summaryrefslogtreecommitdiffstats
path: root/fs/xfs
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs')
-rw-r--r--fs/xfs/xfs_iops.c30
1 files changed, 30 insertions, 0 deletions
diff --git a/fs/xfs/xfs_iops.c b/fs/xfs/xfs_iops.c
index 7212949..ec6dcdc 100644
--- a/fs/xfs/xfs_iops.c
+++ b/fs/xfs/xfs_iops.c
@@ -849,6 +849,36 @@ xfs_setattr_size(
return error;
truncate_setsize(inode, newsize);
+ /*
+ * The "we can't serialise against page faults" pain gets worse.
+ *
+ * If the file is mapped then we have to clean the page at the old EOF
+ * when extending the file. Extending the file can expose changes the
+ * underlying page mapping (e.g. from beyond EOF to a hole or
+ * unwritten), and so on the next attempt to write to that page we need
+ * to remap it for write. i.e. we need .page_mkwrite() to be called.
+ * Hence we need to clean the page to clean the pte and so a new write
+ * fault will be triggered appropriately.
+ *
+ * If we do it before we change the inode size, then we can race with a
+ * page fault that maps the page with exactly the same problem. If we do
+ * it after we change the file size, then a new page fault can come in
+ * and allocate space before we've run the rest of the truncate
+ * transaction. That's kinda grotesque, but it's better than have data
+ * over a hole, and so that's the lesser evil that has been chosen here.
+ *
+ * The real solution, however, is to have some mechanism for locking out
+ * page faults while a truncate is in progress.
+ */
+ if (newsize > oldsize && mapping_mapped(VFS_I(ip)->i_mapping)) {
+ error = filemap_write_and_wait_range(
+ VFS_I(ip)->i_mapping,
+ round_down(oldsize, PAGE_CACHE_SIZE),
+ round_up(oldsize, PAGE_CACHE_SIZE) - 1);
+ if (error)
+ return error;
+ }
+
tp = xfs_trans_alloc(mp, XFS_TRANS_SETATTR_SIZE);
error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
if (error)
OpenPOWER on IntegriCloud