diff options
Diffstat (limited to 'drivers/net/wimax/i2400m/i2400m.h')
-rw-r--r-- | drivers/net/wimax/i2400m/i2400m.h | 209 |
1 files changed, 141 insertions, 68 deletions
diff --git a/drivers/net/wimax/i2400m/i2400m.h b/drivers/net/wimax/i2400m/i2400m.h index 60330f3..04df9bb 100644 --- a/drivers/net/wimax/i2400m/i2400m.h +++ b/drivers/net/wimax/i2400m/i2400m.h @@ -117,16 +117,30 @@ * well as i2400m->wimax_dev.net_dev and call i2400m_setup(). The * i2400m driver will only register with the WiMAX and network stacks; * the only access done to the device is to read the MAC address so we - * can register a network device. This calls i2400m_dev_start() to - * load firmware, setup communication with the device and configure it - * for operation. + * can register a network device. * - * At this point, control and data communications are possible. + * The high-level call flow is: + * + * bus_probe() + * i2400m_setup() + * i2400m->bus_setup() + * boot rom initialization / read mac addr + * network / WiMAX stacks registration + * i2400m_dev_start() + * i2400m->bus_dev_start() + * i2400m_dev_initialize() * - * On disconnect/driver unload, the bus-specific disconnect function - * calls i2400m_release() to undo i2400m_setup(). i2400m_dev_stop() - * shuts the firmware down and releases resources uses to communicate - * with the device. + * The reverse applies for a disconnect() call: + * + * bus_disconnect() + * i2400m_release() + * i2400m_dev_stop() + * i2400m_dev_shutdown() + * i2400m->bus_dev_stop() + * network / WiMAX stack unregistration + * i2400m->bus_release() + * + * At this point, control and data communications are possible. * * While the device is up, it might reset. The bus-specific driver has * to catch that situation and call i2400m_dev_reset_handle() to deal @@ -148,9 +162,6 @@ /* Misc constants */ enum { - /* Firmware uploading */ - I2400M_BOOT_RETRIES = 3, - I3200_BOOT_RETRIES = 3, /* Size of the Boot Mode Command buffer */ I2400M_BM_CMD_BUF_SIZE = 16 * 1024, I2400M_BM_ACK_BUF_SIZE = 256, @@ -197,6 +208,7 @@ enum i2400m_reset_type { struct i2400m_reset_ctx; struct i2400m_roq; +struct i2400m_barker_db; /** * struct i2400m - descriptor for an Intel 2400m @@ -204,27 +216,50 @@ struct i2400m_roq; * Members marked with [fill] must be filled out/initialized before * calling i2400m_setup(). * + * Note the @bus_setup/@bus_release, @bus_dev_start/@bus_dev_release + * call pairs are very much doing almost the same, and depending on + * the underlying bus, some stuff has to be put in one or the + * other. The idea of setup/release is that they setup the minimal + * amount needed for loading firmware, where us dev_start/stop setup + * the rest needed to do full data/control traffic. + * * @bus_tx_block_size: [fill] SDIO imposes a 256 block size, USB 16, * so we have a tx_blk_size variable that the bus layer sets to * tell the engine how much of that we need. * * @bus_pl_size_max: [fill] Maximum payload size. * - * @bus_dev_start: [fill] Function called by the bus-generic code - * [i2400m_dev_start()] to setup the bus-specific communications - * to the the device. See LIFE CYCLE above. + * @bus_setup: [optional fill] Function called by the bus-generic code + * [i2400m_setup()] to setup the basic bus-specific communications + * to the the device needed to load firmware. See LIFE CYCLE above. * * NOTE: Doesn't need to upload the firmware, as that is taken * care of by the bus-generic code. * - * @bus_dev_stop: [fill] Function called by the bus-generic code - * [i2400m_dev_stop()] to shutdown the bus-specific communications - * to the the device. See LIFE CYCLE above. + * @bus_release: [optional fill] Function called by the bus-generic + * code [i2400m_release()] to shutdown the basic bus-specific + * communications to the the device needed to load firmware. See + * LIFE CYCLE above. * * This function does not need to reset the device, just tear down * all the host resources created to handle communication with * the device. * + * @bus_dev_start: [optional fill] Function called by the bus-generic + * code [i2400m_dev_start()] to do things needed to start the + * device. See LIFE CYCLE above. + * + * NOTE: Doesn't need to upload the firmware, as that is taken + * care of by the bus-generic code. + * + * @bus_dev_stop: [optional fill] Function called by the bus-generic + * code [i2400m_dev_stop()] to do things needed for stopping the + * device. See LIFE CYCLE above. + * + * This function does not need to reset the device, just tear down + * all the host resources created to handle communication with + * the device. + * * @bus_tx_kick: [fill] Function called by the bus-generic code to let * the bus-specific code know that there is data available in the * TX FIFO for transmission to the device. @@ -246,6 +281,9 @@ struct i2400m_roq; * process, so it cannot rely on common infrastructure being laid * out. * + * IMPORTANT: don't call reset on RT_BUS with i2400m->init_mutex + * held, as the .pre/.post reset handlers will deadlock. + * * @bus_bm_retries: [fill] How many times shall a firmware upload / * device initialization be retried? Different models of the same * device might need different values, hence it is set by the @@ -297,6 +335,27 @@ struct i2400m_roq; * force this to be the first field so that we can get from * netdev_priv() the right pointer. * + * @updown: the device is up and ready for transmitting control and + * data packets. This implies @ready (communication infrastructure + * with the device is ready) and the device's firmware has been + * loaded and the device initialized. + * + * Write to it only inside a i2400m->init_mutex protected area + * followed with a wmb(); rmb() before accesing (unless locked + * inside i2400m->init_mutex). Read access can be loose like that + * [just using rmb()] because the paths that use this also do + * other error checks later on. + * + * @ready: Communication infrastructure with the device is ready, data + * frames can start to be passed around (this is lighter than + * using the WiMAX state for certain hot paths). + * + * Write to it only inside a i2400m->init_mutex protected area + * followed with a wmb(); rmb() before accesing (unless locked + * inside i2400m->init_mutex). Read access can be loose like that + * [just using rmb()] because the paths that use this also do + * other error checks later on. + * * @rx_reorder: 1 if RX reordering is enabled; this can only be * set at probe time. * @@ -362,6 +421,13 @@ struct i2400m_roq; * delivered. Then the driver can release them to the host. See * drivers/net/i2400m/rx.c for details. * + * @rx_reports: reports received from the device that couldn't be + * processed because the driver wasn't still ready; when ready, + * they are pulled from here and chewed. + * + * @rx_reports_ws: Work struct used to kick a scan of the RX reports + * list and to process each. + * * @src_mac_addr: MAC address used to make ethernet packets be coming * from. This is generated at i2400m_setup() time and used during * the life cycle of the instance. See i2400m_fake_eth_header(). @@ -422,6 +488,25 @@ struct i2400m_roq; * * @fw_version: version of the firmware interface, Major.minor, * encoded in the high word and low word (major << 16 | minor). + * + * @fw_hdrs: NULL terminated array of pointers to the firmware + * headers. This is only available during firmware load time. + * + * @fw_cached: Used to cache firmware when the system goes to + * suspend/standby/hibernation (as on resume we can't read it). If + * NULL, no firmware was cached, read it. If ~0, you can't read + * any firmware files (the system still didn't come out of suspend + * and failed to cache one), so abort; otherwise, a valid cached + * firmware to be used. Access to this variable is protected by + * the spinlock i2400m->rx_lock. + * + * @barker: barker type that the device uses; this is initialized by + * i2400m_is_boot_barker() the first time it is called. Then it + * won't change during the life cycle of the device and everytime + * a boot barker is received, it is just verified for it being the + * same. + * + * @pm_notifier: used to register for PM events */ struct i2400m { struct wimax_dev wimax_dev; /* FIRST! See doc */ @@ -429,7 +514,7 @@ struct i2400m { unsigned updown:1; /* Network device is up or down */ unsigned boot_mode:1; /* is the device in boot mode? */ unsigned sboot:1; /* signed or unsigned fw boot */ - unsigned ready:1; /* all probing steps done */ + unsigned ready:1; /* Device comm infrastructure ready */ unsigned rx_reorder:1; /* RX reorder is enabled */ u8 trace_msg_from_user; /* echo rx msgs to 'trace' pipe */ /* typed u8 so /sys/kernel/debug/u8 can tweak */ @@ -440,8 +525,10 @@ struct i2400m { size_t bus_pl_size_max; unsigned bus_bm_retries; + int (*bus_setup)(struct i2400m *); int (*bus_dev_start)(struct i2400m *); void (*bus_dev_stop)(struct i2400m *); + void (*bus_release)(struct i2400m *); void (*bus_tx_kick)(struct i2400m *); int (*bus_reset)(struct i2400m *, enum i2400m_reset_type); ssize_t (*bus_bm_cmd_send)(struct i2400m *, @@ -468,6 +555,8 @@ struct i2400m { rx_num, rx_size_acc, rx_size_min, rx_size_max; struct i2400m_roq *rx_roq; /* not under rx_lock! */ u8 src_mac_addr[ETH_HLEN]; + struct list_head rx_reports; /* under rx_lock! */ + struct work_struct rx_report_ws; struct mutex msg_mutex; /* serialize command execution */ struct completion msg_completion; @@ -487,37 +576,12 @@ struct i2400m { struct dentry *debugfs_dentry; const char *fw_name; /* name of the current firmware image */ unsigned long fw_version; /* version of the firmware interface */ -}; - + const struct i2400m_bcf_hdr **fw_hdrs; + struct i2400m_fw *fw_cached; /* protected by rx_lock */ + struct i2400m_barker_db *barker; -/* - * Initialize a 'struct i2400m' from all zeroes - * - * This is a bus-generic API call. - */ -static inline -void i2400m_init(struct i2400m *i2400m) -{ - wimax_dev_init(&i2400m->wimax_dev); - - i2400m->boot_mode = 1; - i2400m->rx_reorder = 1; - init_waitqueue_head(&i2400m->state_wq); - - spin_lock_init(&i2400m->tx_lock); - i2400m->tx_pl_min = UINT_MAX; - i2400m->tx_size_min = UINT_MAX; - - spin_lock_init(&i2400m->rx_lock); - i2400m->rx_pl_min = UINT_MAX; - i2400m->rx_size_min = UINT_MAX; - - mutex_init(&i2400m->msg_mutex); - init_completion(&i2400m->msg_completion); - - mutex_init(&i2400m->init_mutex); - /* wake_tx_ws is initialized in i2400m_tx_setup() */ -} + struct notifier_block pm_notifier; +}; /* @@ -577,6 +641,14 @@ extern void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *); extern int i2400m_dev_bootstrap(struct i2400m *, enum i2400m_bri); extern int i2400m_read_mac_addr(struct i2400m *); extern int i2400m_bootrom_init(struct i2400m *, enum i2400m_bri); +extern int i2400m_is_boot_barker(struct i2400m *, const void *, size_t); +static inline +int i2400m_is_d2h_barker(const void *buf) +{ + const __le32 *barker = buf; + return le32_to_cpu(*barker) == I2400M_D2H_MSG_BARKER; +} +extern void i2400m_unknown_barker(struct i2400m *, const void *, size_t); /* Make/grok boot-rom header commands */ @@ -644,6 +716,8 @@ unsigned i2400m_brh_get_signature(const struct i2400m_bootrom_header *hdr) /* * Driver / device setup and internal functions */ +extern void i2400m_init(struct i2400m *); +extern int i2400m_reset(struct i2400m *, enum i2400m_reset_type); extern void i2400m_netdev_setup(struct net_device *net_dev); extern int i2400m_sysfs_setup(struct device_driver *); extern void i2400m_sysfs_release(struct device_driver *); @@ -654,10 +728,14 @@ extern void i2400m_tx_release(struct i2400m *); extern int i2400m_rx_setup(struct i2400m *); extern void i2400m_rx_release(struct i2400m *); +extern void i2400m_fw_cache(struct i2400m *); +extern void i2400m_fw_uncache(struct i2400m *); + extern void i2400m_net_rx(struct i2400m *, struct sk_buff *, unsigned, const void *, int); extern void i2400m_net_erx(struct i2400m *, struct sk_buff *, enum i2400m_cs); +extern void i2400m_net_wake_stop(struct i2400m *); enum i2400m_pt; extern int i2400m_tx(struct i2400m *, const void *, size_t, enum i2400m_pt); @@ -672,14 +750,12 @@ static inline int i2400m_debugfs_add(struct i2400m *i2400m) static inline void i2400m_debugfs_rm(struct i2400m *i2400m) {} #endif -/* Called by _dev_start()/_dev_stop() to initialize the device itself */ +/* Initialize/shutdown the device */ extern int i2400m_dev_initialize(struct i2400m *); extern void i2400m_dev_shutdown(struct i2400m *); extern struct attribute_group i2400m_dev_attr_group; -extern int i2400m_schedule_work(struct i2400m *, - void (*)(struct work_struct *), gfp_t); /* HDI message's payload description handling */ @@ -724,7 +800,9 @@ void i2400m_put(struct i2400m *i2400m) dev_put(i2400m->wimax_dev.net_dev); } -extern int i2400m_dev_reset_handle(struct i2400m *); +extern int i2400m_dev_reset_handle(struct i2400m *, const char *); +extern int i2400m_pre_reset(struct i2400m *); +extern int i2400m_post_reset(struct i2400m *); /* * _setup()/_release() are called by the probe/disconnect functions of @@ -737,20 +815,6 @@ extern int i2400m_rx(struct i2400m *, struct sk_buff *); extern struct i2400m_msg_hdr *i2400m_tx_msg_get(struct i2400m *, size_t *); extern void i2400m_tx_msg_sent(struct i2400m *); -static const __le32 i2400m_NBOOT_BARKER[4] = { - cpu_to_le32(I2400M_NBOOT_BARKER), - cpu_to_le32(I2400M_NBOOT_BARKER), - cpu_to_le32(I2400M_NBOOT_BARKER), - cpu_to_le32(I2400M_NBOOT_BARKER) -}; - -static const __le32 i2400m_SBOOT_BARKER[4] = { - cpu_to_le32(I2400M_SBOOT_BARKER), - cpu_to_le32(I2400M_SBOOT_BARKER), - cpu_to_le32(I2400M_SBOOT_BARKER), - cpu_to_le32(I2400M_SBOOT_BARKER) -}; - extern int i2400m_power_save_disabled; /* @@ -773,10 +837,12 @@ struct device *i2400m_dev(struct i2400m *i2400m) struct i2400m_work { struct work_struct ws; struct i2400m *i2400m; + size_t pl_size; u8 pl[0]; }; -extern int i2400m_queue_work(struct i2400m *, - void (*)(struct work_struct *), gfp_t, + +extern int i2400m_schedule_work(struct i2400m *, + void (*)(struct work_struct *), gfp_t, const void *, size_t); extern int i2400m_msg_check_status(const struct i2400m_l3l4_hdr *, @@ -789,6 +855,7 @@ extern void i2400m_msg_ack_hook(struct i2400m *, const struct i2400m_l3l4_hdr *, size_t); extern void i2400m_report_hook(struct i2400m *, const struct i2400m_l3l4_hdr *, size_t); +extern void i2400m_report_hook_work(struct work_struct *); extern int i2400m_cmd_enter_powersave(struct i2400m *); extern int i2400m_cmd_get_state(struct i2400m *); extern int i2400m_cmd_exit_idle(struct i2400m *); @@ -849,6 +916,12 @@ void __i2400m_msleep(unsigned ms) #endif } + +/* module initialization helpers */ +extern int i2400m_barker_db_init(const char *); +extern void i2400m_barker_db_exit(void); + + /* Module parameters */ extern int i2400m_idle_mode_disabled; |