diff options
Diffstat (limited to 'fs/reiserfs/reiserfs.h')
-rw-r--r-- | fs/reiserfs/reiserfs.h | 1921 |
1 files changed, 1200 insertions, 721 deletions
diff --git a/fs/reiserfs/reiserfs.h b/fs/reiserfs/reiserfs.h index 83d4eac..bf53888 100644 --- a/fs/reiserfs/reiserfs.h +++ b/fs/reiserfs/reiserfs.h @@ -1,5 +1,6 @@ /* - * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details + * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for + * licensing and copyright details */ #include <linux/reiserfs_fs.h> @@ -23,52 +24,73 @@ struct reiserfs_journal_list; -/** bitmasks for i_flags field in reiserfs-specific part of inode */ +/* bitmasks for i_flags field in reiserfs-specific part of inode */ typedef enum { - /** this says what format of key do all items (but stat data) of - an object have. If this is set, that format is 3.6 otherwise - - 3.5 */ + /* + * this says what format of key do all items (but stat data) of + * an object have. If this is set, that format is 3.6 otherwise - 3.5 + */ i_item_key_version_mask = 0x0001, - /** If this is unset, object has 3.5 stat data, otherwise, it has - 3.6 stat data with 64bit size, 32bit nlink etc. */ + + /* + * If this is unset, object has 3.5 stat data, otherwise, + * it has 3.6 stat data with 64bit size, 32bit nlink etc. + */ i_stat_data_version_mask = 0x0002, - /** file might need tail packing on close */ + + /* file might need tail packing on close */ i_pack_on_close_mask = 0x0004, - /** don't pack tail of file */ + + /* don't pack tail of file */ i_nopack_mask = 0x0008, - /** If those is set, "safe link" was created for this file during - truncate or unlink. Safe link is used to avoid leakage of disk - space on crash with some files open, but unlinked. */ + + /* + * If either of these are set, "safe link" was created for this + * file during truncate or unlink. Safe link is used to avoid + * leakage of disk space on crash with some files open, but unlinked. + */ i_link_saved_unlink_mask = 0x0010, i_link_saved_truncate_mask = 0x0020, + i_has_xattr_dir = 0x0040, i_data_log = 0x0080, } reiserfs_inode_flags; struct reiserfs_inode_info { __u32 i_key[4]; /* key is still 4 32 bit integers */ - /** transient inode flags that are never stored on disk. Bitmasks - for this field are defined above. */ + + /* + * transient inode flags that are never stored on disk. Bitmasks + * for this field are defined above. + */ __u32 i_flags; - __u32 i_first_direct_byte; // offset of first byte stored in direct item. + /* offset of first byte stored in direct item. */ + __u32 i_first_direct_byte; /* copy of persistent inode flags read from sd_attrs. */ __u32 i_attrs; - int i_prealloc_block; /* first unused block of a sequence of unused blocks */ + /* first unused block of a sequence of unused blocks */ + int i_prealloc_block; int i_prealloc_count; /* length of that sequence */ - struct list_head i_prealloc_list; /* per-transaction list of inodes which - * have preallocated blocks */ - unsigned new_packing_locality:1; /* new_packig_locality is created; new blocks - * for the contents of this directory should be - * displaced */ + /* per-transaction list of inodes which have preallocated blocks */ + struct list_head i_prealloc_list; - /* we use these for fsync or O_SYNC to decide which transaction - ** needs to be committed in order for this inode to be properly - ** flushed */ + /* + * new_packing_locality is created; new blocks for the contents + * of this directory should be displaced + */ + unsigned new_packing_locality:1; + + /* + * we use these for fsync or O_SYNC to decide which transaction + * needs to be committed in order for this inode to be properly + * flushed + */ unsigned int i_trans_id; + struct reiserfs_journal_list *i_jl; atomic_t openers; struct mutex tailpack; @@ -82,9 +104,10 @@ typedef enum { reiserfs_attrs_cleared = 0x00000001, } reiserfs_super_block_flags; -/* struct reiserfs_super_block accessors/mutators - * since this is a disk structure, it will always be in - * little endian format. */ +/* + * struct reiserfs_super_block accessors/mutators since this is a disk + * structure, it will always be in little endian format. + */ #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count)) #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks)) @@ -152,48 +175,61 @@ typedef enum { /* LOGGING -- */ -/* These all interelate for performance. -** -** If the journal block count is smaller than n transactions, you lose speed. -** I don't know what n is yet, I'm guessing 8-16. -** -** typical transaction size depends on the application, how often fsync is -** called, and how many metadata blocks you dirty in a 30 second period. -** The more small files (<16k) you use, the larger your transactions will -** be. -** -** If your journal fills faster than dirty buffers get flushed to disk, it must flush them before allowing the journal -** to wrap, which slows things down. If you need high speed meta data updates, the journal should be big enough -** to prevent wrapping before dirty meta blocks get to disk. -** -** If the batch max is smaller than the transaction max, you'll waste space at the end of the journal -** because journal_end sets the next transaction to start at 0 if the next transaction has any chance of wrapping. -** -** The large the batch max age, the better the speed, and the more meta data changes you'll lose after a crash. -** -*/ +/* + * These all interelate for performance. + * + * If the journal block count is smaller than n transactions, you lose speed. + * I don't know what n is yet, I'm guessing 8-16. + * + * typical transaction size depends on the application, how often fsync is + * called, and how many metadata blocks you dirty in a 30 second period. + * The more small files (<16k) you use, the larger your transactions will + * be. + * + * If your journal fills faster than dirty buffers get flushed to disk, it + * must flush them before allowing the journal to wrap, which slows things + * down. If you need high speed meta data updates, the journal should be + * big enough to prevent wrapping before dirty meta blocks get to disk. + * + * If the batch max is smaller than the transaction max, you'll waste space + * at the end of the journal because journal_end sets the next transaction + * to start at 0 if the next transaction has any chance of wrapping. + * + * The large the batch max age, the better the speed, and the more meta + * data changes you'll lose after a crash. + */ /* don't mess with these for a while */ - /* we have a node size define somewhere in reiserfs_fs.h. -Hans */ +/* we have a node size define somewhere in reiserfs_fs.h. -Hans */ #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */ #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */ #define JOURNAL_HASH_SIZE 8192 -#define JOURNAL_NUM_BITMAPS 5 /* number of copies of the bitmaps to have floating. Must be >= 2 */ - -/* One of these for every block in every transaction -** Each one is in two hash tables. First, a hash of the current transaction, and after journal_end, a -** hash of all the in memory transactions. -** next and prev are used by the current transaction (journal_hash). -** hnext and hprev are used by journal_list_hash. If a block is in more than one transaction, the journal_list_hash -** links it in multiple times. This allows flush_journal_list to remove just the cnode belonging -** to a given transaction. -*/ + +/* number of copies of the bitmaps to have floating. Must be >= 2 */ +#define JOURNAL_NUM_BITMAPS 5 + +/* + * One of these for every block in every transaction + * Each one is in two hash tables. First, a hash of the current transaction, + * and after journal_end, a hash of all the in memory transactions. + * next and prev are used by the current transaction (journal_hash). + * hnext and hprev are used by journal_list_hash. If a block is in more + * than one transaction, the journal_list_hash links it in multiple times. + * This allows flush_journal_list to remove just the cnode belonging to a + * given transaction. + */ struct reiserfs_journal_cnode { struct buffer_head *bh; /* real buffer head */ struct super_block *sb; /* dev of real buffer head */ - __u32 blocknr; /* block number of real buffer head, == 0 when buffer on disk */ + + /* block number of real buffer head, == 0 when buffer on disk */ + __u32 blocknr; + unsigned long state; - struct reiserfs_journal_list *jlist; /* journal list this cnode lives in */ + + /* journal list this cnode lives in */ + struct reiserfs_journal_list *jlist; + struct reiserfs_journal_cnode *next; /* next in transaction list */ struct reiserfs_journal_cnode *prev; /* prev in transaction list */ struct reiserfs_journal_cnode *hprev; /* prev in hash list */ @@ -212,18 +248,22 @@ struct reiserfs_list_bitmap { }; /* -** one of these for each transaction. The most important part here is the j_realblock. -** this list of cnodes is used to hash all the blocks in all the commits, to mark all the -** real buffer heads dirty once all the commits hit the disk, -** and to make sure every real block in a transaction is on disk before allowing the log area -** to be overwritten */ + * one of these for each transaction. The most important part here is the + * j_realblock. this list of cnodes is used to hash all the blocks in all + * the commits, to mark all the real buffer heads dirty once all the commits + * hit the disk, and to make sure every real block in a transaction is on + * disk before allowing the log area to be overwritten + */ struct reiserfs_journal_list { unsigned long j_start; unsigned long j_state; unsigned long j_len; atomic_t j_nonzerolen; atomic_t j_commit_left; - atomic_t j_older_commits_done; /* all commits older than this on disk */ + + /* all commits older than this on disk */ + atomic_t j_older_commits_done; + struct mutex j_commit_mutex; unsigned int j_trans_id; time_t j_timestamp; @@ -234,11 +274,15 @@ struct reiserfs_journal_list { /* time ordered list of all active transactions */ struct list_head j_list; - /* time ordered list of all transactions we haven't tried to flush yet */ + /* + * time ordered list of all transactions we haven't tried + * to flush yet + */ struct list_head j_working_list; /* list of tail conversion targets in need of flush before commit */ struct list_head j_tail_bh_list; + /* list of data=ordered buffers in need of flush before commit */ struct list_head j_bh_list; int j_refcount; @@ -246,46 +290,83 @@ struct reiserfs_journal_list { struct reiserfs_journal { struct buffer_head **j_ap_blocks; /* journal blocks on disk */ - struct reiserfs_journal_cnode *j_last; /* newest journal block */ - struct reiserfs_journal_cnode *j_first; /* oldest journal block. start here for traverse */ + /* newest journal block */ + struct reiserfs_journal_cnode *j_last; + + /* oldest journal block. start here for traverse */ + struct reiserfs_journal_cnode *j_first; struct block_device *j_dev_bd; fmode_t j_dev_mode; - int j_1st_reserved_block; /* first block on s_dev of reserved area journal */ + + /* first block on s_dev of reserved area journal */ + int j_1st_reserved_block; unsigned long j_state; unsigned int j_trans_id; unsigned long j_mount_id; - unsigned long j_start; /* start of current waiting commit (index into j_ap_blocks) */ + + /* start of current waiting commit (index into j_ap_blocks) */ + unsigned long j_start; unsigned long j_len; /* length of current waiting commit */ - unsigned long j_len_alloc; /* number of buffers requested by journal_begin() */ + + /* number of buffers requested by journal_begin() */ + unsigned long j_len_alloc; + atomic_t j_wcount; /* count of writers for current commit */ - unsigned long j_bcount; /* batch count. allows turning X transactions into 1 */ - unsigned long j_first_unflushed_offset; /* first unflushed transactions offset */ - unsigned j_last_flush_trans_id; /* last fully flushed journal timestamp */ + + /* batch count. allows turning X transactions into 1 */ + unsigned long j_bcount; + + /* first unflushed transactions offset */ + unsigned long j_first_unflushed_offset; + + /* last fully flushed journal timestamp */ + unsigned j_last_flush_trans_id; + struct buffer_head *j_header_bh; time_t j_trans_start_time; /* time this transaction started */ struct mutex j_mutex; struct mutex j_flush_mutex; - wait_queue_head_t j_join_wait; /* wait for current transaction to finish before starting new one */ - atomic_t j_jlock; /* lock for j_join_wait */ + + /* wait for current transaction to finish before starting new one */ + wait_queue_head_t j_join_wait; + + atomic_t j_jlock; /* lock for j_join_wait */ int j_list_bitmap_index; /* number of next list bitmap to use */ - int j_must_wait; /* no more journal begins allowed. MUST sleep on j_join_wait */ - int j_next_full_flush; /* next journal_end will flush all journal list */ - int j_next_async_flush; /* next journal_end will flush all async commits */ + + /* no more journal begins allowed. MUST sleep on j_join_wait */ + int j_must_wait; + + /* next journal_end will flush all journal list */ + int j_next_full_flush; + + /* next journal_end will flush all async commits */ + int j_next_async_flush; int j_cnode_used; /* number of cnodes on the used list */ int j_cnode_free; /* number of cnodes on the free list */ - unsigned int j_trans_max; /* max number of blocks in a transaction. */ - unsigned int j_max_batch; /* max number of blocks to batch into a trans */ - unsigned int j_max_commit_age; /* in seconds, how old can an async commit be */ - unsigned int j_max_trans_age; /* in seconds, how old can a transaction be */ - unsigned int j_default_max_commit_age; /* the default for the max commit age */ + /* max number of blocks in a transaction. */ + unsigned int j_trans_max; + + /* max number of blocks to batch into a trans */ + unsigned int j_max_batch; + + /* in seconds, how old can an async commit be */ + unsigned int j_max_commit_age; + + /* in seconds, how old can a transaction be */ + unsigned int j_max_trans_age; + + /* the default for the max commit age */ + unsigned int j_default_max_commit_age; struct reiserfs_journal_cnode *j_cnode_free_list; - struct reiserfs_journal_cnode *j_cnode_free_orig; /* orig pointer returned from vmalloc */ + + /* orig pointer returned from vmalloc */ + struct reiserfs_journal_cnode *j_cnode_free_orig; struct reiserfs_journal_list *j_current_jl; int j_free_bitmap_nodes; @@ -306,14 +387,21 @@ struct reiserfs_journal { /* list of all active transactions */ struct list_head j_journal_list; + /* lists that haven't been touched by writeback attempts */ struct list_head j_working_list; - struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; /* array of bitmaps to record the deleted blocks */ - struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; /* hash table for real buffer heads in current trans */ - struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; /* hash table for all the real buffer heads in all - the transactions */ - struct list_head j_prealloc_list; /* list of inodes which have preallocated blocks */ + /* hash table for real buffer heads in current trans */ + struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; + + /* hash table for all the real buffer heads in all the transactions */ + struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; + + /* array of bitmaps to record the deleted blocks */ + struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; + + /* list of inodes which have preallocated blocks */ + struct list_head j_prealloc_list; int j_persistent_trans; unsigned long j_max_trans_size; unsigned long j_max_batch_size; @@ -328,11 +416,12 @@ struct reiserfs_journal { enum journal_state_bits { J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */ - J_WRITERS_QUEUED, /* set when log is full due to too many writers */ - J_ABORTED, /* set when log is aborted */ + J_WRITERS_QUEUED, /* set when log is full due to too many writers */ + J_ABORTED, /* set when log is aborted */ }; -#define JOURNAL_DESC_MAGIC "ReIsErLB" /* ick. magic string to find desc blocks in the journal */ +/* ick. magic string to find desc blocks in the journal */ +#define JOURNAL_DESC_MAGIC "ReIsErLB" typedef __u32(*hashf_t) (const signed char *, int); @@ -364,7 +453,10 @@ typedef struct reiserfs_proc_info_data { stat_cnt_t leaked_oid; stat_cnt_t leaves_removable; - /* balances per level. Use explicit 5 as MAX_HEIGHT is not visible yet. */ + /* + * balances per level. + * Use explicit 5 as MAX_HEIGHT is not visible yet. + */ stat_cnt_t balance_at[5]; /* XXX */ /* sbk == search_by_key */ stat_cnt_t sbk_read_at[5]; /* XXX */ @@ -416,47 +508,75 @@ typedef struct reiserfs_proc_info_data { /* reiserfs union of in-core super block data */ struct reiserfs_sb_info { - struct buffer_head *s_sbh; /* Buffer containing the super block */ - /* both the comment and the choice of - name are unclear for s_rs -Hans */ - struct reiserfs_super_block *s_rs; /* Pointer to the super block in the buffer */ + /* Buffer containing the super block */ + struct buffer_head *s_sbh; + + /* Pointer to the on-disk super block in the buffer */ + struct reiserfs_super_block *s_rs; struct reiserfs_bitmap_info *s_ap_bitmap; - struct reiserfs_journal *s_journal; /* pointer to journal information */ + + /* pointer to journal information */ + struct reiserfs_journal *s_journal; + unsigned short s_mount_state; /* reiserfs state (valid, invalid) */ /* Serialize writers access, replace the old bkl */ struct mutex lock; + /* Owner of the lock (can be recursive) */ struct task_struct *lock_owner; + /* Depth of the lock, start from -1 like the bkl */ int lock_depth; + struct workqueue_struct *commit_wq; + /* Comment? -Hans */ void (*end_io_handler) (struct buffer_head *, int); - hashf_t s_hash_function; /* pointer to function which is used - to sort names in directory. Set on - mount */ - unsigned long s_mount_opt; /* reiserfs's mount options are set - here (currently - NOTAIL, NOLOG, - REPLAYONLY) */ - - struct { /* This is a structure that describes block allocator options */ - unsigned long bits; /* Bitfield for enable/disable kind of options */ - unsigned long large_file_size; /* size started from which we consider file to be a large one(in blocks) */ + + /* + * pointer to function which is used to sort names in directory. + * Set on mount + */ + hashf_t s_hash_function; + + /* reiserfs's mount options are set here */ + unsigned long s_mount_opt; + + /* This is a structure that describes block allocator options */ + struct { + /* Bitfield for enable/disable kind of options */ + unsigned long bits; + + /* + * size started from which we consider file + * to be a large one (in blocks) + */ + unsigned long large_file_size; + int border; /* percentage of disk, border takes */ - int preallocmin; /* Minimal file size (in blocks) starting from which we do preallocations */ - int preallocsize; /* Number of blocks we try to prealloc when file - reaches preallocmin size (in blocks) or - prealloc_list is empty. */ + + /* + * Minimal file size (in blocks) starting + * from which we do preallocations + */ + int preallocmin; + + /* + * Number of blocks we try to prealloc when file + * reaches preallocmin size (in blocks) or prealloc_list + is empty. + */ + int preallocsize; } s_alloc_options; /* Comment? -Hans */ wait_queue_head_t s_wait; - /* To be obsoleted soon by per buffer seals.. -Hans */ - atomic_t s_generation_counter; // increased by one every time the - // tree gets re-balanced - unsigned long s_properties; /* File system properties. Currently holds - on-disk FS format */ + /* increased by one every time the tree gets re-balanced */ + atomic_t s_generation_counter; + + /* File system properties. Currently holds on-disk FS format */ + unsigned long s_properties; /* session statistics */ int s_disk_reads; @@ -469,14 +589,23 @@ struct reiserfs_sb_info { int s_bmaps_without_search; int s_direct2indirect; int s_indirect2direct; - /* set up when it's ok for reiserfs_read_inode2() to read from - disk inode with nlink==0. Currently this is only used during - finish_unfinished() processing at mount time */ + + /* + * set up when it's ok for reiserfs_read_inode2() to read from + * disk inode with nlink==0. Currently this is only used during + * finish_unfinished() processing at mount time + */ int s_is_unlinked_ok; + reiserfs_proc_info_data_t s_proc_info_data; struct proc_dir_entry *procdir; - int reserved_blocks; /* amount of blocks reserved for further allocations */ - spinlock_t bitmap_lock; /* this lock on now only used to protect reserved_blocks variable */ + + /* amount of blocks reserved for further allocations */ + int reserved_blocks; + + + /* this lock on now only used to protect reserved_blocks variable */ + spinlock_t bitmap_lock; struct dentry *priv_root; /* root of /.reiserfs_priv */ struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */ int j_errno; @@ -492,14 +621,13 @@ struct reiserfs_sb_info { char *s_jdev; /* Stored jdev for mount option showing */ #ifdef CONFIG_REISERFS_CHECK - struct tree_balance *cur_tb; /* - * Detects whether more than one - * copy of tb exists per superblock - * as a means of checking whether - * do_balance is executing concurrently - * against another tree reader/writer - * on a same mount point. - */ + /* + * Detects whether more than one copy of tb exists per superblock + * as a means of checking whether do_balance is executing + * concurrently against another tree reader/writer on a same + * mount point. + */ + struct tree_balance *cur_tb; #endif }; @@ -508,25 +636,36 @@ struct reiserfs_sb_info { #define REISERFS_3_6 1 #define REISERFS_OLD_FORMAT 2 -enum reiserfs_mount_options { /* Mount options */ - REISERFS_LARGETAIL, /* large tails will be created in a session */ - REISERFS_SMALLTAIL, /* small (for files less than block size) tails will be created in a session */ - REPLAYONLY, /* replay journal and return 0. Use by fsck */ - REISERFS_CONVERT, /* -o conv: causes conversion of old - format super block to the new - format. If not specified - old - partition will be dealt with in a - manner of 3.5.x */ - -/* -o hash={tea, rupasov, r5, detect} is meant for properly mounting -** reiserfs disks from 3.5.19 or earlier. 99% of the time, this option -** is not required. If the normal autodection code can't determine which -** hash to use (because both hashes had the same value for a file) -** use this option to force a specific hash. It won't allow you to override -** the existing hash on the FS, so if you have a tea hash disk, and mount -** with -o hash=rupasov, the mount will fail. -*/ +enum reiserfs_mount_options { + /* large tails will be created in a session */ + REISERFS_LARGETAIL, + /* + * small (for files less than block size) tails will + * be created in a session + */ + REISERFS_SMALLTAIL, + + /* replay journal and return 0. Use by fsck */ + REPLAYONLY, + + /* + * -o conv: causes conversion of old format super block to the + * new format. If not specified - old partition will be dealt + * with in a manner of 3.5.x + */ + REISERFS_CONVERT, + + /* + * -o hash={tea, rupasov, r5, detect} is meant for properly mounting + * reiserfs disks from 3.5.19 or earlier. 99% of the time, this + * option is not required. If the normal autodection code can't + * determine which hash to use (because both hashes had the same + * value for a file) use this option to force a specific hash. + * It won't allow you to override the existing hash on the FS, so + * if you have a tea hash disk, and mount with -o hash=rupasov, + * the mount will fail. + */ FORCE_TEA_HASH, /* try to force tea hash on mount */ FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */ FORCE_R5_HASH, /* try to force rupasov hash on mount */ @@ -536,9 +675,11 @@ enum reiserfs_mount_options { REISERFS_DATA_ORDERED, REISERFS_DATA_WRITEBACK, -/* used for testing experimental features, makes benchmarking new - features with and without more convenient, should never be used by - users in any code shipped to users (ideally) */ + /* + * used for testing experimental features, makes benchmarking new + * features with and without more convenient, should never be used by + * users in any code shipped to users (ideally) + */ REISERFS_NO_BORDER, REISERFS_NO_UNHASHED_RELOCATION, @@ -705,28 +846,28 @@ static inline void reiserfs_cond_resched(struct super_block *s) struct fid; -/* in reading the #defines, it may help to understand that they employ - the following abbreviations: - - B = Buffer - I = Item header - H = Height within the tree (should be changed to LEV) - N = Number of the item in the node - STAT = stat data - DEH = Directory Entry Header - EC = Entry Count - E = Entry number - UL = Unsigned Long - BLKH = BLocK Header - UNFM = UNForMatted node - DC = Disk Child - P = Path - - These #defines are named by concatenating these abbreviations, - where first comes the arguments, and last comes the return value, - of the macro. - -*/ +/* + * in reading the #defines, it may help to understand that they employ + * the following abbreviations: + * + * B = Buffer + * I = Item header + * H = Height within the tree (should be changed to LEV) + * N = Number of the item in the node + * STAT = stat data + * DEH = Directory Entry Header + * EC = Entry Count + * E = Entry number + * UL = Unsigned Long + * BLKH = BLocK Header + * UNFM = UNForMatted node + * DC = Disk Child + * P = Path + * + * These #defines are named by concatenating these abbreviations, + * where first comes the arguments, and last comes the return value, + * of the macro. + */ #define USE_INODE_GENERATION_COUNTER @@ -737,14 +878,17 @@ struct fid; /* n must be power of 2 */ #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) -// to be ok for alpha and others we have to align structures to 8 byte -// boundary. -// FIXME: do not change 4 by anything else: there is code which relies on that +/* + * to be ok for alpha and others we have to align structures to 8 byte + * boundary. + * FIXME: do not change 4 by anything else: there is code which relies on that + */ #define ROUND_UP(x) _ROUND_UP(x,8LL) -/* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug -** messages. -*/ +/* + * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug + * messages. + */ #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ void __reiserfs_warning(struct super_block *s, const char *id, @@ -753,7 +897,7 @@ void __reiserfs_warning(struct super_block *s, const char *id, __reiserfs_warning(s, id, __func__, fmt, ##args) /* assertions handling */ -/** always check a condition and panic if it's false. */ +/* always check a condition and panic if it's false. */ #define __RASSERT(cond, scond, format, args...) \ do { \ if (!(cond)) \ @@ -776,35 +920,48 @@ do { \ * Disk Data Structures */ -/***************************************************************************/ -/* SUPER BLOCK */ -/***************************************************************************/ +/*************************************************************************** + * SUPER BLOCK * + ***************************************************************************/ /* - * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs - * the version in RAM is part of a larger structure containing fields never written to disk. + * Structure of super block on disk, a version of which in RAM is often + * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger + * structure containing fields never written to disk. */ -#define UNSET_HASH 0 // read_super will guess about, what hash names - // in directories were sorted with +#define UNSET_HASH 0 /* Detect hash on disk */ #define TEA_HASH 1 #define YURA_HASH 2 #define R5_HASH 3 #define DEFAULT_HASH R5_HASH struct journal_params { - __le32 jp_journal_1st_block; /* where does journal start from on its - * device */ - __le32 jp_journal_dev; /* journal device st_rdev */ - __le32 jp_journal_size; /* size of the journal */ - __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */ - __le32 jp_journal_magic; /* random value made on fs creation (this - * was sb_journal_block_count) */ - __le32 jp_journal_max_batch; /* max number of blocks to batch into a - * trans */ - __le32 jp_journal_max_commit_age; /* in seconds, how old can an async - * commit be */ - __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction - * be */ + /* where does journal start from on its * device */ + __le32 jp_journal_1st_block; + + /* journal device st_rdev */ + __le32 jp_journal_dev; + + /* size of the journal */ + __le32 jp_journal_size; + + /* max number of blocks in a transaction. */ + __le32 jp_journal_trans_max; + + /* + * random value made on fs creation + * (this was sb_journal_block_count) + */ + __le32 jp_journal_magic; + + /* max number of blocks to batch into a trans */ + __le32 jp_journal_max_batch; + + /* in seconds, how old can an async commit be */ + __le32 jp_journal_max_commit_age; + + /* in seconds, how old can a transaction be */ + __le32 jp_journal_max_trans_age; }; /* this is the super from 3.5.X, where X >= 10 */ @@ -814,26 +971,48 @@ struct reiserfs_super_block_v1 { __le32 s_root_block; /* root block number */ struct journal_params s_journal; __le16 s_blocksize; /* block size */ - __le16 s_oid_maxsize; /* max size of object id array, see - * get_objectid() commentary */ + + /* max size of object id array, see get_objectid() commentary */ + __le16 s_oid_maxsize; __le16 s_oid_cursize; /* current size of object id array */ - __le16 s_umount_state; /* this is set to 1 when filesystem was - * umounted, to 2 - when not */ - char s_magic[10]; /* reiserfs magic string indicates that - * file system is reiserfs: - * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */ - __le16 s_fs_state; /* it is set to used by fsck to mark which - * phase of rebuilding is done */ - __le32 s_hash_function_code; /* indicate, what hash function is being use - * to sort names in a directory*/ + + /* this is set to 1 when filesystem was umounted, to 2 - when not */ + __le16 s_umount_state; + + /* + * reiserfs magic string indicates that file system is reiserfs: + * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" + */ + char s_magic[10]; + + /* + * it is set to used by fsck to mark which + * phase of rebuilding is done + */ + __le16 s_fs_state; + /* + * indicate, what hash function is being use + * to sort names in a directory + */ + __le32 s_hash_function_code; __le16 s_tree_height; /* height of disk tree */ - __le16 s_bmap_nr; /* amount of bitmap blocks needed to address - * each block of file system */ - __le16 s_version; /* this field is only reliable on filesystem - * with non-standard journal */ - __le16 s_reserved_for_journal; /* size in blocks of journal area on main - * device, we need to keep after - * making fs with non-standard journal */ + + /* + * amount of bitmap blocks needed to address + * each block of file system + */ + __le16 s_bmap_nr; + + /* + * this field is only reliable on filesystem with non-standard journal + */ + __le16 s_version; + + /* + * size in blocks of journal area on main device, we need to + * keep after making fs with non-standard journal + */ + __le16 s_reserved_for_journal; } __attribute__ ((__packed__)); #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) @@ -842,17 +1021,21 @@ struct reiserfs_super_block_v1 { struct reiserfs_super_block { struct reiserfs_super_block_v1 s_v1; __le32 s_inode_generation; - __le32 s_flags; /* Right now used only by inode-attributes, if enabled */ + + /* Right now used only by inode-attributes, if enabled */ + __le32 s_flags; + unsigned char s_uuid[16]; /* filesystem unique identifier */ unsigned char s_label[16]; /* filesystem volume label */ __le16 s_mnt_count; /* Count of mounts since last fsck */ __le16 s_max_mnt_count; /* Maximum mounts before check */ __le32 s_lastcheck; /* Timestamp of last fsck */ __le32 s_check_interval; /* Interval between checks */ - char s_unused[76]; /* zero filled by mkreiserfs and - * reiserfs_convert_objectid_map_v1() - * so any additions must be updated - * there as well. */ + + /* + * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1() + * so any additions must be updated there as well. */ + char s_unused[76]; } __attribute__ ((__packed__)); #define SB_SIZE (sizeof(struct reiserfs_super_block)) @@ -860,7 +1043,7 @@ struct reiserfs_super_block { #define REISERFS_VERSION_1 0 #define REISERFS_VERSION_2 2 -// on-disk super block fields converted to cpu form +/* on-disk super block fields converted to cpu form */ #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) #define SB_BLOCKSIZE(s) \ @@ -915,11 +1098,13 @@ int is_reiserfs_3_5(struct reiserfs_super_block *rs); int is_reiserfs_3_6(struct reiserfs_super_block *rs); int is_reiserfs_jr(struct reiserfs_super_block *rs); -/* ReiserFS leaves the first 64k unused, so that partition labels have - enough space. If someone wants to write a fancy bootloader that - needs more than 64k, let us know, and this will be increased in size. - This number must be larger than than the largest block size on any - platform, or code will break. -Hans */ +/* + * ReiserFS leaves the first 64k unused, so that partition labels have + * enough space. If someone wants to write a fancy bootloader that + * needs more than 64k, let us know, and this will be increased in size. + * This number must be larger than than the largest block size on any + * platform, or code will break. -Hans + */ #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) #define REISERFS_FIRST_BLOCK unused_define #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES @@ -944,8 +1129,7 @@ struct unfm_nodeinfo { unsigned short unfm_freespace; }; -/* there are two formats of keys: 3.5 and 3.6 - */ +/* there are two formats of keys: 3.5 and 3.6 */ #define KEY_FORMAT_3_5 0 #define KEY_FORMAT_3_6 1 @@ -963,8 +1147,10 @@ static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) return sb->s_fs_info; } -/* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 - * which overflows on large file systems. */ +/* + * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 + * which overflows on large file systems. + */ static inline __u32 reiserfs_bmap_count(struct super_block *sb) { return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; @@ -975,8 +1161,10 @@ static inline int bmap_would_wrap(unsigned bmap_nr) return bmap_nr > ((1LL << 16) - 1); } -/** this says about version of key of all items (but stat data) the - object consists of */ +/* + * this says about version of key of all items (but stat data) the + * object consists of + */ #define get_inode_item_key_version( inode ) \ ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) @@ -995,16 +1183,18 @@ static inline int bmap_would_wrap(unsigned bmap_nr) else \ REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) -/* This is an aggressive tail suppression policy, I am hoping it - improves our benchmarks. The principle behind it is that percentage - space saving is what matters, not absolute space saving. This is - non-intuitive, but it helps to understand it if you consider that the - cost to access 4 blocks is not much more than the cost to access 1 - block, if you have to do a seek and rotate. A tail risks a - non-linear disk access that is significant as a percentage of total - time cost for a 4 block file and saves an amount of space that is - less significant as a percentage of space, or so goes the hypothesis. - -Hans */ +/* + * This is an aggressive tail suppression policy, I am hoping it + * improves our benchmarks. The principle behind it is that percentage + * space saving is what matters, not absolute space saving. This is + * non-intuitive, but it helps to understand it if you consider that the + * cost to access 4 blocks is not much more than the cost to access 1 + * block, if you have to do a seek and rotate. A tail risks a + * non-linear disk access that is significant as a percentage of total + * time cost for a 4 block file and saves an amount of space that is + * less significant as a percentage of space, or so goes the hypothesis. + * -Hans + */ #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ (\ (!(n_tail_size)) || \ @@ -1018,10 +1208,11 @@ static inline int bmap_would_wrap(unsigned bmap_nr) ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ ) -/* Another strategy for tails, this one means only create a tail if all the - file would fit into one DIRECT item. - Primary intention for this one is to increase performance by decreasing - seeking. +/* + * Another strategy for tails, this one means only create a tail if all the + * file would fit into one DIRECT item. + * Primary intention for this one is to increase performance by decreasing + * seeking. */ #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ (\ @@ -1035,23 +1226,21 @@ static inline int bmap_would_wrap(unsigned bmap_nr) #define REISERFS_VALID_FS 1 #define REISERFS_ERROR_FS 2 -// -// there are 5 item types currently -// +/* + * there are 5 item types currently + */ #define TYPE_STAT_DATA 0 #define TYPE_INDIRECT 1 #define TYPE_DIRECT 2 #define TYPE_DIRENTRY 3 #define TYPE_MAXTYPE 3 -#define TYPE_ANY 15 // FIXME: comment is required +#define TYPE_ANY 15 /* FIXME: comment is required */ -/***************************************************************************/ -/* KEY & ITEM HEAD */ -/***************************************************************************/ +/*************************************************************************** + * KEY & ITEM HEAD * + ***************************************************************************/ -// -// directories use this key as well as old files -// +/* * directories use this key as well as old files */ struct offset_v1 { __le32 k_offset; __le32 k_uniqueness; @@ -1084,11 +1273,14 @@ static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); } -/* Key of an item determines its location in the S+tree, and - is composed of 4 components */ +/* + * Key of an item determines its location in the S+tree, and + * is composed of 4 components + */ struct reiserfs_key { - __le32 k_dir_id; /* packing locality: by default parent - directory object id */ + /* packing locality: by default parent directory object id */ + __le32 k_dir_id; + __le32 k_objectid; /* object identifier */ union { struct offset_v1 k_offset_v1; @@ -1097,8 +1289,8 @@ struct reiserfs_key { } __attribute__ ((__packed__)); struct in_core_key { - __u32 k_dir_id; /* packing locality: by default parent - directory object id */ + /* packing locality: by default parent directory object id */ + __u32 k_dir_id; __u32 k_objectid; /* object identifier */ __u64 k_offset; __u8 k_type; @@ -1107,14 +1299,16 @@ struct in_core_key { struct cpu_key { struct in_core_key on_disk_key; int version; - int key_length; /* 3 in all cases but direct2indirect and - indirect2direct conversion */ + /* 3 in all cases but direct2indirect and indirect2direct conversion */ + int key_length; }; -/* Our function for comparing keys can compare keys of different - lengths. It takes as a parameter the length of the keys it is to - compare. These defines are used in determining what is to be passed - to it as that parameter. */ +/* + * Our function for comparing keys can compare keys of different + * lengths. It takes as a parameter the length of the keys it is to + * compare. These defines are used in determining what is to be passed + * to it as that parameter. + */ #define REISERFS_FULL_KEY_LEN 4 #define REISERFS_SHORT_KEY_LEN 2 @@ -1143,40 +1337,52 @@ struct cpu_key { #define POSITION_FOUND 1 #define POSITION_NOT_FOUND 0 -// return values for reiserfs_find_entry and search_by_entry_key +/* return values for reiserfs_find_entry and search_by_entry_key */ #define NAME_FOUND 1 #define NAME_NOT_FOUND 0 #define GOTO_PREVIOUS_ITEM 2 #define NAME_FOUND_INVISIBLE 3 -/* Everything in the filesystem is stored as a set of items. The - item head contains the key of the item, its free space (for - indirect items) and specifies the location of the item itself - within the block. */ +/* + * Everything in the filesystem is stored as a set of items. The + * item head contains the key of the item, its free space (for + * indirect items) and specifies the location of the item itself + * within the block. + */ struct item_head { - /* Everything in the tree is found by searching for it based on - * its key.*/ + /* + * Everything in the tree is found by searching for it based on + * its key. + */ struct reiserfs_key ih_key; union { - /* The free space in the last unformatted node of an - indirect item if this is an indirect item. This - equals 0xFFFF iff this is a direct item or stat data - item. Note that the key, not this field, is used to - determine the item type, and thus which field this - union contains. */ + /* + * The free space in the last unformatted node of an + * indirect item if this is an indirect item. This + * equals 0xFFFF iff this is a direct item or stat data + * item. Note that the key, not this field, is used to + * determine the item type, and thus which field this + * union contains. + */ __le16 ih_free_space_reserved; - /* Iff this is a directory item, this field equals the - number of directory entries in the directory item. */ + + /* + * Iff this is a directory item, this field equals the + * number of directory entries in the directory item. + */ __le16 ih_entry_count; } __attribute__ ((__packed__)) u; __le16 ih_item_len; /* total size of the item body */ - __le16 ih_item_location; /* an offset to the item body - * within the block */ - __le16 ih_version; /* 0 for all old items, 2 for new - ones. Highest bit is set by fsck - temporary, cleaned after all - done */ + + /* an offset to the item body within the block */ + __le16 ih_item_location; + + /* + * 0 for all old items, 2 for new ones. Highest bit is set by fsck + * temporary, cleaned after all done + */ + __le16 ih_version; } __attribute__ ((__packed__)); /* size of item header */ #define IH_SIZE (sizeof(struct item_head)) @@ -1198,27 +1404,24 @@ struct item_head { #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) -/* these operate on indirect items, where you've got an array of ints -** at a possibly unaligned location. These are a noop on ia32 -** -** p is the array of __u32, i is the index into the array, v is the value -** to store there. -*/ +/* + * these operate on indirect items, where you've got an array of ints + * at a possibly unaligned location. These are a noop on ia32 + * + * p is the array of __u32, i is the index into the array, v is the value + * to store there. + */ #define get_block_num(p, i) get_unaligned_le32((p) + (i)) #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) -// -// in old version uniqueness field shows key type -// +/* * in old version uniqueness field shows key type */ #define V1_SD_UNIQUENESS 0 #define V1_INDIRECT_UNIQUENESS 0xfffffffe #define V1_DIRECT_UNIQUENESS 0xffffffff #define V1_DIRENTRY_UNIQUENESS 500 -#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required +#define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */ -// -// here are conversion routines -// +/* here are conversion routines */ static inline int uniqueness2type(__u32 uniqueness) CONSTF; static inline int uniqueness2type(__u32 uniqueness) { @@ -1255,11 +1458,11 @@ static inline __u32 type2uniqueness(int type) } } -// -// key is pointer to on disk key which is stored in le, result is cpu, -// there is no way to get version of object from key, so, provide -// version to these defines -// +/* + * key is pointer to on disk key which is stored in le, result is cpu, + * there is no way to get version of object from key, so, provide + * version to these defines + */ static inline loff_t le_key_k_offset(int version, const struct reiserfs_key *key) { @@ -1275,9 +1478,11 @@ static inline loff_t le_ih_k_offset(const struct item_head *ih) static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) { - return (version == KEY_FORMAT_3_5) ? - uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) : - offset_v2_k_type(&(key->u.k_offset_v2)); + if (version == KEY_FORMAT_3_5) { + loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness); + return uniqueness2type(val); + } else + return offset_v2_k_type(&(key->u.k_offset_v2)); } static inline loff_t le_ih_k_type(const struct item_head *ih) @@ -1288,8 +1493,22 @@ static inline loff_t le_ih_k_type(const struct item_head *ih) static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, loff_t offset) { - (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */ - (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset)); + if (version == KEY_FORMAT_3_5) + key->u.k_offset_v1.k_offset = cpu_to_le32(offset); + else + set_offset_v2_k_offset(&key->u.k_offset_v2, offset); +} + +static inline void add_le_key_k_offset(int version, struct reiserfs_key *key, + loff_t offset) +{ + set_le_key_k_offset(version, key, + le_key_k_offset(version, key) + offset); +} + +static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset) +{ + add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); } static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) @@ -1300,10 +1519,11 @@ static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) static inline void set_le_key_k_type(int version, struct reiserfs_key *key, int type) { - (version == KEY_FORMAT_3_5) ? - (void)(key->u.k_offset_v1.k_uniqueness = - cpu_to_le32(type2uniqueness(type))) - : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type)); + if (version == KEY_FORMAT_3_5) { + type = type2uniqueness(type); + key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type); + } else + set_offset_v2_k_type(&key->u.k_offset_v2, type); } static inline void set_le_ih_k_type(struct item_head *ih, int type) @@ -1331,9 +1551,7 @@ static inline int is_statdata_le_key(int version, struct reiserfs_key *key) return le_key_k_type(version, key) == TYPE_STAT_DATA; } -// -// item header has version. -// +/* item header has version. */ static inline int is_direntry_le_ih(struct item_head *ih) { return is_direntry_le_key(ih_version(ih), &ih->ih_key); @@ -1354,9 +1572,7 @@ static inline int is_statdata_le_ih(struct item_head *ih) return is_statdata_le_key(ih_version(ih), &ih->ih_key); } -// -// key is pointer to cpu key, result is cpu -// +/* key is pointer to cpu key, result is cpu */ static inline loff_t cpu_key_k_offset(const struct cpu_key *key) { return key->on_disk_key.k_offset; @@ -1407,7 +1623,7 @@ static inline void cpu_key_k_offset_dec(struct cpu_key *key) extern struct reiserfs_key root_key; -/* +/* * Picture represents a leaf of the S+tree * ______________________________________________________ * | | Array of | | | @@ -1416,15 +1632,19 @@ extern struct reiserfs_key root_key; * |______|_______________|___________________|___________| */ -/* Header of a disk block. More precisely, header of a formatted leaf - or internal node, and not the header of an unformatted node. */ +/* + * Header of a disk block. More precisely, header of a formatted leaf + * or internal node, and not the header of an unformatted node. + */ struct block_head { __le16 blk_level; /* Level of a block in the tree. */ __le16 blk_nr_item; /* Number of keys/items in a block. */ __le16 blk_free_space; /* Block free space in bytes. */ __le16 blk_reserved; /* dump this in v4/planA */ - struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */ + + /* kept only for compatibility */ + struct reiserfs_key blk_right_delim_key; }; #define BLKH_SIZE (sizeof(struct block_head)) @@ -1439,18 +1659,20 @@ struct block_head { #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) +/* values for blk_level field of the struct block_head */ + /* - * values for blk_level field of the struct block_head + * When node gets removed from the tree its blk_level is set to FREE_LEVEL. + * It is then used to see whether the node is still in the tree */ - -#define FREE_LEVEL 0 /* when node gets removed from the tree its - blk_level is set to FREE_LEVEL. It is then - used to see whether the node is still in the - tree */ +#define FREE_LEVEL 0 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ -/* Given the buffer head of a formatted node, resolve to the block head of that node. */ +/* + * Given the buffer head of a formatted node, resolve to the + * block head of that node. + */ #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data)) /* Number of items that are in buffer. */ #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh))) @@ -1471,14 +1693,14 @@ struct block_head { #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ && B_LEVEL(bh) <= MAX_HEIGHT) -/***************************************************************************/ -/* STAT DATA */ -/***************************************************************************/ +/*************************************************************************** + * STAT DATA * + ***************************************************************************/ -// -// old stat data is 32 bytes long. We are going to distinguish new one by -// different size -// +/* + * old stat data is 32 bytes long. We are going to distinguish new one by + * different size +*/ struct stat_data_v1 { __le16 sd_mode; /* file type, permissions */ __le16 sd_nlink; /* number of hard links */ @@ -1487,20 +1709,25 @@ struct stat_data_v1 { __le32 sd_size; /* file size */ __le32 sd_atime; /* time of last access */ __le32 sd_mtime; /* time file was last modified */ - __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ + + /* + * time inode (stat data) was last changed + * (except changes to sd_atime and sd_mtime) + */ + __le32 sd_ctime; union { __le32 sd_rdev; __le32 sd_blocks; /* number of blocks file uses */ } __attribute__ ((__packed__)) u; - __le32 sd_first_direct_byte; /* first byte of file which is stored - in a direct item: except that if it - equals 1 it is a symlink and if it - equals ~(__u32)0 there is no - direct item. The existence of this - field really grates on me. Let's - replace it with a macro based on - sd_size and our tail suppression - policy. Someday. -Hans */ + + /* + * first byte of file which is stored in a direct item: except that if + * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no + * direct item. The existence of this field really grates on me. + * Let's replace it with a macro based on sd_size and our tail + * suppression policy. Someday. -Hans + */ + __le32 sd_first_direct_byte; } __attribute__ ((__packed__)); #define SD_V1_SIZE (sizeof(struct stat_data_v1)) @@ -1532,8 +1759,10 @@ struct stat_data_v1 { /* inode flags stored in sd_attrs (nee sd_reserved) */ -/* we want common flags to have the same values as in ext2, - so chattr(1) will work without problems */ +/* + * we want common flags to have the same values as in ext2, + * so chattr(1) will work without problems + */ #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL #define REISERFS_APPEND_FL FS_APPEND_FL #define REISERFS_SYNC_FL FS_SYNC_FL @@ -1553,8 +1782,10 @@ struct stat_data_v1 { REISERFS_COMPR_FL | \ REISERFS_NOTAIL_FL ) -/* Stat Data on disk (reiserfs version of UFS disk inode minus the - address blocks) */ +/* + * Stat Data on disk (reiserfs version of UFS disk inode minus the + * address blocks) + */ struct stat_data { __le16 sd_mode; /* file type, permissions */ __le16 sd_attrs; /* persistent inode flags */ @@ -1564,25 +1795,20 @@ struct stat_data { __le32 sd_gid; /* group */ __le32 sd_atime; /* time of last access */ __le32 sd_mtime; /* time file was last modified */ - __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */ + + /* + * time inode (stat data) was last changed + * (except changes to sd_atime and sd_mtime) + */ + __le32 sd_ctime; __le32 sd_blocks; union { __le32 sd_rdev; __le32 sd_generation; - //__le32 sd_first_direct_byte; - /* first byte of file which is stored in a - direct item: except that if it equals 1 - it is a symlink and if it equals - ~(__u32)0 there is no direct item. The - existence of this field really grates - on me. Let's replace it with a macro - based on sd_size and our tail - suppression policy? */ } __attribute__ ((__packed__)) u; } __attribute__ ((__packed__)); -// -// this is 44 bytes long -// + +/* this is 44 bytes long */ #define SD_SIZE (sizeof(struct stat_data)) #define SD_V2_SIZE SD_SIZE #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) @@ -1613,48 +1839,61 @@ struct stat_data { #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) -/***************************************************************************/ -/* DIRECTORY STRUCTURE */ -/***************************************************************************/ -/* - Picture represents the structure of directory items - ________________________________________________ - | Array of | | | | | | - | directory |N-1| N-2 | .... | 1st |0th| - | entry headers | | | | | | - |_______________|___|_____|________|_______|___| - <---- directory entries ------> - - First directory item has k_offset component 1. We store "." and ".." - in one item, always, we never split "." and ".." into differing - items. This makes, among other things, the code for removing - directories simpler. */ +/*************************************************************************** + * DIRECTORY STRUCTURE * + ***************************************************************************/ +/* + * Picture represents the structure of directory items + * ________________________________________________ + * | Array of | | | | | | + * | directory |N-1| N-2 | .... | 1st |0th| + * | entry headers | | | | | | + * |_______________|___|_____|________|_______|___| + * <---- directory entries ------> + * + * First directory item has k_offset component 1. We store "." and ".." + * in one item, always, we never split "." and ".." into differing + * items. This makes, among other things, the code for removing + * directories simpler. + */ #define SD_OFFSET 0 #define SD_UNIQUENESS 0 #define DOT_OFFSET 1 #define DOT_DOT_OFFSET 2 #define DIRENTRY_UNIQUENESS 500 -/* */ #define FIRST_ITEM_OFFSET 1 /* - Q: How to get key of object pointed to by entry from entry? - - A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key - of object, entry points to */ + * Q: How to get key of object pointed to by entry from entry? + * + * A: Each directory entry has its header. This header has deh_dir_id + * and deh_objectid fields, those are key of object, entry points to + */ -/* NOT IMPLEMENTED: - Directory will someday contain stat data of object */ +/* + * NOT IMPLEMENTED: + * Directory will someday contain stat data of object + */ struct reiserfs_de_head { __le32 deh_offset; /* third component of the directory entry key */ - __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced - by directory entry */ - __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */ + + /* + * objectid of the parent directory of the object, that is referenced + * by directory entry + */ + __le32 deh_dir_id; + + /* objectid of the object, that is referenced by directory entry */ + __le32 deh_objectid; __le16 deh_location; /* offset of name in the whole item */ - __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether - entry is hidden (unlinked) */ + + /* + * whether 1) entry contains stat data (for future), and + * 2) whether entry is hidden (unlinked) + */ + __le16 deh_state; } __attribute__ ((__packed__)); #define DEH_SIZE sizeof(struct reiserfs_de_head) #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) @@ -1684,9 +1923,11 @@ struct reiserfs_de_head { # define ADDR_UNALIGNED_BITS (3) #endif -/* These are only used to manipulate deh_state. +/* + * These are only used to manipulate deh_state. * Because of this, we'll use the ext2_ bit routines, - * since they are little endian */ + * since they are little endian + */ #ifdef ADDR_UNALIGNED_BITS # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) @@ -1721,46 +1962,16 @@ extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, __le32 par_dirid, __le32 par_objid); -/* array of the entry headers */ - /* get item body */ -#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) ) -#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih))) - -/* length of the directory entry in directory item. This define - calculates length of i-th directory entry using directory entry - locations from dir entry head. When it calculates length of 0-th - directory entry, it uses length of whole item in place of entry - location of the non-existent following entry in the calculation. - See picture above.*/ -/* -#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \ -((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh)))) -*/ -static inline int entry_length(const struct buffer_head *bh, - const struct item_head *ih, int pos_in_item) -{ - struct reiserfs_de_head *deh; - - deh = B_I_DEH(bh, ih) + pos_in_item; - if (pos_in_item) - return deh_location(deh - 1) - deh_location(deh); - - return ih_item_len(ih) - deh_location(deh); -} - -/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */ -#define I_ENTRY_COUNT(ih) (ih_entry_count((ih))) - -/* name by bh, ih and entry_num */ -#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num)))) - -// two entries per block (at least) +/* two entries per block (at least) */ #define REISERFS_MAX_NAME(block_size) 255 -/* this structure is used for operations on directory entries. It is - not a disk structure. */ -/* When reiserfs_find_entry or search_by_entry_key find directory - entry, they return filled reiserfs_dir_entry structure */ +/* + * this structure is used for operations on directory entries. It is + * not a disk structure. + * + * When reiserfs_find_entry or search_by_entry_key find directory + * entry, they return filled reiserfs_dir_entry structure + */ struct reiserfs_dir_entry { struct buffer_head *de_bh; int de_item_num; @@ -1778,10 +1989,14 @@ struct reiserfs_dir_entry { struct cpu_key de_entry_key; }; -/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */ +/* + * these defines are useful when a particular member of + * a reiserfs_dir_entry is needed + */ /* pointer to file name, stored in entry */ -#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh)) +#define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \ + (ih_item_body(bh, ih) + deh_location(deh)) /* length of name */ #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ @@ -1804,11 +2019,13 @@ struct reiserfs_dir_entry { * |______|_______________|___________________|___________| */ -/***************************************************************************/ -/* DISK CHILD */ -/***************************************************************************/ -/* Disk child pointer: The pointer from an internal node of the tree - to a node that is on disk. */ +/*************************************************************************** + * DISK CHILD * + ***************************************************************************/ +/* + * Disk child pointer: + * The pointer from an internal node of the tree to a node that is on disk. + */ struct disk_child { __le32 dc_block_number; /* Disk child's block number. */ __le16 dc_size; /* Disk child's used space. */ @@ -1841,47 +2058,66 @@ struct disk_child { #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) -/***************************************************************************/ -/* PATH STRUCTURES AND DEFINES */ -/***************************************************************************/ +/*************************************************************************** + * PATH STRUCTURES AND DEFINES * + ***************************************************************************/ -/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the - key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it - does not find them in the cache it reads them from disk. For each node search_by_key finds using - reiserfs_bread it then uses bin_search to look through that node. bin_search will find the - position of the block_number of the next node if it is looking through an internal node. If it - is looking through a leaf node bin_search will find the position of the item which has key either - equal to given key, or which is the maximal key less than the given key. */ +/* + * search_by_key fills up the path from the root to the leaf as it descends + * the tree looking for the key. It uses reiserfs_bread to try to find + * buffers in the cache given their block number. If it does not find + * them in the cache it reads them from disk. For each node search_by_key + * finds using reiserfs_bread it then uses bin_search to look through that + * node. bin_search will find the position of the block_number of the next + * node if it is looking through an internal node. If it is looking through + * a leaf node bin_search will find the position of the item which has key + * either equal to given key, or which is the maximal key less than the + * given key. + */ struct path_element { - struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */ - int pe_position; /* Position in the tree node which is placed in the */ - /* buffer above. */ + /* Pointer to the buffer at the path in the tree. */ + struct buffer_head *pe_buffer; + /* Position in the tree node which is placed in the buffer above. */ + int pe_position; }; -#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */ -#define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ -#define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */ - -#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ -#define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ - -/* We need to keep track of who the ancestors of nodes are. When we - perform a search we record which nodes were visited while - descending the tree looking for the node we searched for. This list - of nodes is called the path. This information is used while - performing balancing. Note that this path information may become - invalid, and this means we must check it when using it to see if it - is still valid. You'll need to read search_by_key and the comments - in it, especially about decrement_counters_in_path(), to understand - this structure. - -Paths make the code so much harder to work with and debug.... An -enormous number of bugs are due to them, and trying to write or modify -code that uses them just makes my head hurt. They are based on an -excessive effort to avoid disturbing the precious VFS code.:-( The -gods only know how we are going to SMP the code that uses them. -znodes are the way! */ +/* + * maximal height of a tree. don't change this without + * changing JOURNAL_PER_BALANCE_CNT + */ +#define MAX_HEIGHT 5 + +/* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ +#define EXTENDED_MAX_HEIGHT 7 + +/* Must be equal to at least 2. */ +#define FIRST_PATH_ELEMENT_OFFSET 2 + +/* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ +#define ILLEGAL_PATH_ELEMENT_OFFSET 1 + +/* this MUST be MAX_HEIGHT + 1. See about FEB below */ +#define MAX_FEB_SIZE 6 + +/* + * We need to keep track of who the ancestors of nodes are. When we + * perform a search we record which nodes were visited while + * descending the tree looking for the node we searched for. This list + * of nodes is called the path. This information is used while + * performing balancing. Note that this path information may become + * invalid, and this means we must check it when using it to see if it + * is still valid. You'll need to read search_by_key and the comments + * in it, especially about decrement_counters_in_path(), to understand + * this structure. + * + * Paths make the code so much harder to work with and debug.... An + * enormous number of bugs are due to them, and trying to write or modify + * code that uses them just makes my head hurt. They are based on an + * excessive effort to avoid disturbing the precious VFS code.:-( The + * gods only know how we are going to SMP the code that uses them. + * znodes are the way! + */ #define PATH_READA 0x1 /* do read ahead */ #define PATH_READA_BACK 0x2 /* read backwards */ @@ -1889,7 +2125,8 @@ znodes are the way! */ struct treepath { int path_length; /* Length of the array above. */ int reada; - struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */ + /* Array of the path elements. */ + struct path_element path_elements[EXTENDED_MAX_HEIGHT]; int pos_in_item; }; @@ -1908,41 +2145,124 @@ struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) - /* you know, to the person who didn't - write this the macro name does not - at first suggest what it does. - Maybe POSITION_FROM_PATH_END? Or - maybe we should just focus on - dumping paths... -Hans */ + +/* + * you know, to the person who didn't write this the macro name does not + * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or + * maybe we should just focus on dumping paths... -Hans + */ #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) -#define PATH_PITEM_HEAD(path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)) +/* + * in do_balance leaf has h == 0 in contrast with path structure, + * where root has level == 0. That is why we need these defines + */ + +/* tb->S[h] */ +#define PATH_H_PBUFFER(path, h) \ + PATH_OFFSET_PBUFFER(path, path->path_length - (h)) + +/* tb->F[h] or tb->S[0]->b_parent */ +#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1) + +#define PATH_H_POSITION(path, h) \ + PATH_OFFSET_POSITION(path, path->path_length - (h)) -/* in do_balance leaf has h == 0 in contrast with path structure, - where root has level == 0. That is why we need these defines */ -#define PATH_H_PBUFFER(path, h) PATH_OFFSET_PBUFFER (path, path->path_length - (h)) /* tb->S[h] */ -#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */ -#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h)) -#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */ +/* tb->S[h]->b_item_order */ +#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) +static inline void *reiserfs_node_data(const struct buffer_head *bh) +{ + return bh->b_data + sizeof(struct block_head); +} + +/* get key from internal node */ +static inline struct reiserfs_key *internal_key(struct buffer_head *bh, + int item_num) +{ + struct reiserfs_key *key = reiserfs_node_data(bh); + + return &key[item_num]; +} + +/* get the item header from leaf node */ +static inline struct item_head *item_head(const struct buffer_head *bh, + int item_num) +{ + struct item_head *ih = reiserfs_node_data(bh); + + return &ih[item_num]; +} + +/* get the key from leaf node */ +static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh, + int item_num) +{ + return &item_head(bh, item_num)->ih_key; +} + +static inline void *ih_item_body(const struct buffer_head *bh, + const struct item_head *ih) +{ + return bh->b_data + ih_location(ih); +} + +/* get item body from leaf node */ +static inline void *item_body(const struct buffer_head *bh, int item_num) +{ + return ih_item_body(bh, item_head(bh, item_num)); +} + +static inline struct item_head *tp_item_head(const struct treepath *path) +{ + return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); +} + +static inline void *tp_item_body(const struct treepath *path) +{ + return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); +} + #define get_last_bh(path) PATH_PLAST_BUFFER(path) -#define get_ih(path) PATH_PITEM_HEAD(path) #define get_item_pos(path) PATH_LAST_POSITION(path) -#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path))) #define item_moved(ih,path) comp_items(ih, path) #define path_changed(ih,path) comp_items (ih, path) -/***************************************************************************/ -/* MISC */ -/***************************************************************************/ +/* array of the entry headers */ + /* get item body */ +#define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih))) + +/* + * length of the directory entry in directory item. This define + * calculates length of i-th directory entry using directory entry + * locations from dir entry head. When it calculates length of 0-th + * directory entry, it uses length of whole item in place of entry + * location of the non-existent following entry in the calculation. + * See picture above. + */ +static inline int entry_length(const struct buffer_head *bh, + const struct item_head *ih, int pos_in_item) +{ + struct reiserfs_de_head *deh; + + deh = B_I_DEH(bh, ih) + pos_in_item; + if (pos_in_item) + return deh_location(deh - 1) - deh_location(deh); + + return ih_item_len(ih) - deh_location(deh); +} + +/*************************************************************************** + * MISC * + ***************************************************************************/ /* Size of pointer to the unformatted node. */ #define UNFM_P_SIZE (sizeof(unp_t)) #define UNFM_P_SHIFT 2 -// in in-core inode key is stored on le form +/* in in-core inode key is stored on le form */ #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) #define MAX_UL_INT 0xffffffff @@ -1958,7 +2278,6 @@ static inline loff_t max_reiserfs_offset(struct inode *inode) return (loff_t) ((~(__u64) 0) >> 4); } -/*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/ #define MAX_KEY_OBJECTID MAX_UL_INT #define MAX_B_NUM MAX_UL_INT @@ -1967,9 +2286,12 @@ static inline loff_t max_reiserfs_offset(struct inode *inode) /* the purpose is to detect overflow of an unsigned short */ #define REISERFS_LINK_MAX (MAX_US_INT - 1000) -/* The following defines are used in reiserfs_insert_item and reiserfs_append_item */ -#define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */ -#define REISERFS_USER_MEM 1 /* reiserfs user memory mode */ +/* + * The following defines are used in reiserfs_insert_item + * and reiserfs_append_item + */ +#define REISERFS_KERNEL_MEM 0 /* kernel memory mode */ +#define REISERFS_USER_MEM 1 /* user memory mode */ #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) #define get_generation(s) atomic_read (&fs_generation(s)) @@ -1981,46 +2303,65 @@ static inline loff_t max_reiserfs_offset(struct inode *inode) __fs_changed(gen, s); \ }) -/***************************************************************************/ -/* FIXATE NODES */ -/***************************************************************************/ +/*************************************************************************** + * FIXATE NODES * + ***************************************************************************/ #define VI_TYPE_LEFT_MERGEABLE 1 #define VI_TYPE_RIGHT_MERGEABLE 2 -/* To make any changes in the tree we always first find node, that - contains item to be changed/deleted or place to insert a new - item. We call this node S. To do balancing we need to decide what - we will shift to left/right neighbor, or to a new node, where new - item will be etc. To make this analysis simpler we build virtual - node. Virtual node is an array of items, that will replace items of - node S. (For instance if we are going to delete an item, virtual - node does not contain it). Virtual node keeps information about - item sizes and types, mergeability of first and last items, sizes - of all entries in directory item. We use this array of items when - calculating what we can shift to neighbors and how many nodes we - have to have if we do not any shiftings, if we shift to left/right - neighbor or to both. */ +/* + * To make any changes in the tree we always first find node, that + * contains item to be changed/deleted or place to insert a new + * item. We call this node S. To do balancing we need to decide what + * we will shift to left/right neighbor, or to a new node, where new + * item will be etc. To make this analysis simpler we build virtual + * node. Virtual node is an array of items, that will replace items of + * node S. (For instance if we are going to delete an item, virtual + * node does not contain it). Virtual node keeps information about + * item sizes and types, mergeability of first and last items, sizes + * of all entries in directory item. We use this array of items when + * calculating what we can shift to neighbors and how many nodes we + * have to have if we do not any shiftings, if we shift to left/right + * neighbor or to both. + */ struct virtual_item { - int vi_index; // index in the array of item operations - unsigned short vi_type; // left/right mergeability - unsigned short vi_item_len; /* length of item that it will have after balancing */ + int vi_index; /* index in the array of item operations */ + unsigned short vi_type; /* left/right mergeability */ + + /* length of item that it will have after balancing */ + unsigned short vi_item_len; + struct item_head *vi_ih; - const char *vi_item; // body of item (old or new) - const void *vi_new_data; // 0 always but paste mode - void *vi_uarea; // item specific area + const char *vi_item; /* body of item (old or new) */ + const void *vi_new_data; /* 0 always but paste mode */ + void *vi_uarea; /* item specific area */ }; struct virtual_node { - char *vn_free_ptr; /* this is a pointer to the free space in the buffer */ + /* this is a pointer to the free space in the buffer */ + char *vn_free_ptr; + unsigned short vn_nr_item; /* number of items in virtual node */ - short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */ - short vn_mode; /* mode of balancing (paste, insert, delete, cut) */ + + /* + * size of node , that node would have if it has + * unlimited size and no balancing is performed + */ + short vn_size; + + /* mode of balancing (paste, insert, delete, cut) */ + short vn_mode; + short vn_affected_item_num; short vn_pos_in_item; - struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */ + + /* item header of inserted item, 0 for other modes */ + struct item_head *vn_ins_ih; const void *vn_data; - struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */ + + /* array of items (including a new one, excluding item to be deleted) */ + struct virtual_item *vn_vi; }; /* used by directory items when creating virtual nodes */ @@ -2030,22 +2371,25 @@ struct direntry_uarea { __u16 entry_sizes[1]; } __attribute__ ((__packed__)); -/***************************************************************************/ -/* TREE BALANCE */ -/***************************************************************************/ +/*************************************************************************** + * TREE BALANCE * + ***************************************************************************/ -/* This temporary structure is used in tree balance algorithms, and - constructed as we go to the extent that its various parts are - needed. It contains arrays of nodes that can potentially be - involved in the balancing of node S, and parameters that define how - each of the nodes must be balanced. Note that in these algorithms - for balancing the worst case is to need to balance the current node - S and the left and right neighbors and all of their parents plus - create a new node. We implement S1 balancing for the leaf nodes - and S0 balancing for the internal nodes (S1 and S0 are defined in - our papers.)*/ +/* + * This temporary structure is used in tree balance algorithms, and + * constructed as we go to the extent that its various parts are + * needed. It contains arrays of nodes that can potentially be + * involved in the balancing of node S, and parameters that define how + * each of the nodes must be balanced. Note that in these algorithms + * for balancing the worst case is to need to balance the current node + * S and the left and right neighbors and all of their parents plus + * create a new node. We implement S1 balancing for the leaf nodes + * and S0 balancing for the internal nodes (S1 and S0 are defined in + * our papers.) + */ -#define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */ +/* size of the array of buffers to free at end of do_balance */ +#define MAX_FREE_BLOCK 7 /* maximum number of FEB blocknrs on a single level */ #define MAX_AMOUNT_NEEDED 2 @@ -2057,64 +2401,144 @@ struct tree_balance { struct super_block *tb_sb; struct reiserfs_transaction_handle *transaction_handle; struct treepath *tb_path; - struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */ - struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */ - struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */ - struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */ - struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */ - struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */ - - struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals - cur_blknum. */ + + /* array of left neighbors of nodes in the path */ + struct buffer_head *L[MAX_HEIGHT]; + + /* array of right neighbors of nodes in the path */ + struct buffer_head *R[MAX_HEIGHT]; + + /* array of fathers of the left neighbors */ + struct buffer_head *FL[MAX_HEIGHT]; + + /* array of fathers of the right neighbors */ + struct buffer_head *FR[MAX_HEIGHT]; + /* array of common parents of center node and its left neighbor */ + struct buffer_head *CFL[MAX_HEIGHT]; + + /* array of common parents of center node and its right neighbor */ + struct buffer_head *CFR[MAX_HEIGHT]; + + /* + * array of empty buffers. Number of buffers in array equals + * cur_blknum. + */ + struct buffer_head *FEB[MAX_FEB_SIZE]; struct buffer_head *used[MAX_FEB_SIZE]; struct buffer_head *thrown[MAX_FEB_SIZE]; - int lnum[MAX_HEIGHT]; /* array of number of items which must be - shifted to the left in order to balance the - current node; for leaves includes item that - will be partially shifted; for internal - nodes, it is the number of child pointers - rather than items. It includes the new item - being created. The code sometimes subtracts - one to get the number of wholly shifted - items for other purposes. */ - int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */ - int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and - S[h] to its item number within the node CFL[h] */ - int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */ - int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from - S[h]. A negative value means removing. */ - int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after - balancing on the level h of the tree. If 0 then S is - being deleted, if 1 then S is remaining and no new nodes - are being created, if 2 or 3 then 1 or 2 new nodes is - being created */ + + /* + * array of number of items which must be shifted to the left in + * order to balance the current node; for leaves includes item that + * will be partially shifted; for internal nodes, it is the number + * of child pointers rather than items. It includes the new item + * being created. The code sometimes subtracts one to get the + * number of wholly shifted items for other purposes. + */ + int lnum[MAX_HEIGHT]; + + /* substitute right for left in comment above */ + int rnum[MAX_HEIGHT]; + + /* + * array indexed by height h mapping the key delimiting L[h] and + * S[h] to its item number within the node CFL[h] + */ + int lkey[MAX_HEIGHT]; + + /* substitute r for l in comment above */ + int rkey[MAX_HEIGHT]; + + /* + * the number of bytes by we are trying to add or remove from + * S[h]. A negative value means removing. + */ + int insert_size[MAX_HEIGHT]; + + /* + * number of nodes that will replace node S[h] after balancing + * on the level h of the tree. If 0 then S is being deleted, + * if 1 then S is remaining and no new nodes are being created, + * if 2 or 3 then 1 or 2 new nodes is being created + */ + int blknum[MAX_HEIGHT]; /* fields that are used only for balancing leaves of the tree */ - int cur_blknum; /* number of empty blocks having been already allocated */ - int s0num; /* number of items that fall into left most node when S[0] splits */ - int s1num; /* number of items that fall into first new node when S[0] splits */ - int s2num; /* number of items that fall into second new node when S[0] splits */ - int lbytes; /* number of bytes which can flow to the left neighbor from the left */ - /* most liquid item that cannot be shifted from S[0] entirely */ - /* if -1 then nothing will be partially shifted */ - int rbytes; /* number of bytes which will flow to the right neighbor from the right */ - /* most liquid item that cannot be shifted from S[0] entirely */ - /* if -1 then nothing will be partially shifted */ - int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */ - /* note: if S[0] splits into 3 nodes, then items do not need to be cut */ - int s2bytes; - struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */ - char *vn_buf; /* kmalloced memory. Used to create - virtual node and keep map of - dirtied bitmap blocks */ + + /* number of empty blocks having been already allocated */ + int cur_blknum; + + /* number of items that fall into left most node when S[0] splits */ + int s0num; + + /* + * number of bytes which can flow to the left neighbor from the left + * most liquid item that cannot be shifted from S[0] entirely + * if -1 then nothing will be partially shifted + */ + int lbytes; + + /* + * number of bytes which will flow to the right neighbor from the right + * most liquid item that cannot be shifted from S[0] entirely + * if -1 then nothing will be partially shifted + */ + int rbytes; + + + /* + * index into the array of item headers in + * S[0] of the affected item + */ + int item_pos; + + /* new nodes allocated to hold what could not fit into S */ + struct buffer_head *S_new[2]; + + /* + * number of items that will be placed into nodes in S_new + * when S[0] splits + */ + int snum[2]; + + /* + * number of bytes which flow to nodes in S_new when S[0] splits + * note: if S[0] splits into 3 nodes, then items do not need to be cut + */ + int sbytes[2]; + + int pos_in_item; + int zeroes_num; + + /* + * buffers which are to be freed after do_balance finishes + * by unfix_nodes + */ + struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; + + /* + * kmalloced memory. Used to create virtual node and keep + * map of dirtied bitmap blocks + */ + char *vn_buf; + int vn_buf_size; /* size of the vn_buf */ - struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */ - int fs_gen; /* saved value of `reiserfs_generation' counter - see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */ + /* VN starts after bitmap of bitmap blocks */ + struct virtual_node *tb_vn; + + /* + * saved value of `reiserfs_generation' counter see + * FILESYSTEM_CHANGED() macro in reiserfs_fs.h + */ + int fs_gen; + #ifdef DISPLACE_NEW_PACKING_LOCALITIES - struct in_core_key key; /* key pointer, to pass to block allocator or - another low-level subsystem */ + /* + * key pointer, to pass to block allocator or + * another low-level subsystem + */ + struct in_core_key key; #endif }; @@ -2122,20 +2546,24 @@ struct tree_balance { /* When inserting an item. */ #define M_INSERT 'i' -/* When inserting into (directories only) or appending onto an already - existent item. */ +/* + * When inserting into (directories only) or appending onto an already + * existent item. + */ #define M_PASTE 'p' /* When deleting an item. */ #define M_DELETE 'd' /* When truncating an item or removing an entry from a (directory) item. */ -#define M_CUT 'c' +#define M_CUT 'c' /* used when balancing on leaf level skipped (in reiserfsck) */ #define M_INTERNAL 'n' -/* When further balancing is not needed, then do_balance does not need - to be called. */ -#define M_SKIP_BALANCING 's' +/* + * When further balancing is not needed, then do_balance does not need + * to be called. + */ +#define M_SKIP_BALANCING 's' #define M_CONVERT 'v' /* modes of leaf_move_items */ @@ -2148,8 +2576,10 @@ struct tree_balance { #define FIRST_TO_LAST 0 #define LAST_TO_FIRST 1 -/* used in do_balance for passing parent of node information that has - been gotten from tb struct */ +/* + * used in do_balance for passing parent of node information that has + * been gotten from tb struct + */ struct buffer_info { struct tree_balance *tb; struct buffer_head *bi_bh; @@ -2167,20 +2597,24 @@ static inline struct super_block *sb_from_bi(struct buffer_info *bi) return bi ? sb_from_tb(bi->tb) : NULL; } -/* there are 4 types of items: stat data, directory item, indirect, direct. -+-------------------+------------+--------------+------------+ -| | k_offset | k_uniqueness | mergeable? | -+-------------------+------------+--------------+------------+ -| stat data | 0 | 0 | no | -+-------------------+------------+--------------+------------+ -| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no | -| non 1st directory | hash value | | yes | -| item | | | | -+-------------------+------------+--------------+------------+ -| indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object -+-------------------+------------+--------------+------------+ -| direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object -+-------------------+------------+--------------+------------+ +/* + * there are 4 types of items: stat data, directory item, indirect, direct. + * +-------------------+------------+--------------+------------+ + * | | k_offset | k_uniqueness | mergeable? | + * +-------------------+------------+--------------+------------+ + * | stat data | 0 | 0 | no | + * +-------------------+------------+--------------+------------+ + * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no | + * | non 1st directory | hash value | UNIQUENESS | yes | + * | item | | | | + * +-------------------+------------+--------------+------------+ + * | indirect item | offset + 1 |TYPE_INDIRECT | [1] | + * +-------------------+------------+--------------+------------+ + * | direct item | offset + 1 |TYPE_DIRECT | [2] | + * +-------------------+------------+--------------+------------+ + * + * [1] if this is not the first indirect item of the object + * [2] if this is not the first direct item of the object */ struct item_operations { @@ -2219,49 +2653,43 @@ extern struct item_operations *item_ops[TYPE_ANY + 1]; /* number of blocks pointed to by the indirect item */ #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE) -/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */ +/* + * the used space within the unformatted node corresponding + * to pos within the item pointed to by ih + */ #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) -/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */ - -/* get the item header */ -#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) ) - -/* get key */ -#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) ) - -/* get the key */ -#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) ) - -/* get item body */ -#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num)))) - -/* get the stat data by the buffer header and the item order */ -#define B_N_STAT_DATA(bh,nr) \ -( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) ) +/* + * number of bytes contained by the direct item or the + * unformatted nodes the indirect item points to + */ - /* following defines use reiserfs buffer header and item header */ +/* following defines use reiserfs buffer header and item header */ /* get stat-data */ #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) -// this is 3976 for size==4096 +/* this is 3976 for size==4096 */ #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) -/* indirect items consist of entries which contain blocknrs, pos - indicates which entry, and B_I_POS_UNFM_POINTER resolves to the - blocknr contained by the entry pos points to */ -#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos))) -#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0) +/* + * indirect items consist of entries which contain blocknrs, pos + * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the + * blocknr contained by the entry pos points to + */ +#define B_I_POS_UNFM_POINTER(bh, ih, pos) \ + le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos))) +#define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \ + (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val)) struct reiserfs_iget_args { __u32 objectid; __u32 dirid; }; -/***************************************************************************/ -/* FUNCTION DECLARATIONS */ -/***************************************************************************/ +/*************************************************************************** + * FUNCTION DECLARATIONS * + ***************************************************************************/ #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) @@ -2273,7 +2701,10 @@ struct reiserfs_iget_args { /* first block written in a commit. */ struct reiserfs_journal_desc { __le32 j_trans_id; /* id of commit */ - __le32 j_len; /* length of commit. len +1 is the commit block */ + + /* length of commit. len +1 is the commit block */ + __le32 j_len; + __le32 j_mount_id; /* mount id of this trans */ __le32 j_realblock[1]; /* real locations for each block */ }; @@ -2300,22 +2731,35 @@ struct reiserfs_journal_commit { #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) -/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the -** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk, -** and this transaction does not need to be replayed. -*/ +/* + * this header block gets written whenever a transaction is considered + * fully flushed, and is more recent than the last fully flushed transaction. + * fully flushed means all the log blocks and all the real blocks are on + * disk, and this transaction does not need to be replayed. + */ struct reiserfs_journal_header { - __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */ - __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */ + /* id of last fully flushed transaction */ + __le32 j_last_flush_trans_id; + + /* offset in the log of where to start replay after a crash */ + __le32 j_first_unflushed_offset; + __le32 j_mount_id; /* 12 */ struct journal_params jh_journal; }; /* biggest tunable defines are right here */ #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ -#define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */ + +/* biggest possible single transaction, don't change for now (8/3/99) */ +#define JOURNAL_TRANS_MAX_DEFAULT 1024 #define JOURNAL_TRANS_MIN_DEFAULT 256 -#define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */ + +/* + * max blocks to batch into one transaction, + * don't make this any bigger than 900 + */ +#define JOURNAL_MAX_BATCH_DEFAULT 900 #define JOURNAL_MIN_RATIO 2 #define JOURNAL_MAX_COMMIT_AGE 30 #define JOURNAL_MAX_TRANS_AGE 30 @@ -2340,16 +2784,18 @@ struct reiserfs_journal_header { #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 #endif -/* both of these can be as low as 1, or as high as you want. The min is the -** number of 4k bitmap nodes preallocated on mount. New nodes are allocated -** as needed, and released when transactions are committed. On release, if -** the current number of nodes is > max, the node is freed, otherwise, -** it is put on a free list for faster use later. +/* + * both of these can be as low as 1, or as high as you want. The min is the + * number of 4k bitmap nodes preallocated on mount. New nodes are allocated + * as needed, and released when transactions are committed. On release, if + * the current number of nodes is > max, the node is freed, otherwise, + * it is put on a free list for faster use later. */ #define REISERFS_MIN_BITMAP_NODES 10 #define REISERFS_MAX_BITMAP_NODES 100 -#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */ +/* these are based on journal hash size of 8192 */ +#define JBH_HASH_SHIFT 13 #define JBH_HASH_MASK 8191 #define _jhashfn(sb,block) \ @@ -2357,7 +2803,7 @@ struct reiserfs_journal_header { (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) -// We need these to make journal.c code more readable +/* We need these to make journal.c code more readable */ #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) @@ -2365,12 +2811,14 @@ struct reiserfs_journal_header { enum reiserfs_bh_state_bits { BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ BH_JDirty_wait, - BH_JNew, /* disk block was taken off free list before - * being in a finished transaction, or - * written to disk. Can be reused immed. */ + /* + * disk block was taken off free list before being in a + * finished transaction, or written to disk. Can be reused immed. + */ + BH_JNew, BH_JPrepared, BH_JRestore_dirty, - BH_JTest, // debugging only will go away + BH_JTest, /* debugging only will go away */ }; BUFFER_FNS(JDirty, journaled); @@ -2386,27 +2834,36 @@ TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); BUFFER_FNS(JTest, journal_test); TAS_BUFFER_FNS(JTest, journal_test); -/* -** transaction handle which is passed around for all journal calls -*/ +/* transaction handle which is passed around for all journal calls */ struct reiserfs_transaction_handle { - struct super_block *t_super; /* super for this FS when journal_begin was - called. saves calls to reiserfs_get_super - also used by nested transactions to make - sure they are nesting on the right FS - _must_ be first in the handle - */ + /* + * super for this FS when journal_begin was called. saves calls to + * reiserfs_get_super also used by nested transactions to make + * sure they are nesting on the right FS _must_ be first + * in the handle + */ + struct super_block *t_super; + int t_refcount; int t_blocks_logged; /* number of blocks this writer has logged */ int t_blocks_allocated; /* number of blocks this writer allocated */ - unsigned int t_trans_id; /* sanity check, equals the current trans id */ + + /* sanity check, equals the current trans id */ + unsigned int t_trans_id; + void *t_handle_save; /* save existing current->journal_info */ - unsigned displace_new_blocks:1; /* if new block allocation occurres, that block - should be displaced from others */ + + /* + * if new block allocation occurres, that block + * should be displaced from others + */ + unsigned displace_new_blocks:1; + struct list_head t_list; }; -/* used to keep track of ordered and tail writes, attached to the buffer +/* + * used to keep track of ordered and tail writes, attached to the buffer * head through b_journal_head. */ struct reiserfs_jh { @@ -2419,7 +2876,7 @@ void reiserfs_free_jh(struct buffer_head *bh); int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); int journal_mark_dirty(struct reiserfs_transaction_handle *, - struct super_block *, struct buffer_head *bh); + struct buffer_head *bh); static inline int reiserfs_file_data_log(struct inode *inode) { @@ -2469,10 +2926,8 @@ int journal_init(struct super_block *, const char *j_dev_name, int old_format, int journal_release(struct reiserfs_transaction_handle *, struct super_block *); int journal_release_error(struct reiserfs_transaction_handle *, struct super_block *); -int journal_end(struct reiserfs_transaction_handle *, struct super_block *, - unsigned long); -int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *, - unsigned long); +int journal_end(struct reiserfs_transaction_handle *); +int journal_end_sync(struct reiserfs_transaction_handle *); int journal_mark_freed(struct reiserfs_transaction_handle *, struct super_block *, b_blocknr_t blocknr); int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); @@ -2481,7 +2936,7 @@ int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, int journal_begin(struct reiserfs_transaction_handle *, struct super_block *sb, unsigned long); int journal_join_abort(struct reiserfs_transaction_handle *, - struct super_block *sb, unsigned long); + struct super_block *sb); void reiserfs_abort_journal(struct super_block *sb, int errno); void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); int reiserfs_allocate_list_bitmaps(struct super_block *s, @@ -2503,20 +2958,18 @@ int B_IS_IN_TREE(const struct buffer_head *); extern void copy_item_head(struct item_head *to, const struct item_head *from); -// first key is in cpu form, second - le +/* first key is in cpu form, second - le */ extern int comp_short_keys(const struct reiserfs_key *le_key, const struct cpu_key *cpu_key); extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); -// both are in le form +/* both are in le form */ extern int comp_le_keys(const struct reiserfs_key *, const struct reiserfs_key *); extern int comp_short_le_keys(const struct reiserfs_key *, const struct reiserfs_key *); -// -// get key version from on disk key - kludge -// +/* * get key version from on disk key - kludge */ static inline int le_key_version(const struct reiserfs_key *key) { int type; @@ -2593,12 +3046,12 @@ void padd_item(char *item, int total_length, int length); /* inode.c */ /* args for the create parameter of reiserfs_get_block */ -#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ -#define GET_BLOCK_CREATE 1 /* add anything you need to find block */ -#define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ -#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ -#define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ -#define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ +#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ +#define GET_BLOCK_CREATE 1 /* add anything you need to find block */ +#define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ +#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ +#define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ +#define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ void reiserfs_read_locked_inode(struct inode *inode, struct reiserfs_iget_args *args); @@ -2797,25 +3250,49 @@ struct buffer_head *get_FEB(struct tree_balance *); /* bitmap.c */ -/* structure contains hints for block allocator, and it is a container for - * arguments, such as node, search path, transaction_handle, etc. */ +/* + * structure contains hints for block allocator, and it is a container for + * arguments, such as node, search path, transaction_handle, etc. + */ struct __reiserfs_blocknr_hint { - struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */ + /* inode passed to allocator, if we allocate unf. nodes */ + struct inode *inode; + sector_t block; /* file offset, in blocks */ struct in_core_key key; - struct treepath *path; /* search path, used by allocator to deternine search_start by - * various ways */ - struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and - * bitmap blocks changes */ + + /* + * search path, used by allocator to deternine search_start by + * various ways + */ + struct treepath *path; + + /* + * transaction handle is needed to log super blocks + * and bitmap blocks changes + */ + struct reiserfs_transaction_handle *th; + b_blocknr_t beg, end; - b_blocknr_t search_start; /* a field used to transfer search start value (block number) - * between different block allocator procedures - * (determine_search_start() and others) */ - int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed - * function that do actual allocation */ - - unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for - * formatted/unformatted blocks with/without preallocation */ + + /* + * a field used to transfer search start value (block number) + * between different block allocator procedures + * (determine_search_start() and others) + */ + b_blocknr_t search_start; + + /* + * is set in determine_prealloc_size() function, + * used by underlayed function that do actual allocation + */ + int prealloc_size; + + /* + * the allocator uses different polices for getting disk + * space for formatted/unformatted blocks with/without preallocation + */ + unsigned formatted_node:1; unsigned preallocate:1; }; @@ -2909,13 +3386,15 @@ __u32 r5_hash(const signed char *msg, int len); #define reiserfs_test_le_bit test_bit_le #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le -/* sometimes reiserfs_truncate may require to allocate few new blocks - to perform indirect2direct conversion. People probably used to - think, that truncate should work without problems on a filesystem - without free disk space. They may complain that they can not - truncate due to lack of free disk space. This spare space allows us - to not worry about it. 500 is probably too much, but it should be - absolutely safe */ +/* + * sometimes reiserfs_truncate may require to allocate few new blocks + * to perform indirect2direct conversion. People probably used to + * think, that truncate should work without problems on a filesystem + * without free disk space. They may complain that they can not + * truncate due to lack of free disk space. This spare space allows us + * to not worry about it. 500 is probably too much, but it should be + * absolutely safe + */ #define SPARE_SPACE 500 /* prototypes from ioctl.c */ |