diff options
Diffstat (limited to 'fs/ubifs/recovery.c')
-rw-r--r-- | fs/ubifs/recovery.c | 396 |
1 files changed, 211 insertions, 185 deletions
diff --git a/fs/ubifs/recovery.c b/fs/ubifs/recovery.c index 3dbad6f..783d8e0 100644 --- a/fs/ubifs/recovery.c +++ b/fs/ubifs/recovery.c @@ -564,16 +564,15 @@ static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, } /** - * drop_incomplete_group - drop nodes from an incomplete group. + * drop_last_group - drop the last group of nodes. * @sleb: scanned LEB information * @offs: offset of dropped nodes is returned here * - * This function returns %1 if nodes are dropped and %0 otherwise. + * This is a helper function for 'ubifs_recover_leb()' which drops the last + * group of nodes of the scanned LEB. */ -static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) +static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs) { - int dropped = 0; - while (!list_empty(&sleb->nodes)) { struct ubifs_scan_node *snod; struct ubifs_ch *ch; @@ -582,15 +581,40 @@ static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) list); ch = snod->node; if (ch->group_type != UBIFS_IN_NODE_GROUP) - return dropped; - dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs); + break; + + dbg_rcvry("dropping grouped node at %d:%d", + sleb->lnum, snod->offs); + *offs = snod->offs; + list_del(&snod->list); + kfree(snod); + sleb->nodes_cnt -= 1; + } +} + +/** + * drop_last_node - drop the last node. + * @sleb: scanned LEB information + * @offs: offset of dropped nodes is returned here + * @grouped: non-zero if whole group of nodes have to be dropped + * + * This is a helper function for 'ubifs_recover_leb()' which drops the last + * node of the scanned LEB. + */ +static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs) +{ + struct ubifs_scan_node *snod; + + if (!list_empty(&sleb->nodes)) { + snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, + list); + + dbg_rcvry("dropping last node at %d:%d", sleb->lnum, snod->offs); *offs = snod->offs; list_del(&snod->list); kfree(snod); sleb->nodes_cnt -= 1; - dropped = 1; } - return dropped; } /** @@ -599,7 +623,8 @@ static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) * @lnum: LEB number * @offs: offset * @sbuf: LEB-sized buffer to use - * @grouped: nodes may be grouped for recovery + * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not + * belong to any journal head) * * This function does a scan of a LEB, but caters for errors that might have * been caused by the unclean unmount from which we are attempting to recover. @@ -607,25 +632,21 @@ static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) * found, and a negative error code in case of failure. */ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, - int offs, void *sbuf, int grouped) + int offs, void *sbuf, int jhead) { - int err, len = c->leb_size - offs, need_clean = 0, quiet = 1; - int empty_chkd = 0, start = offs; + int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; + int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped; struct ubifs_scan_leb *sleb; void *buf = sbuf + offs; - dbg_rcvry("%d:%d", lnum, offs); + dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped); sleb = ubifs_start_scan(c, lnum, offs, sbuf); if (IS_ERR(sleb)) return sleb; - if (sleb->ecc) - need_clean = 1; - + ubifs_assert(len >= 8); while (len >= 8) { - int ret; - dbg_scan("look at LEB %d:%d (%d bytes left)", lnum, offs, len); @@ -635,8 +656,7 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, * Scan quietly until there is an error from which we cannot * recover */ - ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); - + ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); if (ret == SCANNED_A_NODE) { /* A valid node, and not a padding node */ struct ubifs_ch *ch = buf; @@ -649,70 +669,32 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, offs += node_len; buf += node_len; len -= node_len; - continue; - } - - if (ret > 0) { + } else if (ret > 0) { /* Padding bytes or a valid padding node */ offs += ret; buf += ret; len -= ret; - continue; - } - - if (ret == SCANNED_EMPTY_SPACE) { - if (!is_empty(buf, len)) { - if (!is_last_write(c, buf, offs)) - break; - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; - } - empty_chkd = 1; + } else if (ret == SCANNED_EMPTY_SPACE || + ret == SCANNED_GARBAGE || + ret == SCANNED_A_BAD_PAD_NODE || + ret == SCANNED_A_CORRUPT_NODE) { + dbg_rcvry("found corruption - %d", ret); break; - } - - if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) - if (is_last_write(c, buf, offs)) { - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; - empty_chkd = 1; - break; - } - - if (ret == SCANNED_A_CORRUPT_NODE) - if (no_more_nodes(c, buf, len, lnum, offs)) { - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; - empty_chkd = 1; - break; - } - - if (quiet) { - /* Redo the last scan but noisily */ - quiet = 0; - continue; - } - - switch (ret) { - case SCANNED_GARBAGE: - dbg_err("garbage"); - goto corrupted; - case SCANNED_A_CORRUPT_NODE: - case SCANNED_A_BAD_PAD_NODE: - dbg_err("bad node"); - goto corrupted; - default: - dbg_err("unknown"); + } else { + dbg_err("unexpected return value %d", ret); err = -EINVAL; goto error; } } - if (!empty_chkd && !is_empty(buf, len)) { - if (is_last_write(c, buf, offs)) { - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; - } else { + if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) { + if (!is_last_write(c, buf, offs)) + goto corrupted_rescan; + } else if (ret == SCANNED_A_CORRUPT_NODE) { + if (!no_more_nodes(c, buf, len, lnum, offs)) + goto corrupted_rescan; + } else if (!is_empty(buf, len)) { + if (!is_last_write(c, buf, offs)) { int corruption = first_non_ff(buf, len); /* @@ -728,29 +710,85 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, } } - /* Drop nodes from incomplete group */ - if (grouped && drop_incomplete_group(sleb, &offs)) { - buf = sbuf + offs; - len = c->leb_size - offs; - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; - } + min_io_unit = round_down(offs, c->min_io_size); + if (grouped) + /* + * If nodes are grouped, always drop the incomplete group at + * the end. + */ + drop_last_group(sleb, &offs); - if (offs % c->min_io_size) { - clean_buf(c, &buf, lnum, &offs, &len); - need_clean = 1; + if (jhead == GCHD) { + /* + * If this LEB belongs to the GC head then while we are in the + * middle of the same min. I/O unit keep dropping nodes. So + * basically, what we want is to make sure that the last min. + * I/O unit where we saw the corruption is dropped completely + * with all the uncorrupted nodes which may possibly sit there. + * + * In other words, let's name the min. I/O unit where the + * corruption starts B, and the previous min. I/O unit A. The + * below code tries to deal with a situation when half of B + * contains valid nodes or the end of a valid node, and the + * second half of B contains corrupted data or garbage. This + * means that UBIFS had been writing to B just before the power + * cut happened. I do not know how realistic is this scenario + * that half of the min. I/O unit had been written successfully + * and the other half not, but this is possible in our 'failure + * mode emulation' infrastructure at least. + * + * So what is the problem, why we need to drop those nodes? Why + * can't we just clean-up the second half of B by putting a + * padding node there? We can, and this works fine with one + * exception which was reproduced with power cut emulation + * testing and happens extremely rarely. + * + * Imagine the file-system is full, we run GC which starts + * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is + * the current GC head LEB). The @c->gc_lnum is -1, which means + * that GC will retain LEB X and will try to continue. Imagine + * that LEB X is currently the dirtiest LEB, and the amount of + * used space in LEB Y is exactly the same as amount of free + * space in LEB X. + * + * And a power cut happens when nodes are moved from LEB X to + * LEB Y. We are here trying to recover LEB Y which is the GC + * head LEB. We find the min. I/O unit B as described above. + * Then we clean-up LEB Y by padding min. I/O unit. And later + * 'ubifs_rcvry_gc_commit()' function fails, because it cannot + * find a dirty LEB which could be GC'd into LEB Y! Even LEB X + * does not match because the amount of valid nodes there does + * not fit the free space in LEB Y any more! And this is + * because of the padding node which we added to LEB Y. The + * user-visible effect of this which I once observed and + * analysed is that we cannot mount the file-system with + * -ENOSPC error. + * + * So obviously, to make sure that situation does not happen we + * should free min. I/O unit B in LEB Y completely and the last + * used min. I/O unit in LEB Y should be A. This is basically + * what the below code tries to do. + */ + while (offs > min_io_unit) + drop_last_node(sleb, &offs); } + buf = sbuf + offs; + len = c->leb_size - offs; + + clean_buf(c, &buf, lnum, &offs, &len); ubifs_end_scan(c, sleb, lnum, offs); - if (need_clean) { - err = fix_unclean_leb(c, sleb, start); - if (err) - goto error; - } + err = fix_unclean_leb(c, sleb, start); + if (err) + goto error; return sleb; +corrupted_rescan: + /* Re-scan the corrupted data with verbose messages */ + dbg_err("corruptio %d", ret); + ubifs_scan_a_node(c, buf, len, lnum, offs, 1); corrupted: ubifs_scanned_corruption(c, lnum, offs, buf); err = -EUCLEAN; @@ -867,7 +905,7 @@ struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, } ubifs_scan_destroy(sleb); } - return ubifs_recover_leb(c, lnum, offs, sbuf, 0); + return ubifs_recover_leb(c, lnum, offs, sbuf, -1); } /** @@ -1070,6 +1108,53 @@ int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) } /** + * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit. + * @c: UBIFS file-system description object + * + * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty + * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns + * zero in case of success and a negative error code in case of failure. + */ +static int grab_empty_leb(struct ubifs_info *c) +{ + int lnum, err; + + /* + * Note, it is very important to first search for an empty LEB and then + * run the commit, not vice-versa. The reason is that there might be + * only one empty LEB at the moment, the one which has been the + * @c->gc_lnum just before the power cut happened. During the regular + * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no + * one but GC can grab it. But at this moment this single empty LEB is + * not marked as taken, so if we run commit - what happens? Right, the + * commit will grab it and write the index there. Remember that the + * index always expands as long as there is free space, and it only + * starts consolidating when we run out of space. + * + * IOW, if we run commit now, we might not be able to find a free LEB + * after this. + */ + lnum = ubifs_find_free_leb_for_idx(c); + if (lnum < 0) { + dbg_err("could not find an empty LEB"); + dbg_dump_lprops(c); + dbg_dump_budg(c, &c->bi); + return lnum; + } + + /* Reset the index flag */ + err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, + LPROPS_INDEX, 0); + if (err) + return err; + + c->gc_lnum = lnum; + dbg_rcvry("found empty LEB %d, run commit", lnum); + + return ubifs_run_commit(c); +} + +/** * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. * @c: UBIFS file-system description object * @@ -1091,71 +1176,26 @@ int ubifs_rcvry_gc_commit(struct ubifs_info *c) { struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; struct ubifs_lprops lp; - int lnum, err; + int err; + + dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs); c->gc_lnum = -1; - if (wbuf->lnum == -1) { - dbg_rcvry("no GC head LEB"); - goto find_free; - } - /* - * See whether the used space in the dirtiest LEB fits in the GC head - * LEB. - */ - if (wbuf->offs == c->leb_size) { - dbg_rcvry("no room in GC head LEB"); - goto find_free; - } + if (wbuf->lnum == -1 || wbuf->offs == c->leb_size) + return grab_empty_leb(c); + err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); if (err) { - /* - * There are no dirty or empty LEBs subject to here being - * enough for the index. Try to use - * 'ubifs_find_free_leb_for_idx()', which will return any empty - * LEBs (ignoring index requirements). If the index then - * doesn't have enough LEBs the recovery commit will fail - - * which is the same result anyway i.e. recovery fails. So - * there is no problem ignoring index requirements and just - * grabbing a free LEB since we have already established there - * is not a dirty LEB we could have used instead. - */ - if (err == -ENOSPC) { - dbg_rcvry("could not find a dirty LEB"); - goto find_free; - } - return err; - } - ubifs_assert(!(lp.flags & LPROPS_INDEX)); - lnum = lp.lnum; - if (lp.free + lp.dirty == c->leb_size) { - /* An empty LEB was returned */ - if (lp.free != c->leb_size) { - err = ubifs_change_one_lp(c, lnum, c->leb_size, - 0, 0, 0, 0); - if (err) - return err; - } - err = ubifs_leb_unmap(c, lnum); - if (err) - return err; - c->gc_lnum = lnum; - dbg_rcvry("allocated LEB %d for GC", lnum); - /* Run the commit */ - dbg_rcvry("committing"); - return ubifs_run_commit(c); - } - /* - * There was no empty LEB so the used space in the dirtiest LEB must fit - * in the GC head LEB. - */ - if (lp.free + lp.dirty < wbuf->offs) { - dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d", - lnum, wbuf->lnum, wbuf->offs); - err = ubifs_return_leb(c, lnum); - if (err) + if (err != -ENOSPC) return err; - goto find_free; + + dbg_rcvry("could not find a dirty LEB"); + return grab_empty_leb(c); } + + ubifs_assert(!(lp.flags & LPROPS_INDEX)); + ubifs_assert(lp.free + lp.dirty >= wbuf->offs); + /* * We run the commit before garbage collection otherwise subsequent * mounts will see the GC and orphan deletion in a different order. @@ -1164,11 +1204,8 @@ int ubifs_rcvry_gc_commit(struct ubifs_info *c) err = ubifs_run_commit(c); if (err) return err; - /* - * The data in the dirtiest LEB fits in the GC head LEB, so do the GC - * - use locking to keep 'ubifs_assert()' happy. - */ - dbg_rcvry("GC'ing LEB %d", lnum); + + dbg_rcvry("GC'ing LEB %d", lp.lnum); mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); err = ubifs_garbage_collect_leb(c, &lp); if (err >= 0) { @@ -1184,37 +1221,17 @@ int ubifs_rcvry_gc_commit(struct ubifs_info *c) err = -EINVAL; return err; } - if (err != LEB_RETAINED) { - dbg_err("GC returned %d", err); + + ubifs_assert(err == LEB_RETAINED); + if (err != LEB_RETAINED) return -EINVAL; - } + err = ubifs_leb_unmap(c, c->gc_lnum); if (err) return err; - dbg_rcvry("allocated LEB %d for GC", lnum); - return 0; -find_free: - /* - * There is no GC head LEB or the free space in the GC head LEB is too - * small, or there are not dirty LEBs. Allocate gc_lnum by calling - * 'ubifs_find_free_leb_for_idx()' so GC is not run. - */ - lnum = ubifs_find_free_leb_for_idx(c); - if (lnum < 0) { - dbg_err("could not find an empty LEB"); - return lnum; - } - /* And reset the index flag */ - err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, - LPROPS_INDEX, 0); - if (err) - return err; - c->gc_lnum = lnum; - dbg_rcvry("allocated LEB %d for GC", lnum); - /* Run the commit */ - dbg_rcvry("committing"); - return ubifs_run_commit(c); + dbg_rcvry("allocated LEB %d for GC", lp.lnum); + return 0; } /** @@ -1456,7 +1473,7 @@ static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN); if (err) goto out; - dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ", + dbg_rcvry("inode %lu at %d:%d size %lld -> %lld", (unsigned long)e->inum, lnum, offs, i_size, e->d_size); return 0; @@ -1505,20 +1522,27 @@ int ubifs_recover_size(struct ubifs_info *c) e->i_size = le64_to_cpu(ino->size); } } + if (e->exists && e->i_size < e->d_size) { - if (!e->inode && c->ro_mount) { + if (c->ro_mount) { /* Fix the inode size and pin it in memory */ struct inode *inode; + struct ubifs_inode *ui; + + ubifs_assert(!e->inode); inode = ubifs_iget(c->vfs_sb, e->inum); if (IS_ERR(inode)) return PTR_ERR(inode); + + ui = ubifs_inode(inode); if (inode->i_size < e->d_size) { dbg_rcvry("ino %lu size %lld -> %lld", (unsigned long)e->inum, - e->d_size, inode->i_size); + inode->i_size, e->d_size); inode->i_size = e->d_size; - ubifs_inode(inode)->ui_size = e->d_size; + ui->ui_size = e->d_size; + ui->synced_i_size = e->d_size; e->inode = inode; this = rb_next(this); continue; @@ -1533,9 +1557,11 @@ int ubifs_recover_size(struct ubifs_info *c) iput(e->inode); } } + this = rb_next(this); rb_erase(&e->rb, &c->size_tree); kfree(e); } + return 0; } |