diff options
Diffstat (limited to 'fs/xfs/xfs_aops.c')
-rw-r--r-- | fs/xfs/xfs_aops.c | 1500 |
1 files changed, 1500 insertions, 0 deletions
diff --git a/fs/xfs/xfs_aops.c b/fs/xfs/xfs_aops.c new file mode 100644 index 0000000..8c37dde --- /dev/null +++ b/fs/xfs/xfs_aops.c @@ -0,0 +1,1500 @@ +/* + * Copyright (c) 2000-2005 Silicon Graphics, Inc. + * All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + */ +#include "xfs.h" +#include "xfs_bit.h" +#include "xfs_log.h" +#include "xfs_inum.h" +#include "xfs_sb.h" +#include "xfs_ag.h" +#include "xfs_trans.h" +#include "xfs_mount.h" +#include "xfs_bmap_btree.h" +#include "xfs_dinode.h" +#include "xfs_inode.h" +#include "xfs_alloc.h" +#include "xfs_error.h" +#include "xfs_rw.h" +#include "xfs_iomap.h" +#include "xfs_vnodeops.h" +#include "xfs_trace.h" +#include "xfs_bmap.h" +#include <linux/gfp.h> +#include <linux/mpage.h> +#include <linux/pagevec.h> +#include <linux/writeback.h> + + +/* + * Prime number of hash buckets since address is used as the key. + */ +#define NVSYNC 37 +#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC]) +static wait_queue_head_t xfs_ioend_wq[NVSYNC]; + +void __init +xfs_ioend_init(void) +{ + int i; + + for (i = 0; i < NVSYNC; i++) + init_waitqueue_head(&xfs_ioend_wq[i]); +} + +void +xfs_ioend_wait( + xfs_inode_t *ip) +{ + wait_queue_head_t *wq = to_ioend_wq(ip); + + wait_event(*wq, (atomic_read(&ip->i_iocount) == 0)); +} + +STATIC void +xfs_ioend_wake( + xfs_inode_t *ip) +{ + if (atomic_dec_and_test(&ip->i_iocount)) + wake_up(to_ioend_wq(ip)); +} + +void +xfs_count_page_state( + struct page *page, + int *delalloc, + int *unwritten) +{ + struct buffer_head *bh, *head; + + *delalloc = *unwritten = 0; + + bh = head = page_buffers(page); + do { + if (buffer_unwritten(bh)) + (*unwritten) = 1; + else if (buffer_delay(bh)) + (*delalloc) = 1; + } while ((bh = bh->b_this_page) != head); +} + +STATIC struct block_device * +xfs_find_bdev_for_inode( + struct inode *inode) +{ + struct xfs_inode *ip = XFS_I(inode); + struct xfs_mount *mp = ip->i_mount; + + if (XFS_IS_REALTIME_INODE(ip)) + return mp->m_rtdev_targp->bt_bdev; + else + return mp->m_ddev_targp->bt_bdev; +} + +/* + * We're now finished for good with this ioend structure. + * Update the page state via the associated buffer_heads, + * release holds on the inode and bio, and finally free + * up memory. Do not use the ioend after this. + */ +STATIC void +xfs_destroy_ioend( + xfs_ioend_t *ioend) +{ + struct buffer_head *bh, *next; + struct xfs_inode *ip = XFS_I(ioend->io_inode); + + for (bh = ioend->io_buffer_head; bh; bh = next) { + next = bh->b_private; + bh->b_end_io(bh, !ioend->io_error); + } + + /* + * Volume managers supporting multiple paths can send back ENODEV + * when the final path disappears. In this case continuing to fill + * the page cache with dirty data which cannot be written out is + * evil, so prevent that. + */ + if (unlikely(ioend->io_error == -ENODEV)) { + xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ, + __FILE__, __LINE__); + } + + xfs_ioend_wake(ip); + mempool_free(ioend, xfs_ioend_pool); +} + +/* + * If the end of the current ioend is beyond the current EOF, + * return the new EOF value, otherwise zero. + */ +STATIC xfs_fsize_t +xfs_ioend_new_eof( + xfs_ioend_t *ioend) +{ + xfs_inode_t *ip = XFS_I(ioend->io_inode); + xfs_fsize_t isize; + xfs_fsize_t bsize; + + bsize = ioend->io_offset + ioend->io_size; + isize = MAX(ip->i_size, ip->i_new_size); + isize = MIN(isize, bsize); + return isize > ip->i_d.di_size ? isize : 0; +} + +/* + * Update on-disk file size now that data has been written to disk. The + * current in-memory file size is i_size. If a write is beyond eof i_new_size + * will be the intended file size until i_size is updated. If this write does + * not extend all the way to the valid file size then restrict this update to + * the end of the write. + * + * This function does not block as blocking on the inode lock in IO completion + * can lead to IO completion order dependency deadlocks.. If it can't get the + * inode ilock it will return EAGAIN. Callers must handle this. + */ +STATIC int +xfs_setfilesize( + xfs_ioend_t *ioend) +{ + xfs_inode_t *ip = XFS_I(ioend->io_inode); + xfs_fsize_t isize; + + if (unlikely(ioend->io_error)) + return 0; + + if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) + return EAGAIN; + + isize = xfs_ioend_new_eof(ioend); + if (isize) { + trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); + ip->i_d.di_size = isize; + xfs_mark_inode_dirty(ip); + } + + xfs_iunlock(ip, XFS_ILOCK_EXCL); + return 0; +} + +/* + * Schedule IO completion handling on the final put of an ioend. + */ +STATIC void +xfs_finish_ioend( + struct xfs_ioend *ioend) +{ + if (atomic_dec_and_test(&ioend->io_remaining)) { + if (ioend->io_type == IO_UNWRITTEN) + queue_work(xfsconvertd_workqueue, &ioend->io_work); + else + queue_work(xfsdatad_workqueue, &ioend->io_work); + } +} + +/* + * IO write completion. + */ +STATIC void +xfs_end_io( + struct work_struct *work) +{ + xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work); + struct xfs_inode *ip = XFS_I(ioend->io_inode); + int error = 0; + + /* + * For unwritten extents we need to issue transactions to convert a + * range to normal written extens after the data I/O has finished. + */ + if (ioend->io_type == IO_UNWRITTEN && + likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) { + + error = xfs_iomap_write_unwritten(ip, ioend->io_offset, + ioend->io_size); + if (error) + ioend->io_error = error; + } + + /* + * We might have to update the on-disk file size after extending + * writes. + */ + error = xfs_setfilesize(ioend); + ASSERT(!error || error == EAGAIN); + + /* + * If we didn't complete processing of the ioend, requeue it to the + * tail of the workqueue for another attempt later. Otherwise destroy + * it. + */ + if (error == EAGAIN) { + atomic_inc(&ioend->io_remaining); + xfs_finish_ioend(ioend); + /* ensure we don't spin on blocked ioends */ + delay(1); + } else { + if (ioend->io_iocb) + aio_complete(ioend->io_iocb, ioend->io_result, 0); + xfs_destroy_ioend(ioend); + } +} + +/* + * Call IO completion handling in caller context on the final put of an ioend. + */ +STATIC void +xfs_finish_ioend_sync( + struct xfs_ioend *ioend) +{ + if (atomic_dec_and_test(&ioend->io_remaining)) + xfs_end_io(&ioend->io_work); +} + +/* + * Allocate and initialise an IO completion structure. + * We need to track unwritten extent write completion here initially. + * We'll need to extend this for updating the ondisk inode size later + * (vs. incore size). + */ +STATIC xfs_ioend_t * +xfs_alloc_ioend( + struct inode *inode, + unsigned int type) +{ + xfs_ioend_t *ioend; + + ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); + + /* + * Set the count to 1 initially, which will prevent an I/O + * completion callback from happening before we have started + * all the I/O from calling the completion routine too early. + */ + atomic_set(&ioend->io_remaining, 1); + ioend->io_error = 0; + ioend->io_list = NULL; + ioend->io_type = type; + ioend->io_inode = inode; + ioend->io_buffer_head = NULL; + ioend->io_buffer_tail = NULL; + atomic_inc(&XFS_I(ioend->io_inode)->i_iocount); + ioend->io_offset = 0; + ioend->io_size = 0; + ioend->io_iocb = NULL; + ioend->io_result = 0; + + INIT_WORK(&ioend->io_work, xfs_end_io); + return ioend; +} + +STATIC int +xfs_map_blocks( + struct inode *inode, + loff_t offset, + struct xfs_bmbt_irec *imap, + int type, + int nonblocking) +{ + struct xfs_inode *ip = XFS_I(inode); + struct xfs_mount *mp = ip->i_mount; + ssize_t count = 1 << inode->i_blkbits; + xfs_fileoff_t offset_fsb, end_fsb; + int error = 0; + int bmapi_flags = XFS_BMAPI_ENTIRE; + int nimaps = 1; + + if (XFS_FORCED_SHUTDOWN(mp)) + return -XFS_ERROR(EIO); + + if (type == IO_UNWRITTEN) + bmapi_flags |= XFS_BMAPI_IGSTATE; + + if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { + if (nonblocking) + return -XFS_ERROR(EAGAIN); + xfs_ilock(ip, XFS_ILOCK_SHARED); + } + + ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || + (ip->i_df.if_flags & XFS_IFEXTENTS)); + ASSERT(offset <= mp->m_maxioffset); + + if (offset + count > mp->m_maxioffset) + count = mp->m_maxioffset - offset; + end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); + offset_fsb = XFS_B_TO_FSBT(mp, offset); + error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb, + bmapi_flags, NULL, 0, imap, &nimaps, NULL); + xfs_iunlock(ip, XFS_ILOCK_SHARED); + + if (error) + return -XFS_ERROR(error); + + if (type == IO_DELALLOC && + (!nimaps || isnullstartblock(imap->br_startblock))) { + error = xfs_iomap_write_allocate(ip, offset, count, imap); + if (!error) + trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); + return -XFS_ERROR(error); + } + +#ifdef DEBUG + if (type == IO_UNWRITTEN) { + ASSERT(nimaps); + ASSERT(imap->br_startblock != HOLESTARTBLOCK); + ASSERT(imap->br_startblock != DELAYSTARTBLOCK); + } +#endif + if (nimaps) + trace_xfs_map_blocks_found(ip, offset, count, type, imap); + return 0; +} + +STATIC int +xfs_imap_valid( + struct inode *inode, + struct xfs_bmbt_irec *imap, + xfs_off_t offset) +{ + offset >>= inode->i_blkbits; + + return offset >= imap->br_startoff && + offset < imap->br_startoff + imap->br_blockcount; +} + +/* + * BIO completion handler for buffered IO. + */ +STATIC void +xfs_end_bio( + struct bio *bio, + int error) +{ + xfs_ioend_t *ioend = bio->bi_private; + + ASSERT(atomic_read(&bio->bi_cnt) >= 1); + ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; + + /* Toss bio and pass work off to an xfsdatad thread */ + bio->bi_private = NULL; + bio->bi_end_io = NULL; + bio_put(bio); + + xfs_finish_ioend(ioend); +} + +STATIC void +xfs_submit_ioend_bio( + struct writeback_control *wbc, + xfs_ioend_t *ioend, + struct bio *bio) +{ + atomic_inc(&ioend->io_remaining); + bio->bi_private = ioend; + bio->bi_end_io = xfs_end_bio; + + /* + * If the I/O is beyond EOF we mark the inode dirty immediately + * but don't update the inode size until I/O completion. + */ + if (xfs_ioend_new_eof(ioend)) + xfs_mark_inode_dirty(XFS_I(ioend->io_inode)); + + submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); +} + +STATIC struct bio * +xfs_alloc_ioend_bio( + struct buffer_head *bh) +{ + int nvecs = bio_get_nr_vecs(bh->b_bdev); + struct bio *bio = bio_alloc(GFP_NOIO, nvecs); + + ASSERT(bio->bi_private == NULL); + bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); + bio->bi_bdev = bh->b_bdev; + return bio; +} + +STATIC void +xfs_start_buffer_writeback( + struct buffer_head *bh) +{ + ASSERT(buffer_mapped(bh)); + ASSERT(buffer_locked(bh)); + ASSERT(!buffer_delay(bh)); + ASSERT(!buffer_unwritten(bh)); + + mark_buffer_async_write(bh); + set_buffer_uptodate(bh); + clear_buffer_dirty(bh); +} + +STATIC void +xfs_start_page_writeback( + struct page *page, + int clear_dirty, + int buffers) +{ + ASSERT(PageLocked(page)); + ASSERT(!PageWriteback(page)); + if (clear_dirty) + clear_page_dirty_for_io(page); + set_page_writeback(page); + unlock_page(page); + /* If no buffers on the page are to be written, finish it here */ + if (!buffers) + end_page_writeback(page); +} + +static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh) +{ + return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); +} + +/* + * Submit all of the bios for all of the ioends we have saved up, covering the + * initial writepage page and also any probed pages. + * + * Because we may have multiple ioends spanning a page, we need to start + * writeback on all the buffers before we submit them for I/O. If we mark the + * buffers as we got, then we can end up with a page that only has buffers + * marked async write and I/O complete on can occur before we mark the other + * buffers async write. + * + * The end result of this is that we trip a bug in end_page_writeback() because + * we call it twice for the one page as the code in end_buffer_async_write() + * assumes that all buffers on the page are started at the same time. + * + * The fix is two passes across the ioend list - one to start writeback on the + * buffer_heads, and then submit them for I/O on the second pass. + */ +STATIC void +xfs_submit_ioend( + struct writeback_control *wbc, + xfs_ioend_t *ioend) +{ + xfs_ioend_t *head = ioend; + xfs_ioend_t *next; + struct buffer_head *bh; + struct bio *bio; + sector_t lastblock = 0; + + /* Pass 1 - start writeback */ + do { + next = ioend->io_list; + for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) + xfs_start_buffer_writeback(bh); + } while ((ioend = next) != NULL); + + /* Pass 2 - submit I/O */ + ioend = head; + do { + next = ioend->io_list; + bio = NULL; + + for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { + + if (!bio) { + retry: + bio = xfs_alloc_ioend_bio(bh); + } else if (bh->b_blocknr != lastblock + 1) { + xfs_submit_ioend_bio(wbc, ioend, bio); + goto retry; + } + + if (bio_add_buffer(bio, bh) != bh->b_size) { + xfs_submit_ioend_bio(wbc, ioend, bio); + goto retry; + } + + lastblock = bh->b_blocknr; + } + if (bio) + xfs_submit_ioend_bio(wbc, ioend, bio); + xfs_finish_ioend(ioend); + } while ((ioend = next) != NULL); +} + +/* + * Cancel submission of all buffer_heads so far in this endio. + * Toss the endio too. Only ever called for the initial page + * in a writepage request, so only ever one page. + */ +STATIC void +xfs_cancel_ioend( + xfs_ioend_t *ioend) +{ + xfs_ioend_t *next; + struct buffer_head *bh, *next_bh; + + do { + next = ioend->io_list; + bh = ioend->io_buffer_head; + do { + next_bh = bh->b_private; + clear_buffer_async_write(bh); + unlock_buffer(bh); + } while ((bh = next_bh) != NULL); + + xfs_ioend_wake(XFS_I(ioend->io_inode)); + mempool_free(ioend, xfs_ioend_pool); + } while ((ioend = next) != NULL); +} + +/* + * Test to see if we've been building up a completion structure for + * earlier buffers -- if so, we try to append to this ioend if we + * can, otherwise we finish off any current ioend and start another. + * Return true if we've finished the given ioend. + */ +STATIC void +xfs_add_to_ioend( + struct inode *inode, + struct buffer_head *bh, + xfs_off_t offset, + unsigned int type, + xfs_ioend_t **result, + int need_ioend) +{ + xfs_ioend_t *ioend = *result; + + if (!ioend || need_ioend || type != ioend->io_type) { + xfs_ioend_t *previous = *result; + + ioend = xfs_alloc_ioend(inode, type); + ioend->io_offset = offset; + ioend->io_buffer_head = bh; + ioend->io_buffer_tail = bh; + if (previous) + previous->io_list = ioend; + *result = ioend; + } else { + ioend->io_buffer_tail->b_private = bh; + ioend->io_buffer_tail = bh; + } + + bh->b_private = NULL; + ioend->io_size += bh->b_size; +} + +STATIC void +xfs_map_buffer( + struct inode *inode, + struct buffer_head *bh, + struct xfs_bmbt_irec *imap, + xfs_off_t offset) +{ + sector_t bn; + struct xfs_mount *m = XFS_I(inode)->i_mount; + xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); + xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); + + ASSERT(imap->br_startblock != HOLESTARTBLOCK); + ASSERT(imap->br_startblock != DELAYSTARTBLOCK); + + bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + + ((offset - iomap_offset) >> inode->i_blkbits); + + ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); + + bh->b_blocknr = bn; + set_buffer_mapped(bh); +} + +STATIC void +xfs_map_at_offset( + struct inode *inode, + struct buffer_head *bh, + struct xfs_bmbt_irec *imap, + xfs_off_t offset) +{ + ASSERT(imap->br_startblock != HOLESTARTBLOCK); + ASSERT(imap->br_startblock != DELAYSTARTBLOCK); + + xfs_map_buffer(inode, bh, imap, offset); + set_buffer_mapped(bh); + clear_buffer_delay(bh); + clear_buffer_unwritten(bh); +} + +/* + * Test if a given page is suitable for writing as part of an unwritten + * or delayed allocate extent. + */ +STATIC int +xfs_is_delayed_page( + struct page *page, + unsigned int type) +{ + if (PageWriteback(page)) + return 0; + + if (page->mapping && page_has_buffers(page)) { + struct buffer_head *bh, *head; + int acceptable = 0; + + bh = head = page_buffers(page); + do { + if (buffer_unwritten(bh)) + acceptable = (type == IO_UNWRITTEN); + else if (buffer_delay(bh)) + acceptable = (type == IO_DELALLOC); + else if (buffer_dirty(bh) && buffer_mapped(bh)) + acceptable = (type == IO_OVERWRITE); + else + break; + } while ((bh = bh->b_this_page) != head); + + if (acceptable) + return 1; + } + + return 0; +} + +/* + * Allocate & map buffers for page given the extent map. Write it out. + * except for the original page of a writepage, this is called on + * delalloc/unwritten pages only, for the original page it is possible + * that the page has no mapping at all. + */ +STATIC int +xfs_convert_page( + struct inode *inode, + struct page *page, + loff_t tindex, + struct xfs_bmbt_irec *imap, + xfs_ioend_t **ioendp, + struct writeback_control *wbc) +{ + struct buffer_head *bh, *head; + xfs_off_t end_offset; + unsigned long p_offset; + unsigned int type; + int len, page_dirty; + int count = 0, done = 0, uptodate = 1; + xfs_off_t offset = page_offset(page); + + if (page->index != tindex) + goto fail; + if (!trylock_page(page)) + goto fail; + if (PageWriteback(page)) + goto fail_unlock_page; + if (page->mapping != inode->i_mapping) + goto fail_unlock_page; + if (!xfs_is_delayed_page(page, (*ioendp)->io_type)) + goto fail_unlock_page; + + /* + * page_dirty is initially a count of buffers on the page before + * EOF and is decremented as we move each into a cleanable state. + * + * Derivation: + * + * End offset is the highest offset that this page should represent. + * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) + * will evaluate non-zero and be less than PAGE_CACHE_SIZE and + * hence give us the correct page_dirty count. On any other page, + * it will be zero and in that case we need page_dirty to be the + * count of buffers on the page. + */ + end_offset = min_t(unsigned long long, + (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, + i_size_read(inode)); + + len = 1 << inode->i_blkbits; + p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), + PAGE_CACHE_SIZE); + p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; + page_dirty = p_offset / len; + + bh = head = page_buffers(page); + do { + if (offset >= end_offset) + break; + if (!buffer_uptodate(bh)) + uptodate = 0; + if (!(PageUptodate(page) || buffer_uptodate(bh))) { + done = 1; + continue; + } + + if (buffer_unwritten(bh) || buffer_delay(bh) || + buffer_mapped(bh)) { + if (buffer_unwritten(bh)) + type = IO_UNWRITTEN; + else if (buffer_delay(bh)) + type = IO_DELALLOC; + else + type = IO_OVERWRITE; + + if (!xfs_imap_valid(inode, imap, offset)) { + done = 1; + continue; + } + + lock_buffer(bh); + if (type != IO_OVERWRITE) + xfs_map_at_offset(inode, bh, imap, offset); + xfs_add_to_ioend(inode, bh, offset, type, + ioendp, done); + + page_dirty--; + count++; + } else { + done = 1; + } + } while (offset += len, (bh = bh->b_this_page) != head); + + if (uptodate && bh == head) + SetPageUptodate(page); + + if (count) { + if (--wbc->nr_to_write <= 0 && + wbc->sync_mode == WB_SYNC_NONE) + done = 1; + } + xfs_start_page_writeback(page, !page_dirty, count); + + return done; + fail_unlock_page: + unlock_page(page); + fail: + return 1; +} + +/* + * Convert & write out a cluster of pages in the same extent as defined + * by mp and following the start page. + */ +STATIC void +xfs_cluster_write( + struct inode *inode, + pgoff_t tindex, + struct xfs_bmbt_irec *imap, + xfs_ioend_t **ioendp, + struct writeback_control *wbc, + pgoff_t tlast) +{ + struct pagevec pvec; + int done = 0, i; + + pagevec_init(&pvec, 0); + while (!done && tindex <= tlast) { + unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); + + if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) + break; + + for (i = 0; i < pagevec_count(&pvec); i++) { + done = xfs_convert_page(inode, pvec.pages[i], tindex++, + imap, ioendp, wbc); + if (done) + break; + } + + pagevec_release(&pvec); + cond_resched(); + } +} + +STATIC void +xfs_vm_invalidatepage( + struct page *page, + unsigned long offset) +{ + trace_xfs_invalidatepage(page->mapping->host, page, offset); + block_invalidatepage(page, offset); +} + +/* + * If the page has delalloc buffers on it, we need to punch them out before we + * invalidate the page. If we don't, we leave a stale delalloc mapping on the + * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read + * is done on that same region - the delalloc extent is returned when none is + * supposed to be there. + * + * We prevent this by truncating away the delalloc regions on the page before + * invalidating it. Because they are delalloc, we can do this without needing a + * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this + * truncation without a transaction as there is no space left for block + * reservation (typically why we see a ENOSPC in writeback). + * + * This is not a performance critical path, so for now just do the punching a + * buffer head at a time. + */ +STATIC void +xfs_aops_discard_page( + struct page *page) +{ + struct inode *inode = page->mapping->host; + struct xfs_inode *ip = XFS_I(inode); + struct buffer_head *bh, *head; + loff_t offset = page_offset(page); + + if (!xfs_is_delayed_page(page, IO_DELALLOC)) + goto out_invalidate; + + if (XFS_FORCED_SHUTDOWN(ip->i_mount)) + goto out_invalidate; + + xfs_alert(ip->i_mount, + "page discard on page %p, inode 0x%llx, offset %llu.", + page, ip->i_ino, offset); + + xfs_ilock(ip, XFS_ILOCK_EXCL); + bh = head = page_buffers(page); + do { + int error; + xfs_fileoff_t start_fsb; + + if (!buffer_delay(bh)) + goto next_buffer; + + start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); + error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); + if (error) { + /* something screwed, just bail */ + if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { + xfs_alert(ip->i_mount, + "page discard unable to remove delalloc mapping."); + } + break; + } +next_buffer: + offset += 1 << inode->i_blkbits; + + } while ((bh = bh->b_this_page) != head); + + xfs_iunlock(ip, XFS_ILOCK_EXCL); +out_invalidate: + xfs_vm_invalidatepage(page, 0); + return; +} + +/* + * Write out a dirty page. + * + * For delalloc space on the page we need to allocate space and flush it. + * For unwritten space on the page we need to start the conversion to + * regular allocated space. + * For any other dirty buffer heads on the page we should flush them. + */ +STATIC int +xfs_vm_writepage( + struct page *page, + struct writeback_control *wbc) +{ + struct inode *inode = page->mapping->host; + struct buffer_head *bh, *head; + struct xfs_bmbt_irec imap; + xfs_ioend_t *ioend = NULL, *iohead = NULL; + loff_t offset; + unsigned int type; + __uint64_t end_offset; + pgoff_t end_index, last_index; + ssize_t len; + int err, imap_valid = 0, uptodate = 1; + int count = 0; + int nonblocking = 0; + + trace_xfs_writepage(inode, page, 0); + + ASSERT(page_has_buffers(page)); + + /* + * Refuse to write the page out if we are called from reclaim context. + * + * This avoids stack overflows when called from deeply used stacks in + * random callers for direct reclaim or memcg reclaim. We explicitly + * allow reclaim from kswapd as the stack usage there is relatively low. + * + * This should really be done by the core VM, but until that happens + * filesystems like XFS, btrfs and ext4 have to take care of this + * by themselves. + */ + if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC) + goto redirty; + + /* + * Given that we do not allow direct reclaim to call us, we should + * never be called while in a filesystem transaction. + */ + if (WARN_ON(current->flags & PF_FSTRANS)) + goto redirty; + + /* Is this page beyond the end of the file? */ + offset = i_size_read(inode); + end_index = offset >> PAGE_CACHE_SHIFT; + last_index = (offset - 1) >> PAGE_CACHE_SHIFT; + if (page->index >= end_index) { + if ((page->index >= end_index + 1) || + !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { + unlock_page(page); + return 0; + } + } + + end_offset = min_t(unsigned long long, + (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, + offset); + len = 1 << inode->i_blkbits; + + bh = head = page_buffers(page); + offset = page_offset(page); + type = IO_OVERWRITE; + + if (wbc->sync_mode == WB_SYNC_NONE) + nonblocking = 1; + + do { + int new_ioend = 0; + + if (offset >= end_offset) + break; + if (!buffer_uptodate(bh)) + uptodate = 0; + + /* + * set_page_dirty dirties all buffers in a page, independent + * of their state. The dirty state however is entirely + * meaningless for holes (!mapped && uptodate), so skip + * buffers covering holes here. + */ + if (!buffer_mapped(bh) && buffer_uptodate(bh)) { + imap_valid = 0; + continue; + } + + if (buffer_unwritten(bh)) { + if (type != IO_UNWRITTEN) { + type = IO_UNWRITTEN; + imap_valid = 0; + } + } else if (buffer_delay(bh)) { + if (type != IO_DELALLOC) { + type = IO_DELALLOC; + imap_valid = 0; + } + } else if (buffer_uptodate(bh)) { + if (type != IO_OVERWRITE) { + type = IO_OVERWRITE; + imap_valid = 0; + } + } else { + if (PageUptodate(page)) { + ASSERT(buffer_mapped(bh)); + imap_valid = 0; + } + continue; + } + + if (imap_valid) + imap_valid = xfs_imap_valid(inode, &imap, offset); + if (!imap_valid) { + /* + * If we didn't have a valid mapping then we need to + * put the new mapping into a separate ioend structure. + * This ensures non-contiguous extents always have + * separate ioends, which is particularly important + * for unwritten extent conversion at I/O completion + * time. + */ + new_ioend = 1; + err = xfs_map_blocks(inode, offset, &imap, type, + nonblocking); + if (err) + goto error; + imap_valid = xfs_imap_valid(inode, &imap, offset); + } + if (imap_valid) { + lock_buffer(bh); + if (type != IO_OVERWRITE) + xfs_map_at_offset(inode, bh, &imap, offset); + xfs_add_to_ioend(inode, bh, offset, type, &ioend, + new_ioend); + count++; + } + + if (!iohead) + iohead = ioend; + + } while (offset += len, ((bh = bh->b_this_page) != head)); + + if (uptodate && bh == head) + SetPageUptodate(page); + + xfs_start_page_writeback(page, 1, count); + + if (ioend && imap_valid) { + xfs_off_t end_index; + + end_index = imap.br_startoff + imap.br_blockcount; + + /* to bytes */ + end_index <<= inode->i_blkbits; + + /* to pages */ + end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; + + /* check against file size */ + if (end_index > last_index) + end_index = last_index; + + xfs_cluster_write(inode, page->index + 1, &imap, &ioend, + wbc, end_index); + } + + if (iohead) + xfs_submit_ioend(wbc, iohead); + + return 0; + +error: + if (iohead) + xfs_cancel_ioend(iohead); + + if (err == -EAGAIN) + goto redirty; + + xfs_aops_discard_page(page); + ClearPageUptodate(page); + unlock_page(page); + return err; + +redirty: + redirty_page_for_writepage(wbc, page); + unlock_page(page); + return 0; +} + +STATIC int +xfs_vm_writepages( + struct address_space *mapping, + struct writeback_control *wbc) +{ + xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); + return generic_writepages(mapping, wbc); +} + +/* + * Called to move a page into cleanable state - and from there + * to be released. The page should already be clean. We always + * have buffer heads in this call. + * + * Returns 1 if the page is ok to release, 0 otherwise. + */ +STATIC int +xfs_vm_releasepage( + struct page *page, + gfp_t gfp_mask) +{ + int delalloc, unwritten; + + trace_xfs_releasepage(page->mapping->host, page, 0); + + xfs_count_page_state(page, &delalloc, &unwritten); + + if (WARN_ON(delalloc)) + return 0; + if (WARN_ON(unwritten)) + return 0; + + return try_to_free_buffers(page); +} + +STATIC int +__xfs_get_blocks( + struct inode *inode, + sector_t iblock, + struct buffer_head *bh_result, + int create, + int direct) +{ + struct xfs_inode *ip = XFS_I(inode); + struct xfs_mount *mp = ip->i_mount; + xfs_fileoff_t offset_fsb, end_fsb; + int error = 0; + int lockmode = 0; + struct xfs_bmbt_irec imap; + int nimaps = 1; + xfs_off_t offset; + ssize_t size; + int new = 0; + + if (XFS_FORCED_SHUTDOWN(mp)) + return -XFS_ERROR(EIO); + + offset = (xfs_off_t)iblock << inode->i_blkbits; + ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); + size = bh_result->b_size; + + if (!create && direct && offset >= i_size_read(inode)) + return 0; + + if (create) { + lockmode = XFS_ILOCK_EXCL; + xfs_ilock(ip, lockmode); + } else { + lockmode = xfs_ilock_map_shared(ip); + } + + ASSERT(offset <= mp->m_maxioffset); + if (offset + size > mp->m_maxioffset) + size = mp->m_maxioffset - offset; + end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); + offset_fsb = XFS_B_TO_FSBT(mp, offset); + + error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb, + XFS_BMAPI_ENTIRE, NULL, 0, &imap, &nimaps, NULL); + if (error) + goto out_unlock; + + if (create && + (!nimaps || + (imap.br_startblock == HOLESTARTBLOCK || + imap.br_startblock == DELAYSTARTBLOCK))) { + if (direct) { + error = xfs_iomap_write_direct(ip, offset, size, + &imap, nimaps); + } else { + error = xfs_iomap_write_delay(ip, offset, size, &imap); + } + if (error) + goto out_unlock; + + trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); + } else if (nimaps) { + trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); + } else { + trace_xfs_get_blocks_notfound(ip, offset, size); + goto out_unlock; + } + xfs_iunlock(ip, lockmode); + + if (imap.br_startblock != HOLESTARTBLOCK && + imap.br_startblock != DELAYSTARTBLOCK) { + /* + * For unwritten extents do not report a disk address on + * the read case (treat as if we're reading into a hole). + */ + if (create || !ISUNWRITTEN(&imap)) + xfs_map_buffer(inode, bh_result, &imap, offset); + if (create && ISUNWRITTEN(&imap)) { + if (direct) + bh_result->b_private = inode; + set_buffer_unwritten(bh_result); + } + } + + /* + * If this is a realtime file, data may be on a different device. + * to that pointed to from the buffer_head b_bdev currently. + */ + bh_result->b_bdev = xfs_find_bdev_for_inode(inode); + + /* + * If we previously allocated a block out beyond eof and we are now + * coming back to use it then we will need to flag it as new even if it + * has a disk address. + * + * With sub-block writes into unwritten extents we also need to mark + * the buffer as new so that the unwritten parts of the buffer gets + * correctly zeroed. + */ + if (create && + ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || + (offset >= i_size_read(inode)) || + (new || ISUNWRITTEN(&imap)))) + set_buffer_new(bh_result); + + if (imap.br_startblock == DELAYSTARTBLOCK) { + BUG_ON(direct); + if (create) { + set_buffer_uptodate(bh_result); + set_buffer_mapped(bh_result); + set_buffer_delay(bh_result); + } + } + + /* + * If this is O_DIRECT or the mpage code calling tell them how large + * the mapping is, so that we can avoid repeated get_blocks calls. + */ + if (direct || size > (1 << inode->i_blkbits)) { + xfs_off_t mapping_size; + + mapping_size = imap.br_startoff + imap.br_blockcount - iblock; + mapping_size <<= inode->i_blkbits; + + ASSERT(mapping_size > 0); + if (mapping_size > size) + mapping_size = size; + if (mapping_size > LONG_MAX) + mapping_size = LONG_MAX; + + bh_result->b_size = mapping_size; + } + + return 0; + +out_unlock: + xfs_iunlock(ip, lockmode); + return -error; +} + +int +xfs_get_blocks( + struct inode *inode, + sector_t iblock, + struct buffer_head *bh_result, + int create) +{ + return __xfs_get_blocks(inode, iblock, bh_result, create, 0); +} + +STATIC int +xfs_get_blocks_direct( + struct inode *inode, + sector_t iblock, + struct buffer_head *bh_result, + int create) +{ + return __xfs_get_blocks(inode, iblock, bh_result, create, 1); +} + +/* + * Complete a direct I/O write request. + * + * If the private argument is non-NULL __xfs_get_blocks signals us that we + * need to issue a transaction to convert the range from unwritten to written + * extents. In case this is regular synchronous I/O we just call xfs_end_io + * to do this and we are done. But in case this was a successful AIO + * request this handler is called from interrupt context, from which we + * can't start transactions. In that case offload the I/O completion to + * the workqueues we also use for buffered I/O completion. + */ +STATIC void +xfs_end_io_direct_write( + struct kiocb *iocb, + loff_t offset, + ssize_t size, + void *private, + int ret, + bool is_async) +{ + struct xfs_ioend *ioend = iocb->private; + struct inode *inode = ioend->io_inode; + + /* + * blockdev_direct_IO can return an error even after the I/O + * completion handler was called. Thus we need to protect + * against double-freeing. + */ + iocb->private = NULL; + + ioend->io_offset = offset; + ioend->io_size = size; + if (private && size > 0) + ioend->io_type = IO_UNWRITTEN; + + if (is_async) { + /* + * If we are converting an unwritten extent we need to delay + * the AIO completion until after the unwrittent extent + * conversion has completed, otherwise do it ASAP. + */ + if (ioend->io_type == IO_UNWRITTEN) { + ioend->io_iocb = iocb; + ioend->io_result = ret; + } else { + aio_complete(iocb, ret, 0); + } + xfs_finish_ioend(ioend); + } else { + xfs_finish_ioend_sync(ioend); + } + + /* XXX: probably should move into the real I/O completion handler */ + inode_dio_done(inode); +} + +STATIC ssize_t +xfs_vm_direct_IO( + int rw, + struct kiocb *iocb, + const struct iovec *iov, + loff_t offset, + unsigned long nr_segs) +{ + struct inode *inode = iocb->ki_filp->f_mapping->host; + struct block_device *bdev = xfs_find_bdev_for_inode(inode); + ssize_t ret; + + if (rw & WRITE) { + iocb->private = xfs_alloc_ioend(inode, IO_DIRECT); + + ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, + offset, nr_segs, + xfs_get_blocks_direct, + xfs_end_io_direct_write, NULL, 0); + if (ret != -EIOCBQUEUED && iocb->private) + xfs_destroy_ioend(iocb->private); + } else { + ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, + offset, nr_segs, + xfs_get_blocks_direct, + NULL, NULL, 0); + } + + return ret; +} + +STATIC void +xfs_vm_write_failed( + struct address_space *mapping, + loff_t to) +{ + struct inode *inode = mapping->host; + + if (to > inode->i_size) { + /* + * punch out the delalloc blocks we have already allocated. We + * don't call xfs_setattr() to do this as we may be in the + * middle of a multi-iovec write and so the vfs inode->i_size + * will not match the xfs ip->i_size and so it will zero too + * much. Hence we jus truncate the page cache to zero what is + * necessary and punch the delalloc blocks directly. + */ + struct xfs_inode *ip = XFS_I(inode); + xfs_fileoff_t start_fsb; + xfs_fileoff_t end_fsb; + int error; + + truncate_pagecache(inode, to, inode->i_size); + + /* + * Check if there are any blocks that are outside of i_size + * that need to be trimmed back. + */ + start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1; + end_fsb = XFS_B_TO_FSB(ip->i_mount, to); + if (end_fsb <= start_fsb) + return; + + xfs_ilock(ip, XFS_ILOCK_EXCL); + error = xfs_bmap_punch_delalloc_range(ip, start_fsb, + end_fsb - start_fsb); + if (error) { + /* something screwed, just bail */ + if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { + xfs_alert(ip->i_mount, + "xfs_vm_write_failed: unable to clean up ino %lld", + ip->i_ino); + } + } + xfs_iunlock(ip, XFS_ILOCK_EXCL); + } +} + +STATIC int +xfs_vm_write_begin( + struct file *file, + struct address_space *mapping, + loff_t pos, + unsigned len, + unsigned flags, + struct page **pagep, + void **fsdata) +{ + int ret; + + ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS, + pagep, xfs_get_blocks); + if (unlikely(ret)) + xfs_vm_write_failed(mapping, pos + len); + return ret; +} + +STATIC int +xfs_vm_write_end( + struct file *file, + struct address_space *mapping, + loff_t pos, + unsigned len, + unsigned copied, + struct page *page, + void *fsdata) +{ + int ret; + + ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); + if (unlikely(ret < len)) + xfs_vm_write_failed(mapping, pos + len); + return ret; +} + +STATIC sector_t +xfs_vm_bmap( + struct address_space *mapping, + sector_t block) +{ + struct inode *inode = (struct inode *)mapping->host; + struct xfs_inode *ip = XFS_I(inode); + + trace_xfs_vm_bmap(XFS_I(inode)); + xfs_ilock(ip, XFS_IOLOCK_SHARED); + xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF); + xfs_iunlock(ip, XFS_IOLOCK_SHARED); + return generic_block_bmap(mapping, block, xfs_get_blocks); +} + +STATIC int +xfs_vm_readpage( + struct file *unused, + struct page *page) +{ + return mpage_readpage(page, xfs_get_blocks); +} + +STATIC int +xfs_vm_readpages( + struct file *unused, + struct address_space *mapping, + struct list_head *pages, + unsigned nr_pages) +{ + return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); +} + +const struct address_space_operations xfs_address_space_operations = { + .readpage = xfs_vm_readpage, + .readpages = xfs_vm_readpages, + .writepage = xfs_vm_writepage, + .writepages = xfs_vm_writepages, + .releasepage = xfs_vm_releasepage, + .invalidatepage = xfs_vm_invalidatepage, + .write_begin = xfs_vm_write_begin, + .write_end = xfs_vm_write_end, + .bmap = xfs_vm_bmap, + .direct_IO = xfs_vm_direct_IO, + .migratepage = buffer_migrate_page, + .is_partially_uptodate = block_is_partially_uptodate, + .error_remove_page = generic_error_remove_page, +}; |