-
- spin_lock_irqsave(&bio_dirty_lock, flags);
- bio = bio_dirty_list;
- bio_dirty_list = NULL;
- spin_unlock_irqrestore(&bio_dirty_lock, flags);
-
- while (bio) {
- struct bio *next = bio->bi_private;
-
- bio_set_pages_dirty(bio);
- bio_release_pages(bio);
- bio_put(bio);
- bio = next;
- }
-}
-
-void bio_check_pages_dirty(struct bio *bio)
-{
- struct bio_vec *bvec;
- int nr_clean_pages = 0;
- int i;
-
- bio_for_each_segment_all(bvec, bio, i) {
- struct page *page = bvec->bv_page;
-
- if (PageDirty(page) || PageCompound(page)) {
- page_cache_release(page);
- bvec->bv_page = NULL;
- } else {
- nr_clean_pages++;
- }
- }
-
- if (nr_clean_pages) {
- unsigned long flags;
-
- spin_lock_irqsave(&bio_dirty_lock, flags);
- bio->bi_private = bio_dirty_list;
- bio_dirty_list = bio;
- spin_unlock_irqrestore(&bio_dirty_lock, flags);
- schedule_work(&bio_dirty_work);
- } else {
- bio_put(bio);
- }
-}
-
-#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
-void bio_flush_dcache_pages(struct bio *bi)
-{
- struct bio_vec bvec;
- struct bvec_iter iter;
-
- bio_for_each_segment(bvec, bi, iter)
- flush_dcache_page(bvec.bv_page);
-}
-EXPORT_SYMBOL(bio_flush_dcache_pages);
-#endif
-
-/**
- * bio_endio - end I/O on a bio
- * @bio: bio
- * @error: error, if any
- *
- * Description:
- * bio_endio() will end I/O on the whole bio. bio_endio() is the
- * preferred way to end I/O on a bio, it takes care of clearing
- * BIO_UPTODATE on error. @error is 0 on success, and and one of the
- * established -Exxxx (-EIO, for instance) error values in case
- * something went wrong. No one should call bi_end_io() directly on a
- * bio unless they own it and thus know that it has an end_io
- * function.
- **/
-void bio_endio(struct bio *bio, int error)
-{
- while (bio) {
- BUG_ON(atomic_read(&bio->bi_remaining) <= 0);
-
- if (error)
- clear_bit(BIO_UPTODATE, &bio->bi_flags);
- else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
- error = -EIO;
-
- if (!atomic_dec_and_test(&bio->bi_remaining))
- return;
-
- /*
- * Need to have a real endio function for chained bios,
- * otherwise various corner cases will break (like stacking
- * block devices that save/restore bi_end_io) - however, we want
- * to avoid unbounded recursion and blowing the stack. Tail call
- * optimization would handle this, but compiling with frame
- * pointers also disables gcc's sibling call optimization.
- */
- if (bio->bi_end_io == bio_chain_endio) {
- struct bio *parent = bio->bi_private;
- bio_put(bio);
- bio = parent;
- } else {
- if (bio->bi_end_io)
- bio->bi_end_io(bio, error);
- bio = NULL;
- }
- }
-}
-EXPORT_SYMBOL(bio_endio);
-
-/**
- * bio_endio_nodec - end I/O on a bio, without decrementing bi_remaining
- * @bio: bio
- * @error: error, if any
- *
- * For code that has saved and restored bi_end_io; thing hard before using this
- * function, probably you should've cloned the entire bio.
- **/
-void bio_endio_nodec(struct bio *bio, int error)
-{
- atomic_inc(&bio->bi_remaining);
- bio_endio(bio, error);
-}
-EXPORT_SYMBOL(bio_endio_nodec);
-
-/**
- * bio_split - split a bio
- * @bio: bio to split
- * @sectors: number of sectors to split from the front of @bio
- * @gfp: gfp mask
- * @bs: bio set to allocate from
- *
- * Allocates and returns a new bio which represents @sectors from the start of
- * @bio, and updates @bio to represent the remaining sectors.
- *
- * The newly allocated bio will point to @bio's bi_io_vec; it is the caller's
- * responsibility to ensure that @bio is not freed before the split.
- */
-struct bio *bio_split(struct bio *bio, int sectors,
- gfp_t gfp, struct bio_set *bs)
-{
- struct bio *split = NULL;
-
- BUG_ON(sectors <= 0);
- BUG_ON(sectors >= bio_sectors(bio));
-
- split = bio_clone_fast(bio, gfp, bs);
- if (!split)
- return NULL;
-
- split->bi_iter.bi_size = sectors << 9;
-
- if (bio_integrity(split))
- bio_integrity_trim(split, 0, sectors);
-
- bio_advance(bio, split->bi_iter.bi_size);
-
- return split;
-}
-EXPORT_SYMBOL(bio_split);
-
-/**
- * bio_trim - trim a bio
- * @bio: bio to trim
- * @offset: number of sectors to trim from the front of @bio
- * @size: size we want to trim @bio to, in sectors
- */
-void bio_trim(struct bio *bio, int offset, int size)
-{
- /* 'bio' is a cloned bio which we need to trim to match
- * the given offset and size.
- */
-
- size <<= 9;
- if (offset == 0 && size == bio->bi_iter.bi_size)
- return;
-
- clear_bit(BIO_SEG_VALID, &bio->bi_flags);
-
- bio_advance(bio, offset << 9);
-
- bio->bi_iter.bi_size = size;
-}
-EXPORT_SYMBOL_GPL(bio_trim);
-
-/*
- * create memory pools for biovec's in a bio_set.
- * use the global biovec slabs created for general use.
- */
-mempool_t *biovec_create_pool(struct bio_set *bs, int pool_entries)
-{
- struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
-
- return mempool_create_slab_pool(pool_entries, bp->slab);
-}
-
-void bioset_free(struct bio_set *bs)
-{
- if (bs->rescue_workqueue)
- destroy_workqueue(bs->rescue_workqueue);
-
- if (bs->bio_pool)
- mempool_destroy(bs->bio_pool);
-
- if (bs->bvec_pool)
- mempool_destroy(bs->bvec_pool);
-
- bioset_integrity_free(bs);
- bio_put_slab(bs);
-
- kfree(bs);
-}
-EXPORT_SYMBOL(bioset_free);
-
-/**
- * bioset_create - Create a bio_set
- * @pool_size: Number of bio and bio_vecs to cache in the mempool
- * @front_pad: Number of bytes to allocate in front of the returned bio
- *
- * Description:
- * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
- * to ask for a number of bytes to be allocated in front of the bio.
- * Front pad allocation is useful for embedding the bio inside
- * another structure, to avoid allocating extra data to go with the bio.
- * Note that the bio must be embedded at the END of that structure always,
- * or things will break badly.
- */
-struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
-{
- unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
- struct bio_set *bs;
-
- bs = kzalloc(sizeof(*bs), GFP_KERNEL);
- if (!bs)
- return NULL;
-
- bs->front_pad = front_pad;
-
- spin_lock_init(&bs->rescue_lock);
- bio_list_init(&bs->rescue_list);
- INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
-
- bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
- if (!bs->bio_slab) {
- kfree(bs);
- return NULL;
- }
-
- bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
- if (!bs->bio_pool)
- goto bad;
-
- bs->bvec_pool = biovec_create_pool(bs, pool_size);
- if (!bs->bvec_pool)
- goto bad;
-
- bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
- if (!bs->rescue_workqueue)
- goto bad;
-
- return bs;
-bad:
- bioset_free(bs);
- return NULL;
-}
-EXPORT_SYMBOL(bioset_create);
-
-#ifdef CONFIG_BLK_CGROUP
-/**
- * bio_associate_current - associate a bio with %current
- * @bio: target bio
- *
- * Associate @bio with %current if it hasn't been associated yet. Block
- * layer will treat @bio as if it were issued by %current no matter which
- * task actually issues it.
- *
- * This function takes an extra reference of @task's io_context and blkcg
- * which will be put when @bio is released. The caller must own @bio,
- * ensure %current->io_context exists, and is responsible for synchronizing
- * calls to this function.
- */
-int bio_associate_current(struct bio *bio)
-{
- struct io_context *ioc;
- struct cgroup_subsys_state *css;
-
- if (bio->bi_ioc)
- return -EBUSY;
-
- ioc = current->io_context;
- if (!ioc)
- return -ENOENT;
-
- /* acquire active ref on @ioc and associate */
- get_io_context_active(ioc);
- bio->bi_ioc = ioc;
-
- /* associate blkcg if exists */
- rcu_read_lock();
- css = task_css(current, blkio_cgrp_id);
- if (css && css_tryget(css))
- bio->bi_css = css;
- rcu_read_unlock();
-
- return 0;
-}
-
-/**
- * bio_disassociate_task - undo bio_associate_current()
- * @bio: target bio
- */
-void bio_disassociate_task(struct bio *bio)
-{
- if (bio->bi_ioc) {
- put_io_context(bio->bi_ioc);
- bio->bi_ioc = NULL;
- }
- if (bio->bi_css) {
- css_put(bio->bi_css);
- bio->bi_css = NULL;
- }
-}
-
-#endif /* CONFIG_BLK_CGROUP */
-
-static void __init biovec_init_slabs(void)
-{
- int i;
-
- for (i = 0; i < BIOVEC_NR_POOLS; i++) {
- int size;
- struct biovec_slab *bvs = bvec_slabs + i;
-
- if (bvs->nr_vecs <= BIO_INLINE_VECS) {
- bvs->slab = NULL;
- continue;
- }
-
- size = bvs->nr_vecs * sizeof(struct bio_vec);
- bvs->slab = kmem_cache_create(bvs->name, size, 0,
- SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
- }
-}
-
-static int __init init_bio(void)
-{
- bio_slab_max = 2;
- bio_slab_nr = 0;
- bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
- if (!bio_slabs)
- panic("bio: can't allocate bios\n");
-
- bio_integrity_init();
- biovec_init_slabs();
-
- fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
- if (!fs_bio_set)
- panic("bio: can't allocate bios\n");
-
- if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
- panic("bio: can't create integrity pool\n");
-
- return 0;
-}
-subsys_initcall(init_bio);
diff --git a/fs/btrfs/btrfs_inode.h b/fs/btrfs/btrfs_inode.h
index c9a2444..2256e9c 100644
--- a/fs/btrfs/btrfs_inode.h
+++ b/fs/btrfs/btrfs_inode.h
@@ -279,7 +279,7 @@ static inline void btrfs_inode_block_unlocked_dio(struct inode *inode)
static inline void btrfs_inode_resume_unlocked_dio(struct inode *inode)
{
- smp_mb__before_clear_bit();
+ smp_mb__before_atomic();
clear_bit(BTRFS_INODE_READDIO_NEED_LOCK,
&BTRFS_I(inode)->runtime_flags);
}
diff --git a/fs/btrfs/extent_io.c b/fs/btrfs/extent_io.c
index 3955e47..f29a54e 100644
--- a/fs/btrfs/extent_io.c
+++ b/fs/btrfs/extent_io.c
@@ -3458,7 +3458,7 @@ static int lock_extent_buffer_for_io(struct extent_buffer *eb,
static void end_extent_buffer_writeback(struct extent_buffer *eb)
{
clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
}
diff --git a/fs/btrfs/inode.c b/fs/btrfs/inode.c
index 5f805bc..5a3b837 100644
--- a/fs/btrfs/inode.c
+++ b/fs/btrfs/inode.c
@@ -7126,7 +7126,7 @@ static void btrfs_end_dio_bio(struct bio *bio, int err)
* before atomic variable goto zero, we must make sure
* dip->errors is perceived to be set.
*/
- smp_mb__before_atomic_dec();
+ smp_mb__before_atomic();
}
/* if there are more bios still pending for this dio, just exit */
@@ -7306,7 +7306,7 @@ out_err:
* before atomic variable goto zero, we must
* make sure dip->errors is perceived to be set.
*/
- smp_mb__before_atomic_dec();
+ smp_mb__before_atomic();
if (atomic_dec_and_test(&dip->pending_bios))
bio_io_error(dip->orig_bio);
@@ -7449,7 +7449,7 @@ static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
return 0;
atomic_inc(&inode->i_dio_count);
- smp_mb__after_atomic_inc();
+ smp_mb__after_atomic();
/*
* The generic stuff only does filemap_write_and_wait_range, which
diff --git a/fs/btrfs/ioctl.c b/fs/btrfs/ioctl.c
index 2f6d7b1..3f52bb7 100644
--- a/fs/btrfs/ioctl.c
+++ b/fs/btrfs/ioctl.c
@@ -642,7 +642,7 @@ static int create_snapshot(struct btrfs_root *root, struct inode *dir,
return -EINVAL;
atomic_inc(&root->will_be_snapshoted);
- smp_mb__after_atomic_inc();
+ smp_mb__after_atomic();
btrfs_wait_nocow_write(root);
ret = btrfs_start_delalloc_inodes(root, 0);
diff --git a/fs/buffer.c b/fs/buffer.c
index 9ddb9fc..6a8110c 100644
--- a/fs/buffer.c
+++ b/fs/buffer.c
@@ -77,7 +77,7 @@ EXPORT_SYMBOL(__lock_buffer);
void unlock_buffer(struct buffer_head *bh)
{
clear_bit_unlock(BH_Lock, &bh->b_state);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&bh->b_state, BH_Lock);
}
EXPORT_SYMBOL(unlock_buffer);
diff --git a/fs/dcache.c b/fs/dcache.c
index 42ae01e..be2bea8 100644
--- a/fs/dcache.c
+++ b/fs/dcache.c
@@ -441,42 +441,12 @@ void d_drop(struct dentry *dentry)
}
EXPORT_SYMBOL(d_drop);
-/*
- * Finish off a dentry we've decided to kill.
- * dentry->d_lock must be held, returns with it unlocked.
- * If ref is non-zero, then decrement the refcount too.
- * Returns dentry requiring refcount drop, or NULL if we're done.
- */
-static struct dentry *
-dentry_kill(struct dentry *dentry, int unlock_on_failure)
- __releases(dentry->d_lock)
+static void __dentry_kill(struct dentry *dentry)
{
- struct inode *inode;
struct dentry *parent = NULL;
bool can_free = true;
-
- if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
- can_free = dentry->d_flags & DCACHE_MAY_FREE;
- spin_unlock(&dentry->d_lock);
- goto out;
- }
-
- inode = dentry->d_inode;
- if (inode && !spin_trylock(&inode->i_lock)) {
-relock:
- if (unlock_on_failure) {
- spin_unlock(&dentry->d_lock);
- cpu_relax();
- }
- return dentry; /* try again with same dentry */
- }
if (!IS_ROOT(dentry))
parent = dentry->d_parent;
- if (parent && !spin_trylock(&parent->d_lock)) {
- if (inode)
- spin_unlock(&inode->i_lock);
- goto relock;
- }
/*
* The dentry is now unrecoverably dead to the world.
@@ -520,9 +490,72 @@ relock:
can_free = false;
}
spin_unlock(&dentry->d_lock);
-out:
if (likely(can_free))
dentry_free(dentry);
+}
+
+/*
+ * Finish off a dentry we've decided to kill.
+ * dentry->d_lock must be held, returns with it unlocked.
+ * If ref is non-zero, then decrement the refcount too.
+ * Returns dentry requiring refcount drop, or NULL if we're done.
+ */
+static struct dentry *dentry_kill(struct dentry *dentry)
+ __releases(dentry->d_lock)
+{
+ struct inode *inode = dentry->d_inode;
+ struct dentry *parent = NULL;
+
+ if (inode && unlikely(!spin_trylock(&inode->i_lock)))
+ goto failed;
+
+ if (!IS_ROOT(dentry)) {
+ parent = dentry->d_parent;
+ if (unlikely(!spin_trylock(&parent->d_lock))) {
+ if (inode)
+ spin_unlock(&inode->i_lock);
+ goto failed;
+ }
+ }
+
+ __dentry_kill(dentry);
+ return parent;
+
+failed:
+ spin_unlock(&dentry->d_lock);
+ cpu_relax();
+ return dentry; /* try again with same dentry */
+}
+
+static inline struct dentry *lock_parent(struct dentry *dentry)
+{
+ struct dentry *parent = dentry->d_parent;
+ if (IS_ROOT(dentry))
+ return NULL;
+ if (likely(spin_trylock(&parent->d_lock)))
+ return parent;
+ spin_unlock(&dentry->d_lock);
+ rcu_read_lock();
+again:
+ parent = ACCESS_ONCE(dentry->d_parent);
+ spin_lock(&parent->d_lock);
+ /*
+ * We can't blindly lock dentry until we are sure
+ * that we won't violate the locking order.
+ * Any changes of dentry->d_parent must have
+ * been done with parent->d_lock held, so
+ * spin_lock() above is enough of a barrier
+ * for checking if it's still our child.
+ */
+ if (unlikely(parent != dentry->d_parent)) {
+ spin_unlock(&parent->d_lock);
+ goto again;
+ }
+ rcu_read_unlock();
+ if (parent != dentry)
+ spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
+ else
+ parent = NULL;
return parent;
}
@@ -579,7 +612,7 @@ repeat:
return;
kill_it:
- dentry = dentry_kill(dentry, 1);
+ dentry = dentry_kill(dentry);
if (dentry)
goto repeat;
}
@@ -797,8 +830,11 @@ static void shrink_dentry_list(struct list_head *list)
struct dentry *dentry, *parent;
while (!list_empty(list)) {
+ struct inode *inode;
dentry = list_entry(list->prev, struct dentry, d_lru);
spin_lock(&dentry->d_lock);
+ parent = lock_parent(dentry);
+
/*
* The dispose list is isolated and dentries are not accounted
* to the LRU here, so we can simply remove it from the list
@@ -812,26 +848,33 @@ static void shrink_dentry_list(struct list_head *list)
*/
if ((int)dentry->d_lockref.count > 0) {
spin_unlock(&dentry->d_lock);
+ if (parent)
+ spin_unlock(&parent->d_lock);
continue;
}
- parent = dentry_kill(dentry, 0);
- /*
- * If dentry_kill returns NULL, we have nothing more to do.
- */
- if (!parent)
+
+ if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
+ bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
+ spin_unlock(&dentry->d_lock);
+ if (parent)
+ spin_unlock(&parent->d_lock);
+ if (can_free)
+ dentry_free(dentry);
continue;
+ }
- if (unlikely(parent == dentry)) {
- /*
- * trylocks have failed and d_lock has been held the
- * whole time, so it could not have been added to any
- * other lists. Just add it back to the shrink list.
- */
+ inode = dentry->d_inode;
+ if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
d_shrink_add(dentry, list);
spin_unlock(&dentry->d_lock);
+ if (parent)
+ spin_unlock(&parent->d_lock);
continue;
}
+
+ __dentry_kill(dentry);
+
/*
* We need to prune ancestors too. This is necessary to prevent
* quadratic behavior of shrink_dcache_parent(), but is also
@@ -839,8 +882,26 @@ static void shrink_dentry_list(struct list_head *list)
* fragmentation.
*/
dentry = parent;
- while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
- dentry = dentry_kill(dentry, 1);
+ while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
+ parent = lock_parent(dentry);
+ if (dentry->d_lockref.count != 1) {
+ dentry->d_lockref.count--;
+ spin_unlock(&dentry->d_lock);
+ if (parent)
+ spin_unlock(&parent->d_lock);
+ break;
+ }
+ inode = dentry->d_inode; /* can't be NULL */
+ if (unlikely(!spin_trylock(&inode->i_lock))) {
+ spin_unlock(&dentry->d_lock);
+ if (parent)
+ spin_unlock(&parent->d_lock);
+ cpu_relax();
+ continue;
+ }
+ __dentry_kill(dentry);
+ dentry = parent;
+ }
}
}
diff --git a/fs/ext4/resize.c b/fs/ext4/resize.c
index f3b84cd..08b3c11 100644
--- a/fs/ext4/resize.c
+++ b/fs/ext4/resize.c
@@ -42,7 +42,7 @@ int ext4_resize_begin(struct super_block *sb)
void ext4_resize_end(struct super_block *sb)
{
clear_bit_unlock(EXT4_RESIZING, &EXT4_SB(sb)->s_resize_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
}
static ext4_group_t ext4_meta_bg_first_group(struct super_block *sb,
diff --git a/fs/gfs2/glock.c b/fs/gfs2/glock.c
index aec7f73..c355f73 100644
--- a/fs/gfs2/glock.c
+++ b/fs/gfs2/glock.c
@@ -277,7 +277,7 @@ static inline int may_grant(const struct gfs2_glock *gl, const struct gfs2_holde
static void gfs2_holder_wake(struct gfs2_holder *gh)
{
clear_bit(HIF_WAIT, &gh->gh_iflags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&gh->gh_iflags, HIF_WAIT);
}
@@ -411,7 +411,7 @@ static void gfs2_demote_wake(struct gfs2_glock *gl)
{
gl->gl_demote_state = LM_ST_EXCLUSIVE;
clear_bit(GLF_DEMOTE, &gl->gl_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&gl->gl_flags, GLF_DEMOTE);
}
@@ -620,7 +620,7 @@ out:
out_sched:
clear_bit(GLF_LOCK, &gl->gl_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
gl->gl_lockref.count++;
if (queue_delayed_work(glock_workqueue, &gl->gl_work, 0) == 0)
gl->gl_lockref.count--;
@@ -628,7 +628,7 @@ out_sched:
out_unlock:
clear_bit(GLF_LOCK, &gl->gl_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
return;
}
diff --git a/fs/gfs2/glops.c b/fs/gfs2/glops.c
index 54b66809..74d9a3d 100644
--- a/fs/gfs2/glops.c
+++ b/fs/gfs2/glops.c
@@ -221,7 +221,7 @@ static void inode_go_sync(struct gfs2_glock *gl)
* Writeback of the data mapping may cause the dirty flag to be set
* so we have to clear it again here.
*/
- smp_mb__before_clear_bit();
+ smp_mb__before_atomic();
clear_bit(GLF_DIRTY, &gl->gl_flags);
}
diff --git a/fs/gfs2/lock_dlm.c b/fs/gfs2/lock_dlm.c
index c1eb555..91f274d 100644
--- a/fs/gfs2/lock_dlm.c
+++ b/fs/gfs2/lock_dlm.c
@@ -1134,7 +1134,7 @@ static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
spin_unlock(&ls->ls_recover_spin);
}
@@ -1271,7 +1271,7 @@ static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
return 0;
diff --git a/fs/gfs2/recovery.c b/fs/gfs2/recovery.c
index 7ad4094..fe7a56f 100644
--- a/fs/gfs2/recovery.c
+++ b/fs/gfs2/recovery.c
@@ -587,7 +587,7 @@ fail:
gfs2_recovery_done(sdp, jd->jd_jid, LM_RD_GAVEUP);
done:
clear_bit(JDF_RECOVERY, &jd->jd_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&jd->jd_flags, JDF_RECOVERY);
}
diff --git a/fs/gfs2/sys.c b/fs/gfs2/sys.c
index de25d55..529d9a9 100644
--- a/fs/gfs2/sys.c
+++ b/fs/gfs2/sys.c
@@ -333,7 +333,7 @@ static ssize_t block_store(struct gfs2_sbd *sdp, const char *buf, size_t len)
set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
else if (val == 0) {
clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
gfs2_glock_thaw(sdp);
} else {
ret = -EINVAL;
@@ -482,7 +482,7 @@ static ssize_t jid_store(struct gfs2_sbd *sdp, const char *buf, size_t len)
rv = jid = -EINVAL;
sdp->sd_lockstruct.ls_jid = jid;
clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
out:
spin_unlock(&sdp->sd_jindex_spin);
diff --git a/fs/ioprio.c b/fs/ioprio.c
deleted file mode 100644
index e50170c..0000000
--- a/fs/ioprio.c
+++ /dev/null
@@ -1,241 +0,0 @@
-/*
- * fs/ioprio.c
- *
- * Copyright (C) 2004 Jens Axboe <axboe@kernel.dk>
- *
- * Helper functions for setting/querying io priorities of processes. The
- * system calls closely mimmick getpriority/setpriority, see the man page for
- * those. The prio argument is a composite of prio class and prio data, where
- * the data argument has meaning within that class. The standard scheduling
- * classes have 8 distinct prio levels, with 0 being the highest prio and 7
- * being the lowest.
- *
- * IOW, setting BE scheduling class with prio 2 is done ala:
- *
- * unsigned int prio = (IOPRIO_CLASS_BE << IOPRIO_CLASS_SHIFT) | 2;
- *
- * ioprio_set(PRIO_PROCESS, pid, prio);
- *
- * See also Documentation/block/ioprio.txt
- *
- */
-#include <linux/gfp.h>
-#include <linux/kernel.h>
-#include <linux/export.h>
-#include <linux/ioprio.h>
-#include <linux/blkdev.h>
-#include <linux/capability.h>
-#include <linux/syscalls.h>
-#include <linux/security.h>
-#include <linux/pid_namespace.h>
-
-int set_task_ioprio(struct task_struct *task, int ioprio)
-{
- int err;
- struct io_context *ioc;
- const struct cred *cred = current_cred(), *tcred;
-
- rcu_read_lock();
- tcred = __task_cred(task);
- if (!uid_eq(tcred->uid, cred->euid) &&
- !uid_eq(tcred->uid, cred->uid) && !capable(CAP_SYS_NICE)) {
- rcu_read_unlock();
- return -EPERM;
- }
- rcu_read_unlock();
-
- err = security_task_setioprio(task, ioprio);
- if (err)
- return err;
-
- ioc = get_task_io_context(task, GFP_ATOMIC, NUMA_NO_NODE);
- if (ioc) {
- ioc->ioprio = ioprio;
- put_io_context(ioc);
- }
-
- return err;
-}
-EXPORT_SYMBOL_GPL(set_task_ioprio);
-
-SYSCALL_DEFINE3(ioprio_set, int, which, int, who, int, ioprio)
-{
- int class = IOPRIO_PRIO_CLASS(ioprio);
- int data = IOPRIO_PRIO_DATA(ioprio);
- struct task_struct *p, *g;
- struct user_struct *user;
- struct pid *pgrp;
- kuid_t uid;
- int ret;
-
- switch (class) {
- case IOPRIO_CLASS_RT:
- if (!capable(CAP_SYS_ADMIN))
- return -EPERM;
- /* fall through, rt has prio field too */
- case IOPRIO_CLASS_BE:
- if (data >= IOPRIO_BE_NR || data < 0)
- return -EINVAL;
-
- break;
- case IOPRIO_CLASS_IDLE:
- break;
- case IOPRIO_CLASS_NONE:
- if (data)
- return -EINVAL;
- break;
- default:
- return -EINVAL;
- }
-
- ret = -ESRCH;
- rcu_read_lock();
- switch (which) {
- case IOPRIO_WHO_PROCESS:
- if (!who)
- p = current;
- else
- p = find_task_by_vpid(who);
- if (p)
- ret = set_task_ioprio(p, ioprio);
- break;
- case IOPRIO_WHO_PGRP:
- if (!who)
- pgrp = task_pgrp(current);
- else
- pgrp = find_vpid(who);
- do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
- ret = set_task_ioprio(p, ioprio);
- if (ret)
- break;
- } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
- break;
- case IOPRIO_WHO_USER:
- uid = make_kuid(current_user_ns(), who);
- if (!uid_valid(uid))
- break;
- if (!who)
- user = current_user();
- else
- user = find_user(uid);
-
- if (!user)
- break;
-
- do_each_thread(g, p) {
- if (!uid_eq(task_uid(p), uid))
- continue;
- ret = set_task_ioprio(p, ioprio);
- if (ret)
- goto free_uid;
- } while_each_thread(g, p);
-free_uid:
- if (who)
- free_uid(user);
- break;
- default:
- ret = -EINVAL;
- }
-
- rcu_read_unlock();
- return ret;
-}
-
-static int get_task_ioprio(struct task_struct *p)
-{
- int ret;
-
- ret = security_task_getioprio(p);
- if (ret)
- goto out;
- ret = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, IOPRIO_NORM);
- if (p->io_context)
- ret = p->io_context->ioprio;
-out:
- return ret;
-}
-
-int ioprio_best(unsigned short aprio, unsigned short bprio)
-{
- unsigned short aclass = IOPRIO_PRIO_CLASS(aprio);
- unsigned short bclass = IOPRIO_PRIO_CLASS(bprio);
-
- if (aclass == IOPRIO_CLASS_NONE)
- aclass = IOPRIO_CLASS_BE;
- if (bclass == IOPRIO_CLASS_NONE)
- bclass = IOPRIO_CLASS_BE;
-
- if (aclass == bclass)
- return min(aprio, bprio);
- if (aclass > bclass)
- return bprio;
- else
- return aprio;
-}
-
-SYSCALL_DEFINE2(ioprio_get, int, which, int, who)
-{
- struct task_struct *g, *p;
- struct user_struct *user;
- struct pid *pgrp;
- kuid_t uid;
- int ret = -ESRCH;
- int tmpio;
-
- rcu_read_lock();
- switch (which) {
- case IOPRIO_WHO_PROCESS:
- if (!who)
- p = current;
- else
- p = find_task_by_vpid(who);
- if (p)
- ret = get_task_ioprio(p);
- break;
- case IOPRIO_WHO_PGRP:
- if (!who)
- pgrp = task_pgrp(current);
- else
- pgrp = find_vpid(who);
- do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
- tmpio = get_task_ioprio(p);
- if (tmpio < 0)
- continue;
- if (ret == -ESRCH)
- ret = tmpio;
- else
- ret = ioprio_best(ret, tmpio);
- } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
- break;
- case IOPRIO_WHO_USER:
- uid = make_kuid(current_user_ns(), who);
- if (!who)
- user = current_user();
- else
- user = find_user(uid);
-
- if (!user)
- break;
-
- do_each_thread(g, p) {
- if (!uid_eq(task_uid(p), user->uid))
- continue;
- tmpio = get_task_ioprio(p);
- if (tmpio < 0)
- continue;
- if (ret == -ESRCH)
- ret = tmpio;
- else
- ret = ioprio_best(ret, tmpio);
- } while_each_thread(g, p);
-
- if (who)
- free_uid(user);
- break;
- default:
- ret = -EINVAL;
- }
-
- rcu_read_unlock();
- return ret;
-}
diff --git a/fs/jbd2/commit.c b/fs/jbd2/commit.c
index 5f26139..6fac743 100644
--- a/fs/jbd2/commit.c
+++ b/fs/jbd2/commit.c
@@ -43,7 +43,7 @@ static void journal_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
clear_buffer_uptodate(bh);
if (orig_bh) {
clear_bit_unlock(BH_Shadow, &orig_bh->b_state);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&orig_bh->b_state, BH_Shadow);
}
unlock_buffer(bh);
@@ -239,7 +239,7 @@ static int journal_submit_data_buffers(journal_t *journal,
spin_lock(&journal->j_list_lock);
J_ASSERT(jinode->i_transaction == commit_transaction);
clear_bit(__JI_COMMIT_RUNNING, &jinode->i_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
}
spin_unlock(&journal->j_list_lock);
@@ -277,7 +277,7 @@ static int journal_finish_inode_data_buffers(journal_t *journal,
}
spin_lock(&journal->j_list_lock);
clear_bit(__JI_COMMIT_RUNNING, &jinode->i_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&jinode->i_flags, __JI_COMMIT_RUNNING);
}
diff --git a/fs/kernfs/dir.c b/fs/kernfs/dir.c
index ac127cd..a693f5b 100644
--- a/fs/kernfs/dir.c
+++ b/fs/kernfs/dir.c
@@ -714,6 +714,7 @@ struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
return ERR_PTR(-ENOMEM);
ida_init(&root->ino_ida);
+ INIT_LIST_HEAD(&root->supers);
kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
KERNFS_DIR);
diff --git a/fs/kernfs/file.c b/fs/kernfs/file.c
index 5e9a80c..e3d37f6 100644
--- a/fs/kernfs/file.c
+++ b/fs/kernfs/file.c
@@ -14,6 +14,7 @@
#include <linux/poll.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
+#include <linux/fsnotify.h>
#include "kernfs-internal.h"
@@ -790,20 +791,48 @@ static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
*/
void kernfs_notify(struct kernfs_node *kn)
{
+ struct kernfs_root *root = kernfs_root(kn);
struct kernfs_open_node *on;
+ struct kernfs_super_info *info;
unsigned long flags;
+ if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
+ return;
+
+ /* kick poll */
spin_lock_irqsave(&kernfs_open_node_lock, flags);
- if (!WARN_ON(kernfs_type(kn) != KERNFS_FILE)) {
- on = kn->attr.open;
- if (on) {
- atomic_inc(&on->event);
- wake_up_interruptible(&on->poll);
- }
+ on = kn->attr.open;
+ if (on) {
+ atomic_inc(&on->event);
+ wake_up_interruptible(&on->poll);
}
spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
+
+ /* kick fsnotify */
+ mutex_lock(&kernfs_mutex);
+
+ list_for_each_entry(info, &root->supers, node) {
+ struct inode *inode;
+ struct dentry *dentry;
+
+ inode = ilookup(info->sb, kn->ino);
+ if (!inode)
+ continue;
+
+ dentry = d_find_any_alias(inode);
+ if (dentry) {
+ fsnotify_parent(NULL, dentry, FS_MODIFY);
+ fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
+ NULL, 0);
+ dput(dentry);
+ }
+
+ iput(inode);
+ }
+
+ mutex_unlock(&kernfs_mutex);
}
EXPORT_SYMBOL_GPL(kernfs_notify);
diff --git a/fs/kernfs/kernfs-internal.h b/fs/kernfs/kernfs-internal.h
index 8be13b2..dc84a3e 100644
--- a/fs/kernfs/kernfs-internal.h
+++ b/fs/kernfs/kernfs-internal.h
@@ -49,6 +49,8 @@ static inline struct kernfs_root *kernfs_root(struct kernfs_node *kn)
* mount.c
*/
struct kernfs_super_info {
+ struct super_block *sb;
+
/*
* The root associated with this super_block. Each super_block is
* identified by the root and ns it's associated with.
@@ -62,6 +64,9 @@ struct kernfs_super_info {
* an array and compare kernfs_node tag against every entry.
*/
const void *ns;
+
+ /* anchored at kernfs_root->supers, protected by kernfs_mutex */
+ struct list_head node;
};
#define kernfs_info(SB) ((struct kernfs_super_info *)(SB->s_fs_info))
diff --git a/fs/kernfs/mount.c b/fs/kernfs/mount.c
index 6a5f04a..d171b98 100644
--- a/fs/kernfs/mount.c
+++ b/fs/kernfs/mount.c
@@ -62,15 +62,16 @@ struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
return NULL;
}
-static int kernfs_fill_super(struct super_block *sb)
+static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
{
struct kernfs_super_info *info = kernfs_info(sb);
struct inode *inode;
struct dentry *root;
+ info->sb = sb;
sb->s_blocksize = PAGE_CACHE_SIZE;
sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
- sb->s_magic = SYSFS_MAGIC;
+ sb->s_magic = magic;
sb->s_op = &kernfs_sops;
sb->s_time_gran = 1;
@@ -131,6 +132,7 @@ const void *kernfs_super_ns(struct super_block *sb)
* @fs_type: file_system_type of the fs being mounted
* @flags: mount flags specified for the mount
* @root: kernfs_root of the hierarchy being mounted
+ * @magic: file system specific magic number
* @new_sb_created: tell the caller if we allocated a new superblock
* @ns: optional namespace tag of the mount
*
@@ -142,8 +144,8 @@ const void *kernfs_super_ns(struct super_block *sb)
* The return value can be passed to the vfs layer verbatim.
*/
struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
- struct kernfs_root *root, bool *new_sb_created,
- const void *ns)
+ struct kernfs_root *root, unsigned long magic,
+ bool *new_sb_created, const void *ns)
{
struct super_block *sb;
struct kernfs_super_info *info;
@@ -166,12 +168,18 @@ struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
*new_sb_created = !sb->s_root;
if (!sb->s_root) {
- error = kernfs_fill_super(sb);
+ struct kernfs_super_info *info = kernfs_info(sb);
+
+ error = kernfs_fill_super(sb, magic);
if (error) {
deactivate_locked_super(sb);
return ERR_PTR(error);
}
sb->s_flags |= MS_ACTIVE;
+
+ mutex_lock(&kernfs_mutex);
+ list_add(&info->node, &root->supers);
+ mutex_unlock(&kernfs_mutex);
}
return dget(sb->s_root);
@@ -190,6 +198,10 @@ void kernfs_kill_sb(struct super_block *sb)
struct kernfs_super_info *info = kernfs_info(sb);
struct kernfs_node *root_kn = sb->s_root->d_fsdata;
+ mutex_lock(&kernfs_mutex);
+ list_del(&info->node);
+ mutex_unlock(&kernfs_mutex);
+
/*
* Remove the superblock from fs_supers/s_instances
* so we can't find it, before freeing kernfs_super_info.
diff --git a/fs/nfs/dir.c b/fs/nfs/dir.c
index d9f3d06..4a3d4ef 100644
--- a/fs/nfs/dir.c
+++ b/fs/nfs/dir.c
@@ -2032,9 +2032,9 @@ static void nfs_access_free_entry(struct nfs_access_entry *entry)
{
put_rpccred(entry->cred);
kfree(entry);
- smp_mb__before_atomic_dec();
+ smp_mb__before_atomic();
atomic_long_dec(&nfs_access_nr_entries);
- smp_mb__after_atomic_dec();
+ smp_mb__after_atomic();
}
static void nfs_access_free_list(struct list_head *head)
@@ -2082,9 +2082,9 @@ nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
else {
remove_lru_entry:
list_del_init(&nfsi->access_cache_inode_lru);
- smp_mb__before_clear_bit();
+ smp_mb__before_atomic();
clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
}
spin_unlock(&inode->i_lock);
}
@@ -2232,9 +2232,9 @@ void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
nfs_access_add_rbtree(inode, cache);
/* Update accounting */
- smp_mb__before_atomic_inc();
+ smp_mb__before_atomic();
atomic_long_inc(&nfs_access_nr_entries);
- smp_mb__after_atomic_inc();
+ smp_mb__after_atomic();
/* Add inode to global LRU list */
if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
diff --git a/fs/nfs/inode.c b/fs/nfs/inode.c
index 0c43897..e6f7398 100644
--- a/fs/nfs/inode.c
+++ b/fs/nfs/inode.c
@@ -1085,7 +1085,7 @@ int nfs_revalidate_mapping(struct inode *inode, struct address_space *mapping)
trace_nfs_invalidate_mapping_exit(inode, ret);
clear_bit_unlock(NFS_INO_INVALIDATING, bitlock);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(bitlock, NFS_INO_INVALIDATING);
out:
return ret;
diff --git a/fs/nfs/nfs4filelayoutdev.c b/fs/nfs/nfs4filelayoutdev.c
index efac602..b9c61ef 100644
--- a/fs/nfs/nfs4filelayoutdev.c
+++ b/fs/nfs/nfs4filelayoutdev.c
@@ -789,9 +789,9 @@ static void nfs4_wait_ds_connect(struct nfs4_pnfs_ds *ds)
static void nfs4_clear_ds_conn_bit(struct nfs4_pnfs_ds *ds)
{
- smp_mb__before_clear_bit();
+ smp_mb__before_atomic();
clear_bit(NFS4DS_CONNECTING, &ds->ds_state);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&ds->ds_state, NFS4DS_CONNECTING);
}
diff --git a/fs/nfs/nfs4state.c b/fs/nfs/nfs4state.c
index 2349518..c0583b9 100644
--- a/fs/nfs/nfs4state.c
+++ b/fs/nfs/nfs4state.c
@@ -1140,9 +1140,9 @@ static int nfs4_run_state_manager(void *);
static void nfs4_clear_state_manager_bit(struct nfs_client *clp)
{
- smp_mb__before_clear_bit();
+ smp_mb__before_atomic();
clear_bit(NFS4CLNT_MANAGER_RUNNING, &clp->cl_state);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&clp->cl_state, NFS4CLNT_MANAGER_RUNNING);
rpc_wake_up(&clp->cl_rpcwaitq);
}
diff --git a/fs/nfs/pagelist.c b/fs/nfs/pagelist.c
index 2ffebf2..03ed984 100644
--- a/fs/nfs/pagelist.c
+++ b/fs/nfs/pagelist.c
@@ -95,7 +95,7 @@ nfs_iocounter_dec(struct nfs_io_counter *c)
{
if (atomic_dec_and_test(&c->io_count)) {
clear_bit(NFS_IO_INPROGRESS, &c->flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&c->flags, NFS_IO_INPROGRESS);
}
}
@@ -193,9 +193,9 @@ void nfs_unlock_request(struct nfs_page *req)
printk(KERN_ERR "NFS: Invalid unlock attempted\n");
BUG();
}
- smp_mb__before_clear_bit();
+ smp_mb__before_atomic();
clear_bit(PG_BUSY, &req->wb_flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&req->wb_flags, PG_BUSY);
}
diff --git a/fs/nfs/pnfs.c b/fs/nfs/pnfs.c
index cb53d45..fd9536e 100644
--- a/fs/nfs/pnfs.c
+++ b/fs/nfs/pnfs.c
@@ -1810,7 +1810,7 @@ static void pnfs_clear_layoutcommitting(struct inode *inode)
unsigned long *bitlock = &NFS_I(inode)->flags;
clear_bit_unlock(NFS_INO_LAYOUTCOMMITTING, bitlock);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(bitlock, NFS_INO_LAYOUTCOMMITTING);
}
diff --git a/fs/nfs/pnfs.h b/fs/nfs/pnfs.h
index 0237939..c3058a0 100644
--- a/fs/nfs/pnfs.h
+++ b/fs/nfs/pnfs.h
@@ -275,7 +275,7 @@ pnfs_get_lseg(struct pnfs_layout_segment *lseg)
{
if (lseg) {
atomic_inc(&lseg->pls_refcount);
- smp_mb__after_atomic_inc();
+ smp_mb__after_atomic();
}
return lseg;
}
diff --git a/fs/nfs/write.c b/fs/nfs/write.c
index 9a3b6a4..ffb9459 100644
--- a/fs/nfs/write.c
+++ b/fs/nfs/write.c
@@ -405,7 +405,7 @@ int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
nfs_pageio_complete(&pgio);
clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(bitlock, NFS_INO_FLUSHING);
if (err < 0)
@@ -1458,7 +1458,7 @@ static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
{
clear_bit(NFS_INO_COMMIT, &nfsi->flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
}
diff --git a/fs/nfsd/nfs4acl.c b/fs/nfsd/nfs4acl.c
index b6f4601..f66c66b 100644
--- a/fs/nfsd/nfs4acl.c
+++ b/fs/nfsd/nfs4acl.c
@@ -590,7 +590,7 @@ posix_state_to_acl(struct posix_acl_state *state, unsigned int flags)
add_to_mask(state, &state->groups->aces[i].perms);
}
- if (!state->users->n && !state->groups->n) {
+ if (state->users->n || state->groups->n) {
pace++;
pace->e_tag = ACL_MASK;
low_mode_from_nfs4(state->mask.allow, &pace->e_perm, flags);
diff --git a/fs/nfsd/nfs4state.c b/fs/nfsd/nfs4state.c
index 32b699b..9a77a5a 100644
--- a/fs/nfsd/nfs4state.c
+++ b/fs/nfsd/nfs4state.c
@@ -3717,9 +3717,16 @@ out:
static __be32
nfsd4_free_lock_stateid(struct nfs4_ol_stateid *stp)
{
- if (check_for_locks(stp->st_file, lockowner(stp->st_stateowner)))
+ struct nfs4_lockowner *lo = lockowner(stp->st_stateowner);
+
+ if (check_for_locks(stp->st_file, lo))
return nfserr_locks_held;
- release_lock_stateid(stp);
+ /*
+ * Currently there's a 1-1 lock stateid<->lockowner
+ * correspondance, and we have to delete the lockowner when we
+ * delete the lock stateid:
+ */
+ unhash_lockowner(lo);
return nfs_ok;
}
@@ -4159,6 +4166,10 @@ static bool same_lockowner_ino(struct nfs4_lockowner *lo, struct inode *inode, c
if (!same_owner_str(&lo->lo_owner, owner, clid))
return false;
+ if (list_empty(&lo->lo_owner.so_stateids)) {
+ WARN_ON_ONCE(1);
+ return false;
+ }
lst = list_first_entry(&lo->lo_owner.so_stateids,
struct nfs4_ol_stateid, st_perstateowner);
return lst->st_file->fi_inode == inode;
diff --git a/fs/ocfs2/dlm/dlmmaster.c b/fs/ocfs2/dlm/dlmmaster.c
index af3f7aa..ee1f884 100644
--- a/fs/ocfs2/dlm/dlmmaster.c
+++ b/fs/ocfs2/dlm/dlmmaster.c
@@ -472,11 +472,15 @@ bail:
void dlm_destroy_master_caches(void)
{
- if (dlm_lockname_cache)
+ if (dlm_lockname_cache) {
kmem_cache_destroy(dlm_lockname_cache);
+ dlm_lockname_cache = NULL;
+ }
- if (dlm_lockres_cache)
+ if (dlm_lockres_cache) {
kmem_cache_destroy(dlm_lockres_cache);
+ dlm_lockres_cache = NULL;
+ }
}
static void dlm_lockres_release(struct kref *kref)
diff --git a/fs/splice.c b/fs/splice.c
index 9bc07d2..e246954 100644
--- a/fs/splice.c
+++ b/fs/splice.c
@@ -1537,7 +1537,7 @@ static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
struct iovec iovstack[UIO_FASTIOV];
struct iovec *iov = iovstack;
struct iov_iter iter;
- ssize_t count = 0;
+ ssize_t count;
pipe = get_pipe_info(file);
if (!pipe)
@@ -1546,8 +1546,9 @@ static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
ret = rw_copy_check_uvector(READ, uiov, nr_segs,
ARRAY_SIZE(iovstack), iovstack, &iov);
if (ret <= 0)
- return ret;
+ goto out;
+ count = ret;
iov_iter_init(&iter, iov, nr_segs, count, 0);
sd.len = 0;
@@ -1560,6 +1561,7 @@ static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
pipe_unlock(pipe);
+out:
if (iov != iovstack)
kfree(iov);
diff --git a/fs/sysfs/group.c b/fs/sysfs/group.c
index aa04068..7d2a860 100644
--- a/fs/sysfs/group.c
+++ b/fs/sysfs/group.c
@@ -18,7 +18,7 @@
#include "sysfs.h"
-static void remove_files(struct kernfs_node *parent, struct kobject *kobj,
+static void remove_files(struct kernfs_node *parent,
const struct attribute_group *grp)
{
struct attribute *const *attr;
@@ -29,7 +29,7 @@ static void remove_files(struct kernfs_node *parent, struct kobject *kobj,
kernfs_remove_by_name(parent, (*attr)->name);
if (grp->bin_attrs)
for (bin_attr = grp->bin_attrs; *bin_attr; bin_attr++)
- sysfs_remove_bin_file(kobj, *bin_attr);
+ kernfs_remove_by_name(parent, (*bin_attr)->attr.name);
}
static int create_files(struct kernfs_node *parent, struct kobject *kobj,
@@ -62,7 +62,7 @@ static int create_files(struct kernfs_node *parent, struct kobject *kobj,
break;
}
if (error) {
- remove_files(parent, kobj, grp);
+ remove_files(parent, grp);
goto exit;
}
}
@@ -79,7 +79,7 @@ static int create_files(struct kernfs_node *parent, struct kobject *kobj,
break;
}
if (error)
- remove_files(parent, kobj, grp);
+ remove_files(parent, grp);
}
exit:
return error;
@@ -224,7 +224,7 @@ void sysfs_remove_group(struct kobject *kobj,
kernfs_get(kn);
}
- remove_files(kn, kobj, grp);
+ remove_files(kn, grp);
if (grp->name)
kernfs_remove(kn);
diff --git a/fs/sysfs/mount.c b/fs/sysfs/mount.c
index 8794423..8a49486 100644
--- a/fs/sysfs/mount.c
+++ b/fs/sysfs/mount.c
@@ -13,6 +13,7 @@
#define DEBUG
#include <linux/fs.h>
+#include <linux/magic.h>
#include <linux/mount.h>
#include <linux/init.h>
#include <linux/user_namespace.h>
@@ -38,7 +39,8 @@ static struct dentry *sysfs_mount(struct file_system_type *fs_type,
}
ns = kobj_ns_grab_current(KOBJ_NS_TYPE_NET);
- root = kernfs_mount_ns(fs_type, flags, sysfs_root, &new_sb, ns);
+ root = kernfs_mount_ns(fs_type, flags, sysfs_root,
+ SYSFS_MAGIC, &new_sb, ns);
if (IS_ERR(root) || !new_sb)
kobj_ns_drop(KOBJ_NS_TYPE_NET, ns);
return root;
diff --git a/fs/ubifs/lpt_commit.c b/fs/ubifs/lpt_commit.c
index 4b826ab..45d4e96 100644
--- a/fs/ubifs/lpt_commit.c
+++ b/fs/ubifs/lpt_commit.c
@@ -460,9 +460,9 @@ static int write_cnodes(struct ubifs_info *c)
* important.
*/
clear_bit(DIRTY_CNODE, &cnode->flags);
- smp_mb__before_clear_bit();
+ smp_mb__before_atomic();
clear_bit(COW_CNODE, &cnode->flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
offs += len;
dbg_chk_lpt_sz(c, 1, len);
cnode = cnode->cnext;
diff --git a/fs/ubifs/tnc_commit.c b/fs/ubifs/tnc_commit.c
index 52a6559..3600994 100644
--- a/fs/ubifs/tnc_commit.c
+++ b/fs/ubifs/tnc_commit.c
@@ -895,9 +895,9 @@ static int write_index(struct ubifs_info *c)
* the reason for the second barrier.
*/
clear_bit(DIRTY_ZNODE, &znode->flags);
- smp_mb__before_clear_bit();
+ smp_mb__before_atomic();
clear_bit(COW_ZNODE, &znode->flags);
- smp_mb__after_clear_bit();
+ smp_mb__after_atomic();
/*
* We have marked the znode as clean but have not updated the
OpenPOWER on IntegriCloud