diff options
Diffstat (limited to 'drivers/net/sfc')
37 files changed, 0 insertions, 25571 deletions
diff --git a/drivers/net/sfc/Kconfig b/drivers/net/sfc/Kconfig deleted file mode 100644 index a3d5bb9..0000000 --- a/drivers/net/sfc/Kconfig +++ /dev/null @@ -1,21 +0,0 @@ -config SFC - tristate "Solarflare SFC4000/SFC9000-family support" - depends on PCI && INET - select MDIO - select CRC32 - select I2C - select I2C_ALGOBIT - help - This driver supports 10-gigabit Ethernet cards based on - the Solarflare SFC4000 and SFC9000-family controllers. - - To compile this driver as a module, choose M here. The module - will be called sfc. -config SFC_MTD - bool "Solarflare SFC4000/SFC9000-family MTD support" - depends on SFC && MTD && !(SFC=y && MTD=m) - default y - help - This exposes the on-board flash memory as MTD devices (e.g. - /dev/mtd1). This makes it possible to upload new firmware - to the NIC. diff --git a/drivers/net/sfc/Makefile b/drivers/net/sfc/Makefile deleted file mode 100644 index ab31c71..0000000 --- a/drivers/net/sfc/Makefile +++ /dev/null @@ -1,8 +0,0 @@ -sfc-y += efx.o nic.o falcon.o siena.o tx.o rx.o filter.o \ - falcon_xmac.o mcdi_mac.o \ - selftest.o ethtool.o qt202x_phy.o mdio_10g.o \ - tenxpress.o txc43128_phy.o falcon_boards.o \ - mcdi.o mcdi_phy.o -sfc-$(CONFIG_SFC_MTD) += mtd.o - -obj-$(CONFIG_SFC) += sfc.o diff --git a/drivers/net/sfc/bitfield.h b/drivers/net/sfc/bitfield.h deleted file mode 100644 index 098ac2a..0000000 --- a/drivers/net/sfc/bitfield.h +++ /dev/null @@ -1,538 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2009 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_BITFIELD_H -#define EFX_BITFIELD_H - -/* - * Efx bitfield access - * - * Efx NICs make extensive use of bitfields up to 128 bits - * wide. Since there is no native 128-bit datatype on most systems, - * and since 64-bit datatypes are inefficient on 32-bit systems and - * vice versa, we wrap accesses in a way that uses the most efficient - * datatype. - * - * The NICs are PCI devices and therefore little-endian. Since most - * of the quantities that we deal with are DMAed to/from host memory, - * we define our datatypes (efx_oword_t, efx_qword_t and - * efx_dword_t) to be little-endian. - */ - -/* Lowest bit numbers and widths */ -#define EFX_DUMMY_FIELD_LBN 0 -#define EFX_DUMMY_FIELD_WIDTH 0 -#define EFX_DWORD_0_LBN 0 -#define EFX_DWORD_0_WIDTH 32 -#define EFX_DWORD_1_LBN 32 -#define EFX_DWORD_1_WIDTH 32 -#define EFX_DWORD_2_LBN 64 -#define EFX_DWORD_2_WIDTH 32 -#define EFX_DWORD_3_LBN 96 -#define EFX_DWORD_3_WIDTH 32 -#define EFX_QWORD_0_LBN 0 -#define EFX_QWORD_0_WIDTH 64 - -/* Specified attribute (e.g. LBN) of the specified field */ -#define EFX_VAL(field, attribute) field ## _ ## attribute -/* Low bit number of the specified field */ -#define EFX_LOW_BIT(field) EFX_VAL(field, LBN) -/* Bit width of the specified field */ -#define EFX_WIDTH(field) EFX_VAL(field, WIDTH) -/* High bit number of the specified field */ -#define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1) -/* Mask equal in width to the specified field. - * - * For example, a field with width 5 would have a mask of 0x1f. - * - * The maximum width mask that can be generated is 64 bits. - */ -#define EFX_MASK64(width) \ - ((width) == 64 ? ~((u64) 0) : \ - (((((u64) 1) << (width))) - 1)) - -/* Mask equal in width to the specified field. - * - * For example, a field with width 5 would have a mask of 0x1f. - * - * The maximum width mask that can be generated is 32 bits. Use - * EFX_MASK64 for higher width fields. - */ -#define EFX_MASK32(width) \ - ((width) == 32 ? ~((u32) 0) : \ - (((((u32) 1) << (width))) - 1)) - -/* A doubleword (i.e. 4 byte) datatype - little-endian in HW */ -typedef union efx_dword { - __le32 u32[1]; -} efx_dword_t; - -/* A quadword (i.e. 8 byte) datatype - little-endian in HW */ -typedef union efx_qword { - __le64 u64[1]; - __le32 u32[2]; - efx_dword_t dword[2]; -} efx_qword_t; - -/* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */ -typedef union efx_oword { - __le64 u64[2]; - efx_qword_t qword[2]; - __le32 u32[4]; - efx_dword_t dword[4]; -} efx_oword_t; - -/* Format string and value expanders for printk */ -#define EFX_DWORD_FMT "%08x" -#define EFX_QWORD_FMT "%08x:%08x" -#define EFX_OWORD_FMT "%08x:%08x:%08x:%08x" -#define EFX_DWORD_VAL(dword) \ - ((unsigned int) le32_to_cpu((dword).u32[0])) -#define EFX_QWORD_VAL(qword) \ - ((unsigned int) le32_to_cpu((qword).u32[1])), \ - ((unsigned int) le32_to_cpu((qword).u32[0])) -#define EFX_OWORD_VAL(oword) \ - ((unsigned int) le32_to_cpu((oword).u32[3])), \ - ((unsigned int) le32_to_cpu((oword).u32[2])), \ - ((unsigned int) le32_to_cpu((oword).u32[1])), \ - ((unsigned int) le32_to_cpu((oword).u32[0])) - -/* - * Extract bit field portion [low,high) from the native-endian element - * which contains bits [min,max). - * - * For example, suppose "element" represents the high 32 bits of a - * 64-bit value, and we wish to extract the bits belonging to the bit - * field occupying bits 28-45 of this 64-bit value. - * - * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give - * - * ( element ) << 4 - * - * The result will contain the relevant bits filled in in the range - * [0,high-low), with garbage in bits [high-low+1,...). - */ -#define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \ - (((low > max) || (high < min)) ? 0 : \ - ((low > min) ? \ - ((native_element) >> (low - min)) : \ - ((native_element) << (min - low)))) - -/* - * Extract bit field portion [low,high) from the 64-bit little-endian - * element which contains bits [min,max) - */ -#define EFX_EXTRACT64(element, min, max, low, high) \ - EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high) - -/* - * Extract bit field portion [low,high) from the 32-bit little-endian - * element which contains bits [min,max) - */ -#define EFX_EXTRACT32(element, min, max, low, high) \ - EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high) - -#define EFX_EXTRACT_OWORD64(oword, low, high) \ - ((EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \ - EFX_EXTRACT64((oword).u64[1], 64, 127, low, high)) & \ - EFX_MASK64(high + 1 - low)) - -#define EFX_EXTRACT_QWORD64(qword, low, high) \ - (EFX_EXTRACT64((qword).u64[0], 0, 63, low, high) & \ - EFX_MASK64(high + 1 - low)) - -#define EFX_EXTRACT_OWORD32(oword, low, high) \ - ((EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \ - EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \ - EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \ - EFX_EXTRACT32((oword).u32[3], 96, 127, low, high)) & \ - EFX_MASK32(high + 1 - low)) - -#define EFX_EXTRACT_QWORD32(qword, low, high) \ - ((EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \ - EFX_EXTRACT32((qword).u32[1], 32, 63, low, high)) & \ - EFX_MASK32(high + 1 - low)) - -#define EFX_EXTRACT_DWORD(dword, low, high) \ - (EFX_EXTRACT32((dword).u32[0], 0, 31, low, high) & \ - EFX_MASK32(high + 1 - low)) - -#define EFX_OWORD_FIELD64(oword, field) \ - EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), \ - EFX_HIGH_BIT(field)) - -#define EFX_QWORD_FIELD64(qword, field) \ - EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), \ - EFX_HIGH_BIT(field)) - -#define EFX_OWORD_FIELD32(oword, field) \ - EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), \ - EFX_HIGH_BIT(field)) - -#define EFX_QWORD_FIELD32(qword, field) \ - EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), \ - EFX_HIGH_BIT(field)) - -#define EFX_DWORD_FIELD(dword, field) \ - EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), \ - EFX_HIGH_BIT(field)) - -#define EFX_OWORD_IS_ZERO64(oword) \ - (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0) - -#define EFX_QWORD_IS_ZERO64(qword) \ - (((qword).u64[0]) == (__force __le64) 0) - -#define EFX_OWORD_IS_ZERO32(oword) \ - (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \ - == (__force __le32) 0) - -#define EFX_QWORD_IS_ZERO32(qword) \ - (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0) - -#define EFX_DWORD_IS_ZERO(dword) \ - (((dword).u32[0]) == (__force __le32) 0) - -#define EFX_OWORD_IS_ALL_ONES64(oword) \ - (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0)) - -#define EFX_QWORD_IS_ALL_ONES64(qword) \ - ((qword).u64[0] == ~((__force __le64) 0)) - -#define EFX_OWORD_IS_ALL_ONES32(oword) \ - (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \ - == ~((__force __le32) 0)) - -#define EFX_QWORD_IS_ALL_ONES32(qword) \ - (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0)) - -#define EFX_DWORD_IS_ALL_ONES(dword) \ - ((dword).u32[0] == ~((__force __le32) 0)) - -#if BITS_PER_LONG == 64 -#define EFX_OWORD_FIELD EFX_OWORD_FIELD64 -#define EFX_QWORD_FIELD EFX_QWORD_FIELD64 -#define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64 -#define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64 -#define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64 -#define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64 -#else -#define EFX_OWORD_FIELD EFX_OWORD_FIELD32 -#define EFX_QWORD_FIELD EFX_QWORD_FIELD32 -#define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32 -#define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32 -#define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32 -#define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32 -#endif - -/* - * Construct bit field portion - * - * Creates the portion of the bit field [low,high) that lies within - * the range [min,max). - */ -#define EFX_INSERT_NATIVE64(min, max, low, high, value) \ - (((low > max) || (high < min)) ? 0 : \ - ((low > min) ? \ - (((u64) (value)) << (low - min)) : \ - (((u64) (value)) >> (min - low)))) - -#define EFX_INSERT_NATIVE32(min, max, low, high, value) \ - (((low > max) || (high < min)) ? 0 : \ - ((low > min) ? \ - (((u32) (value)) << (low - min)) : \ - (((u32) (value)) >> (min - low)))) - -#define EFX_INSERT_NATIVE(min, max, low, high, value) \ - ((((max - min) >= 32) || ((high - low) >= 32)) ? \ - EFX_INSERT_NATIVE64(min, max, low, high, value) : \ - EFX_INSERT_NATIVE32(min, max, low, high, value)) - -/* - * Construct bit field portion - * - * Creates the portion of the named bit field that lies within the - * range [min,max). - */ -#define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \ - EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \ - EFX_HIGH_BIT(field), value) - -/* - * Construct bit field - * - * Creates the portion of the named bit fields that lie within the - * range [min,max). - */ -#define EFX_INSERT_FIELDS_NATIVE(min, max, \ - field1, value1, \ - field2, value2, \ - field3, value3, \ - field4, value4, \ - field5, value5, \ - field6, value6, \ - field7, value7, \ - field8, value8, \ - field9, value9, \ - field10, value10) \ - (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \ - EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \ - EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \ - EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \ - EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \ - EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \ - EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \ - EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \ - EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \ - EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10))) - -#define EFX_INSERT_FIELDS64(...) \ - cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) - -#define EFX_INSERT_FIELDS32(...) \ - cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__)) - -#define EFX_POPULATE_OWORD64(oword, ...) do { \ - (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ - (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \ - } while (0) - -#define EFX_POPULATE_QWORD64(qword, ...) do { \ - (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \ - } while (0) - -#define EFX_POPULATE_OWORD32(oword, ...) do { \ - (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ - (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ - (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \ - (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \ - } while (0) - -#define EFX_POPULATE_QWORD32(qword, ...) do { \ - (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ - (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \ - } while (0) - -#define EFX_POPULATE_DWORD(dword, ...) do { \ - (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \ - } while (0) - -#if BITS_PER_LONG == 64 -#define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64 -#define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64 -#else -#define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32 -#define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32 -#endif - -/* Populate an octword field with various numbers of arguments */ -#define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD -#define EFX_POPULATE_OWORD_9(oword, ...) \ - EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_OWORD_8(oword, ...) \ - EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_OWORD_7(oword, ...) \ - EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_OWORD_6(oword, ...) \ - EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_OWORD_5(oword, ...) \ - EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_OWORD_4(oword, ...) \ - EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_OWORD_3(oword, ...) \ - EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_OWORD_2(oword, ...) \ - EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_OWORD_1(oword, ...) \ - EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_ZERO_OWORD(oword) \ - EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0) -#define EFX_SET_OWORD(oword) \ - EFX_POPULATE_OWORD_4(oword, \ - EFX_DWORD_0, 0xffffffff, \ - EFX_DWORD_1, 0xffffffff, \ - EFX_DWORD_2, 0xffffffff, \ - EFX_DWORD_3, 0xffffffff) - -/* Populate a quadword field with various numbers of arguments */ -#define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD -#define EFX_POPULATE_QWORD_9(qword, ...) \ - EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_QWORD_8(qword, ...) \ - EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_QWORD_7(qword, ...) \ - EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_QWORD_6(qword, ...) \ - EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_QWORD_5(qword, ...) \ - EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_QWORD_4(qword, ...) \ - EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_QWORD_3(qword, ...) \ - EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_QWORD_2(qword, ...) \ - EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_QWORD_1(qword, ...) \ - EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_ZERO_QWORD(qword) \ - EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0) -#define EFX_SET_QWORD(qword) \ - EFX_POPULATE_QWORD_2(qword, \ - EFX_DWORD_0, 0xffffffff, \ - EFX_DWORD_1, 0xffffffff) - -/* Populate a dword field with various numbers of arguments */ -#define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD -#define EFX_POPULATE_DWORD_9(dword, ...) \ - EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_DWORD_8(dword, ...) \ - EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_DWORD_7(dword, ...) \ - EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_DWORD_6(dword, ...) \ - EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_DWORD_5(dword, ...) \ - EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_DWORD_4(dword, ...) \ - EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_DWORD_3(dword, ...) \ - EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_DWORD_2(dword, ...) \ - EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_POPULATE_DWORD_1(dword, ...) \ - EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__) -#define EFX_ZERO_DWORD(dword) \ - EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0) -#define EFX_SET_DWORD(dword) \ - EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff) - -/* - * Modify a named field within an already-populated structure. Used - * for read-modify-write operations. - * - */ -#define EFX_INVERT_OWORD(oword) do { \ - (oword).u64[0] = ~((oword).u64[0]); \ - (oword).u64[1] = ~((oword).u64[1]); \ - } while (0) - -#define EFX_AND_OWORD(oword, from, mask) \ - do { \ - (oword).u64[0] = (from).u64[0] & (mask).u64[0]; \ - (oword).u64[1] = (from).u64[1] & (mask).u64[1]; \ - } while (0) - -#define EFX_OR_OWORD(oword, from, mask) \ - do { \ - (oword).u64[0] = (from).u64[0] | (mask).u64[0]; \ - (oword).u64[1] = (from).u64[1] | (mask).u64[1]; \ - } while (0) - -#define EFX_INSERT64(min, max, low, high, value) \ - cpu_to_le64(EFX_INSERT_NATIVE(min, max, low, high, value)) - -#define EFX_INSERT32(min, max, low, high, value) \ - cpu_to_le32(EFX_INSERT_NATIVE(min, max, low, high, value)) - -#define EFX_INPLACE_MASK64(min, max, low, high) \ - EFX_INSERT64(min, max, low, high, EFX_MASK64(high + 1 - low)) - -#define EFX_INPLACE_MASK32(min, max, low, high) \ - EFX_INSERT32(min, max, low, high, EFX_MASK32(high + 1 - low)) - -#define EFX_SET_OWORD64(oword, low, high, value) do { \ - (oword).u64[0] = (((oword).u64[0] \ - & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ - | EFX_INSERT64(0, 63, low, high, value)); \ - (oword).u64[1] = (((oword).u64[1] \ - & ~EFX_INPLACE_MASK64(64, 127, low, high)) \ - | EFX_INSERT64(64, 127, low, high, value)); \ - } while (0) - -#define EFX_SET_QWORD64(qword, low, high, value) do { \ - (qword).u64[0] = (((qword).u64[0] \ - & ~EFX_INPLACE_MASK64(0, 63, low, high)) \ - | EFX_INSERT64(0, 63, low, high, value)); \ - } while (0) - -#define EFX_SET_OWORD32(oword, low, high, value) do { \ - (oword).u32[0] = (((oword).u32[0] \ - & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ - | EFX_INSERT32(0, 31, low, high, value)); \ - (oword).u32[1] = (((oword).u32[1] \ - & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ - | EFX_INSERT32(32, 63, low, high, value)); \ - (oword).u32[2] = (((oword).u32[2] \ - & ~EFX_INPLACE_MASK32(64, 95, low, high)) \ - | EFX_INSERT32(64, 95, low, high, value)); \ - (oword).u32[3] = (((oword).u32[3] \ - & ~EFX_INPLACE_MASK32(96, 127, low, high)) \ - | EFX_INSERT32(96, 127, low, high, value)); \ - } while (0) - -#define EFX_SET_QWORD32(qword, low, high, value) do { \ - (qword).u32[0] = (((qword).u32[0] \ - & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ - | EFX_INSERT32(0, 31, low, high, value)); \ - (qword).u32[1] = (((qword).u32[1] \ - & ~EFX_INPLACE_MASK32(32, 63, low, high)) \ - | EFX_INSERT32(32, 63, low, high, value)); \ - } while (0) - -#define EFX_SET_DWORD32(dword, low, high, value) do { \ - (dword).u32[0] = (((dword).u32[0] \ - & ~EFX_INPLACE_MASK32(0, 31, low, high)) \ - | EFX_INSERT32(0, 31, low, high, value)); \ - } while (0) - -#define EFX_SET_OWORD_FIELD64(oword, field, value) \ - EFX_SET_OWORD64(oword, EFX_LOW_BIT(field), \ - EFX_HIGH_BIT(field), value) - -#define EFX_SET_QWORD_FIELD64(qword, field, value) \ - EFX_SET_QWORD64(qword, EFX_LOW_BIT(field), \ - EFX_HIGH_BIT(field), value) - -#define EFX_SET_OWORD_FIELD32(oword, field, value) \ - EFX_SET_OWORD32(oword, EFX_LOW_BIT(field), \ - EFX_HIGH_BIT(field), value) - -#define EFX_SET_QWORD_FIELD32(qword, field, value) \ - EFX_SET_QWORD32(qword, EFX_LOW_BIT(field), \ - EFX_HIGH_BIT(field), value) - -#define EFX_SET_DWORD_FIELD(dword, field, value) \ - EFX_SET_DWORD32(dword, EFX_LOW_BIT(field), \ - EFX_HIGH_BIT(field), value) - - - -#if BITS_PER_LONG == 64 -#define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64 -#define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64 -#else -#define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32 -#define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32 -#endif - -/* Used to avoid compiler warnings about shift range exceeding width - * of the data types when dma_addr_t is only 32 bits wide. - */ -#define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t)) -#define EFX_DMA_TYPE_WIDTH(width) \ - (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH) - - -/* Static initialiser */ -#define EFX_OWORD32(a, b, c, d) \ - { .u32 = { cpu_to_le32(a), cpu_to_le32(b), \ - cpu_to_le32(c), cpu_to_le32(d) } } - -#endif /* EFX_BITFIELD_H */ diff --git a/drivers/net/sfc/efx.c b/drivers/net/sfc/efx.c deleted file mode 100644 index faca764..0000000 --- a/drivers/net/sfc/efx.c +++ /dev/null @@ -1,2714 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2005-2011 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/module.h> -#include <linux/pci.h> -#include <linux/netdevice.h> -#include <linux/etherdevice.h> -#include <linux/delay.h> -#include <linux/notifier.h> -#include <linux/ip.h> -#include <linux/tcp.h> -#include <linux/in.h> -#include <linux/crc32.h> -#include <linux/ethtool.h> -#include <linux/topology.h> -#include <linux/gfp.h> -#include <linux/cpu_rmap.h> -#include "net_driver.h" -#include "efx.h" -#include "nic.h" - -#include "mcdi.h" -#include "workarounds.h" - -/************************************************************************** - * - * Type name strings - * - ************************************************************************** - */ - -/* Loopback mode names (see LOOPBACK_MODE()) */ -const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; -const char *efx_loopback_mode_names[] = { - [LOOPBACK_NONE] = "NONE", - [LOOPBACK_DATA] = "DATAPATH", - [LOOPBACK_GMAC] = "GMAC", - [LOOPBACK_XGMII] = "XGMII", - [LOOPBACK_XGXS] = "XGXS", - [LOOPBACK_XAUI] = "XAUI", - [LOOPBACK_GMII] = "GMII", - [LOOPBACK_SGMII] = "SGMII", - [LOOPBACK_XGBR] = "XGBR", - [LOOPBACK_XFI] = "XFI", - [LOOPBACK_XAUI_FAR] = "XAUI_FAR", - [LOOPBACK_GMII_FAR] = "GMII_FAR", - [LOOPBACK_SGMII_FAR] = "SGMII_FAR", - [LOOPBACK_XFI_FAR] = "XFI_FAR", - [LOOPBACK_GPHY] = "GPHY", - [LOOPBACK_PHYXS] = "PHYXS", - [LOOPBACK_PCS] = "PCS", - [LOOPBACK_PMAPMD] = "PMA/PMD", - [LOOPBACK_XPORT] = "XPORT", - [LOOPBACK_XGMII_WS] = "XGMII_WS", - [LOOPBACK_XAUI_WS] = "XAUI_WS", - [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", - [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", - [LOOPBACK_GMII_WS] = "GMII_WS", - [LOOPBACK_XFI_WS] = "XFI_WS", - [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", - [LOOPBACK_PHYXS_WS] = "PHYXS_WS", -}; - -const unsigned int efx_reset_type_max = RESET_TYPE_MAX; -const char *efx_reset_type_names[] = { - [RESET_TYPE_INVISIBLE] = "INVISIBLE", - [RESET_TYPE_ALL] = "ALL", - [RESET_TYPE_WORLD] = "WORLD", - [RESET_TYPE_DISABLE] = "DISABLE", - [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", - [RESET_TYPE_INT_ERROR] = "INT_ERROR", - [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", - [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH", - [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH", - [RESET_TYPE_TX_SKIP] = "TX_SKIP", - [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", -}; - -#define EFX_MAX_MTU (9 * 1024) - -/* Reset workqueue. If any NIC has a hardware failure then a reset will be - * queued onto this work queue. This is not a per-nic work queue, because - * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. - */ -static struct workqueue_struct *reset_workqueue; - -/************************************************************************** - * - * Configurable values - * - *************************************************************************/ - -/* - * Use separate channels for TX and RX events - * - * Set this to 1 to use separate channels for TX and RX. It allows us - * to control interrupt affinity separately for TX and RX. - * - * This is only used in MSI-X interrupt mode - */ -static unsigned int separate_tx_channels; -module_param(separate_tx_channels, uint, 0444); -MODULE_PARM_DESC(separate_tx_channels, - "Use separate channels for TX and RX"); - -/* This is the weight assigned to each of the (per-channel) virtual - * NAPI devices. - */ -static int napi_weight = 64; - -/* This is the time (in jiffies) between invocations of the hardware - * monitor. On Falcon-based NICs, this will: - * - Check the on-board hardware monitor; - * - Poll the link state and reconfigure the hardware as necessary. - */ -static unsigned int efx_monitor_interval = 1 * HZ; - -/* This controls whether or not the driver will initialise devices - * with invalid MAC addresses stored in the EEPROM or flash. If true, - * such devices will be initialised with a random locally-generated - * MAC address. This allows for loading the sfc_mtd driver to - * reprogram the flash, even if the flash contents (including the MAC - * address) have previously been erased. - */ -static unsigned int allow_bad_hwaddr; - -/* Initial interrupt moderation settings. They can be modified after - * module load with ethtool. - * - * The default for RX should strike a balance between increasing the - * round-trip latency and reducing overhead. - */ -static unsigned int rx_irq_mod_usec = 60; - -/* Initial interrupt moderation settings. They can be modified after - * module load with ethtool. - * - * This default is chosen to ensure that a 10G link does not go idle - * while a TX queue is stopped after it has become full. A queue is - * restarted when it drops below half full. The time this takes (assuming - * worst case 3 descriptors per packet and 1024 descriptors) is - * 512 / 3 * 1.2 = 205 usec. - */ -static unsigned int tx_irq_mod_usec = 150; - -/* This is the first interrupt mode to try out of: - * 0 => MSI-X - * 1 => MSI - * 2 => legacy - */ -static unsigned int interrupt_mode; - -/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), - * i.e. the number of CPUs among which we may distribute simultaneous - * interrupt handling. - * - * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. - * The default (0) means to assign an interrupt to each package (level II cache) - */ -static unsigned int rss_cpus; -module_param(rss_cpus, uint, 0444); -MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); - -static int phy_flash_cfg; -module_param(phy_flash_cfg, int, 0644); -MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); - -static unsigned irq_adapt_low_thresh = 10000; -module_param(irq_adapt_low_thresh, uint, 0644); -MODULE_PARM_DESC(irq_adapt_low_thresh, - "Threshold score for reducing IRQ moderation"); - -static unsigned irq_adapt_high_thresh = 20000; -module_param(irq_adapt_high_thresh, uint, 0644); -MODULE_PARM_DESC(irq_adapt_high_thresh, - "Threshold score for increasing IRQ moderation"); - -static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | - NETIF_MSG_LINK | NETIF_MSG_IFDOWN | - NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | - NETIF_MSG_TX_ERR | NETIF_MSG_HW); -module_param(debug, uint, 0); -MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); - -/************************************************************************** - * - * Utility functions and prototypes - * - *************************************************************************/ - -static void efx_remove_channels(struct efx_nic *efx); -static void efx_remove_port(struct efx_nic *efx); -static void efx_init_napi(struct efx_nic *efx); -static void efx_fini_napi(struct efx_nic *efx); -static void efx_fini_napi_channel(struct efx_channel *channel); -static void efx_fini_struct(struct efx_nic *efx); -static void efx_start_all(struct efx_nic *efx); -static void efx_stop_all(struct efx_nic *efx); - -#define EFX_ASSERT_RESET_SERIALISED(efx) \ - do { \ - if ((efx->state == STATE_RUNNING) || \ - (efx->state == STATE_DISABLED)) \ - ASSERT_RTNL(); \ - } while (0) - -/************************************************************************** - * - * Event queue processing - * - *************************************************************************/ - -/* Process channel's event queue - * - * This function is responsible for processing the event queue of a - * single channel. The caller must guarantee that this function will - * never be concurrently called more than once on the same channel, - * though different channels may be being processed concurrently. - */ -static int efx_process_channel(struct efx_channel *channel, int budget) -{ - struct efx_nic *efx = channel->efx; - int spent; - - if (unlikely(efx->reset_pending || !channel->enabled)) - return 0; - - spent = efx_nic_process_eventq(channel, budget); - if (spent == 0) - return 0; - - /* Deliver last RX packet. */ - if (channel->rx_pkt) { - __efx_rx_packet(channel, channel->rx_pkt, - channel->rx_pkt_csummed); - channel->rx_pkt = NULL; - } - - efx_rx_strategy(channel); - - efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel)); - - return spent; -} - -/* Mark channel as finished processing - * - * Note that since we will not receive further interrupts for this - * channel before we finish processing and call the eventq_read_ack() - * method, there is no need to use the interrupt hold-off timers. - */ -static inline void efx_channel_processed(struct efx_channel *channel) -{ - /* The interrupt handler for this channel may set work_pending - * as soon as we acknowledge the events we've seen. Make sure - * it's cleared before then. */ - channel->work_pending = false; - smp_wmb(); - - efx_nic_eventq_read_ack(channel); -} - -/* NAPI poll handler - * - * NAPI guarantees serialisation of polls of the same device, which - * provides the guarantee required by efx_process_channel(). - */ -static int efx_poll(struct napi_struct *napi, int budget) -{ - struct efx_channel *channel = - container_of(napi, struct efx_channel, napi_str); - struct efx_nic *efx = channel->efx; - int spent; - - netif_vdbg(efx, intr, efx->net_dev, - "channel %d NAPI poll executing on CPU %d\n", - channel->channel, raw_smp_processor_id()); - - spent = efx_process_channel(channel, budget); - - if (spent < budget) { - if (channel->channel < efx->n_rx_channels && - efx->irq_rx_adaptive && - unlikely(++channel->irq_count == 1000)) { - if (unlikely(channel->irq_mod_score < - irq_adapt_low_thresh)) { - if (channel->irq_moderation > 1) { - channel->irq_moderation -= 1; - efx->type->push_irq_moderation(channel); - } - } else if (unlikely(channel->irq_mod_score > - irq_adapt_high_thresh)) { - if (channel->irq_moderation < - efx->irq_rx_moderation) { - channel->irq_moderation += 1; - efx->type->push_irq_moderation(channel); - } - } - channel->irq_count = 0; - channel->irq_mod_score = 0; - } - - efx_filter_rfs_expire(channel); - - /* There is no race here; although napi_disable() will - * only wait for napi_complete(), this isn't a problem - * since efx_channel_processed() will have no effect if - * interrupts have already been disabled. - */ - napi_complete(napi); - efx_channel_processed(channel); - } - - return spent; -} - -/* Process the eventq of the specified channel immediately on this CPU - * - * Disable hardware generated interrupts, wait for any existing - * processing to finish, then directly poll (and ack ) the eventq. - * Finally reenable NAPI and interrupts. - * - * This is for use only during a loopback self-test. It must not - * deliver any packets up the stack as this can result in deadlock. - */ -void efx_process_channel_now(struct efx_channel *channel) -{ - struct efx_nic *efx = channel->efx; - - BUG_ON(channel->channel >= efx->n_channels); - BUG_ON(!channel->enabled); - BUG_ON(!efx->loopback_selftest); - - /* Disable interrupts and wait for ISRs to complete */ - efx_nic_disable_interrupts(efx); - if (efx->legacy_irq) { - synchronize_irq(efx->legacy_irq); - efx->legacy_irq_enabled = false; - } - if (channel->irq) - synchronize_irq(channel->irq); - - /* Wait for any NAPI processing to complete */ - napi_disable(&channel->napi_str); - - /* Poll the channel */ - efx_process_channel(channel, channel->eventq_mask + 1); - - /* Ack the eventq. This may cause an interrupt to be generated - * when they are reenabled */ - efx_channel_processed(channel); - - napi_enable(&channel->napi_str); - if (efx->legacy_irq) - efx->legacy_irq_enabled = true; - efx_nic_enable_interrupts(efx); -} - -/* Create event queue - * Event queue memory allocations are done only once. If the channel - * is reset, the memory buffer will be reused; this guards against - * errors during channel reset and also simplifies interrupt handling. - */ -static int efx_probe_eventq(struct efx_channel *channel) -{ - struct efx_nic *efx = channel->efx; - unsigned long entries; - - netif_dbg(channel->efx, probe, channel->efx->net_dev, - "chan %d create event queue\n", channel->channel); - - /* Build an event queue with room for one event per tx and rx buffer, - * plus some extra for link state events and MCDI completions. */ - entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); - EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); - channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; - - return efx_nic_probe_eventq(channel); -} - -/* Prepare channel's event queue */ -static void efx_init_eventq(struct efx_channel *channel) -{ - netif_dbg(channel->efx, drv, channel->efx->net_dev, - "chan %d init event queue\n", channel->channel); - - channel->eventq_read_ptr = 0; - - efx_nic_init_eventq(channel); -} - -static void efx_fini_eventq(struct efx_channel *channel) -{ - netif_dbg(channel->efx, drv, channel->efx->net_dev, - "chan %d fini event queue\n", channel->channel); - - efx_nic_fini_eventq(channel); -} - -static void efx_remove_eventq(struct efx_channel *channel) -{ - netif_dbg(channel->efx, drv, channel->efx->net_dev, - "chan %d remove event queue\n", channel->channel); - - efx_nic_remove_eventq(channel); -} - -/************************************************************************** - * - * Channel handling - * - *************************************************************************/ - -/* Allocate and initialise a channel structure, optionally copying - * parameters (but not resources) from an old channel structure. */ -static struct efx_channel * -efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) -{ - struct efx_channel *channel; - struct efx_rx_queue *rx_queue; - struct efx_tx_queue *tx_queue; - int j; - - if (old_channel) { - channel = kmalloc(sizeof(*channel), GFP_KERNEL); - if (!channel) - return NULL; - - *channel = *old_channel; - - channel->napi_dev = NULL; - memset(&channel->eventq, 0, sizeof(channel->eventq)); - - rx_queue = &channel->rx_queue; - rx_queue->buffer = NULL; - memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); - - for (j = 0; j < EFX_TXQ_TYPES; j++) { - tx_queue = &channel->tx_queue[j]; - if (tx_queue->channel) - tx_queue->channel = channel; - tx_queue->buffer = NULL; - memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); - } - } else { - channel = kzalloc(sizeof(*channel), GFP_KERNEL); - if (!channel) - return NULL; - - channel->efx = efx; - channel->channel = i; - - for (j = 0; j < EFX_TXQ_TYPES; j++) { - tx_queue = &channel->tx_queue[j]; - tx_queue->efx = efx; - tx_queue->queue = i * EFX_TXQ_TYPES + j; - tx_queue->channel = channel; - } - } - - rx_queue = &channel->rx_queue; - rx_queue->efx = efx; - setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, - (unsigned long)rx_queue); - - return channel; -} - -static int efx_probe_channel(struct efx_channel *channel) -{ - struct efx_tx_queue *tx_queue; - struct efx_rx_queue *rx_queue; - int rc; - - netif_dbg(channel->efx, probe, channel->efx->net_dev, - "creating channel %d\n", channel->channel); - - rc = efx_probe_eventq(channel); - if (rc) - goto fail1; - - efx_for_each_channel_tx_queue(tx_queue, channel) { - rc = efx_probe_tx_queue(tx_queue); - if (rc) - goto fail2; - } - - efx_for_each_channel_rx_queue(rx_queue, channel) { - rc = efx_probe_rx_queue(rx_queue); - if (rc) - goto fail3; - } - - channel->n_rx_frm_trunc = 0; - - return 0; - - fail3: - efx_for_each_channel_rx_queue(rx_queue, channel) - efx_remove_rx_queue(rx_queue); - fail2: - efx_for_each_channel_tx_queue(tx_queue, channel) - efx_remove_tx_queue(tx_queue); - fail1: - return rc; -} - - -static void efx_set_channel_names(struct efx_nic *efx) -{ - struct efx_channel *channel; - const char *type = ""; - int number; - - efx_for_each_channel(channel, efx) { - number = channel->channel; - if (efx->n_channels > efx->n_rx_channels) { - if (channel->channel < efx->n_rx_channels) { - type = "-rx"; - } else { - type = "-tx"; - number -= efx->n_rx_channels; - } - } - snprintf(efx->channel_name[channel->channel], - sizeof(efx->channel_name[0]), - "%s%s-%d", efx->name, type, number); - } -} - -static int efx_probe_channels(struct efx_nic *efx) -{ - struct efx_channel *channel; - int rc; - - /* Restart special buffer allocation */ - efx->next_buffer_table = 0; - - efx_for_each_channel(channel, efx) { - rc = efx_probe_channel(channel); - if (rc) { - netif_err(efx, probe, efx->net_dev, - "failed to create channel %d\n", - channel->channel); - goto fail; - } - } - efx_set_channel_names(efx); - - return 0; - -fail: - efx_remove_channels(efx); - return rc; -} - -/* Channels are shutdown and reinitialised whilst the NIC is running - * to propagate configuration changes (mtu, checksum offload), or - * to clear hardware error conditions - */ -static void efx_init_channels(struct efx_nic *efx) -{ - struct efx_tx_queue *tx_queue; - struct efx_rx_queue *rx_queue; - struct efx_channel *channel; - - /* Calculate the rx buffer allocation parameters required to - * support the current MTU, including padding for header - * alignment and overruns. - */ - efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) + - EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + - efx->type->rx_buffer_hash_size + - efx->type->rx_buffer_padding); - efx->rx_buffer_order = get_order(efx->rx_buffer_len + - sizeof(struct efx_rx_page_state)); - - /* Initialise the channels */ - efx_for_each_channel(channel, efx) { - netif_dbg(channel->efx, drv, channel->efx->net_dev, - "init chan %d\n", channel->channel); - - efx_init_eventq(channel); - - efx_for_each_channel_tx_queue(tx_queue, channel) - efx_init_tx_queue(tx_queue); - - /* The rx buffer allocation strategy is MTU dependent */ - efx_rx_strategy(channel); - - efx_for_each_channel_rx_queue(rx_queue, channel) - efx_init_rx_queue(rx_queue); - - WARN_ON(channel->rx_pkt != NULL); - efx_rx_strategy(channel); - } -} - -/* This enables event queue processing and packet transmission. - * - * Note that this function is not allowed to fail, since that would - * introduce too much complexity into the suspend/resume path. - */ -static void efx_start_channel(struct efx_channel *channel) -{ - struct efx_rx_queue *rx_queue; - - netif_dbg(channel->efx, ifup, channel->efx->net_dev, - "starting chan %d\n", channel->channel); - - /* The interrupt handler for this channel may set work_pending - * as soon as we enable it. Make sure it's cleared before - * then. Similarly, make sure it sees the enabled flag set. */ - channel->work_pending = false; - channel->enabled = true; - smp_wmb(); - - /* Fill the queues before enabling NAPI */ - efx_for_each_channel_rx_queue(rx_queue, channel) - efx_fast_push_rx_descriptors(rx_queue); - - napi_enable(&channel->napi_str); -} - -/* This disables event queue processing and packet transmission. - * This function does not guarantee that all queue processing - * (e.g. RX refill) is complete. - */ -static void efx_stop_channel(struct efx_channel *channel) -{ - if (!channel->enabled) - return; - - netif_dbg(channel->efx, ifdown, channel->efx->net_dev, - "stop chan %d\n", channel->channel); - - channel->enabled = false; - napi_disable(&channel->napi_str); -} - -static void efx_fini_channels(struct efx_nic *efx) -{ - struct efx_channel *channel; - struct efx_tx_queue *tx_queue; - struct efx_rx_queue *rx_queue; - int rc; - - EFX_ASSERT_RESET_SERIALISED(efx); - BUG_ON(efx->port_enabled); - - rc = efx_nic_flush_queues(efx); - if (rc && EFX_WORKAROUND_7803(efx)) { - /* Schedule a reset to recover from the flush failure. The - * descriptor caches reference memory we're about to free, - * but falcon_reconfigure_mac_wrapper() won't reconnect - * the MACs because of the pending reset. */ - netif_err(efx, drv, efx->net_dev, - "Resetting to recover from flush failure\n"); - efx_schedule_reset(efx, RESET_TYPE_ALL); - } else if (rc) { - netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); - } else { - netif_dbg(efx, drv, efx->net_dev, - "successfully flushed all queues\n"); - } - - efx_for_each_channel(channel, efx) { - netif_dbg(channel->efx, drv, channel->efx->net_dev, - "shut down chan %d\n", channel->channel); - - efx_for_each_channel_rx_queue(rx_queue, channel) - efx_fini_rx_queue(rx_queue); - efx_for_each_possible_channel_tx_queue(tx_queue, channel) - efx_fini_tx_queue(tx_queue); - efx_fini_eventq(channel); - } -} - -static void efx_remove_channel(struct efx_channel *channel) -{ - struct efx_tx_queue *tx_queue; - struct efx_rx_queue *rx_queue; - - netif_dbg(channel->efx, drv, channel->efx->net_dev, - "destroy chan %d\n", channel->channel); - - efx_for_each_channel_rx_queue(rx_queue, channel) - efx_remove_rx_queue(rx_queue); - efx_for_each_possible_channel_tx_queue(tx_queue, channel) - efx_remove_tx_queue(tx_queue); - efx_remove_eventq(channel); -} - -static void efx_remove_channels(struct efx_nic *efx) -{ - struct efx_channel *channel; - - efx_for_each_channel(channel, efx) - efx_remove_channel(channel); -} - -int -efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) -{ - struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; - u32 old_rxq_entries, old_txq_entries; - unsigned i; - int rc; - - efx_stop_all(efx); - efx_fini_channels(efx); - - /* Clone channels */ - memset(other_channel, 0, sizeof(other_channel)); - for (i = 0; i < efx->n_channels; i++) { - channel = efx_alloc_channel(efx, i, efx->channel[i]); - if (!channel) { - rc = -ENOMEM; - goto out; - } - other_channel[i] = channel; - } - - /* Swap entry counts and channel pointers */ - old_rxq_entries = efx->rxq_entries; - old_txq_entries = efx->txq_entries; - efx->rxq_entries = rxq_entries; - efx->txq_entries = txq_entries; - for (i = 0; i < efx->n_channels; i++) { - channel = efx->channel[i]; - efx->channel[i] = other_channel[i]; - other_channel[i] = channel; - } - - rc = efx_probe_channels(efx); - if (rc) - goto rollback; - - efx_init_napi(efx); - - /* Destroy old channels */ - for (i = 0; i < efx->n_channels; i++) { - efx_fini_napi_channel(other_channel[i]); - efx_remove_channel(other_channel[i]); - } -out: - /* Free unused channel structures */ - for (i = 0; i < efx->n_channels; i++) - kfree(other_channel[i]); - - efx_init_channels(efx); - efx_start_all(efx); - return rc; - -rollback: - /* Swap back */ - efx->rxq_entries = old_rxq_entries; - efx->txq_entries = old_txq_entries; - for (i = 0; i < efx->n_channels; i++) { - channel = efx->channel[i]; - efx->channel[i] = other_channel[i]; - other_channel[i] = channel; - } - goto out; -} - -void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) -{ - mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); -} - -/************************************************************************** - * - * Port handling - * - **************************************************************************/ - -/* This ensures that the kernel is kept informed (via - * netif_carrier_on/off) of the link status, and also maintains the - * link status's stop on the port's TX queue. - */ -void efx_link_status_changed(struct efx_nic *efx) -{ - struct efx_link_state *link_state = &efx->link_state; - - /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure - * that no events are triggered between unregister_netdev() and the - * driver unloading. A more general condition is that NETDEV_CHANGE - * can only be generated between NETDEV_UP and NETDEV_DOWN */ - if (!netif_running(efx->net_dev)) - return; - - if (link_state->up != netif_carrier_ok(efx->net_dev)) { - efx->n_link_state_changes++; - - if (link_state->up) - netif_carrier_on(efx->net_dev); - else - netif_carrier_off(efx->net_dev); - } - - /* Status message for kernel log */ - if (link_state->up) { - netif_info(efx, link, efx->net_dev, - "link up at %uMbps %s-duplex (MTU %d)%s\n", - link_state->speed, link_state->fd ? "full" : "half", - efx->net_dev->mtu, - (efx->promiscuous ? " [PROMISC]" : "")); - } else { - netif_info(efx, link, efx->net_dev, "link down\n"); - } - -} - -void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) -{ - efx->link_advertising = advertising; - if (advertising) { - if (advertising & ADVERTISED_Pause) - efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); - else - efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); - if (advertising & ADVERTISED_Asym_Pause) - efx->wanted_fc ^= EFX_FC_TX; - } -} - -void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) -{ - efx->wanted_fc = wanted_fc; - if (efx->link_advertising) { - if (wanted_fc & EFX_FC_RX) - efx->link_advertising |= (ADVERTISED_Pause | - ADVERTISED_Asym_Pause); - else - efx->link_advertising &= ~(ADVERTISED_Pause | - ADVERTISED_Asym_Pause); - if (wanted_fc & EFX_FC_TX) - efx->link_advertising ^= ADVERTISED_Asym_Pause; - } -} - -static void efx_fini_port(struct efx_nic *efx); - -/* Push loopback/power/transmit disable settings to the PHY, and reconfigure - * the MAC appropriately. All other PHY configuration changes are pushed - * through phy_op->set_settings(), and pushed asynchronously to the MAC - * through efx_monitor(). - * - * Callers must hold the mac_lock - */ -int __efx_reconfigure_port(struct efx_nic *efx) -{ - enum efx_phy_mode phy_mode; - int rc; - - WARN_ON(!mutex_is_locked(&efx->mac_lock)); - - /* Serialise the promiscuous flag with efx_set_multicast_list. */ - if (efx_dev_registered(efx)) { - netif_addr_lock_bh(efx->net_dev); - netif_addr_unlock_bh(efx->net_dev); - } - - /* Disable PHY transmit in mac level loopbacks */ - phy_mode = efx->phy_mode; - if (LOOPBACK_INTERNAL(efx)) - efx->phy_mode |= PHY_MODE_TX_DISABLED; - else - efx->phy_mode &= ~PHY_MODE_TX_DISABLED; - - rc = efx->type->reconfigure_port(efx); - - if (rc) - efx->phy_mode = phy_mode; - - return rc; -} - -/* Reinitialise the MAC to pick up new PHY settings, even if the port is - * disabled. */ -int efx_reconfigure_port(struct efx_nic *efx) -{ - int rc; - - EFX_ASSERT_RESET_SERIALISED(efx); - - mutex_lock(&efx->mac_lock); - rc = __efx_reconfigure_port(efx); - mutex_unlock(&efx->mac_lock); - - return rc; -} - -/* Asynchronous work item for changing MAC promiscuity and multicast - * hash. Avoid a drain/rx_ingress enable by reconfiguring the current - * MAC directly. */ -static void efx_mac_work(struct work_struct *data) -{ - struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); - - mutex_lock(&efx->mac_lock); - if (efx->port_enabled) { - efx->type->push_multicast_hash(efx); - efx->mac_op->reconfigure(efx); - } - mutex_unlock(&efx->mac_lock); -} - -static int efx_probe_port(struct efx_nic *efx) -{ - unsigned char *perm_addr; - int rc; - - netif_dbg(efx, probe, efx->net_dev, "create port\n"); - - if (phy_flash_cfg) - efx->phy_mode = PHY_MODE_SPECIAL; - - /* Connect up MAC/PHY operations table */ - rc = efx->type->probe_port(efx); - if (rc) - return rc; - - /* Sanity check MAC address */ - perm_addr = efx->net_dev->perm_addr; - if (is_valid_ether_addr(perm_addr)) { - memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN); - } else { - netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n", - perm_addr); - if (!allow_bad_hwaddr) { - rc = -EINVAL; - goto err; - } - random_ether_addr(efx->net_dev->dev_addr); - netif_info(efx, probe, efx->net_dev, - "using locally-generated MAC %pM\n", - efx->net_dev->dev_addr); - } - - return 0; - - err: - efx->type->remove_port(efx); - return rc; -} - -static int efx_init_port(struct efx_nic *efx) -{ - int rc; - - netif_dbg(efx, drv, efx->net_dev, "init port\n"); - - mutex_lock(&efx->mac_lock); - - rc = efx->phy_op->init(efx); - if (rc) - goto fail1; - - efx->port_initialized = true; - - /* Reconfigure the MAC before creating dma queues (required for - * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ - efx->mac_op->reconfigure(efx); - - /* Ensure the PHY advertises the correct flow control settings */ - rc = efx->phy_op->reconfigure(efx); - if (rc) - goto fail2; - - mutex_unlock(&efx->mac_lock); - return 0; - -fail2: - efx->phy_op->fini(efx); -fail1: - mutex_unlock(&efx->mac_lock); - return rc; -} - -static void efx_start_port(struct efx_nic *efx) -{ - netif_dbg(efx, ifup, efx->net_dev, "start port\n"); - BUG_ON(efx->port_enabled); - - mutex_lock(&efx->mac_lock); - efx->port_enabled = true; - - /* efx_mac_work() might have been scheduled after efx_stop_port(), - * and then cancelled by efx_flush_all() */ - efx->type->push_multicast_hash(efx); - efx->mac_op->reconfigure(efx); - - mutex_unlock(&efx->mac_lock); -} - -/* Prevent efx_mac_work() and efx_monitor() from working */ -static void efx_stop_port(struct efx_nic *efx) -{ - netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); - - mutex_lock(&efx->mac_lock); - efx->port_enabled = false; - mutex_unlock(&efx->mac_lock); - - /* Serialise against efx_set_multicast_list() */ - if (efx_dev_registered(efx)) { - netif_addr_lock_bh(efx->net_dev); - netif_addr_unlock_bh(efx->net_dev); - } -} - -static void efx_fini_port(struct efx_nic *efx) -{ - netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); - - if (!efx->port_initialized) - return; - - efx->phy_op->fini(efx); - efx->port_initialized = false; - - efx->link_state.up = false; - efx_link_status_changed(efx); -} - -static void efx_remove_port(struct efx_nic *efx) -{ - netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); - - efx->type->remove_port(efx); -} - -/************************************************************************** - * - * NIC handling - * - **************************************************************************/ - -/* This configures the PCI device to enable I/O and DMA. */ -static int efx_init_io(struct efx_nic *efx) -{ - struct pci_dev *pci_dev = efx->pci_dev; - dma_addr_t dma_mask = efx->type->max_dma_mask; - bool use_wc; - int rc; - - netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); - - rc = pci_enable_device(pci_dev); - if (rc) { - netif_err(efx, probe, efx->net_dev, - "failed to enable PCI device\n"); - goto fail1; - } - - pci_set_master(pci_dev); - - /* Set the PCI DMA mask. Try all possibilities from our - * genuine mask down to 32 bits, because some architectures - * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit - * masks event though they reject 46 bit masks. - */ - while (dma_mask > 0x7fffffffUL) { - if (pci_dma_supported(pci_dev, dma_mask) && - ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0)) - break; - dma_mask >>= 1; - } - if (rc) { - netif_err(efx, probe, efx->net_dev, - "could not find a suitable DMA mask\n"); - goto fail2; - } - netif_dbg(efx, probe, efx->net_dev, - "using DMA mask %llx\n", (unsigned long long) dma_mask); - rc = pci_set_consistent_dma_mask(pci_dev, dma_mask); - if (rc) { - /* pci_set_consistent_dma_mask() is not *allowed* to - * fail with a mask that pci_set_dma_mask() accepted, - * but just in case... - */ - netif_err(efx, probe, efx->net_dev, - "failed to set consistent DMA mask\n"); - goto fail2; - } - - efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); - rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); - if (rc) { - netif_err(efx, probe, efx->net_dev, - "request for memory BAR failed\n"); - rc = -EIO; - goto fail3; - } - - /* bug22643: If SR-IOV is enabled then tx push over a write combined - * mapping is unsafe. We need to disable write combining in this case. - * MSI is unsupported when SR-IOV is enabled, and the firmware will - * have removed the MSI capability. So write combining is safe if - * there is an MSI capability. - */ - use_wc = (!EFX_WORKAROUND_22643(efx) || - pci_find_capability(pci_dev, PCI_CAP_ID_MSI)); - if (use_wc) - efx->membase = ioremap_wc(efx->membase_phys, - efx->type->mem_map_size); - else - efx->membase = ioremap_nocache(efx->membase_phys, - efx->type->mem_map_size); - if (!efx->membase) { - netif_err(efx, probe, efx->net_dev, - "could not map memory BAR at %llx+%x\n", - (unsigned long long)efx->membase_phys, - efx->type->mem_map_size); - rc = -ENOMEM; - goto fail4; - } - netif_dbg(efx, probe, efx->net_dev, - "memory BAR at %llx+%x (virtual %p)\n", - (unsigned long long)efx->membase_phys, - efx->type->mem_map_size, efx->membase); - - return 0; - - fail4: - pci_release_region(efx->pci_dev, EFX_MEM_BAR); - fail3: - efx->membase_phys = 0; - fail2: - pci_disable_device(efx->pci_dev); - fail1: - return rc; -} - -static void efx_fini_io(struct efx_nic *efx) -{ - netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); - - if (efx->membase) { - iounmap(efx->membase); - efx->membase = NULL; - } - - if (efx->membase_phys) { - pci_release_region(efx->pci_dev, EFX_MEM_BAR); - efx->membase_phys = 0; - } - - pci_disable_device(efx->pci_dev); -} - -/* Get number of channels wanted. Each channel will have its own IRQ, - * 1 RX queue and/or 2 TX queues. */ -static int efx_wanted_channels(void) -{ - cpumask_var_t core_mask; - int count; - int cpu; - - if (rss_cpus) - return rss_cpus; - - if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) { - printk(KERN_WARNING - "sfc: RSS disabled due to allocation failure\n"); - return 1; - } - - count = 0; - for_each_online_cpu(cpu) { - if (!cpumask_test_cpu(cpu, core_mask)) { - ++count; - cpumask_or(core_mask, core_mask, - topology_core_cpumask(cpu)); - } - } - - free_cpumask_var(core_mask); - return count; -} - -static int -efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries) -{ -#ifdef CONFIG_RFS_ACCEL - int i, rc; - - efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels); - if (!efx->net_dev->rx_cpu_rmap) - return -ENOMEM; - for (i = 0; i < efx->n_rx_channels; i++) { - rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, - xentries[i].vector); - if (rc) { - free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); - efx->net_dev->rx_cpu_rmap = NULL; - return rc; - } - } -#endif - return 0; -} - -/* Probe the number and type of interrupts we are able to obtain, and - * the resulting numbers of channels and RX queues. - */ -static int efx_probe_interrupts(struct efx_nic *efx) -{ - int max_channels = - min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS); - int rc, i; - - if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { - struct msix_entry xentries[EFX_MAX_CHANNELS]; - int n_channels; - - n_channels = efx_wanted_channels(); - if (separate_tx_channels) - n_channels *= 2; - n_channels = min(n_channels, max_channels); - - for (i = 0; i < n_channels; i++) - xentries[i].entry = i; - rc = pci_enable_msix(efx->pci_dev, xentries, n_channels); - if (rc > 0) { - netif_err(efx, drv, efx->net_dev, - "WARNING: Insufficient MSI-X vectors" - " available (%d < %d).\n", rc, n_channels); - netif_err(efx, drv, efx->net_dev, - "WARNING: Performance may be reduced.\n"); - EFX_BUG_ON_PARANOID(rc >= n_channels); - n_channels = rc; - rc = pci_enable_msix(efx->pci_dev, xentries, - n_channels); - } - - if (rc == 0) { - efx->n_channels = n_channels; - if (separate_tx_channels) { - efx->n_tx_channels = - max(efx->n_channels / 2, 1U); - efx->n_rx_channels = - max(efx->n_channels - - efx->n_tx_channels, 1U); - } else { - efx->n_tx_channels = efx->n_channels; - efx->n_rx_channels = efx->n_channels; - } - rc = efx_init_rx_cpu_rmap(efx, xentries); - if (rc) { - pci_disable_msix(efx->pci_dev); - return rc; - } - for (i = 0; i < n_channels; i++) - efx_get_channel(efx, i)->irq = - xentries[i].vector; - } else { - /* Fall back to single channel MSI */ - efx->interrupt_mode = EFX_INT_MODE_MSI; - netif_err(efx, drv, efx->net_dev, - "could not enable MSI-X\n"); - } - } - - /* Try single interrupt MSI */ - if (efx->interrupt_mode == EFX_INT_MODE_MSI) { - efx->n_channels = 1; - efx->n_rx_channels = 1; - efx->n_tx_channels = 1; - rc = pci_enable_msi(efx->pci_dev); - if (rc == 0) { - efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; - } else { - netif_err(efx, drv, efx->net_dev, - "could not enable MSI\n"); - efx->interrupt_mode = EFX_INT_MODE_LEGACY; - } - } - - /* Assume legacy interrupts */ - if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { - efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); - efx->n_rx_channels = 1; - efx->n_tx_channels = 1; - efx->legacy_irq = efx->pci_dev->irq; - } - - return 0; -} - -static void efx_remove_interrupts(struct efx_nic *efx) -{ - struct efx_channel *channel; - - /* Remove MSI/MSI-X interrupts */ - efx_for_each_channel(channel, efx) - channel->irq = 0; - pci_disable_msi(efx->pci_dev); - pci_disable_msix(efx->pci_dev); - - /* Remove legacy interrupt */ - efx->legacy_irq = 0; -} - -static void efx_set_channels(struct efx_nic *efx) -{ - struct efx_channel *channel; - struct efx_tx_queue *tx_queue; - - efx->tx_channel_offset = - separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; - - /* We need to adjust the TX queue numbers if we have separate - * RX-only and TX-only channels. - */ - efx_for_each_channel(channel, efx) { - efx_for_each_channel_tx_queue(tx_queue, channel) - tx_queue->queue -= (efx->tx_channel_offset * - EFX_TXQ_TYPES); - } -} - -static int efx_probe_nic(struct efx_nic *efx) -{ - size_t i; - int rc; - - netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); - - /* Carry out hardware-type specific initialisation */ - rc = efx->type->probe(efx); - if (rc) - return rc; - - /* Determine the number of channels and queues by trying to hook - * in MSI-X interrupts. */ - rc = efx_probe_interrupts(efx); - if (rc) - goto fail; - - if (efx->n_channels > 1) - get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); - for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) - efx->rx_indir_table[i] = i % efx->n_rx_channels; - - efx_set_channels(efx); - netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); - netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); - - /* Initialise the interrupt moderation settings */ - efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true); - - return 0; - -fail: - efx->type->remove(efx); - return rc; -} - -static void efx_remove_nic(struct efx_nic *efx) -{ - netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); - - efx_remove_interrupts(efx); - efx->type->remove(efx); -} - -/************************************************************************** - * - * NIC startup/shutdown - * - *************************************************************************/ - -static int efx_probe_all(struct efx_nic *efx) -{ - int rc; - - rc = efx_probe_nic(efx); - if (rc) { - netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); - goto fail1; - } - - rc = efx_probe_port(efx); - if (rc) { - netif_err(efx, probe, efx->net_dev, "failed to create port\n"); - goto fail2; - } - - efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; - rc = efx_probe_channels(efx); - if (rc) - goto fail3; - - rc = efx_probe_filters(efx); - if (rc) { - netif_err(efx, probe, efx->net_dev, - "failed to create filter tables\n"); - goto fail4; - } - - return 0; - - fail4: - efx_remove_channels(efx); - fail3: - efx_remove_port(efx); - fail2: - efx_remove_nic(efx); - fail1: - return rc; -} - -/* Called after previous invocation(s) of efx_stop_all, restarts the - * port, kernel transmit queue, NAPI processing and hardware interrupts, - * and ensures that the port is scheduled to be reconfigured. - * This function is safe to call multiple times when the NIC is in any - * state. */ -static void efx_start_all(struct efx_nic *efx) -{ - struct efx_channel *channel; - - EFX_ASSERT_RESET_SERIALISED(efx); - - /* Check that it is appropriate to restart the interface. All - * of these flags are safe to read under just the rtnl lock */ - if (efx->port_enabled) - return; - if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT)) - return; - if (efx_dev_registered(efx) && !netif_running(efx->net_dev)) - return; - - /* Mark the port as enabled so port reconfigurations can start, then - * restart the transmit interface early so the watchdog timer stops */ - efx_start_port(efx); - - if (efx_dev_registered(efx) && netif_device_present(efx->net_dev)) - netif_tx_wake_all_queues(efx->net_dev); - - efx_for_each_channel(channel, efx) - efx_start_channel(channel); - - if (efx->legacy_irq) - efx->legacy_irq_enabled = true; - efx_nic_enable_interrupts(efx); - - /* Switch to event based MCDI completions after enabling interrupts. - * If a reset has been scheduled, then we need to stay in polled mode. - * Rather than serialising efx_mcdi_mode_event() [which sleeps] and - * reset_pending [modified from an atomic context], we instead guarantee - * that efx_mcdi_mode_poll() isn't reverted erroneously */ - efx_mcdi_mode_event(efx); - if (efx->reset_pending) - efx_mcdi_mode_poll(efx); - - /* Start the hardware monitor if there is one. Otherwise (we're link - * event driven), we have to poll the PHY because after an event queue - * flush, we could have a missed a link state change */ - if (efx->type->monitor != NULL) { - queue_delayed_work(efx->workqueue, &efx->monitor_work, - efx_monitor_interval); - } else { - mutex_lock(&efx->mac_lock); - if (efx->phy_op->poll(efx)) - efx_link_status_changed(efx); - mutex_unlock(&efx->mac_lock); - } - - efx->type->start_stats(efx); -} - -/* Flush all delayed work. Should only be called when no more delayed work - * will be scheduled. This doesn't flush pending online resets (efx_reset), - * since we're holding the rtnl_lock at this point. */ -static void efx_flush_all(struct efx_nic *efx) -{ - /* Make sure the hardware monitor is stopped */ - cancel_delayed_work_sync(&efx->monitor_work); - /* Stop scheduled port reconfigurations */ - cancel_work_sync(&efx->mac_work); -} - -/* Quiesce hardware and software without bringing the link down. - * Safe to call multiple times, when the nic and interface is in any - * state. The caller is guaranteed to subsequently be in a position - * to modify any hardware and software state they see fit without - * taking locks. */ -static void efx_stop_all(struct efx_nic *efx) -{ - struct efx_channel *channel; - - EFX_ASSERT_RESET_SERIALISED(efx); - - /* port_enabled can be read safely under the rtnl lock */ - if (!efx->port_enabled) - return; - - efx->type->stop_stats(efx); - - /* Switch to MCDI polling on Siena before disabling interrupts */ - efx_mcdi_mode_poll(efx); - - /* Disable interrupts and wait for ISR to complete */ - efx_nic_disable_interrupts(efx); - if (efx->legacy_irq) { - synchronize_irq(efx->legacy_irq); - efx->legacy_irq_enabled = false; - } - efx_for_each_channel(channel, efx) { - if (channel->irq) - synchronize_irq(channel->irq); - } - - /* Stop all NAPI processing and synchronous rx refills */ - efx_for_each_channel(channel, efx) - efx_stop_channel(channel); - - /* Stop all asynchronous port reconfigurations. Since all - * event processing has already been stopped, there is no - * window to loose phy events */ - efx_stop_port(efx); - - /* Flush efx_mac_work(), refill_workqueue, monitor_work */ - efx_flush_all(efx); - - /* Stop the kernel transmit interface late, so the watchdog - * timer isn't ticking over the flush */ - if (efx_dev_registered(efx)) { - netif_tx_stop_all_queues(efx->net_dev); - netif_tx_lock_bh(efx->net_dev); - netif_tx_unlock_bh(efx->net_dev); - } -} - -static void efx_remove_all(struct efx_nic *efx) -{ - efx_remove_filters(efx); - efx_remove_channels(efx); - efx_remove_port(efx); - efx_remove_nic(efx); -} - -/************************************************************************** - * - * Interrupt moderation - * - **************************************************************************/ - -static unsigned irq_mod_ticks(int usecs, int resolution) -{ - if (usecs <= 0) - return 0; /* cannot receive interrupts ahead of time :-) */ - if (usecs < resolution) - return 1; /* never round down to 0 */ - return usecs / resolution; -} - -/* Set interrupt moderation parameters */ -void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs, - bool rx_adaptive) -{ - struct efx_channel *channel; - unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION); - unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION); - - EFX_ASSERT_RESET_SERIALISED(efx); - - efx->irq_rx_adaptive = rx_adaptive; - efx->irq_rx_moderation = rx_ticks; - efx_for_each_channel(channel, efx) { - if (efx_channel_has_rx_queue(channel)) - channel->irq_moderation = rx_ticks; - else if (efx_channel_has_tx_queues(channel)) - channel->irq_moderation = tx_ticks; - } -} - -/************************************************************************** - * - * Hardware monitor - * - **************************************************************************/ - -/* Run periodically off the general workqueue */ -static void efx_monitor(struct work_struct *data) -{ - struct efx_nic *efx = container_of(data, struct efx_nic, - monitor_work.work); - - netif_vdbg(efx, timer, efx->net_dev, - "hardware monitor executing on CPU %d\n", - raw_smp_processor_id()); - BUG_ON(efx->type->monitor == NULL); - - /* If the mac_lock is already held then it is likely a port - * reconfiguration is already in place, which will likely do - * most of the work of monitor() anyway. */ - if (mutex_trylock(&efx->mac_lock)) { - if (efx->port_enabled) - efx->type->monitor(efx); - mutex_unlock(&efx->mac_lock); - } - - queue_delayed_work(efx->workqueue, &efx->monitor_work, - efx_monitor_interval); -} - -/************************************************************************** - * - * ioctls - * - *************************************************************************/ - -/* Net device ioctl - * Context: process, rtnl_lock() held. - */ -static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct mii_ioctl_data *data = if_mii(ifr); - - EFX_ASSERT_RESET_SERIALISED(efx); - - /* Convert phy_id from older PRTAD/DEVAD format */ - if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && - (data->phy_id & 0xfc00) == 0x0400) - data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; - - return mdio_mii_ioctl(&efx->mdio, data, cmd); -} - -/************************************************************************** - * - * NAPI interface - * - **************************************************************************/ - -static void efx_init_napi(struct efx_nic *efx) -{ - struct efx_channel *channel; - - efx_for_each_channel(channel, efx) { - channel->napi_dev = efx->net_dev; - netif_napi_add(channel->napi_dev, &channel->napi_str, - efx_poll, napi_weight); - } -} - -static void efx_fini_napi_channel(struct efx_channel *channel) -{ - if (channel->napi_dev) - netif_napi_del(&channel->napi_str); - channel->napi_dev = NULL; -} - -static void efx_fini_napi(struct efx_nic *efx) -{ - struct efx_channel *channel; - - efx_for_each_channel(channel, efx) - efx_fini_napi_channel(channel); -} - -/************************************************************************** - * - * Kernel netpoll interface - * - *************************************************************************/ - -#ifdef CONFIG_NET_POLL_CONTROLLER - -/* Although in the common case interrupts will be disabled, this is not - * guaranteed. However, all our work happens inside the NAPI callback, - * so no locking is required. - */ -static void efx_netpoll(struct net_device *net_dev) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct efx_channel *channel; - - efx_for_each_channel(channel, efx) - efx_schedule_channel(channel); -} - -#endif - -/************************************************************************** - * - * Kernel net device interface - * - *************************************************************************/ - -/* Context: process, rtnl_lock() held. */ -static int efx_net_open(struct net_device *net_dev) -{ - struct efx_nic *efx = netdev_priv(net_dev); - EFX_ASSERT_RESET_SERIALISED(efx); - - netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", - raw_smp_processor_id()); - - if (efx->state == STATE_DISABLED) - return -EIO; - if (efx->phy_mode & PHY_MODE_SPECIAL) - return -EBUSY; - if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) - return -EIO; - - /* Notify the kernel of the link state polled during driver load, - * before the monitor starts running */ - efx_link_status_changed(efx); - - efx_start_all(efx); - return 0; -} - -/* Context: process, rtnl_lock() held. - * Note that the kernel will ignore our return code; this method - * should really be a void. - */ -static int efx_net_stop(struct net_device *net_dev) -{ - struct efx_nic *efx = netdev_priv(net_dev); - - netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", - raw_smp_processor_id()); - - if (efx->state != STATE_DISABLED) { - /* Stop the device and flush all the channels */ - efx_stop_all(efx); - efx_fini_channels(efx); - efx_init_channels(efx); - } - - return 0; -} - -/* Context: process, dev_base_lock or RTNL held, non-blocking. */ -static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct efx_mac_stats *mac_stats = &efx->mac_stats; - - spin_lock_bh(&efx->stats_lock); - efx->type->update_stats(efx); - spin_unlock_bh(&efx->stats_lock); - - stats->rx_packets = mac_stats->rx_packets; - stats->tx_packets = mac_stats->tx_packets; - stats->rx_bytes = mac_stats->rx_bytes; - stats->tx_bytes = mac_stats->tx_bytes; - stats->rx_dropped = efx->n_rx_nodesc_drop_cnt; - stats->multicast = mac_stats->rx_multicast; - stats->collisions = mac_stats->tx_collision; - stats->rx_length_errors = (mac_stats->rx_gtjumbo + - mac_stats->rx_length_error); - stats->rx_crc_errors = mac_stats->rx_bad; - stats->rx_frame_errors = mac_stats->rx_align_error; - stats->rx_fifo_errors = mac_stats->rx_overflow; - stats->rx_missed_errors = mac_stats->rx_missed; - stats->tx_window_errors = mac_stats->tx_late_collision; - - stats->rx_errors = (stats->rx_length_errors + - stats->rx_crc_errors + - stats->rx_frame_errors + - mac_stats->rx_symbol_error); - stats->tx_errors = (stats->tx_window_errors + - mac_stats->tx_bad); - - return stats; -} - -/* Context: netif_tx_lock held, BHs disabled. */ -static void efx_watchdog(struct net_device *net_dev) -{ - struct efx_nic *efx = netdev_priv(net_dev); - - netif_err(efx, tx_err, efx->net_dev, - "TX stuck with port_enabled=%d: resetting channels\n", - efx->port_enabled); - - efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); -} - - -/* Context: process, rtnl_lock() held. */ -static int efx_change_mtu(struct net_device *net_dev, int new_mtu) -{ - struct efx_nic *efx = netdev_priv(net_dev); - int rc = 0; - - EFX_ASSERT_RESET_SERIALISED(efx); - - if (new_mtu > EFX_MAX_MTU) - return -EINVAL; - - efx_stop_all(efx); - - netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); - - efx_fini_channels(efx); - - mutex_lock(&efx->mac_lock); - /* Reconfigure the MAC before enabling the dma queues so that - * the RX buffers don't overflow */ - net_dev->mtu = new_mtu; - efx->mac_op->reconfigure(efx); - mutex_unlock(&efx->mac_lock); - - efx_init_channels(efx); - - efx_start_all(efx); - return rc; -} - -static int efx_set_mac_address(struct net_device *net_dev, void *data) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct sockaddr *addr = data; - char *new_addr = addr->sa_data; - - EFX_ASSERT_RESET_SERIALISED(efx); - - if (!is_valid_ether_addr(new_addr)) { - netif_err(efx, drv, efx->net_dev, - "invalid ethernet MAC address requested: %pM\n", - new_addr); - return -EINVAL; - } - - memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); - - /* Reconfigure the MAC */ - mutex_lock(&efx->mac_lock); - efx->mac_op->reconfigure(efx); - mutex_unlock(&efx->mac_lock); - - return 0; -} - -/* Context: netif_addr_lock held, BHs disabled. */ -static void efx_set_multicast_list(struct net_device *net_dev) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct netdev_hw_addr *ha; - union efx_multicast_hash *mc_hash = &efx->multicast_hash; - u32 crc; - int bit; - - efx->promiscuous = !!(net_dev->flags & IFF_PROMISC); - - /* Build multicast hash table */ - if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) { - memset(mc_hash, 0xff, sizeof(*mc_hash)); - } else { - memset(mc_hash, 0x00, sizeof(*mc_hash)); - netdev_for_each_mc_addr(ha, net_dev) { - crc = ether_crc_le(ETH_ALEN, ha->addr); - bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); - set_bit_le(bit, mc_hash->byte); - } - - /* Broadcast packets go through the multicast hash filter. - * ether_crc_le() of the broadcast address is 0xbe2612ff - * so we always add bit 0xff to the mask. - */ - set_bit_le(0xff, mc_hash->byte); - } - - if (efx->port_enabled) - queue_work(efx->workqueue, &efx->mac_work); - /* Otherwise efx_start_port() will do this */ -} - -static int efx_set_features(struct net_device *net_dev, u32 data) -{ - struct efx_nic *efx = netdev_priv(net_dev); - - /* If disabling RX n-tuple filtering, clear existing filters */ - if (net_dev->features & ~data & NETIF_F_NTUPLE) - efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); - - return 0; -} - -static const struct net_device_ops efx_netdev_ops = { - .ndo_open = efx_net_open, - .ndo_stop = efx_net_stop, - .ndo_get_stats64 = efx_net_stats, - .ndo_tx_timeout = efx_watchdog, - .ndo_start_xmit = efx_hard_start_xmit, - .ndo_validate_addr = eth_validate_addr, - .ndo_do_ioctl = efx_ioctl, - .ndo_change_mtu = efx_change_mtu, - .ndo_set_mac_address = efx_set_mac_address, - .ndo_set_multicast_list = efx_set_multicast_list, - .ndo_set_features = efx_set_features, -#ifdef CONFIG_NET_POLL_CONTROLLER - .ndo_poll_controller = efx_netpoll, -#endif - .ndo_setup_tc = efx_setup_tc, -#ifdef CONFIG_RFS_ACCEL - .ndo_rx_flow_steer = efx_filter_rfs, -#endif -}; - -static void efx_update_name(struct efx_nic *efx) -{ - strcpy(efx->name, efx->net_dev->name); - efx_mtd_rename(efx); - efx_set_channel_names(efx); -} - -static int efx_netdev_event(struct notifier_block *this, - unsigned long event, void *ptr) -{ - struct net_device *net_dev = ptr; - - if (net_dev->netdev_ops == &efx_netdev_ops && - event == NETDEV_CHANGENAME) - efx_update_name(netdev_priv(net_dev)); - - return NOTIFY_DONE; -} - -static struct notifier_block efx_netdev_notifier = { - .notifier_call = efx_netdev_event, -}; - -static ssize_t -show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) -{ - struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); - return sprintf(buf, "%d\n", efx->phy_type); -} -static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL); - -static int efx_register_netdev(struct efx_nic *efx) -{ - struct net_device *net_dev = efx->net_dev; - struct efx_channel *channel; - int rc; - - net_dev->watchdog_timeo = 5 * HZ; - net_dev->irq = efx->pci_dev->irq; - net_dev->netdev_ops = &efx_netdev_ops; - SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); - - /* Clear MAC statistics */ - efx->mac_op->update_stats(efx); - memset(&efx->mac_stats, 0, sizeof(efx->mac_stats)); - - rtnl_lock(); - - rc = dev_alloc_name(net_dev, net_dev->name); - if (rc < 0) - goto fail_locked; - efx_update_name(efx); - - rc = register_netdevice(net_dev); - if (rc) - goto fail_locked; - - efx_for_each_channel(channel, efx) { - struct efx_tx_queue *tx_queue; - efx_for_each_channel_tx_queue(tx_queue, channel) - efx_init_tx_queue_core_txq(tx_queue); - } - - /* Always start with carrier off; PHY events will detect the link */ - netif_carrier_off(efx->net_dev); - - rtnl_unlock(); - - rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); - if (rc) { - netif_err(efx, drv, efx->net_dev, - "failed to init net dev attributes\n"); - goto fail_registered; - } - - return 0; - -fail_locked: - rtnl_unlock(); - netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); - return rc; - -fail_registered: - unregister_netdev(net_dev); - return rc; -} - -static void efx_unregister_netdev(struct efx_nic *efx) -{ - struct efx_channel *channel; - struct efx_tx_queue *tx_queue; - - if (!efx->net_dev) - return; - - BUG_ON(netdev_priv(efx->net_dev) != efx); - - /* Free up any skbs still remaining. This has to happen before - * we try to unregister the netdev as running their destructors - * may be needed to get the device ref. count to 0. */ - efx_for_each_channel(channel, efx) { - efx_for_each_channel_tx_queue(tx_queue, channel) - efx_release_tx_buffers(tx_queue); - } - - if (efx_dev_registered(efx)) { - strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); - device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); - unregister_netdev(efx->net_dev); - } -} - -/************************************************************************** - * - * Device reset and suspend - * - **************************************************************************/ - -/* Tears down the entire software state and most of the hardware state - * before reset. */ -void efx_reset_down(struct efx_nic *efx, enum reset_type method) -{ - EFX_ASSERT_RESET_SERIALISED(efx); - - efx_stop_all(efx); - mutex_lock(&efx->mac_lock); - - efx_fini_channels(efx); - if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) - efx->phy_op->fini(efx); - efx->type->fini(efx); -} - -/* This function will always ensure that the locks acquired in - * efx_reset_down() are released. A failure return code indicates - * that we were unable to reinitialise the hardware, and the - * driver should be disabled. If ok is false, then the rx and tx - * engines are not restarted, pending a RESET_DISABLE. */ -int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) -{ - int rc; - - EFX_ASSERT_RESET_SERIALISED(efx); - - rc = efx->type->init(efx); - if (rc) { - netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); - goto fail; - } - - if (!ok) - goto fail; - - if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { - rc = efx->phy_op->init(efx); - if (rc) - goto fail; - if (efx->phy_op->reconfigure(efx)) - netif_err(efx, drv, efx->net_dev, - "could not restore PHY settings\n"); - } - - efx->mac_op->reconfigure(efx); - - efx_init_channels(efx); - efx_restore_filters(efx); - - mutex_unlock(&efx->mac_lock); - - efx_start_all(efx); - - return 0; - -fail: - efx->port_initialized = false; - - mutex_unlock(&efx->mac_lock); - - return rc; -} - -/* Reset the NIC using the specified method. Note that the reset may - * fail, in which case the card will be left in an unusable state. - * - * Caller must hold the rtnl_lock. - */ -int efx_reset(struct efx_nic *efx, enum reset_type method) -{ - int rc, rc2; - bool disabled; - - netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", - RESET_TYPE(method)); - - netif_device_detach(efx->net_dev); - efx_reset_down(efx, method); - - rc = efx->type->reset(efx, method); - if (rc) { - netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); - goto out; - } - - /* Clear flags for the scopes we covered. We assume the NIC and - * driver are now quiescent so that there is no race here. - */ - efx->reset_pending &= -(1 << (method + 1)); - - /* Reinitialise bus-mastering, which may have been turned off before - * the reset was scheduled. This is still appropriate, even in the - * RESET_TYPE_DISABLE since this driver generally assumes the hardware - * can respond to requests. */ - pci_set_master(efx->pci_dev); - -out: - /* Leave device stopped if necessary */ - disabled = rc || method == RESET_TYPE_DISABLE; - rc2 = efx_reset_up(efx, method, !disabled); - if (rc2) { - disabled = true; - if (!rc) - rc = rc2; - } - - if (disabled) { - dev_close(efx->net_dev); - netif_err(efx, drv, efx->net_dev, "has been disabled\n"); - efx->state = STATE_DISABLED; - } else { - netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); - netif_device_attach(efx->net_dev); - } - return rc; -} - -/* The worker thread exists so that code that cannot sleep can - * schedule a reset for later. - */ -static void efx_reset_work(struct work_struct *data) -{ - struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); - unsigned long pending = ACCESS_ONCE(efx->reset_pending); - - if (!pending) - return; - - /* If we're not RUNNING then don't reset. Leave the reset_pending - * flags set so that efx_pci_probe_main will be retried */ - if (efx->state != STATE_RUNNING) { - netif_info(efx, drv, efx->net_dev, - "scheduled reset quenched. NIC not RUNNING\n"); - return; - } - - rtnl_lock(); - (void)efx_reset(efx, fls(pending) - 1); - rtnl_unlock(); -} - -void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) -{ - enum reset_type method; - - switch (type) { - case RESET_TYPE_INVISIBLE: - case RESET_TYPE_ALL: - case RESET_TYPE_WORLD: - case RESET_TYPE_DISABLE: - method = type; - netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", - RESET_TYPE(method)); - break; - default: - method = efx->type->map_reset_reason(type); - netif_dbg(efx, drv, efx->net_dev, - "scheduling %s reset for %s\n", - RESET_TYPE(method), RESET_TYPE(type)); - break; - } - - set_bit(method, &efx->reset_pending); - - /* efx_process_channel() will no longer read events once a - * reset is scheduled. So switch back to poll'd MCDI completions. */ - efx_mcdi_mode_poll(efx); - - queue_work(reset_workqueue, &efx->reset_work); -} - -/************************************************************************** - * - * List of NICs we support - * - **************************************************************************/ - -/* PCI device ID table */ -static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { - {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID), - .driver_data = (unsigned long) &falcon_a1_nic_type}, - {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID), - .driver_data = (unsigned long) &falcon_b0_nic_type}, - {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID), - .driver_data = (unsigned long) &siena_a0_nic_type}, - {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID), - .driver_data = (unsigned long) &siena_a0_nic_type}, - {0} /* end of list */ -}; - -/************************************************************************** - * - * Dummy PHY/MAC operations - * - * Can be used for some unimplemented operations - * Needed so all function pointers are valid and do not have to be tested - * before use - * - **************************************************************************/ -int efx_port_dummy_op_int(struct efx_nic *efx) -{ - return 0; -} -void efx_port_dummy_op_void(struct efx_nic *efx) {} - -static bool efx_port_dummy_op_poll(struct efx_nic *efx) -{ - return false; -} - -static const struct efx_phy_operations efx_dummy_phy_operations = { - .init = efx_port_dummy_op_int, - .reconfigure = efx_port_dummy_op_int, - .poll = efx_port_dummy_op_poll, - .fini = efx_port_dummy_op_void, -}; - -/************************************************************************** - * - * Data housekeeping - * - **************************************************************************/ - -/* This zeroes out and then fills in the invariants in a struct - * efx_nic (including all sub-structures). - */ -static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type, - struct pci_dev *pci_dev, struct net_device *net_dev) -{ - int i; - - /* Initialise common structures */ - memset(efx, 0, sizeof(*efx)); - spin_lock_init(&efx->biu_lock); -#ifdef CONFIG_SFC_MTD - INIT_LIST_HEAD(&efx->mtd_list); -#endif - INIT_WORK(&efx->reset_work, efx_reset_work); - INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); - efx->pci_dev = pci_dev; - efx->msg_enable = debug; - efx->state = STATE_INIT; - strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); - - efx->net_dev = net_dev; - spin_lock_init(&efx->stats_lock); - mutex_init(&efx->mac_lock); - efx->mac_op = type->default_mac_ops; - efx->phy_op = &efx_dummy_phy_operations; - efx->mdio.dev = net_dev; - INIT_WORK(&efx->mac_work, efx_mac_work); - - for (i = 0; i < EFX_MAX_CHANNELS; i++) { - efx->channel[i] = efx_alloc_channel(efx, i, NULL); - if (!efx->channel[i]) - goto fail; - } - - efx->type = type; - - EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); - - /* Higher numbered interrupt modes are less capable! */ - efx->interrupt_mode = max(efx->type->max_interrupt_mode, - interrupt_mode); - - /* Would be good to use the net_dev name, but we're too early */ - snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", - pci_name(pci_dev)); - efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); - if (!efx->workqueue) - goto fail; - - return 0; - -fail: - efx_fini_struct(efx); - return -ENOMEM; -} - -static void efx_fini_struct(struct efx_nic *efx) -{ - int i; - - for (i = 0; i < EFX_MAX_CHANNELS; i++) - kfree(efx->channel[i]); - - if (efx->workqueue) { - destroy_workqueue(efx->workqueue); - efx->workqueue = NULL; - } -} - -/************************************************************************** - * - * PCI interface - * - **************************************************************************/ - -/* Main body of final NIC shutdown code - * This is called only at module unload (or hotplug removal). - */ -static void efx_pci_remove_main(struct efx_nic *efx) -{ -#ifdef CONFIG_RFS_ACCEL - free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); - efx->net_dev->rx_cpu_rmap = NULL; -#endif - efx_nic_fini_interrupt(efx); - efx_fini_channels(efx); - efx_fini_port(efx); - efx->type->fini(efx); - efx_fini_napi(efx); - efx_remove_all(efx); -} - -/* Final NIC shutdown - * This is called only at module unload (or hotplug removal). - */ -static void efx_pci_remove(struct pci_dev *pci_dev) -{ - struct efx_nic *efx; - - efx = pci_get_drvdata(pci_dev); - if (!efx) - return; - - /* Mark the NIC as fini, then stop the interface */ - rtnl_lock(); - efx->state = STATE_FINI; - dev_close(efx->net_dev); - - /* Allow any queued efx_resets() to complete */ - rtnl_unlock(); - - efx_unregister_netdev(efx); - - efx_mtd_remove(efx); - - /* Wait for any scheduled resets to complete. No more will be - * scheduled from this point because efx_stop_all() has been - * called, we are no longer registered with driverlink, and - * the net_device's have been removed. */ - cancel_work_sync(&efx->reset_work); - - efx_pci_remove_main(efx); - - efx_fini_io(efx); - netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); - - pci_set_drvdata(pci_dev, NULL); - efx_fini_struct(efx); - free_netdev(efx->net_dev); -}; - -/* Main body of NIC initialisation - * This is called at module load (or hotplug insertion, theoretically). - */ -static int efx_pci_probe_main(struct efx_nic *efx) -{ - int rc; - - /* Do start-of-day initialisation */ - rc = efx_probe_all(efx); - if (rc) - goto fail1; - - efx_init_napi(efx); - - rc = efx->type->init(efx); - if (rc) { - netif_err(efx, probe, efx->net_dev, - "failed to initialise NIC\n"); - goto fail3; - } - - rc = efx_init_port(efx); - if (rc) { - netif_err(efx, probe, efx->net_dev, - "failed to initialise port\n"); - goto fail4; - } - - efx_init_channels(efx); - - rc = efx_nic_init_interrupt(efx); - if (rc) - goto fail5; - - return 0; - - fail5: - efx_fini_channels(efx); - efx_fini_port(efx); - fail4: - efx->type->fini(efx); - fail3: - efx_fini_napi(efx); - efx_remove_all(efx); - fail1: - return rc; -} - -/* NIC initialisation - * - * This is called at module load (or hotplug insertion, - * theoretically). It sets up PCI mappings, tests and resets the NIC, - * sets up and registers the network devices with the kernel and hooks - * the interrupt service routine. It does not prepare the device for - * transmission; this is left to the first time one of the network - * interfaces is brought up (i.e. efx_net_open). - */ -static int __devinit efx_pci_probe(struct pci_dev *pci_dev, - const struct pci_device_id *entry) -{ - const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data; - struct net_device *net_dev; - struct efx_nic *efx; - int i, rc; - - /* Allocate and initialise a struct net_device and struct efx_nic */ - net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, - EFX_MAX_RX_QUEUES); - if (!net_dev) - return -ENOMEM; - net_dev->features |= (type->offload_features | NETIF_F_SG | - NETIF_F_HIGHDMA | NETIF_F_TSO | - NETIF_F_RXCSUM); - if (type->offload_features & NETIF_F_V6_CSUM) - net_dev->features |= NETIF_F_TSO6; - /* Mask for features that also apply to VLAN devices */ - net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | - NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | - NETIF_F_RXCSUM); - /* All offloads can be toggled */ - net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; - efx = netdev_priv(net_dev); - pci_set_drvdata(pci_dev, efx); - SET_NETDEV_DEV(net_dev, &pci_dev->dev); - rc = efx_init_struct(efx, type, pci_dev, net_dev); - if (rc) - goto fail1; - - netif_info(efx, probe, efx->net_dev, - "Solarflare NIC detected\n"); - - /* Set up basic I/O (BAR mappings etc) */ - rc = efx_init_io(efx); - if (rc) - goto fail2; - - /* No serialisation is required with the reset path because - * we're in STATE_INIT. */ - for (i = 0; i < 5; i++) { - rc = efx_pci_probe_main(efx); - - /* Serialise against efx_reset(). No more resets will be - * scheduled since efx_stop_all() has been called, and we - * have not and never have been registered with either - * the rtnetlink or driverlink layers. */ - cancel_work_sync(&efx->reset_work); - - if (rc == 0) { - if (efx->reset_pending) { - /* If there was a scheduled reset during - * probe, the NIC is probably hosed anyway */ - efx_pci_remove_main(efx); - rc = -EIO; - } else { - break; - } - } - - /* Retry if a recoverably reset event has been scheduled */ - if (efx->reset_pending & - ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) || - !efx->reset_pending) - goto fail3; - - efx->reset_pending = 0; - } - - if (rc) { - netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n"); - goto fail4; - } - - /* Switch to the running state before we expose the device to the OS, - * so that dev_open()|efx_start_all() will actually start the device */ - efx->state = STATE_RUNNING; - - rc = efx_register_netdev(efx); - if (rc) - goto fail5; - - netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); - - rtnl_lock(); - efx_mtd_probe(efx); /* allowed to fail */ - rtnl_unlock(); - return 0; - - fail5: - efx_pci_remove_main(efx); - fail4: - fail3: - efx_fini_io(efx); - fail2: - efx_fini_struct(efx); - fail1: - WARN_ON(rc > 0); - netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); - free_netdev(net_dev); - return rc; -} - -static int efx_pm_freeze(struct device *dev) -{ - struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); - - efx->state = STATE_FINI; - - netif_device_detach(efx->net_dev); - - efx_stop_all(efx); - efx_fini_channels(efx); - - return 0; -} - -static int efx_pm_thaw(struct device *dev) -{ - struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); - - efx->state = STATE_INIT; - - efx_init_channels(efx); - - mutex_lock(&efx->mac_lock); - efx->phy_op->reconfigure(efx); - mutex_unlock(&efx->mac_lock); - - efx_start_all(efx); - - netif_device_attach(efx->net_dev); - - efx->state = STATE_RUNNING; - - efx->type->resume_wol(efx); - - /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ - queue_work(reset_workqueue, &efx->reset_work); - - return 0; -} - -static int efx_pm_poweroff(struct device *dev) -{ - struct pci_dev *pci_dev = to_pci_dev(dev); - struct efx_nic *efx = pci_get_drvdata(pci_dev); - - efx->type->fini(efx); - - efx->reset_pending = 0; - - pci_save_state(pci_dev); - return pci_set_power_state(pci_dev, PCI_D3hot); -} - -/* Used for both resume and restore */ -static int efx_pm_resume(struct device *dev) -{ - struct pci_dev *pci_dev = to_pci_dev(dev); - struct efx_nic *efx = pci_get_drvdata(pci_dev); - int rc; - - rc = pci_set_power_state(pci_dev, PCI_D0); - if (rc) - return rc; - pci_restore_state(pci_dev); - rc = pci_enable_device(pci_dev); - if (rc) - return rc; - pci_set_master(efx->pci_dev); - rc = efx->type->reset(efx, RESET_TYPE_ALL); - if (rc) - return rc; - rc = efx->type->init(efx); - if (rc) - return rc; - efx_pm_thaw(dev); - return 0; -} - -static int efx_pm_suspend(struct device *dev) -{ - int rc; - - efx_pm_freeze(dev); - rc = efx_pm_poweroff(dev); - if (rc) - efx_pm_resume(dev); - return rc; -} - -static struct dev_pm_ops efx_pm_ops = { - .suspend = efx_pm_suspend, - .resume = efx_pm_resume, - .freeze = efx_pm_freeze, - .thaw = efx_pm_thaw, - .poweroff = efx_pm_poweroff, - .restore = efx_pm_resume, -}; - -static struct pci_driver efx_pci_driver = { - .name = KBUILD_MODNAME, - .id_table = efx_pci_table, - .probe = efx_pci_probe, - .remove = efx_pci_remove, - .driver.pm = &efx_pm_ops, -}; - -/************************************************************************** - * - * Kernel module interface - * - *************************************************************************/ - -module_param(interrupt_mode, uint, 0444); -MODULE_PARM_DESC(interrupt_mode, - "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); - -static int __init efx_init_module(void) -{ - int rc; - - printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); - - rc = register_netdevice_notifier(&efx_netdev_notifier); - if (rc) - goto err_notifier; - - reset_workqueue = create_singlethread_workqueue("sfc_reset"); - if (!reset_workqueue) { - rc = -ENOMEM; - goto err_reset; - } - - rc = pci_register_driver(&efx_pci_driver); - if (rc < 0) - goto err_pci; - - return 0; - - err_pci: - destroy_workqueue(reset_workqueue); - err_reset: - unregister_netdevice_notifier(&efx_netdev_notifier); - err_notifier: - return rc; -} - -static void __exit efx_exit_module(void) -{ - printk(KERN_INFO "Solarflare NET driver unloading\n"); - - pci_unregister_driver(&efx_pci_driver); - destroy_workqueue(reset_workqueue); - unregister_netdevice_notifier(&efx_netdev_notifier); - -} - -module_init(efx_init_module); -module_exit(efx_exit_module); - -MODULE_AUTHOR("Solarflare Communications and " - "Michael Brown <mbrown@fensystems.co.uk>"); -MODULE_DESCRIPTION("Solarflare Communications network driver"); -MODULE_LICENSE("GPL"); -MODULE_DEVICE_TABLE(pci, efx_pci_table); diff --git a/drivers/net/sfc/efx.h b/drivers/net/sfc/efx.h deleted file mode 100644 index b0d1209..0000000 --- a/drivers/net/sfc/efx.h +++ /dev/null @@ -1,147 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_EFX_H -#define EFX_EFX_H - -#include "net_driver.h" -#include "filter.h" - -/* PCI IDs */ -#define EFX_VENDID_SFC 0x1924 -#define FALCON_A_P_DEVID 0x0703 -#define FALCON_A_S_DEVID 0x6703 -#define FALCON_B_P_DEVID 0x0710 -#define BETHPAGE_A_P_DEVID 0x0803 -#define SIENA_A_P_DEVID 0x0813 - -/* Solarstorm controllers use BAR 0 for I/O space and BAR 2(&3) for memory */ -#define EFX_MEM_BAR 2 - -/* TX */ -extern int efx_probe_tx_queue(struct efx_tx_queue *tx_queue); -extern void efx_remove_tx_queue(struct efx_tx_queue *tx_queue); -extern void efx_init_tx_queue(struct efx_tx_queue *tx_queue); -extern void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue); -extern void efx_fini_tx_queue(struct efx_tx_queue *tx_queue); -extern void efx_release_tx_buffers(struct efx_tx_queue *tx_queue); -extern netdev_tx_t -efx_hard_start_xmit(struct sk_buff *skb, struct net_device *net_dev); -extern netdev_tx_t -efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb); -extern void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index); -extern int efx_setup_tc(struct net_device *net_dev, u8 num_tc); - -/* RX */ -extern int efx_probe_rx_queue(struct efx_rx_queue *rx_queue); -extern void efx_remove_rx_queue(struct efx_rx_queue *rx_queue); -extern void efx_init_rx_queue(struct efx_rx_queue *rx_queue); -extern void efx_fini_rx_queue(struct efx_rx_queue *rx_queue); -extern void efx_rx_strategy(struct efx_channel *channel); -extern void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue); -extern void efx_rx_slow_fill(unsigned long context); -extern void __efx_rx_packet(struct efx_channel *channel, - struct efx_rx_buffer *rx_buf, bool checksummed); -extern void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, - unsigned int len, bool checksummed, bool discard); -extern void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue); - -#define EFX_MAX_DMAQ_SIZE 4096UL -#define EFX_DEFAULT_DMAQ_SIZE 1024UL -#define EFX_MIN_DMAQ_SIZE 512UL - -#define EFX_MAX_EVQ_SIZE 16384UL -#define EFX_MIN_EVQ_SIZE 512UL - -/* The smallest [rt]xq_entries that the driver supports. Callers of - * efx_wake_queue() assume that they can subsequently send at least one - * skb. Falcon/A1 may require up to three descriptors per skb_frag. */ -#define EFX_MIN_RING_SIZE (roundup_pow_of_two(2 * 3 * MAX_SKB_FRAGS)) - -/* Filters */ -extern int efx_probe_filters(struct efx_nic *efx); -extern void efx_restore_filters(struct efx_nic *efx); -extern void efx_remove_filters(struct efx_nic *efx); -extern int efx_filter_insert_filter(struct efx_nic *efx, - struct efx_filter_spec *spec, - bool replace); -extern int efx_filter_remove_filter(struct efx_nic *efx, - struct efx_filter_spec *spec); -extern void efx_filter_clear_rx(struct efx_nic *efx, - enum efx_filter_priority priority); -#ifdef CONFIG_RFS_ACCEL -extern int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, - u16 rxq_index, u32 flow_id); -extern bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned quota); -static inline void efx_filter_rfs_expire(struct efx_channel *channel) -{ - if (channel->rfs_filters_added >= 60 && - __efx_filter_rfs_expire(channel->efx, 100)) - channel->rfs_filters_added -= 60; -} -#define efx_filter_rfs_enabled() 1 -#else -static inline void efx_filter_rfs_expire(struct efx_channel *channel) {} -#define efx_filter_rfs_enabled() 0 -#endif - -/* Channels */ -extern void efx_process_channel_now(struct efx_channel *channel); -extern int -efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries); - -/* Ports */ -extern int efx_reconfigure_port(struct efx_nic *efx); -extern int __efx_reconfigure_port(struct efx_nic *efx); - -/* Ethtool support */ -extern const struct ethtool_ops efx_ethtool_ops; - -/* Reset handling */ -extern int efx_reset(struct efx_nic *efx, enum reset_type method); -extern void efx_reset_down(struct efx_nic *efx, enum reset_type method); -extern int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok); - -/* Global */ -extern void efx_schedule_reset(struct efx_nic *efx, enum reset_type type); -extern void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, - int rx_usecs, bool rx_adaptive); - -/* Dummy PHY ops for PHY drivers */ -extern int efx_port_dummy_op_int(struct efx_nic *efx); -extern void efx_port_dummy_op_void(struct efx_nic *efx); - - -/* MTD */ -#ifdef CONFIG_SFC_MTD -extern int efx_mtd_probe(struct efx_nic *efx); -extern void efx_mtd_rename(struct efx_nic *efx); -extern void efx_mtd_remove(struct efx_nic *efx); -#else -static inline int efx_mtd_probe(struct efx_nic *efx) { return 0; } -static inline void efx_mtd_rename(struct efx_nic *efx) {} -static inline void efx_mtd_remove(struct efx_nic *efx) {} -#endif - -static inline void efx_schedule_channel(struct efx_channel *channel) -{ - netif_vdbg(channel->efx, intr, channel->efx->net_dev, - "channel %d scheduling NAPI poll on CPU%d\n", - channel->channel, raw_smp_processor_id()); - channel->work_pending = true; - - napi_schedule(&channel->napi_str); -} - -extern void efx_link_status_changed(struct efx_nic *efx); -extern void efx_link_set_advertising(struct efx_nic *efx, u32); -extern void efx_link_set_wanted_fc(struct efx_nic *efx, u8); - -#endif /* EFX_EFX_H */ diff --git a/drivers/net/sfc/enum.h b/drivers/net/sfc/enum.h deleted file mode 100644 index d725a8f..0000000 --- a/drivers/net/sfc/enum.h +++ /dev/null @@ -1,167 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2007-2009 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_ENUM_H -#define EFX_ENUM_H - -/** - * enum efx_loopback_mode - loopback modes - * @LOOPBACK_NONE: no loopback - * @LOOPBACK_DATA: data path loopback - * @LOOPBACK_GMAC: loopback within GMAC - * @LOOPBACK_XGMII: loopback after XMAC - * @LOOPBACK_XGXS: loopback within BPX after XGXS - * @LOOPBACK_XAUI: loopback within BPX before XAUI serdes - * @LOOPBACK_GMII: loopback within BPX after GMAC - * @LOOPBACK_SGMII: loopback within BPX within SGMII - * @LOOPBACK_XGBR: loopback within BPX within XGBR - * @LOOPBACK_XFI: loopback within BPX before XFI serdes - * @LOOPBACK_XAUI_FAR: loopback within BPX after XAUI serdes - * @LOOPBACK_GMII_FAR: loopback within BPX before SGMII - * @LOOPBACK_SGMII_FAR: loopback within BPX after SGMII - * @LOOPBACK_XFI_FAR: loopback after XFI serdes - * @LOOPBACK_GPHY: loopback within 1G PHY at unspecified level - * @LOOPBACK_PHYXS: loopback within 10G PHY at PHYXS level - * @LOOPBACK_PCS: loopback within 10G PHY at PCS level - * @LOOPBACK_PMAPMD: loopback within 10G PHY at PMAPMD level - * @LOOPBACK_XPORT: cross port loopback - * @LOOPBACK_XGMII_WS: wireside loopback excluding XMAC - * @LOOPBACK_XAUI_WS: wireside loopback within BPX within XAUI serdes - * @LOOPBACK_XAUI_WS_FAR: wireside loopback within BPX including XAUI serdes - * @LOOPBACK_XAUI_WS_NEAR: wireside loopback within BPX excluding XAUI serdes - * @LOOPBACK_GMII_WS: wireside loopback excluding GMAC - * @LOOPBACK_XFI_WS: wireside loopback excluding XFI serdes - * @LOOPBACK_XFI_WS_FAR: wireside loopback including XFI serdes - * @LOOPBACK_PHYXS_WS: wireside loopback within 10G PHY at PHYXS level - */ -/* Please keep up-to-date w.r.t the following two #defines */ -enum efx_loopback_mode { - LOOPBACK_NONE = 0, - LOOPBACK_DATA = 1, - LOOPBACK_GMAC = 2, - LOOPBACK_XGMII = 3, - LOOPBACK_XGXS = 4, - LOOPBACK_XAUI = 5, - LOOPBACK_GMII = 6, - LOOPBACK_SGMII = 7, - LOOPBACK_XGBR = 8, - LOOPBACK_XFI = 9, - LOOPBACK_XAUI_FAR = 10, - LOOPBACK_GMII_FAR = 11, - LOOPBACK_SGMII_FAR = 12, - LOOPBACK_XFI_FAR = 13, - LOOPBACK_GPHY = 14, - LOOPBACK_PHYXS = 15, - LOOPBACK_PCS = 16, - LOOPBACK_PMAPMD = 17, - LOOPBACK_XPORT = 18, - LOOPBACK_XGMII_WS = 19, - LOOPBACK_XAUI_WS = 20, - LOOPBACK_XAUI_WS_FAR = 21, - LOOPBACK_XAUI_WS_NEAR = 22, - LOOPBACK_GMII_WS = 23, - LOOPBACK_XFI_WS = 24, - LOOPBACK_XFI_WS_FAR = 25, - LOOPBACK_PHYXS_WS = 26, - LOOPBACK_MAX -}; -#define LOOPBACK_TEST_MAX LOOPBACK_PMAPMD - -/* These loopbacks occur within the controller */ -#define LOOPBACKS_INTERNAL ((1 << LOOPBACK_DATA) | \ - (1 << LOOPBACK_GMAC) | \ - (1 << LOOPBACK_XGMII)| \ - (1 << LOOPBACK_XGXS) | \ - (1 << LOOPBACK_XAUI) | \ - (1 << LOOPBACK_GMII) | \ - (1 << LOOPBACK_SGMII) | \ - (1 << LOOPBACK_SGMII) | \ - (1 << LOOPBACK_XGBR) | \ - (1 << LOOPBACK_XFI) | \ - (1 << LOOPBACK_XAUI_FAR) | \ - (1 << LOOPBACK_GMII_FAR) | \ - (1 << LOOPBACK_SGMII_FAR) | \ - (1 << LOOPBACK_XFI_FAR) | \ - (1 << LOOPBACK_XGMII_WS) | \ - (1 << LOOPBACK_XAUI_WS) | \ - (1 << LOOPBACK_XAUI_WS_FAR) | \ - (1 << LOOPBACK_XAUI_WS_NEAR) | \ - (1 << LOOPBACK_GMII_WS) | \ - (1 << LOOPBACK_XFI_WS) | \ - (1 << LOOPBACK_XFI_WS_FAR)) - -#define LOOPBACKS_WS ((1 << LOOPBACK_XGMII_WS) | \ - (1 << LOOPBACK_XAUI_WS) | \ - (1 << LOOPBACK_XAUI_WS_FAR) | \ - (1 << LOOPBACK_XAUI_WS_NEAR) | \ - (1 << LOOPBACK_GMII_WS) | \ - (1 << LOOPBACK_XFI_WS) | \ - (1 << LOOPBACK_XFI_WS_FAR) | \ - (1 << LOOPBACK_PHYXS_WS)) - -#define LOOPBACKS_EXTERNAL(_efx) \ - ((_efx)->loopback_modes & ~LOOPBACKS_INTERNAL & \ - ~(1 << LOOPBACK_NONE)) - -#define LOOPBACK_MASK(_efx) \ - (1 << (_efx)->loopback_mode) - -#define LOOPBACK_INTERNAL(_efx) \ - (!!(LOOPBACKS_INTERNAL & LOOPBACK_MASK(_efx))) - -#define LOOPBACK_EXTERNAL(_efx) \ - (!!(LOOPBACK_MASK(_efx) & LOOPBACKS_EXTERNAL(_efx))) - -#define LOOPBACK_CHANGED(_from, _to, _mask) \ - (!!((LOOPBACK_MASK(_from) ^ LOOPBACK_MASK(_to)) & (_mask))) - -#define LOOPBACK_OUT_OF(_from, _to, _mask) \ - ((LOOPBACK_MASK(_from) & (_mask)) && !(LOOPBACK_MASK(_to) & (_mask))) - -/*****************************************************************************/ - -/** - * enum reset_type - reset types - * - * %RESET_TYPE_INVSIBLE, %RESET_TYPE_ALL, %RESET_TYPE_WORLD and - * %RESET_TYPE_DISABLE specify the method/scope of the reset. The - * other valuesspecify reasons, which efx_schedule_reset() will choose - * a method for. - * - * Reset methods are numbered in order of increasing scope. - * - * @RESET_TYPE_INVISIBLE: don't reset the PHYs or interrupts - * @RESET_TYPE_ALL: reset everything but PCI core blocks - * @RESET_TYPE_WORLD: reset everything, save & restore PCI config - * @RESET_TYPE_DISABLE: disable NIC - * @RESET_TYPE_TX_WATCHDOG: reset due to TX watchdog - * @RESET_TYPE_INT_ERROR: reset due to internal error - * @RESET_TYPE_RX_RECOVERY: reset to recover from RX datapath errors - * @RESET_TYPE_RX_DESC_FETCH: pcie error during rx descriptor fetch - * @RESET_TYPE_TX_DESC_FETCH: pcie error during tx descriptor fetch - * @RESET_TYPE_TX_SKIP: hardware completed empty tx descriptors - * @RESET_TYPE_MC_FAILURE: MC reboot/assertion - */ -enum reset_type { - RESET_TYPE_INVISIBLE = 0, - RESET_TYPE_ALL = 1, - RESET_TYPE_WORLD = 2, - RESET_TYPE_DISABLE = 3, - RESET_TYPE_MAX_METHOD, - RESET_TYPE_TX_WATCHDOG, - RESET_TYPE_INT_ERROR, - RESET_TYPE_RX_RECOVERY, - RESET_TYPE_RX_DESC_FETCH, - RESET_TYPE_TX_DESC_FETCH, - RESET_TYPE_TX_SKIP, - RESET_TYPE_MC_FAILURE, - RESET_TYPE_MAX, -}; - -#endif /* EFX_ENUM_H */ diff --git a/drivers/net/sfc/ethtool.c b/drivers/net/sfc/ethtool.c deleted file mode 100644 index bc4643a..0000000 --- a/drivers/net/sfc/ethtool.c +++ /dev/null @@ -1,1012 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/netdevice.h> -#include <linux/ethtool.h> -#include <linux/rtnetlink.h> -#include <linux/in.h> -#include "net_driver.h" -#include "workarounds.h" -#include "selftest.h" -#include "efx.h" -#include "filter.h" -#include "nic.h" - -struct ethtool_string { - char name[ETH_GSTRING_LEN]; -}; - -struct efx_ethtool_stat { - const char *name; - enum { - EFX_ETHTOOL_STAT_SOURCE_mac_stats, - EFX_ETHTOOL_STAT_SOURCE_nic, - EFX_ETHTOOL_STAT_SOURCE_channel, - EFX_ETHTOOL_STAT_SOURCE_tx_queue - } source; - unsigned offset; - u64(*get_stat) (void *field); /* Reader function */ -}; - -/* Initialiser for a struct #efx_ethtool_stat with type-checking */ -#define EFX_ETHTOOL_STAT(stat_name, source_name, field, field_type, \ - get_stat_function) { \ - .name = #stat_name, \ - .source = EFX_ETHTOOL_STAT_SOURCE_##source_name, \ - .offset = ((((field_type *) 0) == \ - &((struct efx_##source_name *)0)->field) ? \ - offsetof(struct efx_##source_name, field) : \ - offsetof(struct efx_##source_name, field)), \ - .get_stat = get_stat_function, \ -} - -static u64 efx_get_uint_stat(void *field) -{ - return *(unsigned int *)field; -} - -static u64 efx_get_ulong_stat(void *field) -{ - return *(unsigned long *)field; -} - -static u64 efx_get_u64_stat(void *field) -{ - return *(u64 *) field; -} - -static u64 efx_get_atomic_stat(void *field) -{ - return atomic_read((atomic_t *) field); -} - -#define EFX_ETHTOOL_ULONG_MAC_STAT(field) \ - EFX_ETHTOOL_STAT(field, mac_stats, field, \ - unsigned long, efx_get_ulong_stat) - -#define EFX_ETHTOOL_U64_MAC_STAT(field) \ - EFX_ETHTOOL_STAT(field, mac_stats, field, \ - u64, efx_get_u64_stat) - -#define EFX_ETHTOOL_UINT_NIC_STAT(name) \ - EFX_ETHTOOL_STAT(name, nic, n_##name, \ - unsigned int, efx_get_uint_stat) - -#define EFX_ETHTOOL_ATOMIC_NIC_ERROR_STAT(field) \ - EFX_ETHTOOL_STAT(field, nic, field, \ - atomic_t, efx_get_atomic_stat) - -#define EFX_ETHTOOL_UINT_CHANNEL_STAT(field) \ - EFX_ETHTOOL_STAT(field, channel, n_##field, \ - unsigned int, efx_get_uint_stat) - -#define EFX_ETHTOOL_UINT_TXQ_STAT(field) \ - EFX_ETHTOOL_STAT(tx_##field, tx_queue, field, \ - unsigned int, efx_get_uint_stat) - -static struct efx_ethtool_stat efx_ethtool_stats[] = { - EFX_ETHTOOL_U64_MAC_STAT(tx_bytes), - EFX_ETHTOOL_U64_MAC_STAT(tx_good_bytes), - EFX_ETHTOOL_U64_MAC_STAT(tx_bad_bytes), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_packets), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_bad), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_pause), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_control), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_unicast), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_multicast), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_broadcast), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_lt64), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_64), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_65_to_127), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_128_to_255), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_256_to_511), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_512_to_1023), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_1024_to_15xx), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_15xx_to_jumbo), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_gtjumbo), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_collision), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_single_collision), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_multiple_collision), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_excessive_collision), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_deferred), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_late_collision), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_excessive_deferred), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_non_tcpudp), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_mac_src_error), - EFX_ETHTOOL_ULONG_MAC_STAT(tx_ip_src_error), - EFX_ETHTOOL_UINT_TXQ_STAT(tso_bursts), - EFX_ETHTOOL_UINT_TXQ_STAT(tso_long_headers), - EFX_ETHTOOL_UINT_TXQ_STAT(tso_packets), - EFX_ETHTOOL_UINT_TXQ_STAT(pushes), - EFX_ETHTOOL_U64_MAC_STAT(rx_bytes), - EFX_ETHTOOL_U64_MAC_STAT(rx_good_bytes), - EFX_ETHTOOL_U64_MAC_STAT(rx_bad_bytes), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_packets), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_good), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_pause), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_control), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_unicast), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_multicast), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_broadcast), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_lt64), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_64), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_65_to_127), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_128_to_255), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_256_to_511), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_512_to_1023), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_1024_to_15xx), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_15xx_to_jumbo), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_gtjumbo), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_lt64), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_64_to_15xx), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_15xx_to_jumbo), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_bad_gtjumbo), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_overflow), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_missed), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_false_carrier), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_symbol_error), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_align_error), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_length_error), - EFX_ETHTOOL_ULONG_MAC_STAT(rx_internal_error), - EFX_ETHTOOL_UINT_NIC_STAT(rx_nodesc_drop_cnt), - EFX_ETHTOOL_ATOMIC_NIC_ERROR_STAT(rx_reset), - EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_tobe_disc), - EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_ip_hdr_chksum_err), - EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_tcp_udp_chksum_err), - EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_mcast_mismatch), - EFX_ETHTOOL_UINT_CHANNEL_STAT(rx_frm_trunc), -}; - -/* Number of ethtool statistics */ -#define EFX_ETHTOOL_NUM_STATS ARRAY_SIZE(efx_ethtool_stats) - -#define EFX_ETHTOOL_EEPROM_MAGIC 0xEFAB - -/************************************************************************** - * - * Ethtool operations - * - ************************************************************************** - */ - -/* Identify device by flashing LEDs */ -static int efx_ethtool_phys_id(struct net_device *net_dev, - enum ethtool_phys_id_state state) -{ - struct efx_nic *efx = netdev_priv(net_dev); - enum efx_led_mode mode = EFX_LED_DEFAULT; - - switch (state) { - case ETHTOOL_ID_ON: - mode = EFX_LED_ON; - break; - case ETHTOOL_ID_OFF: - mode = EFX_LED_OFF; - break; - case ETHTOOL_ID_INACTIVE: - mode = EFX_LED_DEFAULT; - break; - case ETHTOOL_ID_ACTIVE: - return 1; /* cycle on/off once per second */ - } - - efx->type->set_id_led(efx, mode); - return 0; -} - -/* This must be called with rtnl_lock held. */ -static int efx_ethtool_get_settings(struct net_device *net_dev, - struct ethtool_cmd *ecmd) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct efx_link_state *link_state = &efx->link_state; - - mutex_lock(&efx->mac_lock); - efx->phy_op->get_settings(efx, ecmd); - mutex_unlock(&efx->mac_lock); - - /* GMAC does not support 1000Mbps HD */ - ecmd->supported &= ~SUPPORTED_1000baseT_Half; - /* Both MACs support pause frames (bidirectional and respond-only) */ - ecmd->supported |= SUPPORTED_Pause | SUPPORTED_Asym_Pause; - - if (LOOPBACK_INTERNAL(efx)) { - ethtool_cmd_speed_set(ecmd, link_state->speed); - ecmd->duplex = link_state->fd ? DUPLEX_FULL : DUPLEX_HALF; - } - - return 0; -} - -/* This must be called with rtnl_lock held. */ -static int efx_ethtool_set_settings(struct net_device *net_dev, - struct ethtool_cmd *ecmd) -{ - struct efx_nic *efx = netdev_priv(net_dev); - int rc; - - /* GMAC does not support 1000Mbps HD */ - if ((ethtool_cmd_speed(ecmd) == SPEED_1000) && - (ecmd->duplex != DUPLEX_FULL)) { - netif_dbg(efx, drv, efx->net_dev, - "rejecting unsupported 1000Mbps HD setting\n"); - return -EINVAL; - } - - mutex_lock(&efx->mac_lock); - rc = efx->phy_op->set_settings(efx, ecmd); - mutex_unlock(&efx->mac_lock); - return rc; -} - -static void efx_ethtool_get_drvinfo(struct net_device *net_dev, - struct ethtool_drvinfo *info) -{ - struct efx_nic *efx = netdev_priv(net_dev); - - strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); - strlcpy(info->version, EFX_DRIVER_VERSION, sizeof(info->version)); - if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) - efx_mcdi_print_fwver(efx, info->fw_version, - sizeof(info->fw_version)); - strlcpy(info->bus_info, pci_name(efx->pci_dev), sizeof(info->bus_info)); -} - -static int efx_ethtool_get_regs_len(struct net_device *net_dev) -{ - return efx_nic_get_regs_len(netdev_priv(net_dev)); -} - -static void efx_ethtool_get_regs(struct net_device *net_dev, - struct ethtool_regs *regs, void *buf) -{ - struct efx_nic *efx = netdev_priv(net_dev); - - regs->version = efx->type->revision; - efx_nic_get_regs(efx, buf); -} - -static u32 efx_ethtool_get_msglevel(struct net_device *net_dev) -{ - struct efx_nic *efx = netdev_priv(net_dev); - return efx->msg_enable; -} - -static void efx_ethtool_set_msglevel(struct net_device *net_dev, u32 msg_enable) -{ - struct efx_nic *efx = netdev_priv(net_dev); - efx->msg_enable = msg_enable; -} - -/** - * efx_fill_test - fill in an individual self-test entry - * @test_index: Index of the test - * @strings: Ethtool strings, or %NULL - * @data: Ethtool test results, or %NULL - * @test: Pointer to test result (used only if data != %NULL) - * @unit_format: Unit name format (e.g. "chan\%d") - * @unit_id: Unit id (e.g. 0 for "chan0") - * @test_format: Test name format (e.g. "loopback.\%s.tx.sent") - * @test_id: Test id (e.g. "PHYXS" for "loopback.PHYXS.tx_sent") - * - * Fill in an individual self-test entry. - */ -static void efx_fill_test(unsigned int test_index, - struct ethtool_string *strings, u64 *data, - int *test, const char *unit_format, int unit_id, - const char *test_format, const char *test_id) -{ - struct ethtool_string unit_str, test_str; - - /* Fill data value, if applicable */ - if (data) - data[test_index] = *test; - - /* Fill string, if applicable */ - if (strings) { - if (strchr(unit_format, '%')) - snprintf(unit_str.name, sizeof(unit_str.name), - unit_format, unit_id); - else - strcpy(unit_str.name, unit_format); - snprintf(test_str.name, sizeof(test_str.name), - test_format, test_id); - snprintf(strings[test_index].name, - sizeof(strings[test_index].name), - "%-6s %-24s", unit_str.name, test_str.name); - } -} - -#define EFX_CHANNEL_NAME(_channel) "chan%d", _channel->channel -#define EFX_TX_QUEUE_NAME(_tx_queue) "txq%d", _tx_queue->queue -#define EFX_RX_QUEUE_NAME(_rx_queue) "rxq%d", _rx_queue->queue -#define EFX_LOOPBACK_NAME(_mode, _counter) \ - "loopback.%s." _counter, STRING_TABLE_LOOKUP(_mode, efx_loopback_mode) - -/** - * efx_fill_loopback_test - fill in a block of loopback self-test entries - * @efx: Efx NIC - * @lb_tests: Efx loopback self-test results structure - * @mode: Loopback test mode - * @test_index: Starting index of the test - * @strings: Ethtool strings, or %NULL - * @data: Ethtool test results, or %NULL - */ -static int efx_fill_loopback_test(struct efx_nic *efx, - struct efx_loopback_self_tests *lb_tests, - enum efx_loopback_mode mode, - unsigned int test_index, - struct ethtool_string *strings, u64 *data) -{ - struct efx_channel *channel = efx_get_channel(efx, 0); - struct efx_tx_queue *tx_queue; - - efx_for_each_channel_tx_queue(tx_queue, channel) { - efx_fill_test(test_index++, strings, data, - &lb_tests->tx_sent[tx_queue->queue], - EFX_TX_QUEUE_NAME(tx_queue), - EFX_LOOPBACK_NAME(mode, "tx_sent")); - efx_fill_test(test_index++, strings, data, - &lb_tests->tx_done[tx_queue->queue], - EFX_TX_QUEUE_NAME(tx_queue), - EFX_LOOPBACK_NAME(mode, "tx_done")); - } - efx_fill_test(test_index++, strings, data, - &lb_tests->rx_good, - "rx", 0, - EFX_LOOPBACK_NAME(mode, "rx_good")); - efx_fill_test(test_index++, strings, data, - &lb_tests->rx_bad, - "rx", 0, - EFX_LOOPBACK_NAME(mode, "rx_bad")); - - return test_index; -} - -/** - * efx_ethtool_fill_self_tests - get self-test details - * @efx: Efx NIC - * @tests: Efx self-test results structure, or %NULL - * @strings: Ethtool strings, or %NULL - * @data: Ethtool test results, or %NULL - */ -static int efx_ethtool_fill_self_tests(struct efx_nic *efx, - struct efx_self_tests *tests, - struct ethtool_string *strings, - u64 *data) -{ - struct efx_channel *channel; - unsigned int n = 0, i; - enum efx_loopback_mode mode; - - efx_fill_test(n++, strings, data, &tests->phy_alive, - "phy", 0, "alive", NULL); - efx_fill_test(n++, strings, data, &tests->nvram, - "core", 0, "nvram", NULL); - efx_fill_test(n++, strings, data, &tests->interrupt, - "core", 0, "interrupt", NULL); - - /* Event queues */ - efx_for_each_channel(channel, efx) { - efx_fill_test(n++, strings, data, - &tests->eventq_dma[channel->channel], - EFX_CHANNEL_NAME(channel), - "eventq.dma", NULL); - efx_fill_test(n++, strings, data, - &tests->eventq_int[channel->channel], - EFX_CHANNEL_NAME(channel), - "eventq.int", NULL); - efx_fill_test(n++, strings, data, - &tests->eventq_poll[channel->channel], - EFX_CHANNEL_NAME(channel), - "eventq.poll", NULL); - } - - efx_fill_test(n++, strings, data, &tests->registers, - "core", 0, "registers", NULL); - - if (efx->phy_op->run_tests != NULL) { - EFX_BUG_ON_PARANOID(efx->phy_op->test_name == NULL); - - for (i = 0; true; ++i) { - const char *name; - - EFX_BUG_ON_PARANOID(i >= EFX_MAX_PHY_TESTS); - name = efx->phy_op->test_name(efx, i); - if (name == NULL) - break; - - efx_fill_test(n++, strings, data, &tests->phy_ext[i], - "phy", 0, name, NULL); - } - } - - /* Loopback tests */ - for (mode = LOOPBACK_NONE; mode <= LOOPBACK_TEST_MAX; mode++) { - if (!(efx->loopback_modes & (1 << mode))) - continue; - n = efx_fill_loopback_test(efx, - &tests->loopback[mode], mode, n, - strings, data); - } - - return n; -} - -static int efx_ethtool_get_sset_count(struct net_device *net_dev, - int string_set) -{ - switch (string_set) { - case ETH_SS_STATS: - return EFX_ETHTOOL_NUM_STATS; - case ETH_SS_TEST: - return efx_ethtool_fill_self_tests(netdev_priv(net_dev), - NULL, NULL, NULL); - default: - return -EINVAL; - } -} - -static void efx_ethtool_get_strings(struct net_device *net_dev, - u32 string_set, u8 *strings) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct ethtool_string *ethtool_strings = - (struct ethtool_string *)strings; - int i; - - switch (string_set) { - case ETH_SS_STATS: - for (i = 0; i < EFX_ETHTOOL_NUM_STATS; i++) - strncpy(ethtool_strings[i].name, - efx_ethtool_stats[i].name, - sizeof(ethtool_strings[i].name)); - break; - case ETH_SS_TEST: - efx_ethtool_fill_self_tests(efx, NULL, - ethtool_strings, NULL); - break; - default: - /* No other string sets */ - break; - } -} - -static void efx_ethtool_get_stats(struct net_device *net_dev, - struct ethtool_stats *stats, - u64 *data) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct efx_mac_stats *mac_stats = &efx->mac_stats; - struct efx_ethtool_stat *stat; - struct efx_channel *channel; - struct efx_tx_queue *tx_queue; - struct rtnl_link_stats64 temp; - int i; - - EFX_BUG_ON_PARANOID(stats->n_stats != EFX_ETHTOOL_NUM_STATS); - - /* Update MAC and NIC statistics */ - dev_get_stats(net_dev, &temp); - - /* Fill detailed statistics buffer */ - for (i = 0; i < EFX_ETHTOOL_NUM_STATS; i++) { - stat = &efx_ethtool_stats[i]; - switch (stat->source) { - case EFX_ETHTOOL_STAT_SOURCE_mac_stats: - data[i] = stat->get_stat((void *)mac_stats + - stat->offset); - break; - case EFX_ETHTOOL_STAT_SOURCE_nic: - data[i] = stat->get_stat((void *)efx + stat->offset); - break; - case EFX_ETHTOOL_STAT_SOURCE_channel: - data[i] = 0; - efx_for_each_channel(channel, efx) - data[i] += stat->get_stat((void *)channel + - stat->offset); - break; - case EFX_ETHTOOL_STAT_SOURCE_tx_queue: - data[i] = 0; - efx_for_each_channel(channel, efx) { - efx_for_each_channel_tx_queue(tx_queue, channel) - data[i] += - stat->get_stat((void *)tx_queue - + stat->offset); - } - break; - } - } -} - -static void efx_ethtool_self_test(struct net_device *net_dev, - struct ethtool_test *test, u64 *data) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct efx_self_tests *efx_tests; - int already_up; - int rc = -ENOMEM; - - efx_tests = kzalloc(sizeof(*efx_tests), GFP_KERNEL); - if (!efx_tests) - goto fail; - - - ASSERT_RTNL(); - if (efx->state != STATE_RUNNING) { - rc = -EIO; - goto fail1; - } - - netif_info(efx, drv, efx->net_dev, "starting %sline testing\n", - (test->flags & ETH_TEST_FL_OFFLINE) ? "off" : "on"); - - /* We need rx buffers and interrupts. */ - already_up = (efx->net_dev->flags & IFF_UP); - if (!already_up) { - rc = dev_open(efx->net_dev); - if (rc) { - netif_err(efx, drv, efx->net_dev, - "failed opening device.\n"); - goto fail1; - } - } - - rc = efx_selftest(efx, efx_tests, test->flags); - - if (!already_up) - dev_close(efx->net_dev); - - netif_info(efx, drv, efx->net_dev, "%s %sline self-tests\n", - rc == 0 ? "passed" : "failed", - (test->flags & ETH_TEST_FL_OFFLINE) ? "off" : "on"); - -fail1: - /* Fill ethtool results structures */ - efx_ethtool_fill_self_tests(efx, efx_tests, NULL, data); - kfree(efx_tests); -fail: - if (rc) - test->flags |= ETH_TEST_FL_FAILED; -} - -/* Restart autonegotiation */ -static int efx_ethtool_nway_reset(struct net_device *net_dev) -{ - struct efx_nic *efx = netdev_priv(net_dev); - - return mdio45_nway_restart(&efx->mdio); -} - -static int efx_ethtool_get_coalesce(struct net_device *net_dev, - struct ethtool_coalesce *coalesce) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct efx_channel *channel; - - memset(coalesce, 0, sizeof(*coalesce)); - - /* Find lowest IRQ moderation across all used TX queues */ - coalesce->tx_coalesce_usecs_irq = ~((u32) 0); - efx_for_each_channel(channel, efx) { - if (!efx_channel_has_tx_queues(channel)) - continue; - if (channel->irq_moderation < coalesce->tx_coalesce_usecs_irq) { - if (channel->channel < efx->n_rx_channels) - coalesce->tx_coalesce_usecs_irq = - channel->irq_moderation; - else - coalesce->tx_coalesce_usecs_irq = 0; - } - } - - coalesce->use_adaptive_rx_coalesce = efx->irq_rx_adaptive; - coalesce->rx_coalesce_usecs_irq = efx->irq_rx_moderation; - - coalesce->tx_coalesce_usecs_irq *= EFX_IRQ_MOD_RESOLUTION; - coalesce->rx_coalesce_usecs_irq *= EFX_IRQ_MOD_RESOLUTION; - - return 0; -} - -/* Set coalescing parameters - * The difficulties occur for shared channels - */ -static int efx_ethtool_set_coalesce(struct net_device *net_dev, - struct ethtool_coalesce *coalesce) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct efx_channel *channel; - unsigned tx_usecs, rx_usecs, adaptive; - - if (coalesce->use_adaptive_tx_coalesce) - return -EOPNOTSUPP; - - if (coalesce->rx_coalesce_usecs || coalesce->tx_coalesce_usecs) { - netif_err(efx, drv, efx->net_dev, "invalid coalescing setting. " - "Only rx/tx_coalesce_usecs_irq are supported\n"); - return -EOPNOTSUPP; - } - - rx_usecs = coalesce->rx_coalesce_usecs_irq; - tx_usecs = coalesce->tx_coalesce_usecs_irq; - adaptive = coalesce->use_adaptive_rx_coalesce; - - /* If the channel is shared only allow RX parameters to be set */ - efx_for_each_channel(channel, efx) { - if (efx_channel_has_rx_queue(channel) && - efx_channel_has_tx_queues(channel) && - tx_usecs) { - netif_err(efx, drv, efx->net_dev, "Channel is shared. " - "Only RX coalescing may be set\n"); - return -EOPNOTSUPP; - } - } - - efx_init_irq_moderation(efx, tx_usecs, rx_usecs, adaptive); - efx_for_each_channel(channel, efx) - efx->type->push_irq_moderation(channel); - - return 0; -} - -static void efx_ethtool_get_ringparam(struct net_device *net_dev, - struct ethtool_ringparam *ring) -{ - struct efx_nic *efx = netdev_priv(net_dev); - - ring->rx_max_pending = EFX_MAX_DMAQ_SIZE; - ring->tx_max_pending = EFX_MAX_DMAQ_SIZE; - ring->rx_mini_max_pending = 0; - ring->rx_jumbo_max_pending = 0; - ring->rx_pending = efx->rxq_entries; - ring->tx_pending = efx->txq_entries; - ring->rx_mini_pending = 0; - ring->rx_jumbo_pending = 0; -} - -static int efx_ethtool_set_ringparam(struct net_device *net_dev, - struct ethtool_ringparam *ring) -{ - struct efx_nic *efx = netdev_priv(net_dev); - - if (ring->rx_mini_pending || ring->rx_jumbo_pending || - ring->rx_pending > EFX_MAX_DMAQ_SIZE || - ring->tx_pending > EFX_MAX_DMAQ_SIZE) - return -EINVAL; - - if (ring->rx_pending < EFX_MIN_RING_SIZE || - ring->tx_pending < EFX_MIN_RING_SIZE) { - netif_err(efx, drv, efx->net_dev, - "TX and RX queues cannot be smaller than %ld\n", - EFX_MIN_RING_SIZE); - return -EINVAL; - } - - return efx_realloc_channels(efx, ring->rx_pending, ring->tx_pending); -} - -static int efx_ethtool_set_pauseparam(struct net_device *net_dev, - struct ethtool_pauseparam *pause) -{ - struct efx_nic *efx = netdev_priv(net_dev); - u8 wanted_fc, old_fc; - u32 old_adv; - bool reset; - int rc = 0; - - mutex_lock(&efx->mac_lock); - - wanted_fc = ((pause->rx_pause ? EFX_FC_RX : 0) | - (pause->tx_pause ? EFX_FC_TX : 0) | - (pause->autoneg ? EFX_FC_AUTO : 0)); - - if ((wanted_fc & EFX_FC_TX) && !(wanted_fc & EFX_FC_RX)) { - netif_dbg(efx, drv, efx->net_dev, - "Flow control unsupported: tx ON rx OFF\n"); - rc = -EINVAL; - goto out; - } - - if ((wanted_fc & EFX_FC_AUTO) && !efx->link_advertising) { - netif_dbg(efx, drv, efx->net_dev, - "Autonegotiation is disabled\n"); - rc = -EINVAL; - goto out; - } - - /* TX flow control may automatically turn itself off if the - * link partner (intermittently) stops responding to pause - * frames. There isn't any indication that this has happened, - * so the best we do is leave it up to the user to spot this - * and fix it be cycling transmit flow control on this end. */ - reset = (wanted_fc & EFX_FC_TX) && !(efx->wanted_fc & EFX_FC_TX); - if (EFX_WORKAROUND_11482(efx) && reset) { - if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) { - /* Recover by resetting the EM block */ - falcon_stop_nic_stats(efx); - falcon_drain_tx_fifo(efx); - efx->mac_op->reconfigure(efx); - falcon_start_nic_stats(efx); - } else { - /* Schedule a reset to recover */ - efx_schedule_reset(efx, RESET_TYPE_INVISIBLE); - } - } - - old_adv = efx->link_advertising; - old_fc = efx->wanted_fc; - efx_link_set_wanted_fc(efx, wanted_fc); - if (efx->link_advertising != old_adv || - (efx->wanted_fc ^ old_fc) & EFX_FC_AUTO) { - rc = efx->phy_op->reconfigure(efx); - if (rc) { - netif_err(efx, drv, efx->net_dev, - "Unable to advertise requested flow " - "control setting\n"); - goto out; - } - } - - /* Reconfigure the MAC. The PHY *may* generate a link state change event - * if the user just changed the advertised capabilities, but there's no - * harm doing this twice */ - efx->mac_op->reconfigure(efx); - -out: - mutex_unlock(&efx->mac_lock); - - return rc; -} - -static void efx_ethtool_get_pauseparam(struct net_device *net_dev, - struct ethtool_pauseparam *pause) -{ - struct efx_nic *efx = netdev_priv(net_dev); - - pause->rx_pause = !!(efx->wanted_fc & EFX_FC_RX); - pause->tx_pause = !!(efx->wanted_fc & EFX_FC_TX); - pause->autoneg = !!(efx->wanted_fc & EFX_FC_AUTO); -} - - -static void efx_ethtool_get_wol(struct net_device *net_dev, - struct ethtool_wolinfo *wol) -{ - struct efx_nic *efx = netdev_priv(net_dev); - return efx->type->get_wol(efx, wol); -} - - -static int efx_ethtool_set_wol(struct net_device *net_dev, - struct ethtool_wolinfo *wol) -{ - struct efx_nic *efx = netdev_priv(net_dev); - return efx->type->set_wol(efx, wol->wolopts); -} - -static int efx_ethtool_reset(struct net_device *net_dev, u32 *flags) -{ - struct efx_nic *efx = netdev_priv(net_dev); - int rc; - - rc = efx->type->map_reset_flags(flags); - if (rc < 0) - return rc; - - return efx_reset(efx, rc); -} - -static int -efx_ethtool_get_rxnfc(struct net_device *net_dev, - struct ethtool_rxnfc *info, void *rules __always_unused) -{ - struct efx_nic *efx = netdev_priv(net_dev); - - switch (info->cmd) { - case ETHTOOL_GRXRINGS: - info->data = efx->n_rx_channels; - return 0; - - case ETHTOOL_GRXFH: { - unsigned min_revision = 0; - - info->data = 0; - switch (info->flow_type) { - case TCP_V4_FLOW: - info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; - /* fall through */ - case UDP_V4_FLOW: - case SCTP_V4_FLOW: - case AH_ESP_V4_FLOW: - case IPV4_FLOW: - info->data |= RXH_IP_SRC | RXH_IP_DST; - min_revision = EFX_REV_FALCON_B0; - break; - case TCP_V6_FLOW: - info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3; - /* fall through */ - case UDP_V6_FLOW: - case SCTP_V6_FLOW: - case AH_ESP_V6_FLOW: - case IPV6_FLOW: - info->data |= RXH_IP_SRC | RXH_IP_DST; - min_revision = EFX_REV_SIENA_A0; - break; - default: - break; - } - if (efx_nic_rev(efx) < min_revision) - info->data = 0; - return 0; - } - - default: - return -EOPNOTSUPP; - } -} - -static int efx_ethtool_set_rx_ntuple(struct net_device *net_dev, - struct ethtool_rx_ntuple *ntuple) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct ethtool_tcpip4_spec *ip_entry = &ntuple->fs.h_u.tcp_ip4_spec; - struct ethtool_tcpip4_spec *ip_mask = &ntuple->fs.m_u.tcp_ip4_spec; - struct ethhdr *mac_entry = &ntuple->fs.h_u.ether_spec; - struct ethhdr *mac_mask = &ntuple->fs.m_u.ether_spec; - struct efx_filter_spec filter; - int rc; - - /* Range-check action */ - if (ntuple->fs.action < ETHTOOL_RXNTUPLE_ACTION_CLEAR || - ntuple->fs.action >= (s32)efx->n_rx_channels) - return -EINVAL; - - if (~ntuple->fs.data_mask) - return -EINVAL; - - efx_filter_init_rx(&filter, EFX_FILTER_PRI_MANUAL, 0, - (ntuple->fs.action == ETHTOOL_RXNTUPLE_ACTION_DROP) ? - 0xfff : ntuple->fs.action); - - switch (ntuple->fs.flow_type) { - case TCP_V4_FLOW: - case UDP_V4_FLOW: { - u8 proto = (ntuple->fs.flow_type == TCP_V4_FLOW ? - IPPROTO_TCP : IPPROTO_UDP); - - /* Must match all of destination, */ - if (ip_mask->ip4dst | ip_mask->pdst) - return -EINVAL; - /* all or none of source, */ - if ((ip_mask->ip4src | ip_mask->psrc) && - ((__force u32)~ip_mask->ip4src | - (__force u16)~ip_mask->psrc)) - return -EINVAL; - /* and nothing else */ - if ((u8)~ip_mask->tos | (u16)~ntuple->fs.vlan_tag_mask) - return -EINVAL; - - if (!ip_mask->ip4src) - rc = efx_filter_set_ipv4_full(&filter, proto, - ip_entry->ip4dst, - ip_entry->pdst, - ip_entry->ip4src, - ip_entry->psrc); - else - rc = efx_filter_set_ipv4_local(&filter, proto, - ip_entry->ip4dst, - ip_entry->pdst); - if (rc) - return rc; - break; - } - - case ETHER_FLOW: - /* Must match all of destination, */ - if (!is_zero_ether_addr(mac_mask->h_dest)) - return -EINVAL; - /* all or none of VID, */ - if (ntuple->fs.vlan_tag_mask != 0xf000 && - ntuple->fs.vlan_tag_mask != 0xffff) - return -EINVAL; - /* and nothing else */ - if (!is_broadcast_ether_addr(mac_mask->h_source) || - mac_mask->h_proto != htons(0xffff)) - return -EINVAL; - - rc = efx_filter_set_eth_local( - &filter, - (ntuple->fs.vlan_tag_mask == 0xf000) ? - ntuple->fs.vlan_tag : EFX_FILTER_VID_UNSPEC, - mac_entry->h_dest); - if (rc) - return rc; - break; - - default: - return -EINVAL; - } - - if (ntuple->fs.action == ETHTOOL_RXNTUPLE_ACTION_CLEAR) - return efx_filter_remove_filter(efx, &filter); - - rc = efx_filter_insert_filter(efx, &filter, true); - return rc < 0 ? rc : 0; -} - -static int efx_ethtool_get_rxfh_indir(struct net_device *net_dev, - struct ethtool_rxfh_indir *indir) -{ - struct efx_nic *efx = netdev_priv(net_dev); - size_t copy_size = - min_t(size_t, indir->size, ARRAY_SIZE(efx->rx_indir_table)); - - if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) - return -EOPNOTSUPP; - - indir->size = ARRAY_SIZE(efx->rx_indir_table); - memcpy(indir->ring_index, efx->rx_indir_table, - copy_size * sizeof(indir->ring_index[0])); - return 0; -} - -static int efx_ethtool_set_rxfh_indir(struct net_device *net_dev, - const struct ethtool_rxfh_indir *indir) -{ - struct efx_nic *efx = netdev_priv(net_dev); - size_t i; - - if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) - return -EOPNOTSUPP; - - /* Validate size and indices */ - if (indir->size != ARRAY_SIZE(efx->rx_indir_table)) - return -EINVAL; - for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) - if (indir->ring_index[i] >= efx->n_rx_channels) - return -EINVAL; - - memcpy(efx->rx_indir_table, indir->ring_index, - sizeof(efx->rx_indir_table)); - efx_nic_push_rx_indir_table(efx); - return 0; -} - -const struct ethtool_ops efx_ethtool_ops = { - .get_settings = efx_ethtool_get_settings, - .set_settings = efx_ethtool_set_settings, - .get_drvinfo = efx_ethtool_get_drvinfo, - .get_regs_len = efx_ethtool_get_regs_len, - .get_regs = efx_ethtool_get_regs, - .get_msglevel = efx_ethtool_get_msglevel, - .set_msglevel = efx_ethtool_set_msglevel, - .nway_reset = efx_ethtool_nway_reset, - .get_link = ethtool_op_get_link, - .get_coalesce = efx_ethtool_get_coalesce, - .set_coalesce = efx_ethtool_set_coalesce, - .get_ringparam = efx_ethtool_get_ringparam, - .set_ringparam = efx_ethtool_set_ringparam, - .get_pauseparam = efx_ethtool_get_pauseparam, - .set_pauseparam = efx_ethtool_set_pauseparam, - .get_sset_count = efx_ethtool_get_sset_count, - .self_test = efx_ethtool_self_test, - .get_strings = efx_ethtool_get_strings, - .set_phys_id = efx_ethtool_phys_id, - .get_ethtool_stats = efx_ethtool_get_stats, - .get_wol = efx_ethtool_get_wol, - .set_wol = efx_ethtool_set_wol, - .reset = efx_ethtool_reset, - .get_rxnfc = efx_ethtool_get_rxnfc, - .set_rx_ntuple = efx_ethtool_set_rx_ntuple, - .get_rxfh_indir = efx_ethtool_get_rxfh_indir, - .set_rxfh_indir = efx_ethtool_set_rxfh_indir, -}; diff --git a/drivers/net/sfc/falcon.c b/drivers/net/sfc/falcon.c deleted file mode 100644 index 94bf4aa..0000000 --- a/drivers/net/sfc/falcon.c +++ /dev/null @@ -1,1841 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/bitops.h> -#include <linux/delay.h> -#include <linux/pci.h> -#include <linux/module.h> -#include <linux/seq_file.h> -#include <linux/i2c.h> -#include <linux/mii.h> -#include <linux/slab.h> -#include "net_driver.h" -#include "bitfield.h" -#include "efx.h" -#include "mac.h" -#include "spi.h" -#include "nic.h" -#include "regs.h" -#include "io.h" -#include "phy.h" -#include "workarounds.h" - -/* Hardware control for SFC4000 (aka Falcon). */ - -static const unsigned int -/* "Large" EEPROM device: Atmel AT25640 or similar - * 8 KB, 16-bit address, 32 B write block */ -large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN) - | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN) - | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)), -/* Default flash device: Atmel AT25F1024 - * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */ -default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN) - | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN) - | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN) - | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN) - | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)); - -/************************************************************************** - * - * I2C bus - this is a bit-bashing interface using GPIO pins - * Note that it uses the output enables to tristate the outputs - * SDA is the data pin and SCL is the clock - * - ************************************************************************** - */ -static void falcon_setsda(void *data, int state) -{ - struct efx_nic *efx = (struct efx_nic *)data; - efx_oword_t reg; - - efx_reado(efx, ®, FR_AB_GPIO_CTL); - EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state); - efx_writeo(efx, ®, FR_AB_GPIO_CTL); -} - -static void falcon_setscl(void *data, int state) -{ - struct efx_nic *efx = (struct efx_nic *)data; - efx_oword_t reg; - - efx_reado(efx, ®, FR_AB_GPIO_CTL); - EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state); - efx_writeo(efx, ®, FR_AB_GPIO_CTL); -} - -static int falcon_getsda(void *data) -{ - struct efx_nic *efx = (struct efx_nic *)data; - efx_oword_t reg; - - efx_reado(efx, ®, FR_AB_GPIO_CTL); - return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN); -} - -static int falcon_getscl(void *data) -{ - struct efx_nic *efx = (struct efx_nic *)data; - efx_oword_t reg; - - efx_reado(efx, ®, FR_AB_GPIO_CTL); - return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN); -} - -static struct i2c_algo_bit_data falcon_i2c_bit_operations = { - .setsda = falcon_setsda, - .setscl = falcon_setscl, - .getsda = falcon_getsda, - .getscl = falcon_getscl, - .udelay = 5, - /* Wait up to 50 ms for slave to let us pull SCL high */ - .timeout = DIV_ROUND_UP(HZ, 20), -}; - -static void falcon_push_irq_moderation(struct efx_channel *channel) -{ - efx_dword_t timer_cmd; - struct efx_nic *efx = channel->efx; - - /* Set timer register */ - if (channel->irq_moderation) { - EFX_POPULATE_DWORD_2(timer_cmd, - FRF_AB_TC_TIMER_MODE, - FFE_BB_TIMER_MODE_INT_HLDOFF, - FRF_AB_TC_TIMER_VAL, - channel->irq_moderation - 1); - } else { - EFX_POPULATE_DWORD_2(timer_cmd, - FRF_AB_TC_TIMER_MODE, - FFE_BB_TIMER_MODE_DIS, - FRF_AB_TC_TIMER_VAL, 0); - } - BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0); - efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0, - channel->channel); -} - -static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx); - -static void falcon_prepare_flush(struct efx_nic *efx) -{ - falcon_deconfigure_mac_wrapper(efx); - - /* Wait for the tx and rx fifo's to get to the next packet boundary - * (~1ms without back-pressure), then to drain the remainder of the - * fifo's at data path speeds (negligible), with a healthy margin. */ - msleep(10); -} - -/* Acknowledge a legacy interrupt from Falcon - * - * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG. - * - * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the - * BIU. Interrupt acknowledge is read sensitive so must write instead - * (then read to ensure the BIU collector is flushed) - * - * NB most hardware supports MSI interrupts - */ -inline void falcon_irq_ack_a1(struct efx_nic *efx) -{ - efx_dword_t reg; - - EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e); - efx_writed(efx, ®, FR_AA_INT_ACK_KER); - efx_readd(efx, ®, FR_AA_WORK_AROUND_BROKEN_PCI_READS); -} - - -irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id) -{ - struct efx_nic *efx = dev_id; - efx_oword_t *int_ker = efx->irq_status.addr; - int syserr; - int queues; - - /* Check to see if this is our interrupt. If it isn't, we - * exit without having touched the hardware. - */ - if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) { - netif_vdbg(efx, intr, efx->net_dev, - "IRQ %d on CPU %d not for me\n", irq, - raw_smp_processor_id()); - return IRQ_NONE; - } - efx->last_irq_cpu = raw_smp_processor_id(); - netif_vdbg(efx, intr, efx->net_dev, - "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", - irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); - - /* Determine interrupting queues, clear interrupt status - * register and acknowledge the device interrupt. - */ - BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS); - queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q); - - /* Check to see if we have a serious error condition */ - if (queues & (1U << efx->fatal_irq_level)) { - syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); - if (unlikely(syserr)) - return efx_nic_fatal_interrupt(efx); - } - - EFX_ZERO_OWORD(*int_ker); - wmb(); /* Ensure the vector is cleared before interrupt ack */ - falcon_irq_ack_a1(efx); - - if (queues & 1) - efx_schedule_channel(efx_get_channel(efx, 0)); - if (queues & 2) - efx_schedule_channel(efx_get_channel(efx, 1)); - return IRQ_HANDLED; -} -/************************************************************************** - * - * EEPROM/flash - * - ************************************************************************** - */ - -#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t) - -static int falcon_spi_poll(struct efx_nic *efx) -{ - efx_oword_t reg; - efx_reado(efx, ®, FR_AB_EE_SPI_HCMD); - return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0; -} - -/* Wait for SPI command completion */ -static int falcon_spi_wait(struct efx_nic *efx) -{ - /* Most commands will finish quickly, so we start polling at - * very short intervals. Sometimes the command may have to - * wait for VPD or expansion ROM access outside of our - * control, so we allow up to 100 ms. */ - unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10); - int i; - - for (i = 0; i < 10; i++) { - if (!falcon_spi_poll(efx)) - return 0; - udelay(10); - } - - for (;;) { - if (!falcon_spi_poll(efx)) - return 0; - if (time_after_eq(jiffies, timeout)) { - netif_err(efx, hw, efx->net_dev, - "timed out waiting for SPI\n"); - return -ETIMEDOUT; - } - schedule_timeout_uninterruptible(1); - } -} - -int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi, - unsigned int command, int address, - const void *in, void *out, size_t len) -{ - bool addressed = (address >= 0); - bool reading = (out != NULL); - efx_oword_t reg; - int rc; - - /* Input validation */ - if (len > FALCON_SPI_MAX_LEN) - return -EINVAL; - - /* Check that previous command is not still running */ - rc = falcon_spi_poll(efx); - if (rc) - return rc; - - /* Program address register, if we have an address */ - if (addressed) { - EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address); - efx_writeo(efx, ®, FR_AB_EE_SPI_HADR); - } - - /* Program data register, if we have data */ - if (in != NULL) { - memcpy(®, in, len); - efx_writeo(efx, ®, FR_AB_EE_SPI_HDATA); - } - - /* Issue read/write command */ - EFX_POPULATE_OWORD_7(reg, - FRF_AB_EE_SPI_HCMD_CMD_EN, 1, - FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id, - FRF_AB_EE_SPI_HCMD_DABCNT, len, - FRF_AB_EE_SPI_HCMD_READ, reading, - FRF_AB_EE_SPI_HCMD_DUBCNT, 0, - FRF_AB_EE_SPI_HCMD_ADBCNT, - (addressed ? spi->addr_len : 0), - FRF_AB_EE_SPI_HCMD_ENC, command); - efx_writeo(efx, ®, FR_AB_EE_SPI_HCMD); - - /* Wait for read/write to complete */ - rc = falcon_spi_wait(efx); - if (rc) - return rc; - - /* Read data */ - if (out != NULL) { - efx_reado(efx, ®, FR_AB_EE_SPI_HDATA); - memcpy(out, ®, len); - } - - return 0; -} - -static size_t -falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start) -{ - return min(FALCON_SPI_MAX_LEN, - (spi->block_size - (start & (spi->block_size - 1)))); -} - -static inline u8 -efx_spi_munge_command(const struct efx_spi_device *spi, - const u8 command, const unsigned int address) -{ - return command | (((address >> 8) & spi->munge_address) << 3); -} - -/* Wait up to 10 ms for buffered write completion */ -int -falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi) -{ - unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100); - u8 status; - int rc; - - for (;;) { - rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, - &status, sizeof(status)); - if (rc) - return rc; - if (!(status & SPI_STATUS_NRDY)) - return 0; - if (time_after_eq(jiffies, timeout)) { - netif_err(efx, hw, efx->net_dev, - "SPI write timeout on device %d" - " last status=0x%02x\n", - spi->device_id, status); - return -ETIMEDOUT; - } - schedule_timeout_uninterruptible(1); - } -} - -int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi, - loff_t start, size_t len, size_t *retlen, u8 *buffer) -{ - size_t block_len, pos = 0; - unsigned int command; - int rc = 0; - - while (pos < len) { - block_len = min(len - pos, FALCON_SPI_MAX_LEN); - - command = efx_spi_munge_command(spi, SPI_READ, start + pos); - rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL, - buffer + pos, block_len); - if (rc) - break; - pos += block_len; - - /* Avoid locking up the system */ - cond_resched(); - if (signal_pending(current)) { - rc = -EINTR; - break; - } - } - - if (retlen) - *retlen = pos; - return rc; -} - -int -falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi, - loff_t start, size_t len, size_t *retlen, const u8 *buffer) -{ - u8 verify_buffer[FALCON_SPI_MAX_LEN]; - size_t block_len, pos = 0; - unsigned int command; - int rc = 0; - - while (pos < len) { - rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); - if (rc) - break; - - block_len = min(len - pos, - falcon_spi_write_limit(spi, start + pos)); - command = efx_spi_munge_command(spi, SPI_WRITE, start + pos); - rc = falcon_spi_cmd(efx, spi, command, start + pos, - buffer + pos, NULL, block_len); - if (rc) - break; - - rc = falcon_spi_wait_write(efx, spi); - if (rc) - break; - - command = efx_spi_munge_command(spi, SPI_READ, start + pos); - rc = falcon_spi_cmd(efx, spi, command, start + pos, - NULL, verify_buffer, block_len); - if (memcmp(verify_buffer, buffer + pos, block_len)) { - rc = -EIO; - break; - } - - pos += block_len; - - /* Avoid locking up the system */ - cond_resched(); - if (signal_pending(current)) { - rc = -EINTR; - break; - } - } - - if (retlen) - *retlen = pos; - return rc; -} - -/************************************************************************** - * - * MAC wrapper - * - ************************************************************************** - */ - -static void falcon_push_multicast_hash(struct efx_nic *efx) -{ - union efx_multicast_hash *mc_hash = &efx->multicast_hash; - - WARN_ON(!mutex_is_locked(&efx->mac_lock)); - - efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0); - efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1); -} - -static void falcon_reset_macs(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - efx_oword_t reg, mac_ctrl; - int count; - - if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { - /* It's not safe to use GLB_CTL_REG to reset the - * macs, so instead use the internal MAC resets - */ - EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1); - efx_writeo(efx, ®, FR_AB_XM_GLB_CFG); - - for (count = 0; count < 10000; count++) { - efx_reado(efx, ®, FR_AB_XM_GLB_CFG); - if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) == - 0) - return; - udelay(10); - } - - netif_err(efx, hw, efx->net_dev, - "timed out waiting for XMAC core reset\n"); - } - - /* Mac stats will fail whist the TX fifo is draining */ - WARN_ON(nic_data->stats_disable_count == 0); - - efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL); - EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1); - efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL); - - efx_reado(efx, ®, FR_AB_GLB_CTL); - EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1); - EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1); - EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1); - efx_writeo(efx, ®, FR_AB_GLB_CTL); - - count = 0; - while (1) { - efx_reado(efx, ®, FR_AB_GLB_CTL); - if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) && - !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) && - !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) { - netif_dbg(efx, hw, efx->net_dev, - "Completed MAC reset after %d loops\n", - count); - break; - } - if (count > 20) { - netif_err(efx, hw, efx->net_dev, "MAC reset failed\n"); - break; - } - count++; - udelay(10); - } - - /* Ensure the correct MAC is selected before statistics - * are re-enabled by the caller */ - efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL); - - falcon_setup_xaui(efx); -} - -void falcon_drain_tx_fifo(struct efx_nic *efx) -{ - efx_oword_t reg; - - if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) || - (efx->loopback_mode != LOOPBACK_NONE)) - return; - - efx_reado(efx, ®, FR_AB_MAC_CTRL); - /* There is no point in draining more than once */ - if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN)) - return; - - falcon_reset_macs(efx); -} - -static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx) -{ - efx_oword_t reg; - - if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) - return; - - /* Isolate the MAC -> RX */ - efx_reado(efx, ®, FR_AZ_RX_CFG); - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0); - efx_writeo(efx, ®, FR_AZ_RX_CFG); - - /* Isolate TX -> MAC */ - falcon_drain_tx_fifo(efx); -} - -void falcon_reconfigure_mac_wrapper(struct efx_nic *efx) -{ - struct efx_link_state *link_state = &efx->link_state; - efx_oword_t reg; - int link_speed, isolate; - - isolate = !!ACCESS_ONCE(efx->reset_pending); - - switch (link_state->speed) { - case 10000: link_speed = 3; break; - case 1000: link_speed = 2; break; - case 100: link_speed = 1; break; - default: link_speed = 0; break; - } - /* MAC_LINK_STATUS controls MAC backpressure but doesn't work - * as advertised. Disable to ensure packets are not - * indefinitely held and TX queue can be flushed at any point - * while the link is down. */ - EFX_POPULATE_OWORD_5(reg, - FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */, - FRF_AB_MAC_BCAD_ACPT, 1, - FRF_AB_MAC_UC_PROM, efx->promiscuous, - FRF_AB_MAC_LINK_STATUS, 1, /* always set */ - FRF_AB_MAC_SPEED, link_speed); - /* On B0, MAC backpressure can be disabled and packets get - * discarded. */ - if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { - EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN, - !link_state->up || isolate); - } - - efx_writeo(efx, ®, FR_AB_MAC_CTRL); - - /* Restore the multicast hash registers. */ - falcon_push_multicast_hash(efx); - - efx_reado(efx, ®, FR_AZ_RX_CFG); - /* Enable XOFF signal from RX FIFO (we enabled it during NIC - * initialisation but it may read back as 0) */ - EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1); - /* Unisolate the MAC -> RX */ - if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate); - efx_writeo(efx, ®, FR_AZ_RX_CFG); -} - -static void falcon_stats_request(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - efx_oword_t reg; - - WARN_ON(nic_data->stats_pending); - WARN_ON(nic_data->stats_disable_count); - - if (nic_data->stats_dma_done == NULL) - return; /* no mac selected */ - - *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE; - nic_data->stats_pending = true; - wmb(); /* ensure done flag is clear */ - - /* Initiate DMA transfer of stats */ - EFX_POPULATE_OWORD_2(reg, - FRF_AB_MAC_STAT_DMA_CMD, 1, - FRF_AB_MAC_STAT_DMA_ADR, - efx->stats_buffer.dma_addr); - efx_writeo(efx, ®, FR_AB_MAC_STAT_DMA); - - mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2)); -} - -static void falcon_stats_complete(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - - if (!nic_data->stats_pending) - return; - - nic_data->stats_pending = 0; - if (*nic_data->stats_dma_done == FALCON_STATS_DONE) { - rmb(); /* read the done flag before the stats */ - efx->mac_op->update_stats(efx); - } else { - netif_err(efx, hw, efx->net_dev, - "timed out waiting for statistics\n"); - } -} - -static void falcon_stats_timer_func(unsigned long context) -{ - struct efx_nic *efx = (struct efx_nic *)context; - struct falcon_nic_data *nic_data = efx->nic_data; - - spin_lock(&efx->stats_lock); - - falcon_stats_complete(efx); - if (nic_data->stats_disable_count == 0) - falcon_stats_request(efx); - - spin_unlock(&efx->stats_lock); -} - -static bool falcon_loopback_link_poll(struct efx_nic *efx) -{ - struct efx_link_state old_state = efx->link_state; - - WARN_ON(!mutex_is_locked(&efx->mac_lock)); - WARN_ON(!LOOPBACK_INTERNAL(efx)); - - efx->link_state.fd = true; - efx->link_state.fc = efx->wanted_fc; - efx->link_state.up = true; - efx->link_state.speed = 10000; - - return !efx_link_state_equal(&efx->link_state, &old_state); -} - -static int falcon_reconfigure_port(struct efx_nic *efx) -{ - int rc; - - WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0); - - /* Poll the PHY link state *before* reconfiguring it. This means we - * will pick up the correct speed (in loopback) to select the correct - * MAC. - */ - if (LOOPBACK_INTERNAL(efx)) - falcon_loopback_link_poll(efx); - else - efx->phy_op->poll(efx); - - falcon_stop_nic_stats(efx); - falcon_deconfigure_mac_wrapper(efx); - - falcon_reset_macs(efx); - - efx->phy_op->reconfigure(efx); - rc = efx->mac_op->reconfigure(efx); - BUG_ON(rc); - - falcon_start_nic_stats(efx); - - /* Synchronise efx->link_state with the kernel */ - efx_link_status_changed(efx); - - return 0; -} - -/************************************************************************** - * - * PHY access via GMII - * - ************************************************************************** - */ - -/* Wait for GMII access to complete */ -static int falcon_gmii_wait(struct efx_nic *efx) -{ - efx_oword_t md_stat; - int count; - - /* wait up to 50ms - taken max from datasheet */ - for (count = 0; count < 5000; count++) { - efx_reado(efx, &md_stat, FR_AB_MD_STAT); - if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) { - if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 || - EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) { - netif_err(efx, hw, efx->net_dev, - "error from GMII access " - EFX_OWORD_FMT"\n", - EFX_OWORD_VAL(md_stat)); - return -EIO; - } - return 0; - } - udelay(10); - } - netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n"); - return -ETIMEDOUT; -} - -/* Write an MDIO register of a PHY connected to Falcon. */ -static int falcon_mdio_write(struct net_device *net_dev, - int prtad, int devad, u16 addr, u16 value) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct falcon_nic_data *nic_data = efx->nic_data; - efx_oword_t reg; - int rc; - - netif_vdbg(efx, hw, efx->net_dev, - "writing MDIO %d register %d.%d with 0x%04x\n", - prtad, devad, addr, value); - - mutex_lock(&nic_data->mdio_lock); - - /* Check MDIO not currently being accessed */ - rc = falcon_gmii_wait(efx); - if (rc) - goto out; - - /* Write the address/ID register */ - EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); - efx_writeo(efx, ®, FR_AB_MD_PHY_ADR); - - EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, - FRF_AB_MD_DEV_ADR, devad); - efx_writeo(efx, ®, FR_AB_MD_ID); - - /* Write data */ - EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value); - efx_writeo(efx, ®, FR_AB_MD_TXD); - - EFX_POPULATE_OWORD_2(reg, - FRF_AB_MD_WRC, 1, - FRF_AB_MD_GC, 0); - efx_writeo(efx, ®, FR_AB_MD_CS); - - /* Wait for data to be written */ - rc = falcon_gmii_wait(efx); - if (rc) { - /* Abort the write operation */ - EFX_POPULATE_OWORD_2(reg, - FRF_AB_MD_WRC, 0, - FRF_AB_MD_GC, 1); - efx_writeo(efx, ®, FR_AB_MD_CS); - udelay(10); - } - -out: - mutex_unlock(&nic_data->mdio_lock); - return rc; -} - -/* Read an MDIO register of a PHY connected to Falcon. */ -static int falcon_mdio_read(struct net_device *net_dev, - int prtad, int devad, u16 addr) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct falcon_nic_data *nic_data = efx->nic_data; - efx_oword_t reg; - int rc; - - mutex_lock(&nic_data->mdio_lock); - - /* Check MDIO not currently being accessed */ - rc = falcon_gmii_wait(efx); - if (rc) - goto out; - - EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr); - efx_writeo(efx, ®, FR_AB_MD_PHY_ADR); - - EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad, - FRF_AB_MD_DEV_ADR, devad); - efx_writeo(efx, ®, FR_AB_MD_ID); - - /* Request data to be read */ - EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0); - efx_writeo(efx, ®, FR_AB_MD_CS); - - /* Wait for data to become available */ - rc = falcon_gmii_wait(efx); - if (rc == 0) { - efx_reado(efx, ®, FR_AB_MD_RXD); - rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD); - netif_vdbg(efx, hw, efx->net_dev, - "read from MDIO %d register %d.%d, got %04x\n", - prtad, devad, addr, rc); - } else { - /* Abort the read operation */ - EFX_POPULATE_OWORD_2(reg, - FRF_AB_MD_RIC, 0, - FRF_AB_MD_GC, 1); - efx_writeo(efx, ®, FR_AB_MD_CS); - - netif_dbg(efx, hw, efx->net_dev, - "read from MDIO %d register %d.%d, got error %d\n", - prtad, devad, addr, rc); - } - -out: - mutex_unlock(&nic_data->mdio_lock); - return rc; -} - -/* This call is responsible for hooking in the MAC and PHY operations */ -static int falcon_probe_port(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - int rc; - - switch (efx->phy_type) { - case PHY_TYPE_SFX7101: - efx->phy_op = &falcon_sfx7101_phy_ops; - break; - case PHY_TYPE_QT2022C2: - case PHY_TYPE_QT2025C: - efx->phy_op = &falcon_qt202x_phy_ops; - break; - case PHY_TYPE_TXC43128: - efx->phy_op = &falcon_txc_phy_ops; - break; - default: - netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n", - efx->phy_type); - return -ENODEV; - } - - /* Fill out MDIO structure and loopback modes */ - mutex_init(&nic_data->mdio_lock); - efx->mdio.mdio_read = falcon_mdio_read; - efx->mdio.mdio_write = falcon_mdio_write; - rc = efx->phy_op->probe(efx); - if (rc != 0) - return rc; - - /* Initial assumption */ - efx->link_state.speed = 10000; - efx->link_state.fd = true; - - /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */ - if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) - efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; - else - efx->wanted_fc = EFX_FC_RX; - if (efx->mdio.mmds & MDIO_DEVS_AN) - efx->wanted_fc |= EFX_FC_AUTO; - - /* Allocate buffer for stats */ - rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer, - FALCON_MAC_STATS_SIZE); - if (rc) - return rc; - netif_dbg(efx, probe, efx->net_dev, - "stats buffer at %llx (virt %p phys %llx)\n", - (u64)efx->stats_buffer.dma_addr, - efx->stats_buffer.addr, - (u64)virt_to_phys(efx->stats_buffer.addr)); - nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset; - - return 0; -} - -static void falcon_remove_port(struct efx_nic *efx) -{ - efx->phy_op->remove(efx); - efx_nic_free_buffer(efx, &efx->stats_buffer); -} - -/* Global events are basically PHY events */ -static bool -falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event) -{ - struct efx_nic *efx = channel->efx; - struct falcon_nic_data *nic_data = efx->nic_data; - - if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) || - EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) || - EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) - /* Ignored */ - return true; - - if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) && - EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) { - nic_data->xmac_poll_required = true; - return true; - } - - if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? - EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) : - EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) { - netif_err(efx, rx_err, efx->net_dev, - "channel %d seen global RX_RESET event. Resetting.\n", - channel->channel); - - atomic_inc(&efx->rx_reset); - efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ? - RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); - return true; - } - - return false; -} - -/************************************************************************** - * - * Falcon test code - * - **************************************************************************/ - -static int -falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - struct falcon_nvconfig *nvconfig; - struct efx_spi_device *spi; - void *region; - int rc, magic_num, struct_ver; - __le16 *word, *limit; - u32 csum; - - if (efx_spi_present(&nic_data->spi_flash)) - spi = &nic_data->spi_flash; - else if (efx_spi_present(&nic_data->spi_eeprom)) - spi = &nic_data->spi_eeprom; - else - return -EINVAL; - - region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL); - if (!region) - return -ENOMEM; - nvconfig = region + FALCON_NVCONFIG_OFFSET; - - mutex_lock(&nic_data->spi_lock); - rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region); - mutex_unlock(&nic_data->spi_lock); - if (rc) { - netif_err(efx, hw, efx->net_dev, "Failed to read %s\n", - efx_spi_present(&nic_data->spi_flash) ? - "flash" : "EEPROM"); - rc = -EIO; - goto out; - } - - magic_num = le16_to_cpu(nvconfig->board_magic_num); - struct_ver = le16_to_cpu(nvconfig->board_struct_ver); - - rc = -EINVAL; - if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) { - netif_err(efx, hw, efx->net_dev, - "NVRAM bad magic 0x%x\n", magic_num); - goto out; - } - if (struct_ver < 2) { - netif_err(efx, hw, efx->net_dev, - "NVRAM has ancient version 0x%x\n", struct_ver); - goto out; - } else if (struct_ver < 4) { - word = &nvconfig->board_magic_num; - limit = (__le16 *) (nvconfig + 1); - } else { - word = region; - limit = region + FALCON_NVCONFIG_END; - } - for (csum = 0; word < limit; ++word) - csum += le16_to_cpu(*word); - - if (~csum & 0xffff) { - netif_err(efx, hw, efx->net_dev, - "NVRAM has incorrect checksum\n"); - goto out; - } - - rc = 0; - if (nvconfig_out) - memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig)); - - out: - kfree(region); - return rc; -} - -static int falcon_test_nvram(struct efx_nic *efx) -{ - return falcon_read_nvram(efx, NULL); -} - -static const struct efx_nic_register_test falcon_b0_register_tests[] = { - { FR_AZ_ADR_REGION, - EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) }, - { FR_AZ_RX_CFG, - EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) }, - { FR_AZ_TX_CFG, - EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AZ_TX_RESERVED, - EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) }, - { FR_AB_MAC_CTRL, - EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AZ_SRM_TX_DC_CFG, - EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AZ_RX_DC_CFG, - EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AZ_RX_DC_PF_WM, - EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) }, - { FR_BZ_DP_CTRL, - EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AB_GM_CFG2, - EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AB_GMF_CFG0, - EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AB_XM_GLB_CFG, - EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AB_XM_TX_CFG, - EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AB_XM_RX_CFG, - EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AB_XM_RX_PARAM, - EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AB_XM_FC, - EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AB_XM_ADR_LO, - EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AB_XX_SD_CTL, - EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) }, -}; - -static int falcon_b0_test_registers(struct efx_nic *efx) -{ - return efx_nic_test_registers(efx, falcon_b0_register_tests, - ARRAY_SIZE(falcon_b0_register_tests)); -} - -/************************************************************************** - * - * Device reset - * - ************************************************************************** - */ - -static enum reset_type falcon_map_reset_reason(enum reset_type reason) -{ - switch (reason) { - case RESET_TYPE_RX_RECOVERY: - case RESET_TYPE_RX_DESC_FETCH: - case RESET_TYPE_TX_DESC_FETCH: - case RESET_TYPE_TX_SKIP: - /* These can occasionally occur due to hardware bugs. - * We try to reset without disrupting the link. - */ - return RESET_TYPE_INVISIBLE; - default: - return RESET_TYPE_ALL; - } -} - -static int falcon_map_reset_flags(u32 *flags) -{ - enum { - FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER | - ETH_RESET_OFFLOAD | ETH_RESET_MAC), - FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY, - FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ, - }; - - if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) { - *flags &= ~FALCON_RESET_WORLD; - return RESET_TYPE_WORLD; - } - - if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) { - *flags &= ~FALCON_RESET_ALL; - return RESET_TYPE_ALL; - } - - if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) { - *flags &= ~FALCON_RESET_INVISIBLE; - return RESET_TYPE_INVISIBLE; - } - - return -EINVAL; -} - -/* Resets NIC to known state. This routine must be called in process - * context and is allowed to sleep. */ -static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - efx_oword_t glb_ctl_reg_ker; - int rc; - - netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n", - RESET_TYPE(method)); - - /* Initiate device reset */ - if (method == RESET_TYPE_WORLD) { - rc = pci_save_state(efx->pci_dev); - if (rc) { - netif_err(efx, drv, efx->net_dev, - "failed to backup PCI state of primary " - "function prior to hardware reset\n"); - goto fail1; - } - if (efx_nic_is_dual_func(efx)) { - rc = pci_save_state(nic_data->pci_dev2); - if (rc) { - netif_err(efx, drv, efx->net_dev, - "failed to backup PCI state of " - "secondary function prior to " - "hardware reset\n"); - goto fail2; - } - } - - EFX_POPULATE_OWORD_2(glb_ctl_reg_ker, - FRF_AB_EXT_PHY_RST_DUR, - FFE_AB_EXT_PHY_RST_DUR_10240US, - FRF_AB_SWRST, 1); - } else { - EFX_POPULATE_OWORD_7(glb_ctl_reg_ker, - /* exclude PHY from "invisible" reset */ - FRF_AB_EXT_PHY_RST_CTL, - method == RESET_TYPE_INVISIBLE, - /* exclude EEPROM/flash and PCIe */ - FRF_AB_PCIE_CORE_RST_CTL, 1, - FRF_AB_PCIE_NSTKY_RST_CTL, 1, - FRF_AB_PCIE_SD_RST_CTL, 1, - FRF_AB_EE_RST_CTL, 1, - FRF_AB_EXT_PHY_RST_DUR, - FFE_AB_EXT_PHY_RST_DUR_10240US, - FRF_AB_SWRST, 1); - } - efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); - - netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n"); - schedule_timeout_uninterruptible(HZ / 20); - - /* Restore PCI configuration if needed */ - if (method == RESET_TYPE_WORLD) { - if (efx_nic_is_dual_func(efx)) - pci_restore_state(nic_data->pci_dev2); - pci_restore_state(efx->pci_dev); - netif_dbg(efx, drv, efx->net_dev, - "successfully restored PCI config\n"); - } - - /* Assert that reset complete */ - efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL); - if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) { - rc = -ETIMEDOUT; - netif_err(efx, hw, efx->net_dev, - "timed out waiting for hardware reset\n"); - goto fail3; - } - netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n"); - - return 0; - - /* pci_save_state() and pci_restore_state() MUST be called in pairs */ -fail2: - pci_restore_state(efx->pci_dev); -fail1: -fail3: - return rc; -} - -static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - int rc; - - mutex_lock(&nic_data->spi_lock); - rc = __falcon_reset_hw(efx, method); - mutex_unlock(&nic_data->spi_lock); - - return rc; -} - -static void falcon_monitor(struct efx_nic *efx) -{ - bool link_changed; - int rc; - - BUG_ON(!mutex_is_locked(&efx->mac_lock)); - - rc = falcon_board(efx)->type->monitor(efx); - if (rc) { - netif_err(efx, hw, efx->net_dev, - "Board sensor %s; shutting down PHY\n", - (rc == -ERANGE) ? "reported fault" : "failed"); - efx->phy_mode |= PHY_MODE_LOW_POWER; - rc = __efx_reconfigure_port(efx); - WARN_ON(rc); - } - - if (LOOPBACK_INTERNAL(efx)) - link_changed = falcon_loopback_link_poll(efx); - else - link_changed = efx->phy_op->poll(efx); - - if (link_changed) { - falcon_stop_nic_stats(efx); - falcon_deconfigure_mac_wrapper(efx); - - falcon_reset_macs(efx); - rc = efx->mac_op->reconfigure(efx); - BUG_ON(rc); - - falcon_start_nic_stats(efx); - - efx_link_status_changed(efx); - } - - falcon_poll_xmac(efx); -} - -/* Zeroes out the SRAM contents. This routine must be called in - * process context and is allowed to sleep. - */ -static int falcon_reset_sram(struct efx_nic *efx) -{ - efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker; - int count; - - /* Set the SRAM wake/sleep GPIO appropriately. */ - efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); - EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1); - EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1); - efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL); - - /* Initiate SRAM reset */ - EFX_POPULATE_OWORD_2(srm_cfg_reg_ker, - FRF_AZ_SRM_INIT_EN, 1, - FRF_AZ_SRM_NB_SZ, 0); - efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); - - /* Wait for SRAM reset to complete */ - count = 0; - do { - netif_dbg(efx, hw, efx->net_dev, - "waiting for SRAM reset (attempt %d)...\n", count); - - /* SRAM reset is slow; expect around 16ms */ - schedule_timeout_uninterruptible(HZ / 50); - - /* Check for reset complete */ - efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG); - if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) { - netif_dbg(efx, hw, efx->net_dev, - "SRAM reset complete\n"); - - return 0; - } - } while (++count < 20); /* wait up to 0.4 sec */ - - netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n"); - return -ETIMEDOUT; -} - -static void falcon_spi_device_init(struct efx_nic *efx, - struct efx_spi_device *spi_device, - unsigned int device_id, u32 device_type) -{ - if (device_type != 0) { - spi_device->device_id = device_id; - spi_device->size = - 1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE); - spi_device->addr_len = - SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN); - spi_device->munge_address = (spi_device->size == 1 << 9 && - spi_device->addr_len == 1); - spi_device->erase_command = - SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD); - spi_device->erase_size = - 1 << SPI_DEV_TYPE_FIELD(device_type, - SPI_DEV_TYPE_ERASE_SIZE); - spi_device->block_size = - 1 << SPI_DEV_TYPE_FIELD(device_type, - SPI_DEV_TYPE_BLOCK_SIZE); - } else { - spi_device->size = 0; - } -} - -/* Extract non-volatile configuration */ -static int falcon_probe_nvconfig(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - struct falcon_nvconfig *nvconfig; - int rc; - - nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL); - if (!nvconfig) - return -ENOMEM; - - rc = falcon_read_nvram(efx, nvconfig); - if (rc) - goto out; - - efx->phy_type = nvconfig->board_v2.port0_phy_type; - efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr; - - if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) { - falcon_spi_device_init( - efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH, - le32_to_cpu(nvconfig->board_v3 - .spi_device_type[FFE_AB_SPI_DEVICE_FLASH])); - falcon_spi_device_init( - efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM, - le32_to_cpu(nvconfig->board_v3 - .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM])); - } - - /* Read the MAC addresses */ - memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN); - - netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n", - efx->phy_type, efx->mdio.prtad); - - rc = falcon_probe_board(efx, - le16_to_cpu(nvconfig->board_v2.board_revision)); -out: - kfree(nvconfig); - return rc; -} - -/* Probe all SPI devices on the NIC */ -static void falcon_probe_spi_devices(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg; - int boot_dev; - - efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL); - efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); - efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); - - if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) { - boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ? - FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM); - netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n", - boot_dev == FFE_AB_SPI_DEVICE_FLASH ? - "flash" : "EEPROM"); - } else { - /* Disable VPD and set clock dividers to safe - * values for initial programming. */ - boot_dev = -1; - netif_dbg(efx, probe, efx->net_dev, - "Booted from internal ASIC settings;" - " setting SPI config\n"); - EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0, - /* 125 MHz / 7 ~= 20 MHz */ - FRF_AB_EE_SF_CLOCK_DIV, 7, - /* 125 MHz / 63 ~= 2 MHz */ - FRF_AB_EE_EE_CLOCK_DIV, 63); - efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0); - } - - mutex_init(&nic_data->spi_lock); - - if (boot_dev == FFE_AB_SPI_DEVICE_FLASH) - falcon_spi_device_init(efx, &nic_data->spi_flash, - FFE_AB_SPI_DEVICE_FLASH, - default_flash_type); - if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM) - falcon_spi_device_init(efx, &nic_data->spi_eeprom, - FFE_AB_SPI_DEVICE_EEPROM, - large_eeprom_type); -} - -static int falcon_probe_nic(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data; - struct falcon_board *board; - int rc; - - /* Allocate storage for hardware specific data */ - nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); - if (!nic_data) - return -ENOMEM; - efx->nic_data = nic_data; - - rc = -ENODEV; - - if (efx_nic_fpga_ver(efx) != 0) { - netif_err(efx, probe, efx->net_dev, - "Falcon FPGA not supported\n"); - goto fail1; - } - - if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) { - efx_oword_t nic_stat; - struct pci_dev *dev; - u8 pci_rev = efx->pci_dev->revision; - - if ((pci_rev == 0xff) || (pci_rev == 0)) { - netif_err(efx, probe, efx->net_dev, - "Falcon rev A0 not supported\n"); - goto fail1; - } - efx_reado(efx, &nic_stat, FR_AB_NIC_STAT); - if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) { - netif_err(efx, probe, efx->net_dev, - "Falcon rev A1 1G not supported\n"); - goto fail1; - } - if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) { - netif_err(efx, probe, efx->net_dev, - "Falcon rev A1 PCI-X not supported\n"); - goto fail1; - } - - dev = pci_dev_get(efx->pci_dev); - while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID, - dev))) { - if (dev->bus == efx->pci_dev->bus && - dev->devfn == efx->pci_dev->devfn + 1) { - nic_data->pci_dev2 = dev; - break; - } - } - if (!nic_data->pci_dev2) { - netif_err(efx, probe, efx->net_dev, - "failed to find secondary function\n"); - rc = -ENODEV; - goto fail2; - } - } - - /* Now we can reset the NIC */ - rc = __falcon_reset_hw(efx, RESET_TYPE_ALL); - if (rc) { - netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n"); - goto fail3; - } - - /* Allocate memory for INT_KER */ - rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t)); - if (rc) - goto fail4; - BUG_ON(efx->irq_status.dma_addr & 0x0f); - - netif_dbg(efx, probe, efx->net_dev, - "INT_KER at %llx (virt %p phys %llx)\n", - (u64)efx->irq_status.dma_addr, - efx->irq_status.addr, - (u64)virt_to_phys(efx->irq_status.addr)); - - falcon_probe_spi_devices(efx); - - /* Read in the non-volatile configuration */ - rc = falcon_probe_nvconfig(efx); - if (rc) { - if (rc == -EINVAL) - netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n"); - goto fail5; - } - - /* Initialise I2C adapter */ - board = falcon_board(efx); - board->i2c_adap.owner = THIS_MODULE; - board->i2c_data = falcon_i2c_bit_operations; - board->i2c_data.data = efx; - board->i2c_adap.algo_data = &board->i2c_data; - board->i2c_adap.dev.parent = &efx->pci_dev->dev; - strlcpy(board->i2c_adap.name, "SFC4000 GPIO", - sizeof(board->i2c_adap.name)); - rc = i2c_bit_add_bus(&board->i2c_adap); - if (rc) - goto fail5; - - rc = falcon_board(efx)->type->init(efx); - if (rc) { - netif_err(efx, probe, efx->net_dev, - "failed to initialise board\n"); - goto fail6; - } - - nic_data->stats_disable_count = 1; - setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func, - (unsigned long)efx); - - return 0; - - fail6: - BUG_ON(i2c_del_adapter(&board->i2c_adap)); - memset(&board->i2c_adap, 0, sizeof(board->i2c_adap)); - fail5: - efx_nic_free_buffer(efx, &efx->irq_status); - fail4: - fail3: - if (nic_data->pci_dev2) { - pci_dev_put(nic_data->pci_dev2); - nic_data->pci_dev2 = NULL; - } - fail2: - fail1: - kfree(efx->nic_data); - return rc; -} - -static void falcon_init_rx_cfg(struct efx_nic *efx) -{ - /* Prior to Siena the RX DMA engine will split each frame at - * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to - * be so large that that never happens. */ - const unsigned huge_buf_size = (3 * 4096) >> 5; - /* RX control FIFO thresholds (32 entries) */ - const unsigned ctrl_xon_thr = 20; - const unsigned ctrl_xoff_thr = 25; - efx_oword_t reg; - - efx_reado(efx, ®, FR_AZ_RX_CFG); - if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) { - /* Data FIFO size is 5.5K */ - EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0); - EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE, - huge_buf_size); - EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8); - EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8); - EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr); - EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr); - } else { - /* Data FIFO size is 80K; register fields moved */ - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0); - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE, - huge_buf_size); - /* Send XON and XOFF at ~3 * max MTU away from empty/full */ - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8); - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8); - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr); - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr); - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1); - - /* Enable hash insertion. This is broken for the - * 'Falcon' hash so also select Toeplitz TCP/IPv4 and - * IPv4 hashes. */ - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1); - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1); - EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1); - } - /* Always enable XOFF signal from RX FIFO. We enable - * or disable transmission of pause frames at the MAC. */ - EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1); - efx_writeo(efx, ®, FR_AZ_RX_CFG); -} - -/* This call performs hardware-specific global initialisation, such as - * defining the descriptor cache sizes and number of RSS channels. - * It does not set up any buffers, descriptor rings or event queues. - */ -static int falcon_init_nic(struct efx_nic *efx) -{ - efx_oword_t temp; - int rc; - - /* Use on-chip SRAM */ - efx_reado(efx, &temp, FR_AB_NIC_STAT); - EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1); - efx_writeo(efx, &temp, FR_AB_NIC_STAT); - - rc = falcon_reset_sram(efx); - if (rc) - return rc; - - /* Clear the parity enables on the TX data fifos as - * they produce false parity errors because of timing issues - */ - if (EFX_WORKAROUND_5129(efx)) { - efx_reado(efx, &temp, FR_AZ_CSR_SPARE); - EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0); - efx_writeo(efx, &temp, FR_AZ_CSR_SPARE); - } - - if (EFX_WORKAROUND_7244(efx)) { - efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL); - EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8); - EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8); - EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8); - EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8); - efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL); - } - - /* XXX This is documented only for Falcon A0/A1 */ - /* Setup RX. Wait for descriptor is broken and must - * be disabled. RXDP recovery shouldn't be needed, but is. - */ - efx_reado(efx, &temp, FR_AA_RX_SELF_RST); - EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1); - EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1); - if (EFX_WORKAROUND_5583(efx)) - EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1); - efx_writeo(efx, &temp, FR_AA_RX_SELF_RST); - - /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16 - * descriptors (which is bad). - */ - efx_reado(efx, &temp, FR_AZ_TX_CFG); - EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0); - efx_writeo(efx, &temp, FR_AZ_TX_CFG); - - falcon_init_rx_cfg(efx); - - if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { - /* Set hash key for IPv4 */ - memcpy(&temp, efx->rx_hash_key, sizeof(temp)); - efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY); - - /* Set destination of both TX and RX Flush events */ - EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0); - efx_writeo(efx, &temp, FR_BZ_DP_CTRL); - } - - efx_nic_init_common(efx); - - return 0; -} - -static void falcon_remove_nic(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - struct falcon_board *board = falcon_board(efx); - int rc; - - board->type->fini(efx); - - /* Remove I2C adapter and clear it in preparation for a retry */ - rc = i2c_del_adapter(&board->i2c_adap); - BUG_ON(rc); - memset(&board->i2c_adap, 0, sizeof(board->i2c_adap)); - - efx_nic_free_buffer(efx, &efx->irq_status); - - __falcon_reset_hw(efx, RESET_TYPE_ALL); - - /* Release the second function after the reset */ - if (nic_data->pci_dev2) { - pci_dev_put(nic_data->pci_dev2); - nic_data->pci_dev2 = NULL; - } - - /* Tear down the private nic state */ - kfree(efx->nic_data); - efx->nic_data = NULL; -} - -static void falcon_update_nic_stats(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - efx_oword_t cnt; - - if (nic_data->stats_disable_count) - return; - - efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP); - efx->n_rx_nodesc_drop_cnt += - EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT); - - if (nic_data->stats_pending && - *nic_data->stats_dma_done == FALCON_STATS_DONE) { - nic_data->stats_pending = false; - rmb(); /* read the done flag before the stats */ - efx->mac_op->update_stats(efx); - } -} - -void falcon_start_nic_stats(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - - spin_lock_bh(&efx->stats_lock); - if (--nic_data->stats_disable_count == 0) - falcon_stats_request(efx); - spin_unlock_bh(&efx->stats_lock); -} - -void falcon_stop_nic_stats(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - int i; - - might_sleep(); - - spin_lock_bh(&efx->stats_lock); - ++nic_data->stats_disable_count; - spin_unlock_bh(&efx->stats_lock); - - del_timer_sync(&nic_data->stats_timer); - - /* Wait enough time for the most recent transfer to - * complete. */ - for (i = 0; i < 4 && nic_data->stats_pending; i++) { - if (*nic_data->stats_dma_done == FALCON_STATS_DONE) - break; - msleep(1); - } - - spin_lock_bh(&efx->stats_lock); - falcon_stats_complete(efx); - spin_unlock_bh(&efx->stats_lock); -} - -static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) -{ - falcon_board(efx)->type->set_id_led(efx, mode); -} - -/************************************************************************** - * - * Wake on LAN - * - ************************************************************************** - */ - -static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) -{ - wol->supported = 0; - wol->wolopts = 0; - memset(&wol->sopass, 0, sizeof(wol->sopass)); -} - -static int falcon_set_wol(struct efx_nic *efx, u32 type) -{ - if (type != 0) - return -EINVAL; - return 0; -} - -/************************************************************************** - * - * Revision-dependent attributes used by efx.c and nic.c - * - ************************************************************************** - */ - -const struct efx_nic_type falcon_a1_nic_type = { - .probe = falcon_probe_nic, - .remove = falcon_remove_nic, - .init = falcon_init_nic, - .fini = efx_port_dummy_op_void, - .monitor = falcon_monitor, - .map_reset_reason = falcon_map_reset_reason, - .map_reset_flags = falcon_map_reset_flags, - .reset = falcon_reset_hw, - .probe_port = falcon_probe_port, - .remove_port = falcon_remove_port, - .handle_global_event = falcon_handle_global_event, - .prepare_flush = falcon_prepare_flush, - .update_stats = falcon_update_nic_stats, - .start_stats = falcon_start_nic_stats, - .stop_stats = falcon_stop_nic_stats, - .set_id_led = falcon_set_id_led, - .push_irq_moderation = falcon_push_irq_moderation, - .push_multicast_hash = falcon_push_multicast_hash, - .reconfigure_port = falcon_reconfigure_port, - .get_wol = falcon_get_wol, - .set_wol = falcon_set_wol, - .resume_wol = efx_port_dummy_op_void, - .test_nvram = falcon_test_nvram, - .default_mac_ops = &falcon_xmac_operations, - - .revision = EFX_REV_FALCON_A1, - .mem_map_size = 0x20000, - .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER, - .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER, - .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER, - .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER, - .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER, - .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), - .rx_buffer_padding = 0x24, - .max_interrupt_mode = EFX_INT_MODE_MSI, - .phys_addr_channels = 4, - .tx_dc_base = 0x130000, - .rx_dc_base = 0x100000, - .offload_features = NETIF_F_IP_CSUM, -}; - -const struct efx_nic_type falcon_b0_nic_type = { - .probe = falcon_probe_nic, - .remove = falcon_remove_nic, - .init = falcon_init_nic, - .fini = efx_port_dummy_op_void, - .monitor = falcon_monitor, - .map_reset_reason = falcon_map_reset_reason, - .map_reset_flags = falcon_map_reset_flags, - .reset = falcon_reset_hw, - .probe_port = falcon_probe_port, - .remove_port = falcon_remove_port, - .handle_global_event = falcon_handle_global_event, - .prepare_flush = falcon_prepare_flush, - .update_stats = falcon_update_nic_stats, - .start_stats = falcon_start_nic_stats, - .stop_stats = falcon_stop_nic_stats, - .set_id_led = falcon_set_id_led, - .push_irq_moderation = falcon_push_irq_moderation, - .push_multicast_hash = falcon_push_multicast_hash, - .reconfigure_port = falcon_reconfigure_port, - .get_wol = falcon_get_wol, - .set_wol = falcon_set_wol, - .resume_wol = efx_port_dummy_op_void, - .test_registers = falcon_b0_test_registers, - .test_nvram = falcon_test_nvram, - .default_mac_ops = &falcon_xmac_operations, - - .revision = EFX_REV_FALCON_B0, - /* Map everything up to and including the RSS indirection - * table. Don't map MSI-X table, MSI-X PBA since Linux - * requires that they not be mapped. */ - .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL + - FR_BZ_RX_INDIRECTION_TBL_STEP * - FR_BZ_RX_INDIRECTION_TBL_ROWS), - .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL, - .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL, - .buf_tbl_base = FR_BZ_BUF_FULL_TBL, - .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL, - .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR, - .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), - .rx_buffer_hash_size = 0x10, - .rx_buffer_padding = 0, - .max_interrupt_mode = EFX_INT_MODE_MSIX, - .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy - * interrupt handler only supports 32 - * channels */ - .tx_dc_base = 0x130000, - .rx_dc_base = 0x100000, - .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE, -}; - diff --git a/drivers/net/sfc/falcon_boards.c b/drivers/net/sfc/falcon_boards.c deleted file mode 100644 index b9cc846..0000000 --- a/drivers/net/sfc/falcon_boards.c +++ /dev/null @@ -1,776 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2007-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/rtnetlink.h> - -#include "net_driver.h" -#include "phy.h" -#include "efx.h" -#include "nic.h" -#include "workarounds.h" - -/* Macros for unpacking the board revision */ -/* The revision info is in host byte order. */ -#define FALCON_BOARD_TYPE(_rev) (_rev >> 8) -#define FALCON_BOARD_MAJOR(_rev) ((_rev >> 4) & 0xf) -#define FALCON_BOARD_MINOR(_rev) (_rev & 0xf) - -/* Board types */ -#define FALCON_BOARD_SFE4001 0x01 -#define FALCON_BOARD_SFE4002 0x02 -#define FALCON_BOARD_SFE4003 0x03 -#define FALCON_BOARD_SFN4112F 0x52 - -/* Board temperature is about 15°C above ambient when air flow is - * limited. The maximum acceptable ambient temperature varies - * depending on the PHY specifications but the critical temperature - * above which we should shut down to avoid damage is 80°C. */ -#define FALCON_BOARD_TEMP_BIAS 15 -#define FALCON_BOARD_TEMP_CRIT (80 + FALCON_BOARD_TEMP_BIAS) - -/* SFC4000 datasheet says: 'The maximum permitted junction temperature - * is 125°C; the thermal design of the environment for the SFC4000 - * should aim to keep this well below 100°C.' */ -#define FALCON_JUNC_TEMP_MIN 0 -#define FALCON_JUNC_TEMP_MAX 90 -#define FALCON_JUNC_TEMP_CRIT 125 - -/***************************************************************************** - * Support for LM87 sensor chip used on several boards - */ -#define LM87_REG_TEMP_HW_INT_LOCK 0x13 -#define LM87_REG_TEMP_HW_EXT_LOCK 0x14 -#define LM87_REG_TEMP_HW_INT 0x17 -#define LM87_REG_TEMP_HW_EXT 0x18 -#define LM87_REG_TEMP_EXT1 0x26 -#define LM87_REG_TEMP_INT 0x27 -#define LM87_REG_ALARMS1 0x41 -#define LM87_REG_ALARMS2 0x42 -#define LM87_IN_LIMITS(nr, _min, _max) \ - 0x2B + (nr) * 2, _max, 0x2C + (nr) * 2, _min -#define LM87_AIN_LIMITS(nr, _min, _max) \ - 0x3B + (nr), _max, 0x1A + (nr), _min -#define LM87_TEMP_INT_LIMITS(_min, _max) \ - 0x39, _max, 0x3A, _min -#define LM87_TEMP_EXT1_LIMITS(_min, _max) \ - 0x37, _max, 0x38, _min - -#define LM87_ALARM_TEMP_INT 0x10 -#define LM87_ALARM_TEMP_EXT1 0x20 - -#if defined(CONFIG_SENSORS_LM87) || defined(CONFIG_SENSORS_LM87_MODULE) - -static int efx_poke_lm87(struct i2c_client *client, const u8 *reg_values) -{ - while (*reg_values) { - u8 reg = *reg_values++; - u8 value = *reg_values++; - int rc = i2c_smbus_write_byte_data(client, reg, value); - if (rc) - return rc; - } - return 0; -} - -static const u8 falcon_lm87_common_regs[] = { - LM87_REG_TEMP_HW_INT_LOCK, FALCON_BOARD_TEMP_CRIT, - LM87_REG_TEMP_HW_INT, FALCON_BOARD_TEMP_CRIT, - LM87_TEMP_EXT1_LIMITS(FALCON_JUNC_TEMP_MIN, FALCON_JUNC_TEMP_MAX), - LM87_REG_TEMP_HW_EXT_LOCK, FALCON_JUNC_TEMP_CRIT, - LM87_REG_TEMP_HW_EXT, FALCON_JUNC_TEMP_CRIT, - 0 -}; - -static int efx_init_lm87(struct efx_nic *efx, struct i2c_board_info *info, - const u8 *reg_values) -{ - struct falcon_board *board = falcon_board(efx); - struct i2c_client *client = i2c_new_device(&board->i2c_adap, info); - int rc; - - if (!client) - return -EIO; - - /* Read-to-clear alarm/interrupt status */ - i2c_smbus_read_byte_data(client, LM87_REG_ALARMS1); - i2c_smbus_read_byte_data(client, LM87_REG_ALARMS2); - - rc = efx_poke_lm87(client, reg_values); - if (rc) - goto err; - rc = efx_poke_lm87(client, falcon_lm87_common_regs); - if (rc) - goto err; - - board->hwmon_client = client; - return 0; - -err: - i2c_unregister_device(client); - return rc; -} - -static void efx_fini_lm87(struct efx_nic *efx) -{ - i2c_unregister_device(falcon_board(efx)->hwmon_client); -} - -static int efx_check_lm87(struct efx_nic *efx, unsigned mask) -{ - struct i2c_client *client = falcon_board(efx)->hwmon_client; - bool temp_crit, elec_fault, is_failure; - u16 alarms; - s32 reg; - - /* If link is up then do not monitor temperature */ - if (EFX_WORKAROUND_7884(efx) && efx->link_state.up) - return 0; - - reg = i2c_smbus_read_byte_data(client, LM87_REG_ALARMS1); - if (reg < 0) - return reg; - alarms = reg; - reg = i2c_smbus_read_byte_data(client, LM87_REG_ALARMS2); - if (reg < 0) - return reg; - alarms |= reg << 8; - alarms &= mask; - - temp_crit = false; - if (alarms & LM87_ALARM_TEMP_INT) { - reg = i2c_smbus_read_byte_data(client, LM87_REG_TEMP_INT); - if (reg < 0) - return reg; - if (reg > FALCON_BOARD_TEMP_CRIT) - temp_crit = true; - } - if (alarms & LM87_ALARM_TEMP_EXT1) { - reg = i2c_smbus_read_byte_data(client, LM87_REG_TEMP_EXT1); - if (reg < 0) - return reg; - if (reg > FALCON_JUNC_TEMP_CRIT) - temp_crit = true; - } - elec_fault = alarms & ~(LM87_ALARM_TEMP_INT | LM87_ALARM_TEMP_EXT1); - is_failure = temp_crit || elec_fault; - - if (alarms) - netif_err(efx, hw, efx->net_dev, - "LM87 detected a hardware %s (status %02x:%02x)" - "%s%s%s%s\n", - is_failure ? "failure" : "problem", - alarms & 0xff, alarms >> 8, - (alarms & LM87_ALARM_TEMP_INT) ? - "; board is overheating" : "", - (alarms & LM87_ALARM_TEMP_EXT1) ? - "; controller is overheating" : "", - temp_crit ? "; reached critical temperature" : "", - elec_fault ? "; electrical fault" : ""); - - return is_failure ? -ERANGE : 0; -} - -#else /* !CONFIG_SENSORS_LM87 */ - -static inline int -efx_init_lm87(struct efx_nic *efx, struct i2c_board_info *info, - const u8 *reg_values) -{ - return 0; -} -static inline void efx_fini_lm87(struct efx_nic *efx) -{ -} -static inline int efx_check_lm87(struct efx_nic *efx, unsigned mask) -{ - return 0; -} - -#endif /* CONFIG_SENSORS_LM87 */ - -/***************************************************************************** - * Support for the SFE4001 NIC. - * - * The SFE4001 does not power-up fully at reset due to its high power - * consumption. We control its power via a PCA9539 I/O expander. - * It also has a MAX6647 temperature monitor which we expose to - * the lm90 driver. - * - * This also provides minimal support for reflashing the PHY, which is - * initiated by resetting it with the FLASH_CFG_1 pin pulled down. - * On SFE4001 rev A2 and later this is connected to the 3V3X output of - * the IO-expander. - * We represent reflash mode as PHY_MODE_SPECIAL and make it mutually - * exclusive with the network device being open. - */ - -/************************************************************************** - * Support for I2C IO Expander device on SFE4001 - */ -#define PCA9539 0x74 - -#define P0_IN 0x00 -#define P0_OUT 0x02 -#define P0_INVERT 0x04 -#define P0_CONFIG 0x06 - -#define P0_EN_1V0X_LBN 0 -#define P0_EN_1V0X_WIDTH 1 -#define P0_EN_1V2_LBN 1 -#define P0_EN_1V2_WIDTH 1 -#define P0_EN_2V5_LBN 2 -#define P0_EN_2V5_WIDTH 1 -#define P0_EN_3V3X_LBN 3 -#define P0_EN_3V3X_WIDTH 1 -#define P0_EN_5V_LBN 4 -#define P0_EN_5V_WIDTH 1 -#define P0_SHORTEN_JTAG_LBN 5 -#define P0_SHORTEN_JTAG_WIDTH 1 -#define P0_X_TRST_LBN 6 -#define P0_X_TRST_WIDTH 1 -#define P0_DSP_RESET_LBN 7 -#define P0_DSP_RESET_WIDTH 1 - -#define P1_IN 0x01 -#define P1_OUT 0x03 -#define P1_INVERT 0x05 -#define P1_CONFIG 0x07 - -#define P1_AFE_PWD_LBN 0 -#define P1_AFE_PWD_WIDTH 1 -#define P1_DSP_PWD25_LBN 1 -#define P1_DSP_PWD25_WIDTH 1 -#define P1_RESERVED_LBN 2 -#define P1_RESERVED_WIDTH 2 -#define P1_SPARE_LBN 4 -#define P1_SPARE_WIDTH 4 - -/* Temperature Sensor */ -#define MAX664X_REG_RSL 0x02 -#define MAX664X_REG_WLHO 0x0B - -static void sfe4001_poweroff(struct efx_nic *efx) -{ - struct i2c_client *ioexp_client = falcon_board(efx)->ioexp_client; - struct i2c_client *hwmon_client = falcon_board(efx)->hwmon_client; - - /* Turn off all power rails and disable outputs */ - i2c_smbus_write_byte_data(ioexp_client, P0_OUT, 0xff); - i2c_smbus_write_byte_data(ioexp_client, P1_CONFIG, 0xff); - i2c_smbus_write_byte_data(ioexp_client, P0_CONFIG, 0xff); - - /* Clear any over-temperature alert */ - i2c_smbus_read_byte_data(hwmon_client, MAX664X_REG_RSL); -} - -static int sfe4001_poweron(struct efx_nic *efx) -{ - struct i2c_client *ioexp_client = falcon_board(efx)->ioexp_client; - struct i2c_client *hwmon_client = falcon_board(efx)->hwmon_client; - unsigned int i, j; - int rc; - u8 out; - - /* Clear any previous over-temperature alert */ - rc = i2c_smbus_read_byte_data(hwmon_client, MAX664X_REG_RSL); - if (rc < 0) - return rc; - - /* Enable port 0 and port 1 outputs on IO expander */ - rc = i2c_smbus_write_byte_data(ioexp_client, P0_CONFIG, 0x00); - if (rc) - return rc; - rc = i2c_smbus_write_byte_data(ioexp_client, P1_CONFIG, - 0xff & ~(1 << P1_SPARE_LBN)); - if (rc) - goto fail_on; - - /* If PHY power is on, turn it all off and wait 1 second to - * ensure a full reset. - */ - rc = i2c_smbus_read_byte_data(ioexp_client, P0_OUT); - if (rc < 0) - goto fail_on; - out = 0xff & ~((0 << P0_EN_1V2_LBN) | (0 << P0_EN_2V5_LBN) | - (0 << P0_EN_3V3X_LBN) | (0 << P0_EN_5V_LBN) | - (0 << P0_EN_1V0X_LBN)); - if (rc != out) { - netif_info(efx, hw, efx->net_dev, "power-cycling PHY\n"); - rc = i2c_smbus_write_byte_data(ioexp_client, P0_OUT, out); - if (rc) - goto fail_on; - schedule_timeout_uninterruptible(HZ); - } - - for (i = 0; i < 20; ++i) { - /* Turn on 1.2V, 2.5V, 3.3V and 5V power rails */ - out = 0xff & ~((1 << P0_EN_1V2_LBN) | (1 << P0_EN_2V5_LBN) | - (1 << P0_EN_3V3X_LBN) | (1 << P0_EN_5V_LBN) | - (1 << P0_X_TRST_LBN)); - if (efx->phy_mode & PHY_MODE_SPECIAL) - out |= 1 << P0_EN_3V3X_LBN; - - rc = i2c_smbus_write_byte_data(ioexp_client, P0_OUT, out); - if (rc) - goto fail_on; - msleep(10); - - /* Turn on 1V power rail */ - out &= ~(1 << P0_EN_1V0X_LBN); - rc = i2c_smbus_write_byte_data(ioexp_client, P0_OUT, out); - if (rc) - goto fail_on; - - netif_info(efx, hw, efx->net_dev, - "waiting for DSP boot (attempt %d)...\n", i); - - /* In flash config mode, DSP does not turn on AFE, so - * just wait 1 second. - */ - if (efx->phy_mode & PHY_MODE_SPECIAL) { - schedule_timeout_uninterruptible(HZ); - return 0; - } - - for (j = 0; j < 10; ++j) { - msleep(100); - - /* Check DSP has asserted AFE power line */ - rc = i2c_smbus_read_byte_data(ioexp_client, P1_IN); - if (rc < 0) - goto fail_on; - if (rc & (1 << P1_AFE_PWD_LBN)) - return 0; - } - } - - netif_info(efx, hw, efx->net_dev, "timed out waiting for DSP boot\n"); - rc = -ETIMEDOUT; -fail_on: - sfe4001_poweroff(efx); - return rc; -} - -static ssize_t show_phy_flash_cfg(struct device *dev, - struct device_attribute *attr, char *buf) -{ - struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); - return sprintf(buf, "%d\n", !!(efx->phy_mode & PHY_MODE_SPECIAL)); -} - -static ssize_t set_phy_flash_cfg(struct device *dev, - struct device_attribute *attr, - const char *buf, size_t count) -{ - struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); - enum efx_phy_mode old_mode, new_mode; - int err; - - rtnl_lock(); - old_mode = efx->phy_mode; - if (count == 0 || *buf == '0') - new_mode = old_mode & ~PHY_MODE_SPECIAL; - else - new_mode = PHY_MODE_SPECIAL; - if (!((old_mode ^ new_mode) & PHY_MODE_SPECIAL)) { - err = 0; - } else if (efx->state != STATE_RUNNING || netif_running(efx->net_dev)) { - err = -EBUSY; - } else { - /* Reset the PHY, reconfigure the MAC and enable/disable - * MAC stats accordingly. */ - efx->phy_mode = new_mode; - if (new_mode & PHY_MODE_SPECIAL) - falcon_stop_nic_stats(efx); - err = sfe4001_poweron(efx); - if (!err) - err = efx_reconfigure_port(efx); - if (!(new_mode & PHY_MODE_SPECIAL)) - falcon_start_nic_stats(efx); - } - rtnl_unlock(); - - return err ? err : count; -} - -static DEVICE_ATTR(phy_flash_cfg, 0644, show_phy_flash_cfg, set_phy_flash_cfg); - -static void sfe4001_fini(struct efx_nic *efx) -{ - struct falcon_board *board = falcon_board(efx); - - netif_info(efx, drv, efx->net_dev, "%s\n", __func__); - - device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_flash_cfg); - sfe4001_poweroff(efx); - i2c_unregister_device(board->ioexp_client); - i2c_unregister_device(board->hwmon_client); -} - -static int sfe4001_check_hw(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - s32 status; - - /* If XAUI link is up then do not monitor */ - if (EFX_WORKAROUND_7884(efx) && !nic_data->xmac_poll_required) - return 0; - - /* Check the powered status of the PHY. Lack of power implies that - * the MAX6647 has shut down power to it, probably due to a temp. - * alarm. Reading the power status rather than the MAX6647 status - * directly because the later is read-to-clear and would thus - * start to power up the PHY again when polled, causing us to blip - * the power undesirably. - * We know we can read from the IO expander because we did - * it during power-on. Assume failure now is bad news. */ - status = i2c_smbus_read_byte_data(falcon_board(efx)->ioexp_client, P1_IN); - if (status >= 0 && - (status & ((1 << P1_AFE_PWD_LBN) | (1 << P1_DSP_PWD25_LBN))) != 0) - return 0; - - /* Use board power control, not PHY power control */ - sfe4001_poweroff(efx); - efx->phy_mode = PHY_MODE_OFF; - - return (status < 0) ? -EIO : -ERANGE; -} - -static struct i2c_board_info sfe4001_hwmon_info = { - I2C_BOARD_INFO("max6647", 0x4e), -}; - -/* This board uses an I2C expander to provider power to the PHY, which needs to - * be turned on before the PHY can be used. - * Context: Process context, rtnl lock held - */ -static int sfe4001_init(struct efx_nic *efx) -{ - struct falcon_board *board = falcon_board(efx); - int rc; - -#if defined(CONFIG_SENSORS_LM90) || defined(CONFIG_SENSORS_LM90_MODULE) - board->hwmon_client = - i2c_new_device(&board->i2c_adap, &sfe4001_hwmon_info); -#else - board->hwmon_client = - i2c_new_dummy(&board->i2c_adap, sfe4001_hwmon_info.addr); -#endif - if (!board->hwmon_client) - return -EIO; - - /* Raise board/PHY high limit from 85 to 90 degrees Celsius */ - rc = i2c_smbus_write_byte_data(board->hwmon_client, - MAX664X_REG_WLHO, 90); - if (rc) - goto fail_hwmon; - - board->ioexp_client = i2c_new_dummy(&board->i2c_adap, PCA9539); - if (!board->ioexp_client) { - rc = -EIO; - goto fail_hwmon; - } - - if (efx->phy_mode & PHY_MODE_SPECIAL) { - /* PHY won't generate a 156.25 MHz clock and MAC stats fetch - * will fail. */ - falcon_stop_nic_stats(efx); - } - rc = sfe4001_poweron(efx); - if (rc) - goto fail_ioexp; - - rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_flash_cfg); - if (rc) - goto fail_on; - - netif_info(efx, hw, efx->net_dev, "PHY is powered on\n"); - return 0; - -fail_on: - sfe4001_poweroff(efx); -fail_ioexp: - i2c_unregister_device(board->ioexp_client); -fail_hwmon: - i2c_unregister_device(board->hwmon_client); - return rc; -} - -/***************************************************************************** - * Support for the SFE4002 - * - */ -static u8 sfe4002_lm87_channel = 0x03; /* use AIN not FAN inputs */ - -static const u8 sfe4002_lm87_regs[] = { - LM87_IN_LIMITS(0, 0x7c, 0x99), /* 2.5V: 1.8V +/- 10% */ - LM87_IN_LIMITS(1, 0x4c, 0x5e), /* Vccp1: 1.2V +/- 10% */ - LM87_IN_LIMITS(2, 0xac, 0xd4), /* 3.3V: 3.3V +/- 10% */ - LM87_IN_LIMITS(3, 0xac, 0xd4), /* 5V: 5.0V +/- 10% */ - LM87_IN_LIMITS(4, 0xac, 0xe0), /* 12V: 10.8-14V */ - LM87_IN_LIMITS(5, 0x3f, 0x4f), /* Vccp2: 1.0V +/- 10% */ - LM87_AIN_LIMITS(0, 0x98, 0xbb), /* AIN1: 1.66V +/- 10% */ - LM87_AIN_LIMITS(1, 0x8a, 0xa9), /* AIN2: 1.5V +/- 10% */ - LM87_TEMP_INT_LIMITS(0, 80 + FALCON_BOARD_TEMP_BIAS), - LM87_TEMP_EXT1_LIMITS(0, FALCON_JUNC_TEMP_MAX), - 0 -}; - -static struct i2c_board_info sfe4002_hwmon_info = { - I2C_BOARD_INFO("lm87", 0x2e), - .platform_data = &sfe4002_lm87_channel, -}; - -/****************************************************************************/ -/* LED allocations. Note that on rev A0 boards the schematic and the reality - * differ: red and green are swapped. Below is the fixed (A1) layout (there - * are only 3 A0 boards in existence, so no real reason to make this - * conditional). - */ -#define SFE4002_FAULT_LED (2) /* Red */ -#define SFE4002_RX_LED (0) /* Green */ -#define SFE4002_TX_LED (1) /* Amber */ - -static void sfe4002_init_phy(struct efx_nic *efx) -{ - /* Set the TX and RX LEDs to reflect status and activity, and the - * fault LED off */ - falcon_qt202x_set_led(efx, SFE4002_TX_LED, - QUAKE_LED_TXLINK | QUAKE_LED_LINK_ACTSTAT); - falcon_qt202x_set_led(efx, SFE4002_RX_LED, - QUAKE_LED_RXLINK | QUAKE_LED_LINK_ACTSTAT); - falcon_qt202x_set_led(efx, SFE4002_FAULT_LED, QUAKE_LED_OFF); -} - -static void sfe4002_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) -{ - falcon_qt202x_set_led( - efx, SFE4002_FAULT_LED, - (mode == EFX_LED_ON) ? QUAKE_LED_ON : QUAKE_LED_OFF); -} - -static int sfe4002_check_hw(struct efx_nic *efx) -{ - struct falcon_board *board = falcon_board(efx); - - /* A0 board rev. 4002s report a temperature fault the whole time - * (bad sensor) so we mask it out. */ - unsigned alarm_mask = - (board->major == 0 && board->minor == 0) ? - ~LM87_ALARM_TEMP_EXT1 : ~0; - - return efx_check_lm87(efx, alarm_mask); -} - -static int sfe4002_init(struct efx_nic *efx) -{ - return efx_init_lm87(efx, &sfe4002_hwmon_info, sfe4002_lm87_regs); -} - -/***************************************************************************** - * Support for the SFN4112F - * - */ -static u8 sfn4112f_lm87_channel = 0x03; /* use AIN not FAN inputs */ - -static const u8 sfn4112f_lm87_regs[] = { - LM87_IN_LIMITS(0, 0x7c, 0x99), /* 2.5V: 1.8V +/- 10% */ - LM87_IN_LIMITS(1, 0x4c, 0x5e), /* Vccp1: 1.2V +/- 10% */ - LM87_IN_LIMITS(2, 0xac, 0xd4), /* 3.3V: 3.3V +/- 10% */ - LM87_IN_LIMITS(4, 0xac, 0xe0), /* 12V: 10.8-14V */ - LM87_IN_LIMITS(5, 0x3f, 0x4f), /* Vccp2: 1.0V +/- 10% */ - LM87_AIN_LIMITS(1, 0x8a, 0xa9), /* AIN2: 1.5V +/- 10% */ - LM87_TEMP_INT_LIMITS(0, 60 + FALCON_BOARD_TEMP_BIAS), - LM87_TEMP_EXT1_LIMITS(0, FALCON_JUNC_TEMP_MAX), - 0 -}; - -static struct i2c_board_info sfn4112f_hwmon_info = { - I2C_BOARD_INFO("lm87", 0x2e), - .platform_data = &sfn4112f_lm87_channel, -}; - -#define SFN4112F_ACT_LED 0 -#define SFN4112F_LINK_LED 1 - -static void sfn4112f_init_phy(struct efx_nic *efx) -{ - falcon_qt202x_set_led(efx, SFN4112F_ACT_LED, - QUAKE_LED_RXLINK | QUAKE_LED_LINK_ACT); - falcon_qt202x_set_led(efx, SFN4112F_LINK_LED, - QUAKE_LED_RXLINK | QUAKE_LED_LINK_STAT); -} - -static void sfn4112f_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) -{ - int reg; - - switch (mode) { - case EFX_LED_OFF: - reg = QUAKE_LED_OFF; - break; - case EFX_LED_ON: - reg = QUAKE_LED_ON; - break; - default: - reg = QUAKE_LED_RXLINK | QUAKE_LED_LINK_STAT; - break; - } - - falcon_qt202x_set_led(efx, SFN4112F_LINK_LED, reg); -} - -static int sfn4112f_check_hw(struct efx_nic *efx) -{ - /* Mask out unused sensors */ - return efx_check_lm87(efx, ~0x48); -} - -static int sfn4112f_init(struct efx_nic *efx) -{ - return efx_init_lm87(efx, &sfn4112f_hwmon_info, sfn4112f_lm87_regs); -} - -/***************************************************************************** - * Support for the SFE4003 - * - */ -static u8 sfe4003_lm87_channel = 0x03; /* use AIN not FAN inputs */ - -static const u8 sfe4003_lm87_regs[] = { - LM87_IN_LIMITS(0, 0x67, 0x7f), /* 2.5V: 1.5V +/- 10% */ - LM87_IN_LIMITS(1, 0x4c, 0x5e), /* Vccp1: 1.2V +/- 10% */ - LM87_IN_LIMITS(2, 0xac, 0xd4), /* 3.3V: 3.3V +/- 10% */ - LM87_IN_LIMITS(4, 0xac, 0xe0), /* 12V: 10.8-14V */ - LM87_IN_LIMITS(5, 0x3f, 0x4f), /* Vccp2: 1.0V +/- 10% */ - LM87_TEMP_INT_LIMITS(0, 70 + FALCON_BOARD_TEMP_BIAS), - 0 -}; - -static struct i2c_board_info sfe4003_hwmon_info = { - I2C_BOARD_INFO("lm87", 0x2e), - .platform_data = &sfe4003_lm87_channel, -}; - -/* Board-specific LED info. */ -#define SFE4003_RED_LED_GPIO 11 -#define SFE4003_LED_ON 1 -#define SFE4003_LED_OFF 0 - -static void sfe4003_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) -{ - struct falcon_board *board = falcon_board(efx); - - /* The LEDs were not wired to GPIOs before A3 */ - if (board->minor < 3 && board->major == 0) - return; - - falcon_txc_set_gpio_val( - efx, SFE4003_RED_LED_GPIO, - (mode == EFX_LED_ON) ? SFE4003_LED_ON : SFE4003_LED_OFF); -} - -static void sfe4003_init_phy(struct efx_nic *efx) -{ - struct falcon_board *board = falcon_board(efx); - - /* The LEDs were not wired to GPIOs before A3 */ - if (board->minor < 3 && board->major == 0) - return; - - falcon_txc_set_gpio_dir(efx, SFE4003_RED_LED_GPIO, TXC_GPIO_DIR_OUTPUT); - falcon_txc_set_gpio_val(efx, SFE4003_RED_LED_GPIO, SFE4003_LED_OFF); -} - -static int sfe4003_check_hw(struct efx_nic *efx) -{ - struct falcon_board *board = falcon_board(efx); - - /* A0/A1/A2 board rev. 4003s report a temperature fault the whole time - * (bad sensor) so we mask it out. */ - unsigned alarm_mask = - (board->major == 0 && board->minor <= 2) ? - ~LM87_ALARM_TEMP_EXT1 : ~0; - - return efx_check_lm87(efx, alarm_mask); -} - -static int sfe4003_init(struct efx_nic *efx) -{ - return efx_init_lm87(efx, &sfe4003_hwmon_info, sfe4003_lm87_regs); -} - -static const struct falcon_board_type board_types[] = { - { - .id = FALCON_BOARD_SFE4001, - .ref_model = "SFE4001", - .gen_type = "10GBASE-T adapter", - .init = sfe4001_init, - .init_phy = efx_port_dummy_op_void, - .fini = sfe4001_fini, - .set_id_led = tenxpress_set_id_led, - .monitor = sfe4001_check_hw, - }, - { - .id = FALCON_BOARD_SFE4002, - .ref_model = "SFE4002", - .gen_type = "XFP adapter", - .init = sfe4002_init, - .init_phy = sfe4002_init_phy, - .fini = efx_fini_lm87, - .set_id_led = sfe4002_set_id_led, - .monitor = sfe4002_check_hw, - }, - { - .id = FALCON_BOARD_SFE4003, - .ref_model = "SFE4003", - .gen_type = "10GBASE-CX4 adapter", - .init = sfe4003_init, - .init_phy = sfe4003_init_phy, - .fini = efx_fini_lm87, - .set_id_led = sfe4003_set_id_led, - .monitor = sfe4003_check_hw, - }, - { - .id = FALCON_BOARD_SFN4112F, - .ref_model = "SFN4112F", - .gen_type = "SFP+ adapter", - .init = sfn4112f_init, - .init_phy = sfn4112f_init_phy, - .fini = efx_fini_lm87, - .set_id_led = sfn4112f_set_id_led, - .monitor = sfn4112f_check_hw, - }, -}; - -int falcon_probe_board(struct efx_nic *efx, u16 revision_info) -{ - struct falcon_board *board = falcon_board(efx); - u8 type_id = FALCON_BOARD_TYPE(revision_info); - int i; - - board->major = FALCON_BOARD_MAJOR(revision_info); - board->minor = FALCON_BOARD_MINOR(revision_info); - - for (i = 0; i < ARRAY_SIZE(board_types); i++) - if (board_types[i].id == type_id) - board->type = &board_types[i]; - - if (board->type) { - netif_info(efx, probe, efx->net_dev, "board is %s rev %c%d\n", - (efx->pci_dev->subsystem_vendor == EFX_VENDID_SFC) - ? board->type->ref_model : board->type->gen_type, - 'A' + board->major, board->minor); - return 0; - } else { - netif_err(efx, probe, efx->net_dev, "unknown board type %d\n", - type_id); - return -ENODEV; - } -} diff --git a/drivers/net/sfc/falcon_xmac.c b/drivers/net/sfc/falcon_xmac.c deleted file mode 100644 index 9516452..0000000 --- a/drivers/net/sfc/falcon_xmac.c +++ /dev/null @@ -1,369 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/delay.h> -#include "net_driver.h" -#include "efx.h" -#include "nic.h" -#include "regs.h" -#include "io.h" -#include "mac.h" -#include "mdio_10g.h" -#include "workarounds.h" - -/************************************************************************** - * - * MAC operations - * - *************************************************************************/ - -/* Configure the XAUI driver that is an output from Falcon */ -void falcon_setup_xaui(struct efx_nic *efx) -{ - efx_oword_t sdctl, txdrv; - - /* Move the XAUI into low power, unless there is no PHY, in - * which case the XAUI will have to drive a cable. */ - if (efx->phy_type == PHY_TYPE_NONE) - return; - - efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL); - EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF); - EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF); - EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF); - EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF); - EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF); - EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF); - EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF); - EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF); - efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL); - - EFX_POPULATE_OWORD_8(txdrv, - FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF, - FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF, - FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF, - FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF, - FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF, - FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF, - FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF, - FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF); - efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL); -} - -int falcon_reset_xaui(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - efx_oword_t reg; - int count; - - /* Don't fetch MAC statistics over an XMAC reset */ - WARN_ON(nic_data->stats_disable_count == 0); - - /* Start reset sequence */ - EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1); - efx_writeo(efx, ®, FR_AB_XX_PWR_RST); - - /* Wait up to 10 ms for completion, then reinitialise */ - for (count = 0; count < 1000; count++) { - efx_reado(efx, ®, FR_AB_XX_PWR_RST); - if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 && - EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) { - falcon_setup_xaui(efx); - return 0; - } - udelay(10); - } - netif_err(efx, hw, efx->net_dev, - "timed out waiting for XAUI/XGXS reset\n"); - return -ETIMEDOUT; -} - -static void falcon_ack_status_intr(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - efx_oword_t reg; - - if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx)) - return; - - /* We expect xgmii faults if the wireside link is down */ - if (!EFX_WORKAROUND_5147(efx) || !efx->link_state.up) - return; - - /* We can only use this interrupt to signal the negative edge of - * xaui_align [we have to poll the positive edge]. */ - if (nic_data->xmac_poll_required) - return; - - efx_reado(efx, ®, FR_AB_XM_MGT_INT_MSK); -} - -static bool falcon_xgxs_link_ok(struct efx_nic *efx) -{ - efx_oword_t reg; - bool align_done, link_ok = false; - int sync_status; - - /* Read link status */ - efx_reado(efx, ®, FR_AB_XX_CORE_STAT); - - align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE); - sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT); - if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES)) - link_ok = true; - - /* Clear link status ready for next read */ - EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES); - EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES); - EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES); - efx_writeo(efx, ®, FR_AB_XX_CORE_STAT); - - return link_ok; -} - -static bool falcon_xmac_link_ok(struct efx_nic *efx) -{ - /* - * Check MAC's XGXS link status except when using XGMII loopback - * which bypasses the XGXS block. - * If possible, check PHY's XGXS link status except when using - * MAC loopback. - */ - return (efx->loopback_mode == LOOPBACK_XGMII || - falcon_xgxs_link_ok(efx)) && - (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) || - LOOPBACK_INTERNAL(efx) || - efx_mdio_phyxgxs_lane_sync(efx)); -} - -static void falcon_reconfigure_xmac_core(struct efx_nic *efx) -{ - unsigned int max_frame_len; - efx_oword_t reg; - bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX); - bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX); - - /* Configure MAC - cut-thru mode is hard wired on */ - EFX_POPULATE_OWORD_3(reg, - FRF_AB_XM_RX_JUMBO_MODE, 1, - FRF_AB_XM_TX_STAT_EN, 1, - FRF_AB_XM_RX_STAT_EN, 1); - efx_writeo(efx, ®, FR_AB_XM_GLB_CFG); - - /* Configure TX */ - EFX_POPULATE_OWORD_6(reg, - FRF_AB_XM_TXEN, 1, - FRF_AB_XM_TX_PRMBL, 1, - FRF_AB_XM_AUTO_PAD, 1, - FRF_AB_XM_TXCRC, 1, - FRF_AB_XM_FCNTL, tx_fc, - FRF_AB_XM_IPG, 0x3); - efx_writeo(efx, ®, FR_AB_XM_TX_CFG); - - /* Configure RX */ - EFX_POPULATE_OWORD_5(reg, - FRF_AB_XM_RXEN, 1, - FRF_AB_XM_AUTO_DEPAD, 0, - FRF_AB_XM_ACPT_ALL_MCAST, 1, - FRF_AB_XM_ACPT_ALL_UCAST, efx->promiscuous, - FRF_AB_XM_PASS_CRC_ERR, 1); - efx_writeo(efx, ®, FR_AB_XM_RX_CFG); - - /* Set frame length */ - max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu); - EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len); - efx_writeo(efx, ®, FR_AB_XM_RX_PARAM); - EFX_POPULATE_OWORD_2(reg, - FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len, - FRF_AB_XM_TX_JUMBO_MODE, 1); - efx_writeo(efx, ®, FR_AB_XM_TX_PARAM); - - EFX_POPULATE_OWORD_2(reg, - FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */ - FRF_AB_XM_DIS_FCNTL, !rx_fc); - efx_writeo(efx, ®, FR_AB_XM_FC); - - /* Set MAC address */ - memcpy(®, &efx->net_dev->dev_addr[0], 4); - efx_writeo(efx, ®, FR_AB_XM_ADR_LO); - memcpy(®, &efx->net_dev->dev_addr[4], 2); - efx_writeo(efx, ®, FR_AB_XM_ADR_HI); -} - -static void falcon_reconfigure_xgxs_core(struct efx_nic *efx) -{ - efx_oword_t reg; - bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS); - bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI); - bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII); - - /* XGXS block is flaky and will need to be reset if moving - * into our out of XGMII, XGXS or XAUI loopbacks. */ - if (EFX_WORKAROUND_5147(efx)) { - bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback; - bool reset_xgxs; - - efx_reado(efx, ®, FR_AB_XX_CORE_STAT); - old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN); - old_xgmii_loopback = - EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN); - - efx_reado(efx, ®, FR_AB_XX_SD_CTL); - old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA); - - /* The PHY driver may have turned XAUI off */ - reset_xgxs = ((xgxs_loopback != old_xgxs_loopback) || - (xaui_loopback != old_xaui_loopback) || - (xgmii_loopback != old_xgmii_loopback)); - - if (reset_xgxs) - falcon_reset_xaui(efx); - } - - efx_reado(efx, ®, FR_AB_XX_CORE_STAT); - EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG, - (xgxs_loopback || xaui_loopback) ? - FFE_AB_XX_FORCE_SIG_ALL_LANES : 0); - EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback); - EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback); - efx_writeo(efx, ®, FR_AB_XX_CORE_STAT); - - efx_reado(efx, ®, FR_AB_XX_SD_CTL); - EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback); - EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback); - EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback); - EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback); - efx_writeo(efx, ®, FR_AB_XX_SD_CTL); -} - - -/* Try to bring up the Falcon side of the Falcon-Phy XAUI link */ -static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries) -{ - bool mac_up = falcon_xmac_link_ok(efx); - - if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS || - efx_phy_mode_disabled(efx->phy_mode)) - /* XAUI link is expected to be down */ - return mac_up; - - falcon_stop_nic_stats(efx); - - while (!mac_up && tries) { - netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n"); - falcon_reset_xaui(efx); - udelay(200); - - mac_up = falcon_xmac_link_ok(efx); - --tries; - } - - falcon_start_nic_stats(efx); - - return mac_up; -} - -static bool falcon_xmac_check_fault(struct efx_nic *efx) -{ - return !falcon_xmac_link_ok_retry(efx, 5); -} - -static int falcon_reconfigure_xmac(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - - falcon_reconfigure_xgxs_core(efx); - falcon_reconfigure_xmac_core(efx); - - falcon_reconfigure_mac_wrapper(efx); - - nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5); - falcon_ack_status_intr(efx); - - return 0; -} - -static void falcon_update_stats_xmac(struct efx_nic *efx) -{ - struct efx_mac_stats *mac_stats = &efx->mac_stats; - - /* Update MAC stats from DMAed values */ - FALCON_STAT(efx, XgRxOctets, rx_bytes); - FALCON_STAT(efx, XgRxOctetsOK, rx_good_bytes); - FALCON_STAT(efx, XgRxPkts, rx_packets); - FALCON_STAT(efx, XgRxPktsOK, rx_good); - FALCON_STAT(efx, XgRxBroadcastPkts, rx_broadcast); - FALCON_STAT(efx, XgRxMulticastPkts, rx_multicast); - FALCON_STAT(efx, XgRxUnicastPkts, rx_unicast); - FALCON_STAT(efx, XgRxUndersizePkts, rx_lt64); - FALCON_STAT(efx, XgRxOversizePkts, rx_gtjumbo); - FALCON_STAT(efx, XgRxJabberPkts, rx_bad_gtjumbo); - FALCON_STAT(efx, XgRxUndersizeFCSerrorPkts, rx_bad_lt64); - FALCON_STAT(efx, XgRxDropEvents, rx_overflow); - FALCON_STAT(efx, XgRxFCSerrorPkts, rx_bad); - FALCON_STAT(efx, XgRxAlignError, rx_align_error); - FALCON_STAT(efx, XgRxSymbolError, rx_symbol_error); - FALCON_STAT(efx, XgRxInternalMACError, rx_internal_error); - FALCON_STAT(efx, XgRxControlPkts, rx_control); - FALCON_STAT(efx, XgRxPausePkts, rx_pause); - FALCON_STAT(efx, XgRxPkts64Octets, rx_64); - FALCON_STAT(efx, XgRxPkts65to127Octets, rx_65_to_127); - FALCON_STAT(efx, XgRxPkts128to255Octets, rx_128_to_255); - FALCON_STAT(efx, XgRxPkts256to511Octets, rx_256_to_511); - FALCON_STAT(efx, XgRxPkts512to1023Octets, rx_512_to_1023); - FALCON_STAT(efx, XgRxPkts1024to15xxOctets, rx_1024_to_15xx); - FALCON_STAT(efx, XgRxPkts15xxtoMaxOctets, rx_15xx_to_jumbo); - FALCON_STAT(efx, XgRxLengthError, rx_length_error); - FALCON_STAT(efx, XgTxPkts, tx_packets); - FALCON_STAT(efx, XgTxOctets, tx_bytes); - FALCON_STAT(efx, XgTxMulticastPkts, tx_multicast); - FALCON_STAT(efx, XgTxBroadcastPkts, tx_broadcast); - FALCON_STAT(efx, XgTxUnicastPkts, tx_unicast); - FALCON_STAT(efx, XgTxControlPkts, tx_control); - FALCON_STAT(efx, XgTxPausePkts, tx_pause); - FALCON_STAT(efx, XgTxPkts64Octets, tx_64); - FALCON_STAT(efx, XgTxPkts65to127Octets, tx_65_to_127); - FALCON_STAT(efx, XgTxPkts128to255Octets, tx_128_to_255); - FALCON_STAT(efx, XgTxPkts256to511Octets, tx_256_to_511); - FALCON_STAT(efx, XgTxPkts512to1023Octets, tx_512_to_1023); - FALCON_STAT(efx, XgTxPkts1024to15xxOctets, tx_1024_to_15xx); - FALCON_STAT(efx, XgTxPkts1519toMaxOctets, tx_15xx_to_jumbo); - FALCON_STAT(efx, XgTxUndersizePkts, tx_lt64); - FALCON_STAT(efx, XgTxOversizePkts, tx_gtjumbo); - FALCON_STAT(efx, XgTxNonTcpUdpPkt, tx_non_tcpudp); - FALCON_STAT(efx, XgTxMacSrcErrPkt, tx_mac_src_error); - FALCON_STAT(efx, XgTxIpSrcErrPkt, tx_ip_src_error); - - /* Update derived statistics */ - mac_stats->tx_good_bytes = - (mac_stats->tx_bytes - mac_stats->tx_bad_bytes - - mac_stats->tx_control * 64); - mac_stats->rx_bad_bytes = - (mac_stats->rx_bytes - mac_stats->rx_good_bytes - - mac_stats->rx_control * 64); -} - -void falcon_poll_xmac(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - - if (!EFX_WORKAROUND_5147(efx) || !efx->link_state.up || - !nic_data->xmac_poll_required) - return; - - nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1); - falcon_ack_status_intr(efx); -} - -const struct efx_mac_operations falcon_xmac_operations = { - .reconfigure = falcon_reconfigure_xmac, - .update_stats = falcon_update_stats_xmac, - .check_fault = falcon_xmac_check_fault, -}; diff --git a/drivers/net/sfc/filter.c b/drivers/net/sfc/filter.c deleted file mode 100644 index 2b9636f..0000000 --- a/drivers/net/sfc/filter.c +++ /dev/null @@ -1,727 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/in.h> -#include <net/ip.h> -#include "efx.h" -#include "filter.h" -#include "io.h" -#include "nic.h" -#include "regs.h" - -/* "Fudge factors" - difference between programmed value and actual depth. - * Due to pipelined implementation we need to program H/W with a value that - * is larger than the hop limit we want. - */ -#define FILTER_CTL_SRCH_FUDGE_WILD 3 -#define FILTER_CTL_SRCH_FUDGE_FULL 1 - -/* Hard maximum hop limit. Hardware will time-out beyond 200-something. - * We also need to avoid infinite loops in efx_filter_search() when the - * table is full. - */ -#define FILTER_CTL_SRCH_MAX 200 - -/* Don't try very hard to find space for performance hints, as this is - * counter-productive. */ -#define FILTER_CTL_SRCH_HINT_MAX 5 - -enum efx_filter_table_id { - EFX_FILTER_TABLE_RX_IP = 0, - EFX_FILTER_TABLE_RX_MAC, - EFX_FILTER_TABLE_COUNT, -}; - -struct efx_filter_table { - enum efx_filter_table_id id; - u32 offset; /* address of table relative to BAR */ - unsigned size; /* number of entries */ - unsigned step; /* step between entries */ - unsigned used; /* number currently used */ - unsigned long *used_bitmap; - struct efx_filter_spec *spec; - unsigned search_depth[EFX_FILTER_TYPE_COUNT]; -}; - -struct efx_filter_state { - spinlock_t lock; - struct efx_filter_table table[EFX_FILTER_TABLE_COUNT]; -#ifdef CONFIG_RFS_ACCEL - u32 *rps_flow_id; - unsigned rps_expire_index; -#endif -}; - -/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit - * key derived from the n-tuple. The initial LFSR state is 0xffff. */ -static u16 efx_filter_hash(u32 key) -{ - u16 tmp; - - /* First 16 rounds */ - tmp = 0x1fff ^ key >> 16; - tmp = tmp ^ tmp >> 3 ^ tmp >> 6; - tmp = tmp ^ tmp >> 9; - /* Last 16 rounds */ - tmp = tmp ^ tmp << 13 ^ key; - tmp = tmp ^ tmp >> 3 ^ tmp >> 6; - return tmp ^ tmp >> 9; -} - -/* To allow for hash collisions, filter search continues at these - * increments from the first possible entry selected by the hash. */ -static u16 efx_filter_increment(u32 key) -{ - return key * 2 - 1; -} - -static enum efx_filter_table_id -efx_filter_spec_table_id(const struct efx_filter_spec *spec) -{ - BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_TCP_FULL >> 2)); - BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_TCP_WILD >> 2)); - BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_UDP_FULL >> 2)); - BUILD_BUG_ON(EFX_FILTER_TABLE_RX_IP != (EFX_FILTER_UDP_WILD >> 2)); - BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_MAC_FULL >> 2)); - BUILD_BUG_ON(EFX_FILTER_TABLE_RX_MAC != (EFX_FILTER_MAC_WILD >> 2)); - EFX_BUG_ON_PARANOID(spec->type == EFX_FILTER_UNSPEC); - return spec->type >> 2; -} - -static struct efx_filter_table * -efx_filter_spec_table(struct efx_filter_state *state, - const struct efx_filter_spec *spec) -{ - if (spec->type == EFX_FILTER_UNSPEC) - return NULL; - else - return &state->table[efx_filter_spec_table_id(spec)]; -} - -static void efx_filter_table_reset_search_depth(struct efx_filter_table *table) -{ - memset(table->search_depth, 0, sizeof(table->search_depth)); -} - -static void efx_filter_push_rx_limits(struct efx_nic *efx) -{ - struct efx_filter_state *state = efx->filter_state; - struct efx_filter_table *table; - efx_oword_t filter_ctl; - - efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); - - table = &state->table[EFX_FILTER_TABLE_RX_IP]; - EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT, - table->search_depth[EFX_FILTER_TCP_FULL] + - FILTER_CTL_SRCH_FUDGE_FULL); - EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT, - table->search_depth[EFX_FILTER_TCP_WILD] + - FILTER_CTL_SRCH_FUDGE_WILD); - EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT, - table->search_depth[EFX_FILTER_UDP_FULL] + - FILTER_CTL_SRCH_FUDGE_FULL); - EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT, - table->search_depth[EFX_FILTER_UDP_WILD] + - FILTER_CTL_SRCH_FUDGE_WILD); - - table = &state->table[EFX_FILTER_TABLE_RX_MAC]; - if (table->size) { - EFX_SET_OWORD_FIELD( - filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT, - table->search_depth[EFX_FILTER_MAC_FULL] + - FILTER_CTL_SRCH_FUDGE_FULL); - EFX_SET_OWORD_FIELD( - filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT, - table->search_depth[EFX_FILTER_MAC_WILD] + - FILTER_CTL_SRCH_FUDGE_WILD); - } - - efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL); -} - -static inline void __efx_filter_set_ipv4(struct efx_filter_spec *spec, - __be32 host1, __be16 port1, - __be32 host2, __be16 port2) -{ - spec->data[0] = ntohl(host1) << 16 | ntohs(port1); - spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16; - spec->data[2] = ntohl(host2); -} - -/** - * efx_filter_set_ipv4_local - specify IPv4 host, transport protocol and port - * @spec: Specification to initialise - * @proto: Transport layer protocol number - * @host: Local host address (network byte order) - * @port: Local port (network byte order) - */ -int efx_filter_set_ipv4_local(struct efx_filter_spec *spec, u8 proto, - __be32 host, __be16 port) -{ - __be32 host1; - __be16 port1; - - EFX_BUG_ON_PARANOID(!(spec->flags & EFX_FILTER_FLAG_RX)); - - /* This cannot currently be combined with other filtering */ - if (spec->type != EFX_FILTER_UNSPEC) - return -EPROTONOSUPPORT; - - if (port == 0) - return -EINVAL; - - switch (proto) { - case IPPROTO_TCP: - spec->type = EFX_FILTER_TCP_WILD; - break; - case IPPROTO_UDP: - spec->type = EFX_FILTER_UDP_WILD; - break; - default: - return -EPROTONOSUPPORT; - } - - /* Filter is constructed in terms of source and destination, - * with the odd wrinkle that the ports are swapped in a UDP - * wildcard filter. We need to convert from local and remote - * (= zero for wildcard) addresses. - */ - host1 = 0; - if (proto != IPPROTO_UDP) { - port1 = 0; - } else { - port1 = port; - port = 0; - } - - __efx_filter_set_ipv4(spec, host1, port1, host, port); - return 0; -} - -/** - * efx_filter_set_ipv4_full - specify IPv4 hosts, transport protocol and ports - * @spec: Specification to initialise - * @proto: Transport layer protocol number - * @host: Local host address (network byte order) - * @port: Local port (network byte order) - * @rhost: Remote host address (network byte order) - * @rport: Remote port (network byte order) - */ -int efx_filter_set_ipv4_full(struct efx_filter_spec *spec, u8 proto, - __be32 host, __be16 port, - __be32 rhost, __be16 rport) -{ - EFX_BUG_ON_PARANOID(!(spec->flags & EFX_FILTER_FLAG_RX)); - - /* This cannot currently be combined with other filtering */ - if (spec->type != EFX_FILTER_UNSPEC) - return -EPROTONOSUPPORT; - - if (port == 0 || rport == 0) - return -EINVAL; - - switch (proto) { - case IPPROTO_TCP: - spec->type = EFX_FILTER_TCP_FULL; - break; - case IPPROTO_UDP: - spec->type = EFX_FILTER_UDP_FULL; - break; - default: - return -EPROTONOSUPPORT; - } - - __efx_filter_set_ipv4(spec, rhost, rport, host, port); - return 0; -} - -/** - * efx_filter_set_eth_local - specify local Ethernet address and optional VID - * @spec: Specification to initialise - * @vid: VLAN ID to match, or %EFX_FILTER_VID_UNSPEC - * @addr: Local Ethernet MAC address - */ -int efx_filter_set_eth_local(struct efx_filter_spec *spec, - u16 vid, const u8 *addr) -{ - EFX_BUG_ON_PARANOID(!(spec->flags & EFX_FILTER_FLAG_RX)); - - /* This cannot currently be combined with other filtering */ - if (spec->type != EFX_FILTER_UNSPEC) - return -EPROTONOSUPPORT; - - if (vid == EFX_FILTER_VID_UNSPEC) { - spec->type = EFX_FILTER_MAC_WILD; - spec->data[0] = 0; - } else { - spec->type = EFX_FILTER_MAC_FULL; - spec->data[0] = vid; - } - - spec->data[1] = addr[2] << 24 | addr[3] << 16 | addr[4] << 8 | addr[5]; - spec->data[2] = addr[0] << 8 | addr[1]; - return 0; -} - -/* Build a filter entry and return its n-tuple key. */ -static u32 efx_filter_build(efx_oword_t *filter, struct efx_filter_spec *spec) -{ - u32 data3; - - switch (efx_filter_spec_table_id(spec)) { - case EFX_FILTER_TABLE_RX_IP: { - bool is_udp = (spec->type == EFX_FILTER_UDP_FULL || - spec->type == EFX_FILTER_UDP_WILD); - EFX_POPULATE_OWORD_7( - *filter, - FRF_BZ_RSS_EN, - !!(spec->flags & EFX_FILTER_FLAG_RX_RSS), - FRF_BZ_SCATTER_EN, - !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER), - FRF_BZ_TCP_UDP, is_udp, - FRF_BZ_RXQ_ID, spec->dmaq_id, - EFX_DWORD_2, spec->data[2], - EFX_DWORD_1, spec->data[1], - EFX_DWORD_0, spec->data[0]); - data3 = is_udp; - break; - } - - case EFX_FILTER_TABLE_RX_MAC: { - bool is_wild = spec->type == EFX_FILTER_MAC_WILD; - EFX_POPULATE_OWORD_8( - *filter, - FRF_CZ_RMFT_RSS_EN, - !!(spec->flags & EFX_FILTER_FLAG_RX_RSS), - FRF_CZ_RMFT_SCATTER_EN, - !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER), - FRF_CZ_RMFT_IP_OVERRIDE, - !!(spec->flags & EFX_FILTER_FLAG_RX_OVERRIDE_IP), - FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id, - FRF_CZ_RMFT_WILDCARD_MATCH, is_wild, - FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2], - FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1], - FRF_CZ_RMFT_VLAN_ID, spec->data[0]); - data3 = is_wild; - break; - } - - default: - BUG(); - } - - return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3; -} - -static bool efx_filter_equal(const struct efx_filter_spec *left, - const struct efx_filter_spec *right) -{ - if (left->type != right->type || - memcmp(left->data, right->data, sizeof(left->data))) - return false; - - return true; -} - -static int efx_filter_search(struct efx_filter_table *table, - struct efx_filter_spec *spec, u32 key, - bool for_insert, int *depth_required) -{ - unsigned hash, incr, filter_idx, depth, depth_max; - - hash = efx_filter_hash(key); - incr = efx_filter_increment(key); - - filter_idx = hash & (table->size - 1); - depth = 1; - depth_max = (for_insert ? - (spec->priority <= EFX_FILTER_PRI_HINT ? - FILTER_CTL_SRCH_HINT_MAX : FILTER_CTL_SRCH_MAX) : - table->search_depth[spec->type]); - - for (;;) { - /* Return success if entry is used and matches this spec - * or entry is unused and we are trying to insert. - */ - if (test_bit(filter_idx, table->used_bitmap) ? - efx_filter_equal(spec, &table->spec[filter_idx]) : - for_insert) { - *depth_required = depth; - return filter_idx; - } - - /* Return failure if we reached the maximum search depth */ - if (depth == depth_max) - return for_insert ? -EBUSY : -ENOENT; - - filter_idx = (filter_idx + incr) & (table->size - 1); - ++depth; - } -} - -/* Construct/deconstruct external filter IDs */ - -static inline int -efx_filter_make_id(enum efx_filter_table_id table_id, unsigned index) -{ - return table_id << 16 | index; -} - -/** - * efx_filter_insert_filter - add or replace a filter - * @efx: NIC in which to insert the filter - * @spec: Specification for the filter - * @replace: Flag for whether the specified filter may replace a filter - * with an identical match expression and equal or lower priority - * - * On success, return the filter ID. - * On failure, return a negative error code. - */ -int efx_filter_insert_filter(struct efx_nic *efx, struct efx_filter_spec *spec, - bool replace) -{ - struct efx_filter_state *state = efx->filter_state; - struct efx_filter_table *table = efx_filter_spec_table(state, spec); - struct efx_filter_spec *saved_spec; - efx_oword_t filter; - int filter_idx, depth; - u32 key; - int rc; - - if (!table || table->size == 0) - return -EINVAL; - - key = efx_filter_build(&filter, spec); - - netif_vdbg(efx, hw, efx->net_dev, - "%s: type %d search_depth=%d", __func__, spec->type, - table->search_depth[spec->type]); - - spin_lock_bh(&state->lock); - - rc = efx_filter_search(table, spec, key, true, &depth); - if (rc < 0) - goto out; - filter_idx = rc; - BUG_ON(filter_idx >= table->size); - saved_spec = &table->spec[filter_idx]; - - if (test_bit(filter_idx, table->used_bitmap)) { - /* Should we replace the existing filter? */ - if (!replace) { - rc = -EEXIST; - goto out; - } - if (spec->priority < saved_spec->priority) { - rc = -EPERM; - goto out; - } - } else { - __set_bit(filter_idx, table->used_bitmap); - ++table->used; - } - *saved_spec = *spec; - - if (table->search_depth[spec->type] < depth) { - table->search_depth[spec->type] = depth; - efx_filter_push_rx_limits(efx); - } - - efx_writeo(efx, &filter, table->offset + table->step * filter_idx); - - netif_vdbg(efx, hw, efx->net_dev, - "%s: filter type %d index %d rxq %u set", - __func__, spec->type, filter_idx, spec->dmaq_id); - rc = efx_filter_make_id(table->id, filter_idx); - -out: - spin_unlock_bh(&state->lock); - return rc; -} - -static void efx_filter_table_clear_entry(struct efx_nic *efx, - struct efx_filter_table *table, - int filter_idx) -{ - static efx_oword_t filter; - - if (test_bit(filter_idx, table->used_bitmap)) { - __clear_bit(filter_idx, table->used_bitmap); - --table->used; - memset(&table->spec[filter_idx], 0, sizeof(table->spec[0])); - - efx_writeo(efx, &filter, - table->offset + table->step * filter_idx); - } -} - -/** - * efx_filter_remove_filter - remove a filter by specification - * @efx: NIC from which to remove the filter - * @spec: Specification for the filter - * - * On success, return zero. - * On failure, return a negative error code. - */ -int efx_filter_remove_filter(struct efx_nic *efx, struct efx_filter_spec *spec) -{ - struct efx_filter_state *state = efx->filter_state; - struct efx_filter_table *table = efx_filter_spec_table(state, spec); - struct efx_filter_spec *saved_spec; - efx_oword_t filter; - int filter_idx, depth; - u32 key; - int rc; - - if (!table) - return -EINVAL; - - key = efx_filter_build(&filter, spec); - - spin_lock_bh(&state->lock); - - rc = efx_filter_search(table, spec, key, false, &depth); - if (rc < 0) - goto out; - filter_idx = rc; - saved_spec = &table->spec[filter_idx]; - - if (spec->priority < saved_spec->priority) { - rc = -EPERM; - goto out; - } - - efx_filter_table_clear_entry(efx, table, filter_idx); - if (table->used == 0) - efx_filter_table_reset_search_depth(table); - rc = 0; - -out: - spin_unlock_bh(&state->lock); - return rc; -} - -static void efx_filter_table_clear(struct efx_nic *efx, - enum efx_filter_table_id table_id, - enum efx_filter_priority priority) -{ - struct efx_filter_state *state = efx->filter_state; - struct efx_filter_table *table = &state->table[table_id]; - int filter_idx; - - spin_lock_bh(&state->lock); - - for (filter_idx = 0; filter_idx < table->size; ++filter_idx) - if (table->spec[filter_idx].priority <= priority) - efx_filter_table_clear_entry(efx, table, filter_idx); - if (table->used == 0) - efx_filter_table_reset_search_depth(table); - - spin_unlock_bh(&state->lock); -} - -/** - * efx_filter_clear_rx - remove RX filters by priority - * @efx: NIC from which to remove the filters - * @priority: Maximum priority to remove - */ -void efx_filter_clear_rx(struct efx_nic *efx, enum efx_filter_priority priority) -{ - efx_filter_table_clear(efx, EFX_FILTER_TABLE_RX_IP, priority); - efx_filter_table_clear(efx, EFX_FILTER_TABLE_RX_MAC, priority); -} - -/* Restore filter stater after reset */ -void efx_restore_filters(struct efx_nic *efx) -{ - struct efx_filter_state *state = efx->filter_state; - enum efx_filter_table_id table_id; - struct efx_filter_table *table; - efx_oword_t filter; - int filter_idx; - - spin_lock_bh(&state->lock); - - for (table_id = 0; table_id < EFX_FILTER_TABLE_COUNT; table_id++) { - table = &state->table[table_id]; - for (filter_idx = 0; filter_idx < table->size; filter_idx++) { - if (!test_bit(filter_idx, table->used_bitmap)) - continue; - efx_filter_build(&filter, &table->spec[filter_idx]); - efx_writeo(efx, &filter, - table->offset + table->step * filter_idx); - } - } - - efx_filter_push_rx_limits(efx); - - spin_unlock_bh(&state->lock); -} - -int efx_probe_filters(struct efx_nic *efx) -{ - struct efx_filter_state *state; - struct efx_filter_table *table; - unsigned table_id; - - state = kzalloc(sizeof(*efx->filter_state), GFP_KERNEL); - if (!state) - return -ENOMEM; - efx->filter_state = state; - - spin_lock_init(&state->lock); - - if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { -#ifdef CONFIG_RFS_ACCEL - state->rps_flow_id = kcalloc(FR_BZ_RX_FILTER_TBL0_ROWS, - sizeof(*state->rps_flow_id), - GFP_KERNEL); - if (!state->rps_flow_id) - goto fail; -#endif - table = &state->table[EFX_FILTER_TABLE_RX_IP]; - table->id = EFX_FILTER_TABLE_RX_IP; - table->offset = FR_BZ_RX_FILTER_TBL0; - table->size = FR_BZ_RX_FILTER_TBL0_ROWS; - table->step = FR_BZ_RX_FILTER_TBL0_STEP; - } - - if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { - table = &state->table[EFX_FILTER_TABLE_RX_MAC]; - table->id = EFX_FILTER_TABLE_RX_MAC; - table->offset = FR_CZ_RX_MAC_FILTER_TBL0; - table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS; - table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP; - } - - for (table_id = 0; table_id < EFX_FILTER_TABLE_COUNT; table_id++) { - table = &state->table[table_id]; - if (table->size == 0) - continue; - table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size), - sizeof(unsigned long), - GFP_KERNEL); - if (!table->used_bitmap) - goto fail; - table->spec = vzalloc(table->size * sizeof(*table->spec)); - if (!table->spec) - goto fail; - } - - return 0; - -fail: - efx_remove_filters(efx); - return -ENOMEM; -} - -void efx_remove_filters(struct efx_nic *efx) -{ - struct efx_filter_state *state = efx->filter_state; - enum efx_filter_table_id table_id; - - for (table_id = 0; table_id < EFX_FILTER_TABLE_COUNT; table_id++) { - kfree(state->table[table_id].used_bitmap); - vfree(state->table[table_id].spec); - } -#ifdef CONFIG_RFS_ACCEL - kfree(state->rps_flow_id); -#endif - kfree(state); -} - -#ifdef CONFIG_RFS_ACCEL - -int efx_filter_rfs(struct net_device *net_dev, const struct sk_buff *skb, - u16 rxq_index, u32 flow_id) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct efx_channel *channel; - struct efx_filter_state *state = efx->filter_state; - struct efx_filter_spec spec; - const struct iphdr *ip; - const __be16 *ports; - int nhoff; - int rc; - - nhoff = skb_network_offset(skb); - - if (skb->protocol != htons(ETH_P_IP)) - return -EPROTONOSUPPORT; - - /* RFS must validate the IP header length before calling us */ - EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + sizeof(*ip)); - ip = (const struct iphdr *)(skb->data + nhoff); - if (ip_is_fragment(ip)) - return -EPROTONOSUPPORT; - EFX_BUG_ON_PARANOID(skb_headlen(skb) < nhoff + 4 * ip->ihl + 4); - ports = (const __be16 *)(skb->data + nhoff + 4 * ip->ihl); - - efx_filter_init_rx(&spec, EFX_FILTER_PRI_HINT, 0, rxq_index); - rc = efx_filter_set_ipv4_full(&spec, ip->protocol, - ip->daddr, ports[1], ip->saddr, ports[0]); - if (rc) - return rc; - - rc = efx_filter_insert_filter(efx, &spec, true); - if (rc < 0) - return rc; - - /* Remember this so we can check whether to expire the filter later */ - state->rps_flow_id[rc] = flow_id; - channel = efx_get_channel(efx, skb_get_rx_queue(skb)); - ++channel->rfs_filters_added; - - netif_info(efx, rx_status, efx->net_dev, - "steering %s %pI4:%u:%pI4:%u to queue %u [flow %u filter %d]\n", - (ip->protocol == IPPROTO_TCP) ? "TCP" : "UDP", - &ip->saddr, ntohs(ports[0]), &ip->daddr, ntohs(ports[1]), - rxq_index, flow_id, rc); - - return rc; -} - -bool __efx_filter_rfs_expire(struct efx_nic *efx, unsigned quota) -{ - struct efx_filter_state *state = efx->filter_state; - struct efx_filter_table *table = &state->table[EFX_FILTER_TABLE_RX_IP]; - unsigned mask = table->size - 1; - unsigned index; - unsigned stop; - - if (!spin_trylock_bh(&state->lock)) - return false; - - index = state->rps_expire_index; - stop = (index + quota) & mask; - - while (index != stop) { - if (test_bit(index, table->used_bitmap) && - table->spec[index].priority == EFX_FILTER_PRI_HINT && - rps_may_expire_flow(efx->net_dev, - table->spec[index].dmaq_id, - state->rps_flow_id[index], index)) { - netif_info(efx, rx_status, efx->net_dev, - "expiring filter %d [flow %u]\n", - index, state->rps_flow_id[index]); - efx_filter_table_clear_entry(efx, table, index); - } - index = (index + 1) & mask; - } - - state->rps_expire_index = stop; - if (table->used == 0) - efx_filter_table_reset_search_depth(table); - - spin_unlock_bh(&state->lock); - return true; -} - -#endif /* CONFIG_RFS_ACCEL */ diff --git a/drivers/net/sfc/filter.h b/drivers/net/sfc/filter.h deleted file mode 100644 index 872f213..0000000 --- a/drivers/net/sfc/filter.h +++ /dev/null @@ -1,112 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_FILTER_H -#define EFX_FILTER_H - -#include <linux/types.h> - -/** - * enum efx_filter_type - type of hardware filter - * @EFX_FILTER_TCP_FULL: Matching TCP/IPv4 4-tuple - * @EFX_FILTER_TCP_WILD: Matching TCP/IPv4 destination (host, port) - * @EFX_FILTER_UDP_FULL: Matching UDP/IPv4 4-tuple - * @EFX_FILTER_UDP_WILD: Matching UDP/IPv4 destination (host, port) - * @EFX_FILTER_MAC_FULL: Matching Ethernet destination MAC address, VID - * @EFX_FILTER_MAC_WILD: Matching Ethernet destination MAC address - * @EFX_FILTER_UNSPEC: Match type is unspecified - * - * Falcon NICs only support the TCP/IPv4 and UDP/IPv4 filter types. - */ -enum efx_filter_type { - EFX_FILTER_TCP_FULL = 0, - EFX_FILTER_TCP_WILD, - EFX_FILTER_UDP_FULL, - EFX_FILTER_UDP_WILD, - EFX_FILTER_MAC_FULL = 4, - EFX_FILTER_MAC_WILD, - EFX_FILTER_TYPE_COUNT, /* number of specific types */ - EFX_FILTER_UNSPEC = 0xf, -}; - -/** - * enum efx_filter_priority - priority of a hardware filter specification - * @EFX_FILTER_PRI_HINT: Performance hint - * @EFX_FILTER_PRI_MANUAL: Manually configured filter - * @EFX_FILTER_PRI_REQUIRED: Required for correct behaviour - */ -enum efx_filter_priority { - EFX_FILTER_PRI_HINT = 0, - EFX_FILTER_PRI_MANUAL, - EFX_FILTER_PRI_REQUIRED, -}; - -/** - * enum efx_filter_flags - flags for hardware filter specifications - * @EFX_FILTER_FLAG_RX_RSS: Use RSS to spread across multiple queues. - * By default, matching packets will be delivered only to the - * specified queue. If this flag is set, they will be delivered - * to a range of queues offset from the specified queue number - * according to the indirection table. - * @EFX_FILTER_FLAG_RX_SCATTER: Enable DMA scatter on the receiving - * queue. - * @EFX_FILTER_FLAG_RX_OVERRIDE_IP: Enables a MAC filter to override - * any IP filter that matches the same packet. By default, IP - * filters take precedence. - * @EFX_FILTER_FLAG_RX: Filter is for RX - */ -enum efx_filter_flags { - EFX_FILTER_FLAG_RX_RSS = 0x01, - EFX_FILTER_FLAG_RX_SCATTER = 0x02, - EFX_FILTER_FLAG_RX_OVERRIDE_IP = 0x04, - EFX_FILTER_FLAG_RX = 0x08, -}; - -/** - * struct efx_filter_spec - specification for a hardware filter - * @type: Type of match to be performed, from &enum efx_filter_type - * @priority: Priority of the filter, from &enum efx_filter_priority - * @flags: Miscellaneous flags, from &enum efx_filter_flags - * @dmaq_id: Source/target queue index - * @data: Match data (type-dependent) - * - * Use the efx_filter_set_*() functions to initialise the @type and - * @data fields. - */ -struct efx_filter_spec { - u8 type:4; - u8 priority:4; - u8 flags; - u16 dmaq_id; - u32 data[3]; -}; - -static inline void efx_filter_init_rx(struct efx_filter_spec *spec, - enum efx_filter_priority priority, - enum efx_filter_flags flags, - unsigned rxq_id) -{ - spec->type = EFX_FILTER_UNSPEC; - spec->priority = priority; - spec->flags = EFX_FILTER_FLAG_RX | flags; - spec->dmaq_id = rxq_id; -} - -extern int efx_filter_set_ipv4_local(struct efx_filter_spec *spec, u8 proto, - __be32 host, __be16 port); -extern int efx_filter_set_ipv4_full(struct efx_filter_spec *spec, u8 proto, - __be32 host, __be16 port, - __be32 rhost, __be16 rport); -extern int efx_filter_set_eth_local(struct efx_filter_spec *spec, - u16 vid, const u8 *addr); -enum { - EFX_FILTER_VID_UNSPEC = 0xffff, -}; - -#endif /* EFX_FILTER_H */ diff --git a/drivers/net/sfc/io.h b/drivers/net/sfc/io.h deleted file mode 100644 index cc97880..0000000 --- a/drivers/net/sfc/io.h +++ /dev/null @@ -1,299 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_IO_H -#define EFX_IO_H - -#include <linux/io.h> -#include <linux/spinlock.h> - -/************************************************************************** - * - * NIC register I/O - * - ************************************************************************** - * - * Notes on locking strategy: - * - * Most CSRs are 128-bit (oword) and therefore cannot be read or - * written atomically. Access from the host is buffered by the Bus - * Interface Unit (BIU). Whenever the host reads from the lowest - * address of such a register, or from the address of a different such - * register, the BIU latches the register's value. Subsequent reads - * from higher addresses of the same register will read the latched - * value. Whenever the host writes part of such a register, the BIU - * collects the written value and does not write to the underlying - * register until all 4 dwords have been written. A similar buffering - * scheme applies to host access to the NIC's 64-bit SRAM. - * - * Access to different CSRs and 64-bit SRAM words must be serialised, - * since interleaved access can result in lost writes or lost - * information from read-to-clear fields. We use efx_nic::biu_lock - * for this. (We could use separate locks for read and write, but - * this is not normally a performance bottleneck.) - * - * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are - * 128-bit but are special-cased in the BIU to avoid the need for - * locking in the host: - * - * - They are write-only. - * - The semantics of writing to these registers are such that - * replacing the low 96 bits with zero does not affect functionality. - * - If the host writes to the last dword address of such a register - * (i.e. the high 32 bits) the underlying register will always be - * written. If the collector and the current write together do not - * provide values for all 128 bits of the register, the low 96 bits - * will be written as zero. - * - If the host writes to the address of any other part of such a - * register while the collector already holds values for some other - * register, the write is discarded and the collector maintains its - * current state. - */ - -#if BITS_PER_LONG == 64 -#define EFX_USE_QWORD_IO 1 -#endif - -#ifdef EFX_USE_QWORD_IO -static inline void _efx_writeq(struct efx_nic *efx, __le64 value, - unsigned int reg) -{ - __raw_writeq((__force u64)value, efx->membase + reg); -} -static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg) -{ - return (__force __le64)__raw_readq(efx->membase + reg); -} -#endif - -static inline void _efx_writed(struct efx_nic *efx, __le32 value, - unsigned int reg) -{ - __raw_writel((__force u32)value, efx->membase + reg); -} -static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg) -{ - return (__force __le32)__raw_readl(efx->membase + reg); -} - -/* Write a normal 128-bit CSR, locking as appropriate. */ -static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value, - unsigned int reg) -{ - unsigned long flags __attribute__ ((unused)); - - netif_vdbg(efx, hw, efx->net_dev, - "writing register %x with " EFX_OWORD_FMT "\n", reg, - EFX_OWORD_VAL(*value)); - - spin_lock_irqsave(&efx->biu_lock, flags); -#ifdef EFX_USE_QWORD_IO - _efx_writeq(efx, value->u64[0], reg + 0); - _efx_writeq(efx, value->u64[1], reg + 8); -#else - _efx_writed(efx, value->u32[0], reg + 0); - _efx_writed(efx, value->u32[1], reg + 4); - _efx_writed(efx, value->u32[2], reg + 8); - _efx_writed(efx, value->u32[3], reg + 12); -#endif - wmb(); - mmiowb(); - spin_unlock_irqrestore(&efx->biu_lock, flags); -} - -/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */ -static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase, - efx_qword_t *value, unsigned int index) -{ - unsigned int addr = index * sizeof(*value); - unsigned long flags __attribute__ ((unused)); - - netif_vdbg(efx, hw, efx->net_dev, - "writing SRAM address %x with " EFX_QWORD_FMT "\n", - addr, EFX_QWORD_VAL(*value)); - - spin_lock_irqsave(&efx->biu_lock, flags); -#ifdef EFX_USE_QWORD_IO - __raw_writeq((__force u64)value->u64[0], membase + addr); -#else - __raw_writel((__force u32)value->u32[0], membase + addr); - __raw_writel((__force u32)value->u32[1], membase + addr + 4); -#endif - wmb(); - mmiowb(); - spin_unlock_irqrestore(&efx->biu_lock, flags); -} - -/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */ -static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value, - unsigned int reg) -{ - netif_vdbg(efx, hw, efx->net_dev, - "writing register %x with "EFX_DWORD_FMT"\n", - reg, EFX_DWORD_VAL(*value)); - - /* No lock required */ - _efx_writed(efx, value->u32[0], reg); - wmb(); -} - -/* Read a 128-bit CSR, locking as appropriate. */ -static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value, - unsigned int reg) -{ - unsigned long flags __attribute__ ((unused)); - - spin_lock_irqsave(&efx->biu_lock, flags); - value->u32[0] = _efx_readd(efx, reg + 0); - rmb(); - value->u32[1] = _efx_readd(efx, reg + 4); - value->u32[2] = _efx_readd(efx, reg + 8); - value->u32[3] = _efx_readd(efx, reg + 12); - spin_unlock_irqrestore(&efx->biu_lock, flags); - - netif_vdbg(efx, hw, efx->net_dev, - "read from register %x, got " EFX_OWORD_FMT "\n", reg, - EFX_OWORD_VAL(*value)); -} - -/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */ -static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase, - efx_qword_t *value, unsigned int index) -{ - unsigned int addr = index * sizeof(*value); - unsigned long flags __attribute__ ((unused)); - - spin_lock_irqsave(&efx->biu_lock, flags); -#ifdef EFX_USE_QWORD_IO - value->u64[0] = (__force __le64)__raw_readq(membase + addr); -#else - value->u32[0] = (__force __le32)__raw_readl(membase + addr); - rmb(); - value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4); -#endif - spin_unlock_irqrestore(&efx->biu_lock, flags); - - netif_vdbg(efx, hw, efx->net_dev, - "read from SRAM address %x, got "EFX_QWORD_FMT"\n", - addr, EFX_QWORD_VAL(*value)); -} - -/* Read a 32-bit CSR or SRAM */ -static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value, - unsigned int reg) -{ - value->u32[0] = _efx_readd(efx, reg); - netif_vdbg(efx, hw, efx->net_dev, - "read from register %x, got "EFX_DWORD_FMT"\n", - reg, EFX_DWORD_VAL(*value)); -} - -/* Write a 128-bit CSR forming part of a table */ -static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value, - unsigned int reg, unsigned int index) -{ - efx_writeo(efx, value, reg + index * sizeof(efx_oword_t)); -} - -/* Read a 128-bit CSR forming part of a table */ -static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value, - unsigned int reg, unsigned int index) -{ - efx_reado(efx, value, reg + index * sizeof(efx_oword_t)); -} - -/* Write a 32-bit CSR forming part of a table, or 32-bit SRAM */ -static inline void efx_writed_table(struct efx_nic *efx, efx_dword_t *value, - unsigned int reg, unsigned int index) -{ - efx_writed(efx, value, reg + index * sizeof(efx_oword_t)); -} - -/* Read a 32-bit CSR forming part of a table, or 32-bit SRAM */ -static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value, - unsigned int reg, unsigned int index) -{ - efx_readd(efx, value, reg + index * sizeof(efx_dword_t)); -} - -/* Page-mapped register block size */ -#define EFX_PAGE_BLOCK_SIZE 0x2000 - -/* Calculate offset to page-mapped register block */ -#define EFX_PAGED_REG(page, reg) \ - ((page) * EFX_PAGE_BLOCK_SIZE + (reg)) - -/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */ -static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value, - unsigned int reg, unsigned int page) -{ - reg = EFX_PAGED_REG(page, reg); - - netif_vdbg(efx, hw, efx->net_dev, - "writing register %x with " EFX_OWORD_FMT "\n", reg, - EFX_OWORD_VAL(*value)); - -#ifdef EFX_USE_QWORD_IO - _efx_writeq(efx, value->u64[0], reg + 0); - _efx_writeq(efx, value->u64[1], reg + 8); -#else - _efx_writed(efx, value->u32[0], reg + 0); - _efx_writed(efx, value->u32[1], reg + 4); - _efx_writed(efx, value->u32[2], reg + 8); - _efx_writed(efx, value->u32[3], reg + 12); -#endif - wmb(); -} -#define efx_writeo_page(efx, value, reg, page) \ - _efx_writeo_page(efx, value, \ - reg + \ - BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \ - page) - -/* Write a page-mapped 32-bit CSR (EVQ_RPTR or the high bits of - * RX_DESC_UPD or TX_DESC_UPD) - */ -static inline void _efx_writed_page(struct efx_nic *efx, efx_dword_t *value, - unsigned int reg, unsigned int page) -{ - efx_writed(efx, value, EFX_PAGED_REG(page, reg)); -} -#define efx_writed_page(efx, value, reg, page) \ - _efx_writed_page(efx, value, \ - reg + \ - BUILD_BUG_ON_ZERO((reg) != 0x400 && (reg) != 0x83c \ - && (reg) != 0xa1c), \ - page) - -/* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug - * in the BIU means that writes to TIMER_COMMAND[0] invalidate the - * collector register. - */ -static inline void _efx_writed_page_locked(struct efx_nic *efx, - efx_dword_t *value, - unsigned int reg, - unsigned int page) -{ - unsigned long flags __attribute__ ((unused)); - - if (page == 0) { - spin_lock_irqsave(&efx->biu_lock, flags); - efx_writed(efx, value, EFX_PAGED_REG(page, reg)); - spin_unlock_irqrestore(&efx->biu_lock, flags); - } else { - efx_writed(efx, value, EFX_PAGED_REG(page, reg)); - } -} -#define efx_writed_page_locked(efx, value, reg, page) \ - _efx_writed_page_locked(efx, value, \ - reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \ - page) - -#endif /* EFX_IO_H */ diff --git a/drivers/net/sfc/mac.h b/drivers/net/sfc/mac.h deleted file mode 100644 index d6a255d..0000000 --- a/drivers/net/sfc/mac.h +++ /dev/null @@ -1,21 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2009 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_MAC_H -#define EFX_MAC_H - -#include "net_driver.h" - -extern const struct efx_mac_operations falcon_xmac_operations; -extern const struct efx_mac_operations efx_mcdi_mac_operations; -extern int efx_mcdi_mac_stats(struct efx_nic *efx, dma_addr_t dma_addr, - u32 dma_len, int enable, int clear); - -#endif diff --git a/drivers/net/sfc/mcdi.c b/drivers/net/sfc/mcdi.c deleted file mode 100644 index 3dd45ed..0000000 --- a/drivers/net/sfc/mcdi.c +++ /dev/null @@ -1,1203 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2008-2011 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/delay.h> -#include "net_driver.h" -#include "nic.h" -#include "io.h" -#include "regs.h" -#include "mcdi_pcol.h" -#include "phy.h" - -/************************************************************************** - * - * Management-Controller-to-Driver Interface - * - ************************************************************************** - */ - -/* Software-defined structure to the shared-memory */ -#define CMD_NOTIFY_PORT0 0 -#define CMD_NOTIFY_PORT1 4 -#define CMD_PDU_PORT0 0x008 -#define CMD_PDU_PORT1 0x108 -#define REBOOT_FLAG_PORT0 0x3f8 -#define REBOOT_FLAG_PORT1 0x3fc - -#define MCDI_RPC_TIMEOUT 10 /*seconds */ - -#define MCDI_PDU(efx) \ - (efx_port_num(efx) ? CMD_PDU_PORT1 : CMD_PDU_PORT0) -#define MCDI_DOORBELL(efx) \ - (efx_port_num(efx) ? CMD_NOTIFY_PORT1 : CMD_NOTIFY_PORT0) -#define MCDI_REBOOT_FLAG(efx) \ - (efx_port_num(efx) ? REBOOT_FLAG_PORT1 : REBOOT_FLAG_PORT0) - -#define SEQ_MASK \ - EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) - -static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx) -{ - struct siena_nic_data *nic_data; - EFX_BUG_ON_PARANOID(efx_nic_rev(efx) < EFX_REV_SIENA_A0); - nic_data = efx->nic_data; - return &nic_data->mcdi; -} - -static inline void -efx_mcdi_readd(struct efx_nic *efx, efx_dword_t *value, unsigned reg) -{ - struct siena_nic_data *nic_data = efx->nic_data; - value->u32[0] = (__force __le32)__raw_readl(nic_data->mcdi_smem + reg); -} - -static inline void -efx_mcdi_writed(struct efx_nic *efx, const efx_dword_t *value, unsigned reg) -{ - struct siena_nic_data *nic_data = efx->nic_data; - __raw_writel((__force u32)value->u32[0], nic_data->mcdi_smem + reg); -} - -void efx_mcdi_init(struct efx_nic *efx) -{ - struct efx_mcdi_iface *mcdi; - - if (efx_nic_rev(efx) < EFX_REV_SIENA_A0) - return; - - mcdi = efx_mcdi(efx); - init_waitqueue_head(&mcdi->wq); - spin_lock_init(&mcdi->iface_lock); - atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT); - mcdi->mode = MCDI_MODE_POLL; - - (void) efx_mcdi_poll_reboot(efx); -} - -static void efx_mcdi_copyin(struct efx_nic *efx, unsigned cmd, - const u8 *inbuf, size_t inlen) -{ - struct efx_mcdi_iface *mcdi = efx_mcdi(efx); - unsigned pdu = MCDI_PDU(efx); - unsigned doorbell = MCDI_DOORBELL(efx); - unsigned int i; - efx_dword_t hdr; - u32 xflags, seqno; - - BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT); - BUG_ON(inlen & 3 || inlen >= 0x100); - - seqno = mcdi->seqno & SEQ_MASK; - xflags = 0; - if (mcdi->mode == MCDI_MODE_EVENTS) - xflags |= MCDI_HEADER_XFLAGS_EVREQ; - - EFX_POPULATE_DWORD_6(hdr, - MCDI_HEADER_RESPONSE, 0, - MCDI_HEADER_RESYNC, 1, - MCDI_HEADER_CODE, cmd, - MCDI_HEADER_DATALEN, inlen, - MCDI_HEADER_SEQ, seqno, - MCDI_HEADER_XFLAGS, xflags); - - efx_mcdi_writed(efx, &hdr, pdu); - - for (i = 0; i < inlen; i += 4) - efx_mcdi_writed(efx, (const efx_dword_t *)(inbuf + i), - pdu + 4 + i); - - /* ring the doorbell with a distinctive value */ - EFX_POPULATE_DWORD_1(hdr, EFX_DWORD_0, 0x45789abc); - efx_mcdi_writed(efx, &hdr, doorbell); -} - -static void efx_mcdi_copyout(struct efx_nic *efx, u8 *outbuf, size_t outlen) -{ - struct efx_mcdi_iface *mcdi = efx_mcdi(efx); - unsigned int pdu = MCDI_PDU(efx); - int i; - - BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT); - BUG_ON(outlen & 3 || outlen >= 0x100); - - for (i = 0; i < outlen; i += 4) - efx_mcdi_readd(efx, (efx_dword_t *)(outbuf + i), pdu + 4 + i); -} - -static int efx_mcdi_poll(struct efx_nic *efx) -{ - struct efx_mcdi_iface *mcdi = efx_mcdi(efx); - unsigned int time, finish; - unsigned int respseq, respcmd, error; - unsigned int pdu = MCDI_PDU(efx); - unsigned int rc, spins; - efx_dword_t reg; - - /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ - rc = -efx_mcdi_poll_reboot(efx); - if (rc) - goto out; - - /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, - * because generally mcdi responses are fast. After that, back off - * and poll once a jiffy (approximately) - */ - spins = TICK_USEC; - finish = get_seconds() + MCDI_RPC_TIMEOUT; - - while (1) { - if (spins != 0) { - --spins; - udelay(1); - } else { - schedule_timeout_uninterruptible(1); - } - - time = get_seconds(); - - efx_mcdi_readd(efx, ®, pdu); - - /* All 1's indicates that shared memory is in reset (and is - * not a valid header). Wait for it to come out reset before - * completing the command */ - if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) != 0xffffffff && - EFX_DWORD_FIELD(reg, MCDI_HEADER_RESPONSE)) - break; - - if (time >= finish) - return -ETIMEDOUT; - } - - mcdi->resplen = EFX_DWORD_FIELD(reg, MCDI_HEADER_DATALEN); - respseq = EFX_DWORD_FIELD(reg, MCDI_HEADER_SEQ); - respcmd = EFX_DWORD_FIELD(reg, MCDI_HEADER_CODE); - error = EFX_DWORD_FIELD(reg, MCDI_HEADER_ERROR); - - if (error && mcdi->resplen == 0) { - netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); - rc = EIO; - } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { - netif_err(efx, hw, efx->net_dev, - "MC response mismatch tx seq 0x%x rx seq 0x%x\n", - respseq, mcdi->seqno); - rc = EIO; - } else if (error) { - efx_mcdi_readd(efx, ®, pdu + 4); - switch (EFX_DWORD_FIELD(reg, EFX_DWORD_0)) { -#define TRANSLATE_ERROR(name) \ - case MC_CMD_ERR_ ## name: \ - rc = name; \ - break - TRANSLATE_ERROR(ENOENT); - TRANSLATE_ERROR(EINTR); - TRANSLATE_ERROR(EACCES); - TRANSLATE_ERROR(EBUSY); - TRANSLATE_ERROR(EINVAL); - TRANSLATE_ERROR(EDEADLK); - TRANSLATE_ERROR(ENOSYS); - TRANSLATE_ERROR(ETIME); -#undef TRANSLATE_ERROR - default: - rc = EIO; - break; - } - } else - rc = 0; - -out: - mcdi->resprc = rc; - if (rc) - mcdi->resplen = 0; - - /* Return rc=0 like wait_event_timeout() */ - return 0; -} - -/* Test and clear MC-rebooted flag for this port/function */ -int efx_mcdi_poll_reboot(struct efx_nic *efx) -{ - unsigned int addr = MCDI_REBOOT_FLAG(efx); - efx_dword_t reg; - uint32_t value; - - if (efx_nic_rev(efx) < EFX_REV_SIENA_A0) - return false; - - efx_mcdi_readd(efx, ®, addr); - value = EFX_DWORD_FIELD(reg, EFX_DWORD_0); - - if (value == 0) - return 0; - - EFX_ZERO_DWORD(reg); - efx_mcdi_writed(efx, ®, addr); - - if (value == MC_STATUS_DWORD_ASSERT) - return -EINTR; - else - return -EIO; -} - -static void efx_mcdi_acquire(struct efx_mcdi_iface *mcdi) -{ - /* Wait until the interface becomes QUIESCENT and we win the race - * to mark it RUNNING. */ - wait_event(mcdi->wq, - atomic_cmpxchg(&mcdi->state, - MCDI_STATE_QUIESCENT, - MCDI_STATE_RUNNING) - == MCDI_STATE_QUIESCENT); -} - -static int efx_mcdi_await_completion(struct efx_nic *efx) -{ - struct efx_mcdi_iface *mcdi = efx_mcdi(efx); - - if (wait_event_timeout( - mcdi->wq, - atomic_read(&mcdi->state) == MCDI_STATE_COMPLETED, - msecs_to_jiffies(MCDI_RPC_TIMEOUT * 1000)) == 0) - return -ETIMEDOUT; - - /* Check if efx_mcdi_set_mode() switched us back to polled completions. - * In which case, poll for completions directly. If efx_mcdi_ev_cpl() - * completed the request first, then we'll just end up completing the - * request again, which is safe. - * - * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which - * wait_event_timeout() implicitly provides. - */ - if (mcdi->mode == MCDI_MODE_POLL) - return efx_mcdi_poll(efx); - - return 0; -} - -static bool efx_mcdi_complete(struct efx_mcdi_iface *mcdi) -{ - /* If the interface is RUNNING, then move to COMPLETED and wake any - * waiters. If the interface isn't in RUNNING then we've received a - * duplicate completion after we've already transitioned back to - * QUIESCENT. [A subsequent invocation would increment seqno, so would - * have failed the seqno check]. - */ - if (atomic_cmpxchg(&mcdi->state, - MCDI_STATE_RUNNING, - MCDI_STATE_COMPLETED) == MCDI_STATE_RUNNING) { - wake_up(&mcdi->wq); - return true; - } - - return false; -} - -static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) -{ - atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT); - wake_up(&mcdi->wq); -} - -static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, - unsigned int datalen, unsigned int errno) -{ - struct efx_mcdi_iface *mcdi = efx_mcdi(efx); - bool wake = false; - - spin_lock(&mcdi->iface_lock); - - if ((seqno ^ mcdi->seqno) & SEQ_MASK) { - if (mcdi->credits) - /* The request has been cancelled */ - --mcdi->credits; - else - netif_err(efx, hw, efx->net_dev, - "MC response mismatch tx seq 0x%x rx " - "seq 0x%x\n", seqno, mcdi->seqno); - } else { - mcdi->resprc = errno; - mcdi->resplen = datalen; - - wake = true; - } - - spin_unlock(&mcdi->iface_lock); - - if (wake) - efx_mcdi_complete(mcdi); -} - -/* Issue the given command by writing the data into the shared memory PDU, - * ring the doorbell and wait for completion. Copyout the result. */ -int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, - const u8 *inbuf, size_t inlen, u8 *outbuf, size_t outlen, - size_t *outlen_actual) -{ - struct efx_mcdi_iface *mcdi = efx_mcdi(efx); - int rc; - BUG_ON(efx_nic_rev(efx) < EFX_REV_SIENA_A0); - - efx_mcdi_acquire(mcdi); - - /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ - spin_lock_bh(&mcdi->iface_lock); - ++mcdi->seqno; - spin_unlock_bh(&mcdi->iface_lock); - - efx_mcdi_copyin(efx, cmd, inbuf, inlen); - - if (mcdi->mode == MCDI_MODE_POLL) - rc = efx_mcdi_poll(efx); - else - rc = efx_mcdi_await_completion(efx); - - if (rc != 0) { - /* Close the race with efx_mcdi_ev_cpl() executing just too late - * and completing a request we've just cancelled, by ensuring - * that the seqno check therein fails. - */ - spin_lock_bh(&mcdi->iface_lock); - ++mcdi->seqno; - ++mcdi->credits; - spin_unlock_bh(&mcdi->iface_lock); - - netif_err(efx, hw, efx->net_dev, - "MC command 0x%x inlen %d mode %d timed out\n", - cmd, (int)inlen, mcdi->mode); - } else { - size_t resplen; - - /* At the very least we need a memory barrier here to ensure - * we pick up changes from efx_mcdi_ev_cpl(). Protect against - * a spurious efx_mcdi_ev_cpl() running concurrently by - * acquiring the iface_lock. */ - spin_lock_bh(&mcdi->iface_lock); - rc = -mcdi->resprc; - resplen = mcdi->resplen; - spin_unlock_bh(&mcdi->iface_lock); - - if (rc == 0) { - efx_mcdi_copyout(efx, outbuf, - min(outlen, mcdi->resplen + 3) & ~0x3); - if (outlen_actual != NULL) - *outlen_actual = resplen; - } else if (cmd == MC_CMD_REBOOT && rc == -EIO) - ; /* Don't reset if MC_CMD_REBOOT returns EIO */ - else if (rc == -EIO || rc == -EINTR) { - netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n", - -rc); - efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); - } else - netif_dbg(efx, hw, efx->net_dev, - "MC command 0x%x inlen %d failed rc=%d\n", - cmd, (int)inlen, -rc); - } - - efx_mcdi_release(mcdi); - return rc; -} - -void efx_mcdi_mode_poll(struct efx_nic *efx) -{ - struct efx_mcdi_iface *mcdi; - - if (efx_nic_rev(efx) < EFX_REV_SIENA_A0) - return; - - mcdi = efx_mcdi(efx); - if (mcdi->mode == MCDI_MODE_POLL) - return; - - /* We can switch from event completion to polled completion, because - * mcdi requests are always completed in shared memory. We do this by - * switching the mode to POLL'd then completing the request. - * efx_mcdi_await_completion() will then call efx_mcdi_poll(). - * - * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), - * which efx_mcdi_complete() provides for us. - */ - mcdi->mode = MCDI_MODE_POLL; - - efx_mcdi_complete(mcdi); -} - -void efx_mcdi_mode_event(struct efx_nic *efx) -{ - struct efx_mcdi_iface *mcdi; - - if (efx_nic_rev(efx) < EFX_REV_SIENA_A0) - return; - - mcdi = efx_mcdi(efx); - - if (mcdi->mode == MCDI_MODE_EVENTS) - return; - - /* We can't switch from polled to event completion in the middle of a - * request, because the completion method is specified in the request. - * So acquire the interface to serialise the requestors. We don't need - * to acquire the iface_lock to change the mode here, but we do need a - * write memory barrier ensure that efx_mcdi_rpc() sees it, which - * efx_mcdi_acquire() provides. - */ - efx_mcdi_acquire(mcdi); - mcdi->mode = MCDI_MODE_EVENTS; - efx_mcdi_release(mcdi); -} - -static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) -{ - struct efx_mcdi_iface *mcdi = efx_mcdi(efx); - - /* If there is an outstanding MCDI request, it has been terminated - * either by a BADASSERT or REBOOT event. If the mcdi interface is - * in polled mode, then do nothing because the MC reboot handler will - * set the header correctly. However, if the mcdi interface is waiting - * for a CMDDONE event it won't receive it [and since all MCDI events - * are sent to the same queue, we can't be racing with - * efx_mcdi_ev_cpl()] - * - * There's a race here with efx_mcdi_rpc(), because we might receive - * a REBOOT event *before* the request has been copied out. In polled - * mode (during startup) this is irrelevant, because efx_mcdi_complete() - * is ignored. In event mode, this condition is just an edge-case of - * receiving a REBOOT event after posting the MCDI request. Did the mc - * reboot before or after the copyout? The best we can do always is - * just return failure. - */ - spin_lock(&mcdi->iface_lock); - if (efx_mcdi_complete(mcdi)) { - if (mcdi->mode == MCDI_MODE_EVENTS) { - mcdi->resprc = rc; - mcdi->resplen = 0; - ++mcdi->credits; - } - } else - /* Nobody was waiting for an MCDI request, so trigger a reset */ - efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); - - spin_unlock(&mcdi->iface_lock); -} - -static unsigned int efx_mcdi_event_link_speed[] = { - [MCDI_EVENT_LINKCHANGE_SPEED_100M] = 100, - [MCDI_EVENT_LINKCHANGE_SPEED_1G] = 1000, - [MCDI_EVENT_LINKCHANGE_SPEED_10G] = 10000, -}; - - -static void efx_mcdi_process_link_change(struct efx_nic *efx, efx_qword_t *ev) -{ - u32 flags, fcntl, speed, lpa; - - speed = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_SPEED); - EFX_BUG_ON_PARANOID(speed >= ARRAY_SIZE(efx_mcdi_event_link_speed)); - speed = efx_mcdi_event_link_speed[speed]; - - flags = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LINK_FLAGS); - fcntl = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_FCNTL); - lpa = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LP_CAP); - - /* efx->link_state is only modified by efx_mcdi_phy_get_link(), - * which is only run after flushing the event queues. Therefore, it - * is safe to modify the link state outside of the mac_lock here. - */ - efx_mcdi_phy_decode_link(efx, &efx->link_state, speed, flags, fcntl); - - efx_mcdi_phy_check_fcntl(efx, lpa); - - efx_link_status_changed(efx); -} - -static const char *sensor_names[] = { - [MC_CMD_SENSOR_CONTROLLER_TEMP] = "Controller temp. sensor", - [MC_CMD_SENSOR_PHY_COMMON_TEMP] = "PHY shared temp. sensor", - [MC_CMD_SENSOR_CONTROLLER_COOLING] = "Controller cooling", - [MC_CMD_SENSOR_PHY0_TEMP] = "PHY 0 temp. sensor", - [MC_CMD_SENSOR_PHY0_COOLING] = "PHY 0 cooling", - [MC_CMD_SENSOR_PHY1_TEMP] = "PHY 1 temp. sensor", - [MC_CMD_SENSOR_PHY1_COOLING] = "PHY 1 cooling", - [MC_CMD_SENSOR_IN_1V0] = "1.0V supply sensor", - [MC_CMD_SENSOR_IN_1V2] = "1.2V supply sensor", - [MC_CMD_SENSOR_IN_1V8] = "1.8V supply sensor", - [MC_CMD_SENSOR_IN_2V5] = "2.5V supply sensor", - [MC_CMD_SENSOR_IN_3V3] = "3.3V supply sensor", - [MC_CMD_SENSOR_IN_12V0] = "12V supply sensor" -}; - -static const char *sensor_status_names[] = { - [MC_CMD_SENSOR_STATE_OK] = "OK", - [MC_CMD_SENSOR_STATE_WARNING] = "Warning", - [MC_CMD_SENSOR_STATE_FATAL] = "Fatal", - [MC_CMD_SENSOR_STATE_BROKEN] = "Device failure", -}; - -static void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev) -{ - unsigned int monitor, state, value; - const char *name, *state_txt; - monitor = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_MONITOR); - state = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_STATE); - value = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_VALUE); - /* Deal gracefully with the board having more drivers than we - * know about, but do not expect new sensor states. */ - name = (monitor >= ARRAY_SIZE(sensor_names)) - ? "No sensor name available" : - sensor_names[monitor]; - EFX_BUG_ON_PARANOID(state >= ARRAY_SIZE(sensor_status_names)); - state_txt = sensor_status_names[state]; - - netif_err(efx, hw, efx->net_dev, - "Sensor %d (%s) reports condition '%s' for raw value %d\n", - monitor, name, state_txt, value); -} - -/* Called from falcon_process_eventq for MCDI events */ -void efx_mcdi_process_event(struct efx_channel *channel, - efx_qword_t *event) -{ - struct efx_nic *efx = channel->efx; - int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); - u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); - - switch (code) { - case MCDI_EVENT_CODE_BADSSERT: - netif_err(efx, hw, efx->net_dev, - "MC watchdog or assertion failure at 0x%x\n", data); - efx_mcdi_ev_death(efx, EINTR); - break; - - case MCDI_EVENT_CODE_PMNOTICE: - netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); - break; - - case MCDI_EVENT_CODE_CMDDONE: - efx_mcdi_ev_cpl(efx, - MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), - MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), - MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); - break; - - case MCDI_EVENT_CODE_LINKCHANGE: - efx_mcdi_process_link_change(efx, event); - break; - case MCDI_EVENT_CODE_SENSOREVT: - efx_mcdi_sensor_event(efx, event); - break; - case MCDI_EVENT_CODE_SCHEDERR: - netif_info(efx, hw, efx->net_dev, - "MC Scheduler error address=0x%x\n", data); - break; - case MCDI_EVENT_CODE_REBOOT: - netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); - efx_mcdi_ev_death(efx, EIO); - break; - case MCDI_EVENT_CODE_MAC_STATS_DMA: - /* MAC stats are gather lazily. We can ignore this. */ - break; - - default: - netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n", - code); - } -} - -/************************************************************************** - * - * Specific request functions - * - ************************************************************************** - */ - -void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) -{ - u8 outbuf[ALIGN(MC_CMD_GET_VERSION_V1_OUT_LEN, 4)]; - size_t outlength; - const __le16 *ver_words; - int rc; - - BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); - - rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, - outbuf, sizeof(outbuf), &outlength); - if (rc) - goto fail; - - if (outlength < MC_CMD_GET_VERSION_V1_OUT_LEN) { - rc = -EIO; - goto fail; - } - - ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); - snprintf(buf, len, "%u.%u.%u.%u", - le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), - le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); - return; - -fail: - netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - buf[0] = 0; -} - -int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, - bool *was_attached) -{ - u8 inbuf[MC_CMD_DRV_ATTACH_IN_LEN]; - u8 outbuf[MC_CMD_DRV_ATTACH_OUT_LEN]; - size_t outlen; - int rc; - - MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, - driver_operating ? 1 : 0); - MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); - - rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), - outbuf, sizeof(outbuf), &outlen); - if (rc) - goto fail; - if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { - rc = -EIO; - goto fail; - } - - if (was_attached != NULL) - *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); - return 0; - -fail: - netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, - u16 *fw_subtype_list) -{ - uint8_t outbuf[MC_CMD_GET_BOARD_CFG_OUT_LEN]; - size_t outlen; - int port_num = efx_port_num(efx); - int offset; - int rc; - - BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); - - rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, - outbuf, sizeof(outbuf), &outlen); - if (rc) - goto fail; - - if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LEN) { - rc = -EIO; - goto fail; - } - - offset = (port_num) - ? MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST - : MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST; - if (mac_address) - memcpy(mac_address, outbuf + offset, ETH_ALEN); - if (fw_subtype_list) - memcpy(fw_subtype_list, - outbuf + MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST, - MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_LEN); - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", - __func__, rc, (int)outlen); - - return rc; -} - -int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) -{ - u8 inbuf[MC_CMD_LOG_CTRL_IN_LEN]; - u32 dest = 0; - int rc; - - if (uart) - dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; - if (evq) - dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; - - MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); - MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); - - BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); - - rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), - NULL, 0, NULL); - if (rc) - goto fail; - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) -{ - u8 outbuf[MC_CMD_NVRAM_TYPES_OUT_LEN]; - size_t outlen; - int rc; - - BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); - - rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, - outbuf, sizeof(outbuf), &outlen); - if (rc) - goto fail; - if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { - rc = -EIO; - goto fail; - } - - *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", - __func__, rc); - return rc; -} - -int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, - size_t *size_out, size_t *erase_size_out, - bool *protected_out) -{ - u8 inbuf[MC_CMD_NVRAM_INFO_IN_LEN]; - u8 outbuf[MC_CMD_NVRAM_INFO_OUT_LEN]; - size_t outlen; - int rc; - - MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); - - rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), - outbuf, sizeof(outbuf), &outlen); - if (rc) - goto fail; - if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { - rc = -EIO; - goto fail; - } - - *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); - *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); - *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & - (1 << MC_CMD_NVRAM_PROTECTED_LBN)); - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) -{ - u8 inbuf[MC_CMD_NVRAM_UPDATE_START_IN_LEN]; - int rc; - - MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); - - BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); - - rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), - NULL, 0, NULL); - if (rc) - goto fail; - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, - loff_t offset, u8 *buffer, size_t length) -{ - u8 inbuf[MC_CMD_NVRAM_READ_IN_LEN]; - u8 outbuf[MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)]; - size_t outlen; - int rc; - - MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); - MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); - MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); - - rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), - outbuf, sizeof(outbuf), &outlen); - if (rc) - goto fail; - - memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, - loff_t offset, const u8 *buffer, size_t length) -{ - u8 inbuf[MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)]; - int rc; - - MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); - MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); - MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); - memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); - - BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); - - rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, - ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), - NULL, 0, NULL); - if (rc) - goto fail; - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, - loff_t offset, size_t length) -{ - u8 inbuf[MC_CMD_NVRAM_ERASE_IN_LEN]; - int rc; - - MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); - MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); - MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); - - BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); - - rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), - NULL, 0, NULL); - if (rc) - goto fail; - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) -{ - u8 inbuf[MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN]; - int rc; - - MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); - - BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0); - - rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), - NULL, 0, NULL); - if (rc) - goto fail; - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) -{ - u8 inbuf[MC_CMD_NVRAM_TEST_IN_LEN]; - u8 outbuf[MC_CMD_NVRAM_TEST_OUT_LEN]; - int rc; - - MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); - - rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), - outbuf, sizeof(outbuf), NULL); - if (rc) - return rc; - - switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { - case MC_CMD_NVRAM_TEST_PASS: - case MC_CMD_NVRAM_TEST_NOTSUPP: - return 0; - default: - return -EIO; - } -} - -int efx_mcdi_nvram_test_all(struct efx_nic *efx) -{ - u32 nvram_types; - unsigned int type; - int rc; - - rc = efx_mcdi_nvram_types(efx, &nvram_types); - if (rc) - goto fail1; - - type = 0; - while (nvram_types != 0) { - if (nvram_types & 1) { - rc = efx_mcdi_nvram_test(efx, type); - if (rc) - goto fail2; - } - type++; - nvram_types >>= 1; - } - - return 0; - -fail2: - netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", - __func__, type); -fail1: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -static int efx_mcdi_read_assertion(struct efx_nic *efx) -{ - u8 inbuf[MC_CMD_GET_ASSERTS_IN_LEN]; - u8 outbuf[MC_CMD_GET_ASSERTS_OUT_LEN]; - unsigned int flags, index, ofst; - const char *reason; - size_t outlen; - int retry; - int rc; - - /* Attempt to read any stored assertion state before we reboot - * the mcfw out of the assertion handler. Retry twice, once - * because a boot-time assertion might cause this command to fail - * with EINTR. And once again because GET_ASSERTS can race with - * MC_CMD_REBOOT running on the other port. */ - retry = 2; - do { - MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); - rc = efx_mcdi_rpc(efx, MC_CMD_GET_ASSERTS, - inbuf, MC_CMD_GET_ASSERTS_IN_LEN, - outbuf, sizeof(outbuf), &outlen); - } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); - - if (rc) - return rc; - if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) - return -EIO; - - /* Print out any recorded assertion state */ - flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); - if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) - return 0; - - reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) - ? "system-level assertion" - : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) - ? "thread-level assertion" - : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) - ? "watchdog reset" - : "unknown assertion"; - netif_err(efx, hw, efx->net_dev, - "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, - MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), - MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); - - /* Print out the registers */ - ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST; - for (index = 1; index < 32; index++) { - netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", index, - MCDI_DWORD2(outbuf, ofst)); - ofst += sizeof(efx_dword_t); - } - - return 0; -} - -static void efx_mcdi_exit_assertion(struct efx_nic *efx) -{ - u8 inbuf[MC_CMD_REBOOT_IN_LEN]; - - /* Atomically reboot the mcfw out of the assertion handler */ - BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); - MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, - MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); - efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, - NULL, 0, NULL); -} - -int efx_mcdi_handle_assertion(struct efx_nic *efx) -{ - int rc; - - rc = efx_mcdi_read_assertion(efx); - if (rc) - return rc; - - efx_mcdi_exit_assertion(efx); - - return 0; -} - -void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) -{ - u8 inbuf[MC_CMD_SET_ID_LED_IN_LEN]; - int rc; - - BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); - BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); - BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); - - BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); - - MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); - - rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), - NULL, 0, NULL); - if (rc) - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", - __func__, rc); -} - -int efx_mcdi_reset_port(struct efx_nic *efx) -{ - int rc = efx_mcdi_rpc(efx, MC_CMD_PORT_RESET, NULL, 0, NULL, 0, NULL); - if (rc) - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", - __func__, rc); - return rc; -} - -int efx_mcdi_reset_mc(struct efx_nic *efx) -{ - u8 inbuf[MC_CMD_REBOOT_IN_LEN]; - int rc; - - BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); - MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); - rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), - NULL, 0, NULL); - /* White is black, and up is down */ - if (rc == -EIO) - return 0; - if (rc == 0) - rc = -EIO; - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, - const u8 *mac, int *id_out) -{ - u8 inbuf[MC_CMD_WOL_FILTER_SET_IN_LEN]; - u8 outbuf[MC_CMD_WOL_FILTER_SET_OUT_LEN]; - size_t outlen; - int rc; - - MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); - MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, - MC_CMD_FILTER_MODE_SIMPLE); - memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN); - - rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), - outbuf, sizeof(outbuf), &outlen); - if (rc) - goto fail; - - if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { - rc = -EIO; - goto fail; - } - - *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); - - return 0; - -fail: - *id_out = -1; - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; - -} - - -int -efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out) -{ - return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); -} - - -int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) -{ - u8 outbuf[MC_CMD_WOL_FILTER_GET_OUT_LEN]; - size_t outlen; - int rc; - - rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, - outbuf, sizeof(outbuf), &outlen); - if (rc) - goto fail; - - if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { - rc = -EIO; - goto fail; - } - - *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); - - return 0; - -fail: - *id_out = -1; - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - - -int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) -{ - u8 inbuf[MC_CMD_WOL_FILTER_REMOVE_IN_LEN]; - int rc; - - MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); - - rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), - NULL, 0, NULL); - if (rc) - goto fail; - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - - -int efx_mcdi_wol_filter_reset(struct efx_nic *efx) -{ - int rc; - - rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); - if (rc) - goto fail; - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - diff --git a/drivers/net/sfc/mcdi.h b/drivers/net/sfc/mcdi.h deleted file mode 100644 index aced2a7..0000000 --- a/drivers/net/sfc/mcdi.h +++ /dev/null @@ -1,130 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2008-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_MCDI_H -#define EFX_MCDI_H - -/** - * enum efx_mcdi_state - * @MCDI_STATE_QUIESCENT: No pending MCDI requests. If the caller holds the - * mcdi_lock then they are able to move to MCDI_STATE_RUNNING - * @MCDI_STATE_RUNNING: There is an MCDI request pending. Only the thread that - * moved into this state is allowed to move out of it. - * @MCDI_STATE_COMPLETED: An MCDI request has completed, but the owning thread - * has not yet consumed the result. For all other threads, equivalent to - * MCDI_STATE_RUNNING. - */ -enum efx_mcdi_state { - MCDI_STATE_QUIESCENT, - MCDI_STATE_RUNNING, - MCDI_STATE_COMPLETED, -}; - -enum efx_mcdi_mode { - MCDI_MODE_POLL, - MCDI_MODE_EVENTS, -}; - -/** - * struct efx_mcdi_iface - * @state: Interface state. Waited for by mcdi_wq. - * @wq: Wait queue for threads waiting for state != STATE_RUNNING - * @iface_lock: Protects @credits, @seqno, @resprc, @resplen - * @mode: Poll for mcdi completion, or wait for an mcdi_event. - * Serialised by @lock - * @seqno: The next sequence number to use for mcdi requests. - * Serialised by @lock - * @credits: Number of spurious MCDI completion events allowed before we - * trigger a fatal error. Protected by @lock - * @resprc: Returned MCDI completion - * @resplen: Returned payload length - */ -struct efx_mcdi_iface { - atomic_t state; - wait_queue_head_t wq; - spinlock_t iface_lock; - enum efx_mcdi_mode mode; - unsigned int credits; - unsigned int seqno; - unsigned int resprc; - size_t resplen; -}; - -extern void efx_mcdi_init(struct efx_nic *efx); - -extern int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, const u8 *inbuf, - size_t inlen, u8 *outbuf, size_t outlen, - size_t *outlen_actual); - -extern int efx_mcdi_poll_reboot(struct efx_nic *efx); -extern void efx_mcdi_mode_poll(struct efx_nic *efx); -extern void efx_mcdi_mode_event(struct efx_nic *efx); - -extern void efx_mcdi_process_event(struct efx_channel *channel, - efx_qword_t *event); - -#define MCDI_PTR2(_buf, _ofst) \ - (((u8 *)_buf) + _ofst) -#define MCDI_SET_DWORD2(_buf, _ofst, _value) \ - EFX_POPULATE_DWORD_1(*((efx_dword_t *)MCDI_PTR2(_buf, _ofst)), \ - EFX_DWORD_0, _value) -#define MCDI_DWORD2(_buf, _ofst) \ - EFX_DWORD_FIELD(*((efx_dword_t *)MCDI_PTR2(_buf, _ofst)), \ - EFX_DWORD_0) -#define MCDI_QWORD2(_buf, _ofst) \ - EFX_QWORD_FIELD64(*((efx_qword_t *)MCDI_PTR2(_buf, _ofst)), \ - EFX_QWORD_0) - -#define MCDI_PTR(_buf, _ofst) \ - MCDI_PTR2(_buf, MC_CMD_ ## _ofst ## _OFST) -#define MCDI_SET_DWORD(_buf, _ofst, _value) \ - MCDI_SET_DWORD2(_buf, MC_CMD_ ## _ofst ## _OFST, _value) -#define MCDI_DWORD(_buf, _ofst) \ - MCDI_DWORD2(_buf, MC_CMD_ ## _ofst ## _OFST) -#define MCDI_QWORD(_buf, _ofst) \ - MCDI_QWORD2(_buf, MC_CMD_ ## _ofst ## _OFST) - -#define MCDI_EVENT_FIELD(_ev, _field) \ - EFX_QWORD_FIELD(_ev, MCDI_EVENT_ ## _field) - -extern void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len); -extern int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, - bool *was_attached_out); -extern int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, - u16 *fw_subtype_list); -extern int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, - u32 dest_evq); -extern int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out); -extern int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, - size_t *size_out, size_t *erase_size_out, - bool *protected_out); -extern int efx_mcdi_nvram_update_start(struct efx_nic *efx, - unsigned int type); -extern int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, - loff_t offset, u8 *buffer, size_t length); -extern int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, - loff_t offset, const u8 *buffer, - size_t length); -#define EFX_MCDI_NVRAM_LEN_MAX 128 -extern int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, - loff_t offset, size_t length); -extern int efx_mcdi_nvram_update_finish(struct efx_nic *efx, - unsigned int type); -extern int efx_mcdi_nvram_test_all(struct efx_nic *efx); -extern int efx_mcdi_handle_assertion(struct efx_nic *efx); -extern void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode); -extern int efx_mcdi_reset_port(struct efx_nic *efx); -extern int efx_mcdi_reset_mc(struct efx_nic *efx); -extern int efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, - const u8 *mac, int *id_out); -extern int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out); -extern int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id); -extern int efx_mcdi_wol_filter_reset(struct efx_nic *efx); - -#endif /* EFX_MCDI_H */ diff --git a/drivers/net/sfc/mcdi_mac.c b/drivers/net/sfc/mcdi_mac.c deleted file mode 100644 index 50c2077..0000000 --- a/drivers/net/sfc/mcdi_mac.c +++ /dev/null @@ -1,145 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2009-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include "net_driver.h" -#include "efx.h" -#include "mac.h" -#include "mcdi.h" -#include "mcdi_pcol.h" - -static int efx_mcdi_set_mac(struct efx_nic *efx) -{ - u32 reject, fcntl; - u8 cmdbytes[MC_CMD_SET_MAC_IN_LEN]; - - memcpy(cmdbytes + MC_CMD_SET_MAC_IN_ADDR_OFST, - efx->net_dev->dev_addr, ETH_ALEN); - - MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_MTU, - EFX_MAX_FRAME_LEN(efx->net_dev->mtu)); - MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_DRAIN, 0); - - /* The MCDI command provides for controlling accept/reject - * of broadcast packets too, but the driver doesn't currently - * expose this. */ - reject = (efx->promiscuous) ? 0 : - (1 << MC_CMD_SET_MAC_IN_REJECT_UNCST_LBN); - MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_REJECT, reject); - - switch (efx->wanted_fc) { - case EFX_FC_RX | EFX_FC_TX: - fcntl = MC_CMD_FCNTL_BIDIR; - break; - case EFX_FC_RX: - fcntl = MC_CMD_FCNTL_RESPOND; - break; - default: - fcntl = MC_CMD_FCNTL_OFF; - break; - } - if (efx->wanted_fc & EFX_FC_AUTO) - fcntl = MC_CMD_FCNTL_AUTO; - - MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_FCNTL, fcntl); - - return efx_mcdi_rpc(efx, MC_CMD_SET_MAC, cmdbytes, sizeof(cmdbytes), - NULL, 0, NULL); -} - -static int efx_mcdi_get_mac_faults(struct efx_nic *efx, u32 *faults) -{ - u8 outbuf[MC_CMD_GET_LINK_OUT_LEN]; - size_t outlength; - int rc; - - BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0); - - rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0, - outbuf, sizeof(outbuf), &outlength); - if (rc) - goto fail; - - *faults = MCDI_DWORD(outbuf, GET_LINK_OUT_MAC_FAULT); - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", - __func__, rc); - return rc; -} - -int efx_mcdi_mac_stats(struct efx_nic *efx, dma_addr_t dma_addr, - u32 dma_len, int enable, int clear) -{ - u8 inbuf[MC_CMD_MAC_STATS_IN_LEN]; - int rc; - efx_dword_t *cmd_ptr; - int period = enable ? 1000 : 0; - u32 addr_hi; - u32 addr_lo; - - BUILD_BUG_ON(MC_CMD_MAC_STATS_OUT_LEN != 0); - - addr_lo = ((u64)dma_addr) >> 0; - addr_hi = ((u64)dma_addr) >> 32; - - MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_ADDR_LO, addr_lo); - MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_ADDR_HI, addr_hi); - cmd_ptr = (efx_dword_t *)MCDI_PTR(inbuf, MAC_STATS_IN_CMD); - EFX_POPULATE_DWORD_7(*cmd_ptr, - MC_CMD_MAC_STATS_CMD_DMA, !!enable, - MC_CMD_MAC_STATS_CMD_CLEAR, clear, - MC_CMD_MAC_STATS_CMD_PERIODIC_CHANGE, 1, - MC_CMD_MAC_STATS_CMD_PERIODIC_ENABLE, !!enable, - MC_CMD_MAC_STATS_CMD_PERIODIC_CLEAR, 0, - MC_CMD_MAC_STATS_CMD_PERIODIC_NOEVENT, 1, - MC_CMD_MAC_STATS_CMD_PERIOD_MS, period); - MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len); - - rc = efx_mcdi_rpc(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf), - NULL, 0, NULL); - if (rc) - goto fail; - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: %s failed rc=%d\n", - __func__, enable ? "enable" : "disable", rc); - return rc; -} - -static int efx_mcdi_mac_reconfigure(struct efx_nic *efx) -{ - int rc; - - rc = efx_mcdi_set_mac(efx); - if (rc != 0) - return rc; - - /* Restore the multicast hash registers. */ - efx->type->push_multicast_hash(efx); - - return 0; -} - - -static bool efx_mcdi_mac_check_fault(struct efx_nic *efx) -{ - u32 faults; - int rc = efx_mcdi_get_mac_faults(efx, &faults); - return (rc != 0) || (faults != 0); -} - - -const struct efx_mac_operations efx_mcdi_mac_operations = { - .reconfigure = efx_mcdi_mac_reconfigure, - .update_stats = efx_port_dummy_op_void, - .check_fault = efx_mcdi_mac_check_fault, -}; diff --git a/drivers/net/sfc/mcdi_pcol.h b/drivers/net/sfc/mcdi_pcol.h deleted file mode 100644 index 41fe06f..0000000 --- a/drivers/net/sfc/mcdi_pcol.h +++ /dev/null @@ -1,1775 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2009-2011 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - - -#ifndef MCDI_PCOL_H -#define MCDI_PCOL_H - -/* Values to be written into FMCR_CZ_RESET_STATE_REG to control boot. */ -/* Power-on reset state */ -#define MC_FW_STATE_POR (1) -/* If this is set in MC_RESET_STATE_REG then it should be - * possible to jump into IMEM without loading code from flash. */ -#define MC_FW_WARM_BOOT_OK (2) -/* The MC main image has started to boot. */ -#define MC_FW_STATE_BOOTING (4) -/* The Scheduler has started. */ -#define MC_FW_STATE_SCHED (8) - -/* Values to be written to the per-port status dword in shared - * memory on reboot and assert */ -#define MC_STATUS_DWORD_REBOOT (0xb007b007) -#define MC_STATUS_DWORD_ASSERT (0xdeaddead) - -/* The current version of the MCDI protocol. - * - * Note that the ROM burnt into the card only talks V0, so at the very - * least every driver must support version 0 and MCDI_PCOL_VERSION - */ -#define MCDI_PCOL_VERSION 1 - -/** - * MCDI version 1 - * - * Each MCDI request starts with an MCDI_HEADER, which is a 32byte - * structure, filled in by the client. - * - * 0 7 8 16 20 22 23 24 31 - * | CODE | R | LEN | SEQ | Rsvd | E | R | XFLAGS | - * | | | - * | | \--- Response - * | \------- Error - * \------------------------------ Resync (always set) - * - * The client writes it's request into MC shared memory, and rings the - * doorbell. Each request is completed by either by the MC writting - * back into shared memory, or by writting out an event. - * - * All MCDI commands support completion by shared memory response. Each - * request may also contain additional data (accounted for by HEADER.LEN), - * and some response's may also contain additional data (again, accounted - * for by HEADER.LEN). - * - * Some MCDI commands support completion by event, in which any associated - * response data is included in the event. - * - * The protocol requires one response to be delivered for every request, a - * request should not be sent unless the response for the previous request - * has been received (either by polling shared memory, or by receiving - * an event). - */ - -/** Request/Response structure */ -#define MCDI_HEADER_OFST 0 -#define MCDI_HEADER_CODE_LBN 0 -#define MCDI_HEADER_CODE_WIDTH 7 -#define MCDI_HEADER_RESYNC_LBN 7 -#define MCDI_HEADER_RESYNC_WIDTH 1 -#define MCDI_HEADER_DATALEN_LBN 8 -#define MCDI_HEADER_DATALEN_WIDTH 8 -#define MCDI_HEADER_SEQ_LBN 16 -#define MCDI_HEADER_RSVD_LBN 20 -#define MCDI_HEADER_RSVD_WIDTH 2 -#define MCDI_HEADER_SEQ_WIDTH 4 -#define MCDI_HEADER_ERROR_LBN 22 -#define MCDI_HEADER_ERROR_WIDTH 1 -#define MCDI_HEADER_RESPONSE_LBN 23 -#define MCDI_HEADER_RESPONSE_WIDTH 1 -#define MCDI_HEADER_XFLAGS_LBN 24 -#define MCDI_HEADER_XFLAGS_WIDTH 8 -/* Request response using event */ -#define MCDI_HEADER_XFLAGS_EVREQ 0x01 - -/* Maximum number of payload bytes */ -#define MCDI_CTL_SDU_LEN_MAX 0xfc - -/* The MC can generate events for two reasons: - * - To complete a shared memory request if XFLAGS_EVREQ was set - * - As a notification (link state, i2c event), controlled - * via MC_CMD_LOG_CTRL - * - * Both events share a common structure: - * - * 0 32 33 36 44 52 60 - * | Data | Cont | Level | Src | Code | Rsvd | - * | - * \ There is another event pending in this notification - * - * If Code==CMDDONE, then the fields are further interpreted as: - * - * - LEVEL==INFO Command succeeded - * - LEVEL==ERR Command failed - * - * 0 8 16 24 32 - * | Seq | Datalen | Errno | Rsvd | - * - * These fields are taken directly out of the standard MCDI header, i.e., - * LEVEL==ERR, Datalen == 0 => Reboot - * - * Events can be squirted out of the UART (using LOG_CTRL) without a - * MCDI header. An event can be distinguished from a MCDI response by - * examining the first byte which is 0xc0. This corresponds to the - * non-existent MCDI command MC_CMD_DEBUG_LOG. - * - * 0 7 8 - * | command | Resync | = 0xc0 - * - * Since the event is written in big-endian byte order, this works - * providing bits 56-63 of the event are 0xc0. - * - * 56 60 63 - * | Rsvd | Code | = 0xc0 - * - * Which means for convenience the event code is 0xc for all MC - * generated events. - */ -#define FSE_AZ_EV_CODE_MCDI_EVRESPONSE 0xc - -#define MCDI_EVENT_DATA_LBN 0 -#define MCDI_EVENT_DATA_WIDTH 32 -#define MCDI_EVENT_CONT_LBN 32 -#define MCDI_EVENT_CONT_WIDTH 1 -#define MCDI_EVENT_LEVEL_LBN 33 -#define MCDI_EVENT_LEVEL_WIDTH 3 -#define MCDI_EVENT_LEVEL_INFO (0) -#define MCDI_EVENT_LEVEL_WARN (1) -#define MCDI_EVENT_LEVEL_ERR (2) -#define MCDI_EVENT_LEVEL_FATAL (3) -#define MCDI_EVENT_SRC_LBN 36 -#define MCDI_EVENT_SRC_WIDTH 8 -#define MCDI_EVENT_CODE_LBN 44 -#define MCDI_EVENT_CODE_WIDTH 8 -#define MCDI_EVENT_CODE_BADSSERT (1) -#define MCDI_EVENT_CODE_PMNOTICE (2) -#define MCDI_EVENT_CODE_CMDDONE (3) -#define MCDI_EVENT_CMDDONE_SEQ_LBN 0 -#define MCDI_EVENT_CMDDONE_SEQ_WIDTH 8 -#define MCDI_EVENT_CMDDONE_DATALEN_LBN 8 -#define MCDI_EVENT_CMDDONE_DATALEN_WIDTH 8 -#define MCDI_EVENT_CMDDONE_ERRNO_LBN 16 -#define MCDI_EVENT_CMDDONE_ERRNO_WIDTH 8 -#define MCDI_EVENT_CODE_LINKCHANGE (4) -#define MCDI_EVENT_LINKCHANGE_LP_CAP_LBN 0 -#define MCDI_EVENT_LINKCHANGE_LP_CAP_WIDTH 16 -#define MCDI_EVENT_LINKCHANGE_SPEED_LBN 16 -#define MCDI_EVENT_LINKCHANGE_SPEED_WIDTH 4 -#define MCDI_EVENT_LINKCHANGE_SPEED_100M 1 -#define MCDI_EVENT_LINKCHANGE_SPEED_1G 2 -#define MCDI_EVENT_LINKCHANGE_SPEED_10G 3 -#define MCDI_EVENT_LINKCHANGE_FCNTL_LBN 20 -#define MCDI_EVENT_LINKCHANGE_FCNTL_WIDTH 4 -#define MCDI_EVENT_LINKCHANGE_LINK_FLAGS_LBN 24 -#define MCDI_EVENT_LINKCHANGE_LINK_FLAGS_WIDTH 8 -#define MCDI_EVENT_CODE_SENSOREVT (5) -#define MCDI_EVENT_SENSOREVT_MONITOR_LBN 0 -#define MCDI_EVENT_SENSOREVT_MONITOR_WIDTH 8 -#define MCDI_EVENT_SENSOREVT_STATE_LBN 8 -#define MCDI_EVENT_SENSOREVT_STATE_WIDTH 8 -#define MCDI_EVENT_SENSOREVT_VALUE_LBN 16 -#define MCDI_EVENT_SENSOREVT_VALUE_WIDTH 16 -#define MCDI_EVENT_CODE_SCHEDERR (6) -#define MCDI_EVENT_CODE_REBOOT (7) -#define MCDI_EVENT_CODE_MAC_STATS_DMA (8) -#define MCDI_EVENT_MAC_STATS_DMA_GENERATION_LBN 0 -#define MCDI_EVENT_MAC_STATS_DMA_GENERATION_WIDTH 32 - -/* Non-existent command target */ -#define MC_CMD_ERR_ENOENT 2 -/* assert() has killed the MC */ -#define MC_CMD_ERR_EINTR 4 -/* Caller does not hold required locks */ -#define MC_CMD_ERR_EACCES 13 -/* Resource is currently unavailable (e.g. lock contention) */ -#define MC_CMD_ERR_EBUSY 16 -/* Invalid argument to target */ -#define MC_CMD_ERR_EINVAL 22 -/* Non-recursive resource is already acquired */ -#define MC_CMD_ERR_EDEADLK 35 -/* Operation not implemented */ -#define MC_CMD_ERR_ENOSYS 38 -/* Operation timed out */ -#define MC_CMD_ERR_ETIME 62 - -#define MC_CMD_ERR_CODE_OFST 0 - - -/* MC_CMD_READ32: (debug, variadic out) - * Read multiple 32byte words from MC memory - */ -#define MC_CMD_READ32 0x01 -#define MC_CMD_READ32_IN_LEN 8 -#define MC_CMD_READ32_IN_ADDR_OFST 0 -#define MC_CMD_READ32_IN_NUMWORDS_OFST 4 -#define MC_CMD_READ32_OUT_LEN(_numwords) \ - (4 * (_numwords)) -#define MC_CMD_READ32_OUT_BUFFER_OFST 0 - -/* MC_CMD_WRITE32: (debug, variadic in) - * Write multiple 32byte words to MC memory - */ -#define MC_CMD_WRITE32 0x02 -#define MC_CMD_WRITE32_IN_LEN(_numwords) (((_numwords) * 4) + 4) -#define MC_CMD_WRITE32_IN_ADDR_OFST 0 -#define MC_CMD_WRITE32_IN_BUFFER_OFST 4 -#define MC_CMD_WRITE32_OUT_LEN 0 - -/* MC_CMD_COPYCODE: (debug) - * Copy MC code between two locations and jump - */ -#define MC_CMD_COPYCODE 0x03 -#define MC_CMD_COPYCODE_IN_LEN 16 -#define MC_CMD_COPYCODE_IN_SRC_ADDR_OFST 0 -#define MC_CMD_COPYCODE_IN_DEST_ADDR_OFST 4 -#define MC_CMD_COPYCODE_IN_NUMWORDS_OFST 8 -#define MC_CMD_COPYCODE_IN_JUMP_OFST 12 -/* Control should return to the caller rather than jumping */ -#define MC_CMD_COPYCODE_JUMP_NONE 1 -#define MC_CMD_COPYCODE_OUT_LEN 0 - -/* MC_CMD_SET_FUNC: (debug) - * Select function for function-specific commands. - */ -#define MC_CMD_SET_FUNC 0x04 -#define MC_CMD_SET_FUNC_IN_LEN 4 -#define MC_CMD_SET_FUNC_IN_FUNC_OFST 0 -#define MC_CMD_SET_FUNC_OUT_LEN 0 - -/* MC_CMD_GET_BOOT_STATUS: - * Get the instruction address from which the MC booted. - */ -#define MC_CMD_GET_BOOT_STATUS 0x05 -#define MC_CMD_GET_BOOT_STATUS_IN_LEN 0 -#define MC_CMD_GET_BOOT_STATUS_OUT_LEN 8 -#define MC_CMD_GET_BOOT_STATUS_OUT_BOOT_OFFSET_OFST 0 -#define MC_CMD_GET_BOOT_STATUS_OUT_FLAGS_OFST 4 -/* Reboot caused by watchdog */ -#define MC_CMD_GET_BOOT_STATUS_FLAGS_WATCHDOG_LBN (0) -#define MC_CMD_GET_BOOT_STATUS_FLAGS_WATCHDOG_WIDTH (1) -/* MC booted from primary flash partition */ -#define MC_CMD_GET_BOOT_STATUS_FLAGS_PRIMARY_LBN (1) -#define MC_CMD_GET_BOOT_STATUS_FLAGS_PRIMARY_WIDTH (1) -/* MC booted from backup flash partition */ -#define MC_CMD_GET_BOOT_STATUS_FLAGS_BACKUP_LBN (2) -#define MC_CMD_GET_BOOT_STATUS_FLAGS_BACKUP_WIDTH (1) - -/* MC_CMD_GET_ASSERTS: (debug, variadic out) - * Get (and optionally clear) the current assertion status. - * - * Only OUT.GLOBAL_FLAGS is guaranteed to exist in the completion - * payload. The other fields will only be present if - * OUT.GLOBAL_FLAGS != NO_FAILS - */ -#define MC_CMD_GET_ASSERTS 0x06 -#define MC_CMD_GET_ASSERTS_IN_LEN 4 -#define MC_CMD_GET_ASSERTS_IN_CLEAR_OFST 0 -#define MC_CMD_GET_ASSERTS_OUT_LEN 140 -/* Assertion status flag */ -#define MC_CMD_GET_ASSERTS_OUT_GLOBAL_FLAGS_OFST 0 -/*! No assertions have failed. */ -#define MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS 1 -/*! A system-level assertion has failed. */ -#define MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL 2 -/*! A thread-level assertion has failed. */ -#define MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL 3 -/*! The system was reset by the watchdog. */ -#define MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED 4 -/* Failing PC value */ -#define MC_CMD_GET_ASSERTS_OUT_SAVED_PC_OFFS_OFST 4 -/* Saved GP regs */ -#define MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST 8 -#define MC_CMD_GET_ASSERTS_OUT_GP_REGS_LEN 124 -/* Failing thread address */ -#define MC_CMD_GET_ASSERTS_OUT_THREAD_OFFS_OFST 132 - -/* MC_CMD_LOG_CTRL: - * Determine the output stream for various events and messages - */ -#define MC_CMD_LOG_CTRL 0x07 -#define MC_CMD_LOG_CTRL_IN_LEN 8 -#define MC_CMD_LOG_CTRL_IN_LOG_DEST_OFST 0 -#define MC_CMD_LOG_CTRL_IN_LOG_DEST_UART (1) -#define MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ (2) -#define MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ_OFST 4 -#define MC_CMD_LOG_CTRL_OUT_LEN 0 - -/* MC_CMD_GET_VERSION: - * Get version information about the MC firmware - */ -#define MC_CMD_GET_VERSION 0x08 -#define MC_CMD_GET_VERSION_IN_LEN 0 -#define MC_CMD_GET_VERSION_V0_OUT_LEN 4 -#define MC_CMD_GET_VERSION_V1_OUT_LEN 32 -#define MC_CMD_GET_VERSION_OUT_FIRMWARE_OFST 0 -/* Reserved version number to indicate "any" version. */ -#define MC_CMD_GET_VERSION_OUT_FIRMWARE_ANY 0xffffffff -/* The version response of a boot ROM awaiting rescue */ -#define MC_CMD_GET_VERSION_OUT_FIRMWARE_BOOTROM 0xb0070000 -#define MC_CMD_GET_VERSION_V1_OUT_PCOL_OFST 4 -/* 128bit mask of functions supported by the current firmware */ -#define MC_CMD_GET_VERSION_V1_OUT_SUPPORTED_FUNCS_OFST 8 -/* The command set exported by the boot ROM (MCDI v0) */ -#define MC_CMD_GET_VERSION_V0_SUPPORTED_FUNCS { \ - (1 << MC_CMD_READ32) | \ - (1 << MC_CMD_WRITE32) | \ - (1 << MC_CMD_COPYCODE) | \ - (1 << MC_CMD_GET_VERSION), \ - 0, 0, 0 } -#define MC_CMD_GET_VERSION_OUT_VERSION_OFST 24 - -/* Vectors in the boot ROM */ -/* Point to the copycode entry point. */ -#define MC_BOOTROM_COPYCODE_VEC (0x7f4) -/* Points to the recovery mode entry point. */ -#define MC_BOOTROM_NOFLASH_VEC (0x7f8) - -/* Test execution limits */ -#define MC_TESTEXEC_VARIANT_COUNT 16 -#define MC_TESTEXEC_RESULT_COUNT 7 - -/* MC_CMD_SET_TESTVARS: (debug, variadic in) - * Write variant words for test. - * - * The user supplies a bitmap of the variants they wish to set. - * They must ensure that IN.LEN >= 4 + 4 * ffs(BITMAP) - */ -#define MC_CMD_SET_TESTVARS 0x09 -#define MC_CMD_SET_TESTVARS_IN_LEN(_numwords) \ - (4 + 4*(_numwords)) -#define MC_CMD_SET_TESTVARS_IN_ARGS_BITMAP_OFST 0 -/* Up to MC_TESTEXEC_VARIANT_COUNT of 32byte words start here */ -#define MC_CMD_SET_TESTVARS_IN_ARGS_BUFFER_OFST 4 -#define MC_CMD_SET_TESTVARS_OUT_LEN 0 - -/* MC_CMD_GET_TESTRCS: (debug, variadic out) - * Return result words from test. - */ -#define MC_CMD_GET_TESTRCS 0x0a -#define MC_CMD_GET_TESTRCS_IN_LEN 4 -#define MC_CMD_GET_TESTRCS_IN_NUMWORDS_OFST 0 -#define MC_CMD_GET_TESTRCS_OUT_LEN(_numwords) \ - (4 * (_numwords)) -#define MC_CMD_GET_TESTRCS_OUT_BUFFER_OFST 0 - -/* MC_CMD_RUN_TEST: (debug) - * Run the test exported by this firmware image - */ -#define MC_CMD_RUN_TEST 0x0b -#define MC_CMD_RUN_TEST_IN_LEN 0 -#define MC_CMD_RUN_TEST_OUT_LEN 0 - -/* MC_CMD_CSR_READ32: (debug, variadic out) - * Read 32bit words from the indirect memory map - */ -#define MC_CMD_CSR_READ32 0x0c -#define MC_CMD_CSR_READ32_IN_LEN 12 -#define MC_CMD_CSR_READ32_IN_ADDR_OFST 0 -#define MC_CMD_CSR_READ32_IN_STEP_OFST 4 -#define MC_CMD_CSR_READ32_IN_NUMWORDS_OFST 8 -#define MC_CMD_CSR_READ32_OUT_LEN(_numwords) \ - (((_numwords) * 4) + 4) -/* IN.NUMWORDS of 32bit words start here */ -#define MC_CMD_CSR_READ32_OUT_BUFFER_OFST 0 -#define MC_CMD_CSR_READ32_OUT_IREG_STATUS_OFST(_numwords) \ - ((_numwords) * 4) - -/* MC_CMD_CSR_WRITE32: (debug, variadic in) - * Write 32bit dwords to the indirect memory map - */ -#define MC_CMD_CSR_WRITE32 0x0d -#define MC_CMD_CSR_WRITE32_IN_LEN(_numwords) \ - (((_numwords) * 4) + 8) -#define MC_CMD_CSR_WRITE32_IN_ADDR_OFST 0 -#define MC_CMD_CSR_WRITE32_IN_STEP_OFST 4 -/* Multiple 32bit words of data to write start here */ -#define MC_CMD_CSR_WRITE32_IN_BUFFER_OFST 8 -#define MC_CMD_CSR_WRITE32_OUT_LEN 4 -#define MC_CMD_CSR_WRITE32_OUT_STATUS_OFST 0 - -/* MC_CMD_JTAG_WORK: (debug, fpga only) - * Process JTAG work buffer for RBF acceleration. - * - * Host: bit count, (up to) 32 words of data to clock out to JTAG - * (bits 1,0=TMS,TDO for first bit; bits 3,2=TMS,TDO for second bit, etc.) - * MC: bit count, (up to) 32 words of data clocked in from JTAG - * (bit 0=TDI for first bit, bit 1=TDI for second bit, etc.; [31:16] unused) - */ -#define MC_CMD_JTAG_WORK 0x0e - -/* MC_CMD_STACKINFO: (debug, variadic out) - * Get stack information - * - * Host: nothing - * MC: (thread ptr, stack size, free space) for each thread in system - */ -#define MC_CMD_STACKINFO 0x0f - -/* MC_CMD_MDIO_READ: - * MDIO register read - */ -#define MC_CMD_MDIO_READ 0x10 -#define MC_CMD_MDIO_READ_IN_LEN 16 -#define MC_CMD_MDIO_READ_IN_BUS_OFST 0 -#define MC_CMD_MDIO_READ_IN_PRTAD_OFST 4 -#define MC_CMD_MDIO_READ_IN_DEVAD_OFST 8 -#define MC_CMD_MDIO_READ_IN_ADDR_OFST 12 -#define MC_CMD_MDIO_READ_OUT_LEN 8 -#define MC_CMD_MDIO_READ_OUT_VALUE_OFST 0 -#define MC_CMD_MDIO_READ_OUT_STATUS_OFST 4 - -/* MC_CMD_MDIO_WRITE: - * MDIO register write - */ -#define MC_CMD_MDIO_WRITE 0x11 -#define MC_CMD_MDIO_WRITE_IN_LEN 20 -#define MC_CMD_MDIO_WRITE_IN_BUS_OFST 0 -#define MC_CMD_MDIO_WRITE_IN_PRTAD_OFST 4 -#define MC_CMD_MDIO_WRITE_IN_DEVAD_OFST 8 -#define MC_CMD_MDIO_WRITE_IN_ADDR_OFST 12 -#define MC_CMD_MDIO_WRITE_IN_VALUE_OFST 16 -#define MC_CMD_MDIO_WRITE_OUT_LEN 4 -#define MC_CMD_MDIO_WRITE_OUT_STATUS_OFST 0 - -/* By default all the MCDI MDIO operations perform clause45 mode. - * If you want to use clause22 then set DEVAD = MC_CMD_MDIO_CLAUSE22. - */ -#define MC_CMD_MDIO_CLAUSE22 32 - -/* There are two MDIO buses: one for the internal PHY, and one for external - * devices. - */ -#define MC_CMD_MDIO_BUS_INTERNAL 0 -#define MC_CMD_MDIO_BUS_EXTERNAL 1 - -/* The MDIO commands return the raw status bits from the MDIO block. A "good" - * transaction should have the DONE bit set and all other bits clear. - */ -#define MC_CMD_MDIO_STATUS_GOOD 0x08 - - -/* MC_CMD_DBI_WRITE: (debug) - * Write DBI register(s) - * - * Host: address, byte-enables (and VF selection, and cs2 flag), - * value [,address ...] - * MC: nothing - */ -#define MC_CMD_DBI_WRITE 0x12 -#define MC_CMD_DBI_WRITE_IN_LEN(_numwords) \ - (12 * (_numwords)) -#define MC_CMD_DBI_WRITE_IN_ADDRESS_OFST(_word) \ - (((_word) * 12) + 0) -#define MC_CMD_DBI_WRITE_IN_BYTE_MASK_OFST(_word) \ - (((_word) * 12) + 4) -#define MC_CMD_DBI_WRITE_IN_VALUE_OFST(_word) \ - (((_word) * 12) + 8) -#define MC_CMD_DBI_WRITE_OUT_LEN 0 - -/* MC_CMD_DBI_READ: (debug) - * Read DBI register(s) - * - * Host: address, [,address ...] - * MC: value [,value ...] - * (note: this does not support reading from VFs, but is retained for backwards - * compatibility; see MC_CMD_DBI_READX below) - */ -#define MC_CMD_DBI_READ 0x13 -#define MC_CMD_DBI_READ_IN_LEN(_numwords) \ - (4 * (_numwords)) -#define MC_CMD_DBI_READ_OUT_LEN(_numwords) \ - (4 * (_numwords)) - -/* MC_CMD_PORT_READ32: (debug) - * Read a 32-bit register from the indirect port register map. - * - * The port to access is implied by the Shared memory channel used. - */ -#define MC_CMD_PORT_READ32 0x14 -#define MC_CMD_PORT_READ32_IN_LEN 4 -#define MC_CMD_PORT_READ32_IN_ADDR_OFST 0 -#define MC_CMD_PORT_READ32_OUT_LEN 8 -#define MC_CMD_PORT_READ32_OUT_VALUE_OFST 0 -#define MC_CMD_PORT_READ32_OUT_STATUS_OFST 4 - -/* MC_CMD_PORT_WRITE32: (debug) - * Write a 32-bit register to the indirect port register map. - * - * The port to access is implied by the Shared memory channel used. - */ -#define MC_CMD_PORT_WRITE32 0x15 -#define MC_CMD_PORT_WRITE32_IN_LEN 8 -#define MC_CMD_PORT_WRITE32_IN_ADDR_OFST 0 -#define MC_CMD_PORT_WRITE32_IN_VALUE_OFST 4 -#define MC_CMD_PORT_WRITE32_OUT_LEN 4 -#define MC_CMD_PORT_WRITE32_OUT_STATUS_OFST 0 - -/* MC_CMD_PORT_READ128: (debug) - * Read a 128-bit register from indirect port register map - * - * The port to access is implied by the Shared memory channel used. - */ -#define MC_CMD_PORT_READ128 0x16 -#define MC_CMD_PORT_READ128_IN_LEN 4 -#define MC_CMD_PORT_READ128_IN_ADDR_OFST 0 -#define MC_CMD_PORT_READ128_OUT_LEN 20 -#define MC_CMD_PORT_READ128_OUT_VALUE_OFST 0 -#define MC_CMD_PORT_READ128_OUT_STATUS_OFST 16 - -/* MC_CMD_PORT_WRITE128: (debug) - * Write a 128-bit register to indirect port register map. - * - * The port to access is implied by the Shared memory channel used. - */ -#define MC_CMD_PORT_WRITE128 0x17 -#define MC_CMD_PORT_WRITE128_IN_LEN 20 -#define MC_CMD_PORT_WRITE128_IN_ADDR_OFST 0 -#define MC_CMD_PORT_WRITE128_IN_VALUE_OFST 4 -#define MC_CMD_PORT_WRITE128_OUT_LEN 4 -#define MC_CMD_PORT_WRITE128_OUT_STATUS_OFST 0 - -/* MC_CMD_GET_BOARD_CFG: - * Returns the MC firmware configuration structure - * - * The FW_SUBTYPE_LIST contains a 16-bit value for each of the 12 types of - * NVRAM area. The values are defined in the firmware/mc/platform/<xxx>.c file - * for a specific board type, but otherwise have no meaning to the MC; they - * are used by the driver to manage selection of appropriate firmware updates. - */ -#define MC_CMD_GET_BOARD_CFG 0x18 -#define MC_CMD_GET_BOARD_CFG_IN_LEN 0 -#define MC_CMD_GET_BOARD_CFG_OUT_LEN 96 -#define MC_CMD_GET_BOARD_CFG_OUT_BOARD_TYPE_OFST 0 -#define MC_CMD_GET_BOARD_CFG_OUT_BOARD_NAME_OFST 4 -#define MC_CMD_GET_BOARD_CFG_OUT_BOARD_NAME_LEN 32 -#define MC_CMD_GET_BOARD_CFG_OUT_CAPABILITIES_PORT0_OFST 36 -#define MC_CMD_GET_BOARD_CFG_OUT_CAPABILITIES_PORT1_OFST 40 -#define MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST 44 -#define MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_LEN 6 -#define MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST 50 -#define MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_LEN 6 -#define MC_CMD_GET_BOARD_CFG_OUT_MAC_COUNT_PORT0_OFST 56 -#define MC_CMD_GET_BOARD_CFG_OUT_MAC_COUNT_PORT1_OFST 60 -#define MC_CMD_GET_BOARD_CFG_OUT_MAC_STRIDE_PORT0_OFST 64 -#define MC_CMD_GET_BOARD_CFG_OUT_MAC_STRIDE_PORT1_OFST 68 -#define MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST 72 -#define MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_LEN 24 - -/* MC_CMD_DBI_READX: (debug) - * Read DBI register(s) -- extended functionality - * - * Host: vf selection, address, [,vf selection ...] - * MC: value [,value ...] - */ -#define MC_CMD_DBI_READX 0x19 -#define MC_CMD_DBI_READX_IN_LEN(_numwords) \ - (8*(_numwords)) -#define MC_CMD_DBI_READX_OUT_LEN(_numwords) \ - (4*(_numwords)) - -/* MC_CMD_SET_RAND_SEED: - * Set the 16byte seed for the MC pseudo-random generator - */ -#define MC_CMD_SET_RAND_SEED 0x1a -#define MC_CMD_SET_RAND_SEED_IN_LEN 16 -#define MC_CMD_SET_RAND_SEED_IN_SEED_OFST 0 -#define MC_CMD_SET_RAND_SEED_OUT_LEN 0 - -/* MC_CMD_LTSSM_HIST: (debug) - * Retrieve the history of the LTSSM, if the build supports it. - * - * Host: nothing - * MC: variable number of LTSSM values, as bytes - * The history is read-to-clear. - */ -#define MC_CMD_LTSSM_HIST 0x1b - -/* MC_CMD_DRV_ATTACH: - * Inform MCPU that this port is managed on the host (i.e. driver active) - */ -#define MC_CMD_DRV_ATTACH 0x1c -#define MC_CMD_DRV_ATTACH_IN_LEN 8 -#define MC_CMD_DRV_ATTACH_IN_NEW_STATE_OFST 0 -#define MC_CMD_DRV_ATTACH_IN_UPDATE_OFST 4 -#define MC_CMD_DRV_ATTACH_OUT_LEN 4 -#define MC_CMD_DRV_ATTACH_OUT_OLD_STATE_OFST 0 - -/* MC_CMD_NCSI_PROD: (debug) - * Trigger an NC-SI event (and possibly an AEN in response) - */ -#define MC_CMD_NCSI_PROD 0x1d -#define MC_CMD_NCSI_PROD_IN_LEN 4 -#define MC_CMD_NCSI_PROD_IN_EVENTS_OFST 0 -#define MC_CMD_NCSI_PROD_LINKCHANGE_LBN 0 -#define MC_CMD_NCSI_PROD_LINKCHANGE_WIDTH 1 -#define MC_CMD_NCSI_PROD_RESET_LBN 1 -#define MC_CMD_NCSI_PROD_RESET_WIDTH 1 -#define MC_CMD_NCSI_PROD_DRVATTACH_LBN 2 -#define MC_CMD_NCSI_PROD_DRVATTACH_WIDTH 1 -#define MC_CMD_NCSI_PROD_OUT_LEN 0 - -/* Enumeration */ -#define MC_CMD_NCSI_PROD_LINKCHANGE 0 -#define MC_CMD_NCSI_PROD_RESET 1 -#define MC_CMD_NCSI_PROD_DRVATTACH 2 - -/* MC_CMD_DEVEL: (debug) - * Reserved for development - */ -#define MC_CMD_DEVEL 0x1e - -/* MC_CMD_SHMUART: (debug) - * Route UART output to circular buffer in shared memory instead. - */ -#define MC_CMD_SHMUART 0x1f -#define MC_CMD_SHMUART_IN_FLAG_OFST 0 -#define MC_CMD_SHMUART_IN_LEN 4 -#define MC_CMD_SHMUART_OUT_LEN 0 - -/* MC_CMD_PORT_RESET: - * Generic per-port reset. There is no equivalent for per-board reset. - * - * Locks required: None - * Return code: 0, ETIME - */ -#define MC_CMD_PORT_RESET 0x20 -#define MC_CMD_PORT_RESET_IN_LEN 0 -#define MC_CMD_PORT_RESET_OUT_LEN 0 - -/* MC_CMD_RESOURCE_LOCK: - * Generic resource lock/unlock interface. - * - * Locks required: None - * Return code: 0, - * EBUSY (if trylock is contended by other port), - * EDEADLK (if trylock is already acquired by this port) - * EINVAL (if unlock doesn't own the lock) - */ -#define MC_CMD_RESOURCE_LOCK 0x21 -#define MC_CMD_RESOURCE_LOCK_IN_LEN 8 -#define MC_CMD_RESOURCE_LOCK_IN_ACTION_OFST 0 -#define MC_CMD_RESOURCE_LOCK_ACTION_TRYLOCK 1 -#define MC_CMD_RESOURCE_LOCK_ACTION_UNLOCK 0 -#define MC_CMD_RESOURCE_LOCK_IN_RESOURCE_OFST 4 -#define MC_CMD_RESOURCE_LOCK_I2C 2 -#define MC_CMD_RESOURCE_LOCK_PHY 3 -#define MC_CMD_RESOURCE_LOCK_OUT_LEN 0 - -/* MC_CMD_SPI_COMMAND: (variadic in, variadic out) - * Read/Write to/from the SPI device. - * - * Locks required: SPI_LOCK - * Return code: 0, ETIME, EINVAL, EACCES (if SPI_LOCK is not held) - */ -#define MC_CMD_SPI_COMMAND 0x22 -#define MC_CMD_SPI_COMMAND_IN_LEN(_write_bytes) (12 + (_write_bytes)) -#define MC_CMD_SPI_COMMAND_IN_ARGS_OFST 0 -#define MC_CMD_SPI_COMMAND_IN_ARGS_ADDRESS_OFST 0 -#define MC_CMD_SPI_COMMAND_IN_ARGS_READ_BYTES_OFST 4 -#define MC_CMD_SPI_COMMAND_IN_ARGS_CHIP_SELECT_OFST 8 -/* Data to write here */ -#define MC_CMD_SPI_COMMAND_IN_WRITE_BUFFER_OFST 12 -#define MC_CMD_SPI_COMMAND_OUT_LEN(_read_bytes) (_read_bytes) -/* Data read here */ -#define MC_CMD_SPI_COMMAND_OUT_READ_BUFFER_OFST 0 - -/* MC_CMD_I2C_READ_WRITE: (variadic in, variadic out) - * Read/Write to/from the I2C bus. - * - * Locks required: I2C_LOCK - * Return code: 0, ETIME, EINVAL, EACCES (if I2C_LOCK is not held) - */ -#define MC_CMD_I2C_RW 0x23 -#define MC_CMD_I2C_RW_IN_LEN(_write_bytes) (8 + (_write_bytes)) -#define MC_CMD_I2C_RW_IN_ARGS_OFST 0 -#define MC_CMD_I2C_RW_IN_ARGS_ADDR_OFST 0 -#define MC_CMD_I2C_RW_IN_ARGS_READ_BYTES_OFST 4 -/* Data to write here */ -#define MC_CMD_I2C_RW_IN_WRITE_BUFFER_OFSET 8 -#define MC_CMD_I2C_RW_OUT_LEN(_read_bytes) (_read_bytes) -/* Data read here */ -#define MC_CMD_I2C_RW_OUT_READ_BUFFER_OFST 0 - -/* Generic phy capability bitmask */ -#define MC_CMD_PHY_CAP_10HDX_LBN 1 -#define MC_CMD_PHY_CAP_10HDX_WIDTH 1 -#define MC_CMD_PHY_CAP_10FDX_LBN 2 -#define MC_CMD_PHY_CAP_10FDX_WIDTH 1 -#define MC_CMD_PHY_CAP_100HDX_LBN 3 -#define MC_CMD_PHY_CAP_100HDX_WIDTH 1 -#define MC_CMD_PHY_CAP_100FDX_LBN 4 -#define MC_CMD_PHY_CAP_100FDX_WIDTH 1 -#define MC_CMD_PHY_CAP_1000HDX_LBN 5 -#define MC_CMD_PHY_CAP_1000HDX_WIDTH 1 -#define MC_CMD_PHY_CAP_1000FDX_LBN 6 -#define MC_CMD_PHY_CAP_1000FDX_WIDTH 1 -#define MC_CMD_PHY_CAP_10000FDX_LBN 7 -#define MC_CMD_PHY_CAP_10000FDX_WIDTH 1 -#define MC_CMD_PHY_CAP_PAUSE_LBN 8 -#define MC_CMD_PHY_CAP_PAUSE_WIDTH 1 -#define MC_CMD_PHY_CAP_ASYM_LBN 9 -#define MC_CMD_PHY_CAP_ASYM_WIDTH 1 -#define MC_CMD_PHY_CAP_AN_LBN 10 -#define MC_CMD_PHY_CAP_AN_WIDTH 1 - -/* Generic loopback enumeration */ -#define MC_CMD_LOOPBACK_NONE 0 -#define MC_CMD_LOOPBACK_DATA 1 -#define MC_CMD_LOOPBACK_GMAC 2 -#define MC_CMD_LOOPBACK_XGMII 3 -#define MC_CMD_LOOPBACK_XGXS 4 -#define MC_CMD_LOOPBACK_XAUI 5 -#define MC_CMD_LOOPBACK_GMII 6 -#define MC_CMD_LOOPBACK_SGMII 7 -#define MC_CMD_LOOPBACK_XGBR 8 -#define MC_CMD_LOOPBACK_XFI 9 -#define MC_CMD_LOOPBACK_XAUI_FAR 10 -#define MC_CMD_LOOPBACK_GMII_FAR 11 -#define MC_CMD_LOOPBACK_SGMII_FAR 12 -#define MC_CMD_LOOPBACK_XFI_FAR 13 -#define MC_CMD_LOOPBACK_GPHY 14 -#define MC_CMD_LOOPBACK_PHYXS 15 -#define MC_CMD_LOOPBACK_PCS 16 -#define MC_CMD_LOOPBACK_PMAPMD 17 -#define MC_CMD_LOOPBACK_XPORT 18 -#define MC_CMD_LOOPBACK_XGMII_WS 19 -#define MC_CMD_LOOPBACK_XAUI_WS 20 -#define MC_CMD_LOOPBACK_XAUI_WS_FAR 21 -#define MC_CMD_LOOPBACK_XAUI_WS_NEAR 22 -#define MC_CMD_LOOPBACK_GMII_WS 23 -#define MC_CMD_LOOPBACK_XFI_WS 24 -#define MC_CMD_LOOPBACK_XFI_WS_FAR 25 -#define MC_CMD_LOOPBACK_PHYXS_WS 26 - -/* Generic PHY statistics enumeration */ -#define MC_CMD_OUI 0 -#define MC_CMD_PMA_PMD_LINK_UP 1 -#define MC_CMD_PMA_PMD_RX_FAULT 2 -#define MC_CMD_PMA_PMD_TX_FAULT 3 -#define MC_CMD_PMA_PMD_SIGNAL 4 -#define MC_CMD_PMA_PMD_SNR_A 5 -#define MC_CMD_PMA_PMD_SNR_B 6 -#define MC_CMD_PMA_PMD_SNR_C 7 -#define MC_CMD_PMA_PMD_SNR_D 8 -#define MC_CMD_PCS_LINK_UP 9 -#define MC_CMD_PCS_RX_FAULT 10 -#define MC_CMD_PCS_TX_FAULT 11 -#define MC_CMD_PCS_BER 12 -#define MC_CMD_PCS_BLOCK_ERRORS 13 -#define MC_CMD_PHYXS_LINK_UP 14 -#define MC_CMD_PHYXS_RX_FAULT 15 -#define MC_CMD_PHYXS_TX_FAULT 16 -#define MC_CMD_PHYXS_ALIGN 17 -#define MC_CMD_PHYXS_SYNC 18 -#define MC_CMD_AN_LINK_UP 19 -#define MC_CMD_AN_COMPLETE 20 -#define MC_CMD_AN_10GBT_STATUS 21 -#define MC_CMD_CL22_LINK_UP 22 -#define MC_CMD_PHY_NSTATS 23 - -/* MC_CMD_GET_PHY_CFG: - * Report PHY configuration. This guarantees to succeed even if the PHY is in - * a "zombie" state. - * - * Locks required: None - * Return code: 0 - */ -#define MC_CMD_GET_PHY_CFG 0x24 - -#define MC_CMD_GET_PHY_CFG_IN_LEN 0 -#define MC_CMD_GET_PHY_CFG_OUT_LEN 72 - -#define MC_CMD_GET_PHY_CFG_OUT_FLAGS_OFST 0 -#define MC_CMD_GET_PHY_CFG_PRESENT_LBN 0 -#define MC_CMD_GET_PHY_CFG_PRESENT_WIDTH 1 -#define MC_CMD_GET_PHY_CFG_BIST_CABLE_SHORT_LBN 1 -#define MC_CMD_GET_PHY_CFG_BIST_CABLE_SHORT_WIDTH 1 -#define MC_CMD_GET_PHY_CFG_BIST_CABLE_LONG_LBN 2 -#define MC_CMD_GET_PHY_CFG_BIST_CABLE_LONG_WIDTH 1 -#define MC_CMD_GET_PHY_CFG_LOWPOWER_LBN 3 -#define MC_CMD_GET_PHY_CFG_LOWPOWER_WIDTH 1 -#define MC_CMD_GET_PHY_CFG_POWEROFF_LBN 4 -#define MC_CMD_GET_PHY_CFG_POWEROFF_WIDTH 1 -#define MC_CMD_GET_PHY_CFG_TXDIS_LBN 5 -#define MC_CMD_GET_PHY_CFG_TXDIS_WIDTH 1 -#define MC_CMD_GET_PHY_CFG_BIST_LBN 6 -#define MC_CMD_GET_PHY_CFG_BIST_WIDTH 1 -#define MC_CMD_GET_PHY_CFG_OUT_TYPE_OFST 4 -/* Bitmask of supported capabilities */ -#define MC_CMD_GET_PHY_CFG_OUT_SUPPORTED_CAP_OFST 8 -#define MC_CMD_GET_PHY_CFG_OUT_CHANNEL_OFST 12 -#define MC_CMD_GET_PHY_CFG_OUT_PRT_OFST 16 -/* PHY statistics bitmap */ -#define MC_CMD_GET_PHY_CFG_OUT_STATS_MASK_OFST 20 -/* PHY type/name string */ -#define MC_CMD_GET_PHY_CFG_OUT_NAME_OFST 24 -#define MC_CMD_GET_PHY_CFG_OUT_NAME_LEN 20 -#define MC_CMD_GET_PHY_CFG_OUT_MEDIA_TYPE_OFST 44 -#define MC_CMD_MEDIA_XAUI 1 -#define MC_CMD_MEDIA_CX4 2 -#define MC_CMD_MEDIA_KX4 3 -#define MC_CMD_MEDIA_XFP 4 -#define MC_CMD_MEDIA_SFP_PLUS 5 -#define MC_CMD_MEDIA_BASE_T 6 -/* MDIO "MMDS" supported */ -#define MC_CMD_GET_PHY_CFG_OUT_MMD_MASK_OFST 48 -/* Native clause 22 */ -#define MC_CMD_MMD_CLAUSE22 0 -#define MC_CMD_MMD_CLAUSE45_PMAPMD 1 -#define MC_CMD_MMD_CLAUSE45_WIS 2 -#define MC_CMD_MMD_CLAUSE45_PCS 3 -#define MC_CMD_MMD_CLAUSE45_PHYXS 4 -#define MC_CMD_MMD_CLAUSE45_DTEXS 5 -#define MC_CMD_MMD_CLAUSE45_TC 6 -#define MC_CMD_MMD_CLAUSE45_AN 7 -/* Clause22 proxied over clause45 by PHY */ -#define MC_CMD_MMD_CLAUSE45_C22EXT 29 -#define MC_CMD_MMD_CLAUSE45_VEND1 30 -#define MC_CMD_MMD_CLAUSE45_VEND2 31 -/* PHY stepping version */ -#define MC_CMD_GET_PHY_CFG_OUT_REVISION_OFST 52 -#define MC_CMD_GET_PHY_CFG_OUT_REVISION_LEN 20 - -/* MC_CMD_START_BIST: - * Start a BIST test on the PHY. - * - * Locks required: PHY_LOCK if doing a PHY BIST - * Return code: 0, EINVAL, EACCES (if PHY_LOCK is not held) - */ -#define MC_CMD_START_BIST 0x25 -#define MC_CMD_START_BIST_IN_LEN 4 -#define MC_CMD_START_BIST_IN_TYPE_OFST 0 -#define MC_CMD_START_BIST_OUT_LEN 0 - -/* Run the PHY's short cable BIST */ -#define MC_CMD_PHY_BIST_CABLE_SHORT 1 -/* Run the PHY's long cable BIST */ -#define MC_CMD_PHY_BIST_CABLE_LONG 2 -/* Run BIST on the currently selected BPX Serdes (XAUI or XFI) */ -#define MC_CMD_BPX_SERDES_BIST 3 -/* Run the MC loopback tests */ -#define MC_CMD_MC_LOOPBACK_BIST 4 -/* Run the PHY's standard BIST */ -#define MC_CMD_PHY_BIST 5 - -/* MC_CMD_POLL_PHY_BIST: (variadic output) - * Poll for BIST completion - * - * Returns a single status code, and optionally some PHY specific - * bist output. The driver should only consume the BIST output - * after validating OUTLEN and PHY_CFG.PHY_TYPE. - * - * If a driver can't successfully parse the BIST output, it should - * still respect the pass/Fail in OUT.RESULT - * - * Locks required: PHY_LOCK if doing a PHY BIST - * Return code: 0, EACCES (if PHY_LOCK is not held) - */ -#define MC_CMD_POLL_BIST 0x26 -#define MC_CMD_POLL_BIST_IN_LEN 0 -#define MC_CMD_POLL_BIST_OUT_LEN UNKNOWN -#define MC_CMD_POLL_BIST_OUT_SFT9001_LEN 36 -#define MC_CMD_POLL_BIST_OUT_MRSFP_LEN 8 -#define MC_CMD_POLL_BIST_OUT_RESULT_OFST 0 -#define MC_CMD_POLL_BIST_RUNNING 1 -#define MC_CMD_POLL_BIST_PASSED 2 -#define MC_CMD_POLL_BIST_FAILED 3 -#define MC_CMD_POLL_BIST_TIMEOUT 4 -/* Generic: */ -#define MC_CMD_POLL_BIST_OUT_PRIVATE_OFST 4 -/* SFT9001-specific: */ -#define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_LENGTH_A_OFST 4 -#define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_LENGTH_B_OFST 8 -#define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_LENGTH_C_OFST 12 -#define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_LENGTH_D_OFST 16 -#define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_STATUS_A_OFST 20 -#define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_STATUS_B_OFST 24 -#define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_STATUS_C_OFST 28 -#define MC_CMD_POLL_BIST_OUT_SFT9001_CABLE_STATUS_D_OFST 32 -#define MC_CMD_POLL_BIST_SFT9001_PAIR_OK 1 -#define MC_CMD_POLL_BIST_SFT9001_PAIR_OPEN 2 -#define MC_CMD_POLL_BIST_SFT9001_INTRA_PAIR_SHORT 3 -#define MC_CMD_POLL_BIST_SFT9001_INTER_PAIR_SHORT 4 -#define MC_CMD_POLL_BIST_SFT9001_PAIR_BUSY 9 -/* mrsfp "PHY" driver: */ -#define MC_CMD_POLL_BIST_OUT_MRSFP_TEST_OFST 4 -#define MC_CMD_POLL_BIST_MRSFP_TEST_COMPLETE 0 -#define MC_CMD_POLL_BIST_MRSFP_TEST_BUS_SWITCH_OFF_I2C_WRITE 1 -#define MC_CMD_POLL_BIST_MRSFP_TEST_BUS_SWITCH_OFF_I2C_NO_ACCESS_IO_EXP 2 -#define MC_CMD_POLL_BIST_MRSFP_TEST_BUS_SWITCH_OFF_I2C_NO_ACCESS_MODULE 3 -#define MC_CMD_POLL_BIST_MRSFP_TEST_IO_EXP_I2C_CONFIGURE 4 -#define MC_CMD_POLL_BIST_MRSFP_TEST_BUS_SWITCH_I2C_NO_CROSSTALK 5 -#define MC_CMD_POLL_BIST_MRSFP_TEST_MODULE_PRESENCE 6 -#define MC_CMD_POLL_BIST_MRSFP_TEST_MODULE_ID_I2C_ACCESS 7 -#define MC_CMD_POLL_BIST_MRSFP_TEST_MODULE_ID_SANE_VALUE 8 - -/* MC_CMD_PHY_SPI: (variadic in, variadic out) - * Read/Write/Erase the PHY SPI device - * - * Locks required: PHY_LOCK - * Return code: 0, ETIME, EINVAL, EACCES (if PHY_LOCK is not held) - */ -#define MC_CMD_PHY_SPI 0x27 -#define MC_CMD_PHY_SPI_IN_LEN(_write_bytes) (12 + (_write_bytes)) -#define MC_CMD_PHY_SPI_IN_ARGS_OFST 0 -#define MC_CMD_PHY_SPI_IN_ARGS_ADDR_OFST 0 -#define MC_CMD_PHY_SPI_IN_ARGS_READ_BYTES_OFST 4 -#define MC_CMD_PHY_SPI_IN_ARGS_ERASE_ALL_OFST 8 -/* Data to write here */ -#define MC_CMD_PHY_SPI_IN_WRITE_BUFFER_OFSET 12 -#define MC_CMD_PHY_SPI_OUT_LEN(_read_bytes) (_read_bytes) -/* Data read here */ -#define MC_CMD_PHY_SPI_OUT_READ_BUFFER_OFST 0 - - -/* MC_CMD_GET_LOOPBACK_MODES: - * Returns a bitmask of loopback modes evailable at each speed. - * - * Locks required: None - * Return code: 0 - */ -#define MC_CMD_GET_LOOPBACK_MODES 0x28 -#define MC_CMD_GET_LOOPBACK_MODES_IN_LEN 0 -#define MC_CMD_GET_LOOPBACK_MODES_OUT_LEN 32 -#define MC_CMD_GET_LOOPBACK_MODES_100M_OFST 0 -#define MC_CMD_GET_LOOPBACK_MODES_1G_OFST 8 -#define MC_CMD_GET_LOOPBACK_MODES_10G_OFST 16 -#define MC_CMD_GET_LOOPBACK_MODES_SUGGESTED_OFST 24 - -/* Flow control enumeration */ -#define MC_CMD_FCNTL_OFF 0 -#define MC_CMD_FCNTL_RESPOND 1 -#define MC_CMD_FCNTL_BIDIR 2 -/* Auto - Use what the link has autonegotiated - * - The driver should modify the advertised capabilities via SET_LINK.CAP - * to control the negotiated flow control mode. - * - Can only be set if the PHY supports PAUSE+ASYM capabilities - * - Never returned by GET_LINK as the value programmed into the MAC - */ -#define MC_CMD_FCNTL_AUTO 3 - -/* Generic mac fault bitmask */ -#define MC_CMD_MAC_FAULT_XGMII_LOCAL_LBN 0 -#define MC_CMD_MAC_FAULT_XGMII_LOCAL_WIDTH 1 -#define MC_CMD_MAC_FAULT_XGMII_REMOTE_LBN 1 -#define MC_CMD_MAC_FAULT_XGMII_REMOTE_WIDTH 1 -#define MC_CMD_MAC_FAULT_SGMII_REMOTE_LBN 2 -#define MC_CMD_MAC_FAULT_SGMII_REMOTE_WIDTH 1 - -/* MC_CMD_GET_LINK: - * Read the unified MAC/PHY link state - * - * Locks required: None - * Return code: 0, ETIME - */ -#define MC_CMD_GET_LINK 0x29 -#define MC_CMD_GET_LINK_IN_LEN 0 -#define MC_CMD_GET_LINK_OUT_LEN 28 -/* near-side and link-partner advertised capabilities */ -#define MC_CMD_GET_LINK_OUT_CAP_OFST 0 -#define MC_CMD_GET_LINK_OUT_LP_CAP_OFST 4 -/* Autonegotiated speed in mbit/s. The link may still be down - * even if this reads non-zero */ -#define MC_CMD_GET_LINK_OUT_LINK_SPEED_OFST 8 -#define MC_CMD_GET_LINK_OUT_LOOPBACK_MODE_OFST 12 -#define MC_CMD_GET_LINK_OUT_FLAGS_OFST 16 -/* Whether we have overall link up */ -#define MC_CMD_GET_LINK_LINK_UP_LBN 0 -#define MC_CMD_GET_LINK_LINK_UP_WIDTH 1 -#define MC_CMD_GET_LINK_FULL_DUPLEX_LBN 1 -#define MC_CMD_GET_LINK_FULL_DUPLEX_WIDTH 1 -/* Whether we have link at the layers provided by the BPX */ -#define MC_CMD_GET_LINK_BPX_LINK_LBN 2 -#define MC_CMD_GET_LINK_BPX_LINK_WIDTH 1 -/* Whether the PHY has external link */ -#define MC_CMD_GET_LINK_PHY_LINK_LBN 3 -#define MC_CMD_GET_LINK_PHY_LINK_WIDTH 1 -#define MC_CMD_GET_LINK_OUT_FCNTL_OFST 20 -#define MC_CMD_GET_LINK_OUT_MAC_FAULT_OFST 24 - -/* MC_CMD_SET_LINK: - * Write the unified MAC/PHY link configuration - * - * A loopback speed of "0" is supported, and means - * (choose any available speed) - * - * Locks required: None - * Return code: 0, EINVAL, ETIME - */ -#define MC_CMD_SET_LINK 0x2a -#define MC_CMD_SET_LINK_IN_LEN 16 -#define MC_CMD_SET_LINK_IN_CAP_OFST 0 -#define MC_CMD_SET_LINK_IN_FLAGS_OFST 4 -#define MC_CMD_SET_LINK_LOWPOWER_LBN 0 -#define MC_CMD_SET_LINK_LOWPOWER_WIDTH 1 -#define MC_CMD_SET_LINK_POWEROFF_LBN 1 -#define MC_CMD_SET_LINK_POWEROFF_WIDTH 1 -#define MC_CMD_SET_LINK_TXDIS_LBN 2 -#define MC_CMD_SET_LINK_TXDIS_WIDTH 1 -#define MC_CMD_SET_LINK_IN_LOOPBACK_MODE_OFST 8 -#define MC_CMD_SET_LINK_IN_LOOPBACK_SPEED_OFST 12 -#define MC_CMD_SET_LINK_OUT_LEN 0 - -/* MC_CMD_SET_ID_LED: - * Set indentification LED state - * - * Locks required: None - * Return code: 0, EINVAL - */ -#define MC_CMD_SET_ID_LED 0x2b -#define MC_CMD_SET_ID_LED_IN_LEN 4 -#define MC_CMD_SET_ID_LED_IN_STATE_OFST 0 -#define MC_CMD_LED_OFF 0 -#define MC_CMD_LED_ON 1 -#define MC_CMD_LED_DEFAULT 2 -#define MC_CMD_SET_ID_LED_OUT_LEN 0 - -/* MC_CMD_SET_MAC: - * Set MAC configuration - * - * The MTU is the MTU programmed directly into the XMAC/GMAC - * (inclusive of EtherII, VLAN, bug16011 padding) - * - * Locks required: None - * Return code: 0, EINVAL - */ -#define MC_CMD_SET_MAC 0x2c -#define MC_CMD_SET_MAC_IN_LEN 24 -#define MC_CMD_SET_MAC_IN_MTU_OFST 0 -#define MC_CMD_SET_MAC_IN_DRAIN_OFST 4 -#define MC_CMD_SET_MAC_IN_ADDR_OFST 8 -#define MC_CMD_SET_MAC_IN_REJECT_OFST 16 -#define MC_CMD_SET_MAC_IN_REJECT_UNCST_LBN 0 -#define MC_CMD_SET_MAC_IN_REJECT_UNCST_WIDTH 1 -#define MC_CMD_SET_MAC_IN_REJECT_BRDCST_LBN 1 -#define MC_CMD_SET_MAC_IN_REJECT_BRDCST_WIDTH 1 -#define MC_CMD_SET_MAC_IN_FCNTL_OFST 20 -#define MC_CMD_SET_MAC_OUT_LEN 0 - -/* MC_CMD_PHY_STATS: - * Get generic PHY statistics - * - * This call returns the statistics for a generic PHY in a sparse - * array (indexed by the enumerate). Each value is represented by - * a 32bit number. - * - * If the DMA_ADDR is 0, then no DMA is performed, and the statistics - * may be read directly out of shared memory. If DMA_ADDR != 0, then - * the statistics are dmad to that (page-aligned location) - * - * Locks required: None - * Returns: 0, ETIME - * Response methods: shared memory, event - */ -#define MC_CMD_PHY_STATS 0x2d -#define MC_CMD_PHY_STATS_IN_LEN 8 -#define MC_CMD_PHY_STATS_IN_DMA_ADDR_LO_OFST 0 -#define MC_CMD_PHY_STATS_IN_DMA_ADDR_HI_OFST 4 -#define MC_CMD_PHY_STATS_OUT_DMA_LEN 0 -#define MC_CMD_PHY_STATS_OUT_NO_DMA_LEN (MC_CMD_PHY_NSTATS * 4) - -/* Unified MAC statistics enumeration */ -#define MC_CMD_MAC_GENERATION_START 0 -#define MC_CMD_MAC_TX_PKTS 1 -#define MC_CMD_MAC_TX_PAUSE_PKTS 2 -#define MC_CMD_MAC_TX_CONTROL_PKTS 3 -#define MC_CMD_MAC_TX_UNICAST_PKTS 4 -#define MC_CMD_MAC_TX_MULTICAST_PKTS 5 -#define MC_CMD_MAC_TX_BROADCAST_PKTS 6 -#define MC_CMD_MAC_TX_BYTES 7 -#define MC_CMD_MAC_TX_BAD_BYTES 8 -#define MC_CMD_MAC_TX_LT64_PKTS 9 -#define MC_CMD_MAC_TX_64_PKTS 10 -#define MC_CMD_MAC_TX_65_TO_127_PKTS 11 -#define MC_CMD_MAC_TX_128_TO_255_PKTS 12 -#define MC_CMD_MAC_TX_256_TO_511_PKTS 13 -#define MC_CMD_MAC_TX_512_TO_1023_PKTS 14 -#define MC_CMD_MAC_TX_1024_TO_15XX_PKTS 15 -#define MC_CMD_MAC_TX_15XX_TO_JUMBO_PKTS 16 -#define MC_CMD_MAC_TX_GTJUMBO_PKTS 17 -#define MC_CMD_MAC_TX_BAD_FCS_PKTS 18 -#define MC_CMD_MAC_TX_SINGLE_COLLISION_PKTS 19 -#define MC_CMD_MAC_TX_MULTIPLE_COLLISION_PKTS 20 -#define MC_CMD_MAC_TX_EXCESSIVE_COLLISION_PKTS 21 -#define MC_CMD_MAC_TX_LATE_COLLISION_PKTS 22 -#define MC_CMD_MAC_TX_DEFERRED_PKTS 23 -#define MC_CMD_MAC_TX_EXCESSIVE_DEFERRED_PKTS 24 -#define MC_CMD_MAC_TX_NON_TCPUDP_PKTS 25 -#define MC_CMD_MAC_TX_MAC_SRC_ERR_PKTS 26 -#define MC_CMD_MAC_TX_IP_SRC_ERR_PKTS 27 -#define MC_CMD_MAC_RX_PKTS 28 -#define MC_CMD_MAC_RX_PAUSE_PKTS 29 -#define MC_CMD_MAC_RX_GOOD_PKTS 30 -#define MC_CMD_MAC_RX_CONTROL_PKTS 31 -#define MC_CMD_MAC_RX_UNICAST_PKTS 32 -#define MC_CMD_MAC_RX_MULTICAST_PKTS 33 -#define MC_CMD_MAC_RX_BROADCAST_PKTS 34 -#define MC_CMD_MAC_RX_BYTES 35 -#define MC_CMD_MAC_RX_BAD_BYTES 36 -#define MC_CMD_MAC_RX_64_PKTS 37 -#define MC_CMD_MAC_RX_65_TO_127_PKTS 38 -#define MC_CMD_MAC_RX_128_TO_255_PKTS 39 -#define MC_CMD_MAC_RX_256_TO_511_PKTS 40 -#define MC_CMD_MAC_RX_512_TO_1023_PKTS 41 -#define MC_CMD_MAC_RX_1024_TO_15XX_PKTS 42 -#define MC_CMD_MAC_RX_15XX_TO_JUMBO_PKTS 43 -#define MC_CMD_MAC_RX_GTJUMBO_PKTS 44 -#define MC_CMD_MAC_RX_UNDERSIZE_PKTS 45 -#define MC_CMD_MAC_RX_BAD_FCS_PKTS 46 -#define MC_CMD_MAC_RX_OVERFLOW_PKTS 47 -#define MC_CMD_MAC_RX_FALSE_CARRIER_PKTS 48 -#define MC_CMD_MAC_RX_SYMBOL_ERROR_PKTS 49 -#define MC_CMD_MAC_RX_ALIGN_ERROR_PKTS 50 -#define MC_CMD_MAC_RX_LENGTH_ERROR_PKTS 51 -#define MC_CMD_MAC_RX_INTERNAL_ERROR_PKTS 52 -#define MC_CMD_MAC_RX_JABBER_PKTS 53 -#define MC_CMD_MAC_RX_NODESC_DROPS 54 -#define MC_CMD_MAC_RX_LANES01_CHAR_ERR 55 -#define MC_CMD_MAC_RX_LANES23_CHAR_ERR 56 -#define MC_CMD_MAC_RX_LANES01_DISP_ERR 57 -#define MC_CMD_MAC_RX_LANES23_DISP_ERR 58 -#define MC_CMD_MAC_RX_MATCH_FAULT 59 -#define MC_CMD_GMAC_DMABUF_START 64 -#define MC_CMD_GMAC_DMABUF_END 95 -/* Insert new members here. */ -#define MC_CMD_MAC_GENERATION_END 96 -#define MC_CMD_MAC_NSTATS (MC_CMD_MAC_GENERATION_END+1) - -/* MC_CMD_MAC_STATS: - * Get unified GMAC/XMAC statistics - * - * This call returns unified statistics maintained by the MC as it - * switches between the GMAC and XMAC. The MC will write out all - * supported stats. The driver should zero initialise the buffer to - * guarantee consistent results. - * - * Locks required: None - * Returns: 0 - * Response methods: shared memory, event - */ -#define MC_CMD_MAC_STATS 0x2e -#define MC_CMD_MAC_STATS_IN_LEN 16 -#define MC_CMD_MAC_STATS_IN_DMA_ADDR_LO_OFST 0 -#define MC_CMD_MAC_STATS_IN_DMA_ADDR_HI_OFST 4 -#define MC_CMD_MAC_STATS_IN_CMD_OFST 8 -#define MC_CMD_MAC_STATS_CMD_DMA_LBN 0 -#define MC_CMD_MAC_STATS_CMD_DMA_WIDTH 1 -#define MC_CMD_MAC_STATS_CMD_CLEAR_LBN 1 -#define MC_CMD_MAC_STATS_CMD_CLEAR_WIDTH 1 -#define MC_CMD_MAC_STATS_CMD_PERIODIC_CHANGE_LBN 2 -#define MC_CMD_MAC_STATS_CMD_PERIODIC_CHANGE_WIDTH 1 -/* Remaining PERIOD* fields only relevant when PERIODIC_CHANGE is set */ -#define MC_CMD_MAC_STATS_CMD_PERIODIC_ENABLE_LBN 3 -#define MC_CMD_MAC_STATS_CMD_PERIODIC_ENABLE_WIDTH 1 -#define MC_CMD_MAC_STATS_CMD_PERIODIC_CLEAR_LBN 4 -#define MC_CMD_MAC_STATS_CMD_PERIODIC_CLEAR_WIDTH 1 -#define MC_CMD_MAC_STATS_CMD_PERIODIC_NOEVENT_LBN 5 -#define MC_CMD_MAC_STATS_CMD_PERIODIC_NOEVENT_WIDTH 1 -#define MC_CMD_MAC_STATS_CMD_PERIOD_MS_LBN 16 -#define MC_CMD_MAC_STATS_CMD_PERIOD_MS_WIDTH 16 -#define MC_CMD_MAC_STATS_IN_DMA_LEN_OFST 12 - -#define MC_CMD_MAC_STATS_OUT_LEN 0 - -/* Callisto flags */ -#define MC_CMD_SFT9001_ROBUST_LBN 0 -#define MC_CMD_SFT9001_ROBUST_WIDTH 1 -#define MC_CMD_SFT9001_SHORT_REACH_LBN 1 -#define MC_CMD_SFT9001_SHORT_REACH_WIDTH 1 - -/* MC_CMD_SFT9001_GET: - * Read current callisto specific setting - * - * Locks required: None - * Returns: 0, ETIME - */ -#define MC_CMD_SFT9001_GET 0x30 -#define MC_CMD_SFT9001_GET_IN_LEN 0 -#define MC_CMD_SFT9001_GET_OUT_LEN 4 -#define MC_CMD_SFT9001_GET_OUT_FLAGS_OFST 0 - -/* MC_CMD_SFT9001_SET: - * Write current callisto specific setting - * - * Locks required: None - * Returns: 0, ETIME, EINVAL - */ -#define MC_CMD_SFT9001_SET 0x31 -#define MC_CMD_SFT9001_SET_IN_LEN 4 -#define MC_CMD_SFT9001_SET_IN_FLAGS_OFST 0 -#define MC_CMD_SFT9001_SET_OUT_LEN 0 - - -/* MC_CMD_WOL_FILTER_SET: - * Set a WoL filter - * - * Locks required: None - * Returns: 0, EBUSY, EINVAL, ENOSYS - */ -#define MC_CMD_WOL_FILTER_SET 0x32 -#define MC_CMD_WOL_FILTER_SET_IN_LEN 192 /* 190 rounded up to a word */ -#define MC_CMD_WOL_FILTER_SET_IN_FILTER_MODE_OFST 0 -#define MC_CMD_WOL_FILTER_SET_IN_WOL_TYPE_OFST 4 - -/* There is a union at offset 8, following defines overlap due to - * this */ -#define MC_CMD_WOL_FILTER_SET_IN_DATA_OFST 8 - -#define MC_CMD_WOL_FILTER_SET_IN_MAGIC_MAC_OFST \ - MC_CMD_WOL_FILTER_SET_IN_DATA_OFST - -#define MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN_SRC_IP_OFST \ - MC_CMD_WOL_FILTER_SET_IN_DATA_OFST -#define MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN_DST_IP_OFST \ - (MC_CMD_WOL_FILTER_SET_IN_DATA_OFST + 4) -#define MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN_SRC_PORT_OFST \ - (MC_CMD_WOL_FILTER_SET_IN_DATA_OFST + 8) -#define MC_CMD_WOL_FILTER_SET_IN_IPV4_SYN_DST_PORT_OFST \ - (MC_CMD_WOL_FILTER_SET_IN_DATA_OFST + 10) - -#define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_SRC_IP_OFST \ - MC_CMD_WOL_FILTER_SET_IN_DATA_OFST -#define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_DST_IP_OFST \ - (MC_CMD_WOL_FILTER_SET_IN_DATA_OFST + 16) -#define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_SRC_PORT_OFST \ - (MC_CMD_WOL_FILTER_SET_IN_DATA_OFST + 32) -#define MC_CMD_WOL_FILTER_SET_IN_IPV6_SYN_DST_PORT_OFST \ - (MC_CMD_WOL_FILTER_SET_IN_DATA_OFST + 34) - -#define MC_CMD_WOL_FILTER_SET_IN_BITMAP_MASK_OFST \ - MC_CMD_WOL_FILTER_SET_IN_DATA_OFST -#define MC_CMD_WOL_FILTER_SET_IN_BITMAP_OFST \ - (MC_CMD_WOL_FILTER_SET_IN_DATA_OFST + 48) -#define MC_CMD_WOL_FILTER_SET_IN_BITMAP_LEN_OFST \ - (MC_CMD_WOL_FILTER_SET_IN_DATA_OFST + 176) -#define MC_CMD_WOL_FILTER_SET_IN_BITMAP_LAYER3_OFST \ - (MC_CMD_WOL_FILTER_SET_IN_DATA_OFST + 177) -#define MC_CMD_WOL_FILTER_SET_IN_BITMAP_LAYER4_OFST \ - (MC_CMD_WOL_FILTER_SET_IN_DATA_OFST + 178) - -#define MC_CMD_WOL_FILTER_SET_IN_LINK_MASK_OFST \ - MC_CMD_WOL_FILTER_SET_IN_DATA_OFST -#define MC_CMD_WOL_FILTER_SET_IN_LINK_UP_LBN 0 -#define MC_CMD_WOL_FILTER_SET_IN_LINK_UP_WIDTH 1 -#define MC_CMD_WOL_FILTER_SET_IN_LINK_DOWN_LBN 1 -#define MC_CMD_WOL_FILTER_SET_IN_LINK_DOWN_WIDTH 1 - -#define MC_CMD_WOL_FILTER_SET_OUT_LEN 4 -#define MC_CMD_WOL_FILTER_SET_OUT_FILTER_ID_OFST 0 - -/* WOL Filter types enumeration */ -#define MC_CMD_WOL_TYPE_MAGIC 0x0 - /* unused 0x1 */ -#define MC_CMD_WOL_TYPE_WIN_MAGIC 0x2 -#define MC_CMD_WOL_TYPE_IPV4_SYN 0x3 -#define MC_CMD_WOL_TYPE_IPV6_SYN 0x4 -#define MC_CMD_WOL_TYPE_BITMAP 0x5 -#define MC_CMD_WOL_TYPE_LINK 0x6 -#define MC_CMD_WOL_TYPE_MAX 0x7 - -#define MC_CMD_FILTER_MODE_SIMPLE 0x0 -#define MC_CMD_FILTER_MODE_STRUCTURED 0xffffffff - -/* MC_CMD_WOL_FILTER_REMOVE: - * Remove a WoL filter - * - * Locks required: None - * Returns: 0, EINVAL, ENOSYS - */ -#define MC_CMD_WOL_FILTER_REMOVE 0x33 -#define MC_CMD_WOL_FILTER_REMOVE_IN_LEN 4 -#define MC_CMD_WOL_FILTER_REMOVE_IN_FILTER_ID_OFST 0 -#define MC_CMD_WOL_FILTER_REMOVE_OUT_LEN 0 - - -/* MC_CMD_WOL_FILTER_RESET: - * Reset (i.e. remove all) WoL filters - * - * Locks required: None - * Returns: 0, ENOSYS - */ -#define MC_CMD_WOL_FILTER_RESET 0x34 -#define MC_CMD_WOL_FILTER_RESET_IN_LEN 0 -#define MC_CMD_WOL_FILTER_RESET_OUT_LEN 0 - -/* MC_CMD_SET_MCAST_HASH: - * Set the MCASH hash value without otherwise - * reconfiguring the MAC - */ -#define MC_CMD_SET_MCAST_HASH 0x35 -#define MC_CMD_SET_MCAST_HASH_IN_LEN 32 -#define MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST 0 -#define MC_CMD_SET_MCAST_HASH_IN_HASH1_OFST 16 -#define MC_CMD_SET_MCAST_HASH_OUT_LEN 0 - -/* MC_CMD_NVRAM_TYPES: - * Return bitfield indicating available types of virtual NVRAM partitions - * - * Locks required: none - * Returns: 0 - */ -#define MC_CMD_NVRAM_TYPES 0x36 -#define MC_CMD_NVRAM_TYPES_IN_LEN 0 -#define MC_CMD_NVRAM_TYPES_OUT_LEN 4 -#define MC_CMD_NVRAM_TYPES_OUT_TYPES_OFST 0 - -/* Supported NVRAM types */ -#define MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO 0 -#define MC_CMD_NVRAM_TYPE_MC_FW 1 -#define MC_CMD_NVRAM_TYPE_MC_FW_BACKUP 2 -#define MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0 3 -#define MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1 4 -#define MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0 5 -#define MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1 6 -#define MC_CMD_NVRAM_TYPE_EXP_ROM 7 -#define MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0 8 -#define MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1 9 -#define MC_CMD_NVRAM_TYPE_PHY_PORT0 10 -#define MC_CMD_NVRAM_TYPE_PHY_PORT1 11 -#define MC_CMD_NVRAM_TYPE_LOG 12 - -/* MC_CMD_NVRAM_INFO: - * Read info about a virtual NVRAM partition - * - * Locks required: none - * Returns: 0, EINVAL (bad type) - */ -#define MC_CMD_NVRAM_INFO 0x37 -#define MC_CMD_NVRAM_INFO_IN_LEN 4 -#define MC_CMD_NVRAM_INFO_IN_TYPE_OFST 0 -#define MC_CMD_NVRAM_INFO_OUT_LEN 24 -#define MC_CMD_NVRAM_INFO_OUT_TYPE_OFST 0 -#define MC_CMD_NVRAM_INFO_OUT_SIZE_OFST 4 -#define MC_CMD_NVRAM_INFO_OUT_ERASESIZE_OFST 8 -#define MC_CMD_NVRAM_INFO_OUT_FLAGS_OFST 12 -#define MC_CMD_NVRAM_PROTECTED_LBN 0 -#define MC_CMD_NVRAM_PROTECTED_WIDTH 1 -#define MC_CMD_NVRAM_INFO_OUT_PHYSDEV_OFST 16 -#define MC_CMD_NVRAM_INFO_OUT_PHYSADDR_OFST 20 - -/* MC_CMD_NVRAM_UPDATE_START: - * Start a group of update operations on a virtual NVRAM partition - * - * Locks required: PHY_LOCK if type==*PHY* - * Returns: 0, EINVAL (bad type), EACCES (if PHY_LOCK required and not held) - */ -#define MC_CMD_NVRAM_UPDATE_START 0x38 -#define MC_CMD_NVRAM_UPDATE_START_IN_LEN 4 -#define MC_CMD_NVRAM_UPDATE_START_IN_TYPE_OFST 0 -#define MC_CMD_NVRAM_UPDATE_START_OUT_LEN 0 - -/* MC_CMD_NVRAM_READ: - * Read data from a virtual NVRAM partition - * - * Locks required: PHY_LOCK if type==*PHY* - * Returns: 0, EINVAL (bad type/offset/length), EACCES (if PHY_LOCK required and not held) - */ -#define MC_CMD_NVRAM_READ 0x39 -#define MC_CMD_NVRAM_READ_IN_LEN 12 -#define MC_CMD_NVRAM_READ_IN_TYPE_OFST 0 -#define MC_CMD_NVRAM_READ_IN_OFFSET_OFST 4 -#define MC_CMD_NVRAM_READ_IN_LENGTH_OFST 8 -#define MC_CMD_NVRAM_READ_OUT_LEN(_read_bytes) (_read_bytes) -#define MC_CMD_NVRAM_READ_OUT_READ_BUFFER_OFST 0 - -/* MC_CMD_NVRAM_WRITE: - * Write data to a virtual NVRAM partition - * - * Locks required: PHY_LOCK if type==*PHY* - * Returns: 0, EINVAL (bad type/offset/length), EACCES (if PHY_LOCK required and not held) - */ -#define MC_CMD_NVRAM_WRITE 0x3a -#define MC_CMD_NVRAM_WRITE_IN_TYPE_OFST 0 -#define MC_CMD_NVRAM_WRITE_IN_OFFSET_OFST 4 -#define MC_CMD_NVRAM_WRITE_IN_LENGTH_OFST 8 -#define MC_CMD_NVRAM_WRITE_IN_WRITE_BUFFER_OFST 12 -#define MC_CMD_NVRAM_WRITE_IN_LEN(_write_bytes) (12 + _write_bytes) -#define MC_CMD_NVRAM_WRITE_OUT_LEN 0 - -/* MC_CMD_NVRAM_ERASE: - * Erase sector(s) from a virtual NVRAM partition - * - * Locks required: PHY_LOCK if type==*PHY* - * Returns: 0, EINVAL (bad type/offset/length), EACCES (if PHY_LOCK required and not held) - */ -#define MC_CMD_NVRAM_ERASE 0x3b -#define MC_CMD_NVRAM_ERASE_IN_LEN 12 -#define MC_CMD_NVRAM_ERASE_IN_TYPE_OFST 0 -#define MC_CMD_NVRAM_ERASE_IN_OFFSET_OFST 4 -#define MC_CMD_NVRAM_ERASE_IN_LENGTH_OFST 8 -#define MC_CMD_NVRAM_ERASE_OUT_LEN 0 - -/* MC_CMD_NVRAM_UPDATE_FINISH: - * Finish a group of update operations on a virtual NVRAM partition - * - * Locks required: PHY_LOCK if type==*PHY* - * Returns: 0, EINVAL (bad type/offset/length), EACCES (if PHY_LOCK required and not held) - */ -#define MC_CMD_NVRAM_UPDATE_FINISH 0x3c -#define MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN 8 -#define MC_CMD_NVRAM_UPDATE_FINISH_IN_TYPE_OFST 0 -#define MC_CMD_NVRAM_UPDATE_FINISH_IN_REBOOT_OFST 4 -#define MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN 0 - -/* MC_CMD_REBOOT: - * Reboot the MC. - * - * The AFTER_ASSERTION flag is intended to be used when the driver notices - * an assertion failure (at which point it is expected to perform a complete - * tear down and reinitialise), to allow both ports to reset the MC once - * in an atomic fashion. - * - * Production mc firmwares are generally compiled with REBOOT_ON_ASSERT=1, - * which means that they will automatically reboot out of the assertion - * handler, so this is in practise an optional operation. It is still - * recommended that drivers execute this to support custom firmwares - * with REBOOT_ON_ASSERT=0. - * - * Locks required: NONE - * Returns: Nothing. You get back a response with ERR=1, DATALEN=0 - */ -#define MC_CMD_REBOOT 0x3d -#define MC_CMD_REBOOT_IN_LEN 4 -#define MC_CMD_REBOOT_IN_FLAGS_OFST 0 -#define MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION 1 -#define MC_CMD_REBOOT_OUT_LEN 0 - -/* MC_CMD_SCHEDINFO: - * Request scheduler info. from the MC. - * - * Locks required: NONE - * Returns: An array of (timeslice,maximum overrun), one for each thread, - * in ascending order of thread address.s - */ -#define MC_CMD_SCHEDINFO 0x3e -#define MC_CMD_SCHEDINFO_IN_LEN 0 - - -/* MC_CMD_SET_REBOOT_MODE: (debug) - * Set the mode for the next MC reboot. - * - * Locks required: NONE - * - * Sets the reboot mode to the specified value. Returns the old mode. - */ -#define MC_CMD_REBOOT_MODE 0x3f -#define MC_CMD_REBOOT_MODE_IN_LEN 4 -#define MC_CMD_REBOOT_MODE_IN_VALUE_OFST 0 -#define MC_CMD_REBOOT_MODE_OUT_LEN 4 -#define MC_CMD_REBOOT_MODE_OUT_VALUE_OFST 0 -#define MC_CMD_REBOOT_MODE_NORMAL 0 -#define MC_CMD_REBOOT_MODE_SNAPPER 3 - -/* MC_CMD_DEBUG_LOG: - * Null request/response command (debug) - * - sequence number is always zero - * - only supported on the UART interface - * (the same set of bytes is delivered as an - * event over PCI) - */ -#define MC_CMD_DEBUG_LOG 0x40 -#define MC_CMD_DEBUG_LOG_IN_LEN 0 -#define MC_CMD_DEBUG_LOG_OUT_LEN 0 - -/* Generic sensor enumeration. Note that a dual port NIC - * will EITHER expose PHY_COMMON_TEMP OR PHY0_TEMP and - * PHY1_TEMP depending on whether there is a single sensor - * in the vicinity of the two port, or one per port. - */ -#define MC_CMD_SENSOR_CONTROLLER_TEMP 0 /* degC */ -#define MC_CMD_SENSOR_PHY_COMMON_TEMP 1 /* degC */ -#define MC_CMD_SENSOR_CONTROLLER_COOLING 2 /* bool */ -#define MC_CMD_SENSOR_PHY0_TEMP 3 /* degC */ -#define MC_CMD_SENSOR_PHY0_COOLING 4 /* bool */ -#define MC_CMD_SENSOR_PHY1_TEMP 5 /* degC */ -#define MC_CMD_SENSOR_PHY1_COOLING 6 /* bool */ -#define MC_CMD_SENSOR_IN_1V0 7 /* mV */ -#define MC_CMD_SENSOR_IN_1V2 8 /* mV */ -#define MC_CMD_SENSOR_IN_1V8 9 /* mV */ -#define MC_CMD_SENSOR_IN_2V5 10 /* mV */ -#define MC_CMD_SENSOR_IN_3V3 11 /* mV */ -#define MC_CMD_SENSOR_IN_12V0 12 /* mV */ - - -/* Sensor state */ -#define MC_CMD_SENSOR_STATE_OK 0 -#define MC_CMD_SENSOR_STATE_WARNING 1 -#define MC_CMD_SENSOR_STATE_FATAL 2 -#define MC_CMD_SENSOR_STATE_BROKEN 3 - -/* MC_CMD_SENSOR_INFO: - * Returns information about every available sensor. - * - * Each sensor has a single (16bit) value, and a corresponding state. - * The mapping between value and sensor is nominally determined by the - * MC, but in practise is implemented as zero (BROKEN), one (TEMPERATURE), - * or two (VOLTAGE) ranges per sensor per state. - * - * This call returns a mask (32bit) of the sensors that are supported - * by this platform, then an array (indexed by MC_CMD_SENSOR) of byte - * offsets to the per-sensor arrays. Each sensor array has four 16bit - * numbers, min1, max1, min2, max2. - * - * Locks required: None - * Returns: 0 - */ -#define MC_CMD_SENSOR_INFO 0x41 -#define MC_CMD_SENSOR_INFO_IN_LEN 0 -#define MC_CMD_SENSOR_INFO_OUT_MASK_OFST 0 -#define MC_CMD_SENSOR_INFO_OUT_OFFSET_OFST(_x) \ - (4 + (_x)) -#define MC_CMD_SENSOR_INFO_OUT_MIN1_OFST(_ofst) \ - ((_ofst) + 0) -#define MC_CMD_SENSOR_INFO_OUT_MAX1_OFST(_ofst) \ - ((_ofst) + 2) -#define MC_CMD_SENSOR_INFO_OUT_MIN2_OFST(_ofst) \ - ((_ofst) + 4) -#define MC_CMD_SENSOR_INFO_OUT_MAX2_OFST(_ofst) \ - ((_ofst) + 6) - -/* MC_CMD_READ_SENSORS - * Returns the current reading from each sensor - * - * Returns a sparse array of sensor readings (indexed by the sensor - * type) into host memory. Each array element is a dword. - * - * The MC will send a SENSOREVT event every time any sensor changes state. The - * driver is responsible for ensuring that it doesn't miss any events. The board - * will function normally if all sensors are in STATE_OK or state_WARNING. - * Otherwise the board should not be expected to function. - */ -#define MC_CMD_READ_SENSORS 0x42 -#define MC_CMD_READ_SENSORS_IN_LEN 8 -#define MC_CMD_READ_SENSORS_IN_DMA_ADDR_LO_OFST 0 -#define MC_CMD_READ_SENSORS_IN_DMA_ADDR_HI_OFST 4 -#define MC_CMD_READ_SENSORS_OUT_LEN 0 - -/* Sensor reading fields */ -#define MC_CMD_READ_SENSOR_VALUE_LBN 0 -#define MC_CMD_READ_SENSOR_VALUE_WIDTH 16 -#define MC_CMD_READ_SENSOR_STATE_LBN 16 -#define MC_CMD_READ_SENSOR_STATE_WIDTH 8 - - -/* MC_CMD_GET_PHY_STATE: - * Report current state of PHY. A "zombie" PHY is a PHY that has failed to - * boot (e.g. due to missing or corrupted firmware). - * - * Locks required: None - * Return code: 0 - */ -#define MC_CMD_GET_PHY_STATE 0x43 - -#define MC_CMD_GET_PHY_STATE_IN_LEN 0 -#define MC_CMD_GET_PHY_STATE_OUT_LEN 4 -#define MC_CMD_GET_PHY_STATE_STATE_OFST 0 -/* PHY state enumeration: */ -#define MC_CMD_PHY_STATE_OK 1 -#define MC_CMD_PHY_STATE_ZOMBIE 2 - - -/* 802.1Qbb control. 8 Tx queues that map to priorities 0 - 7. Use all 1s to - * disable 802.Qbb for a given priority. */ -#define MC_CMD_SETUP_8021QBB 0x44 -#define MC_CMD_SETUP_8021QBB_IN_LEN 32 -#define MC_CMD_SETUP_8021QBB_OUT_LEN 0 -#define MC_CMD_SETUP_8021QBB_IN_TXQS_OFFST 0 - - -/* MC_CMD_WOL_FILTER_GET: - * Retrieve ID of any WoL filters - * - * Locks required: None - * Returns: 0, ENOSYS - */ -#define MC_CMD_WOL_FILTER_GET 0x45 -#define MC_CMD_WOL_FILTER_GET_IN_LEN 0 -#define MC_CMD_WOL_FILTER_GET_OUT_LEN 4 -#define MC_CMD_WOL_FILTER_GET_OUT_FILTER_ID_OFST 0 - - -/* MC_CMD_ADD_LIGHTSOUT_OFFLOAD: - * Offload a protocol to NIC for lights-out state - * - * Locks required: None - * Returns: 0, ENOSYS - */ -#define MC_CMD_ADD_LIGHTSOUT_OFFLOAD 0x46 - -#define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_LEN 16 -#define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_PROTOCOL_OFST 0 - -/* There is a union at offset 4, following defines overlap due to - * this */ -#define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_DATA_OFST 4 -#define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_ARPMAC_OFST 4 -#define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_ARPIP_OFST 10 -#define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_NSMAC_OFST 4 -#define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_NSSNIPV6_OFST 10 -#define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_IN_NSIPV6_OFST 26 - -#define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_OUT_LEN 4 -#define MC_CMD_ADD_LIGHTSOUT_OFFLOAD_OUT_FILTER_ID_OFST 0 - - -/* MC_CMD_REMOVE_LIGHTSOUT_PROTOCOL_OFFLOAD: - * Offload a protocol to NIC for lights-out state - * - * Locks required: None - * Returns: 0, ENOSYS - */ -#define MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD 0x47 -#define MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD_IN_LEN 8 -#define MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD_OUT_LEN 0 - -#define MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD_IN_PROTOCOL_OFST 0 -#define MC_CMD_REMOVE_LIGHTSOUT_OFFLOAD_IN_FILTER_ID_OFST 4 - -/* Lights-out offload protocols enumeration */ -#define MC_CMD_LIGHTSOUT_OFFLOAD_PROTOCOL_ARP 0x1 -#define MC_CMD_LIGHTSOUT_OFFLOAD_PROTOCOL_NS 0x2 - - -/* MC_CMD_MAC_RESET_RESTORE: - * Restore MAC after block reset - * - * Locks required: None - * Returns: 0 - */ - -#define MC_CMD_MAC_RESET_RESTORE 0x48 -#define MC_CMD_MAC_RESET_RESTORE_IN_LEN 0 -#define MC_CMD_MAC_RESET_RESTORE_OUT_LEN 0 - - -/* MC_CMD_TEST_ASSERT: - * Deliberately trigger an assert-detonation in the firmware for testing - * purposes (i.e. to allow tests that the driver copes gracefully). - * - * Locks required: None - * Returns: 0 - */ - -#define MC_CMD_TESTASSERT 0x49 -#define MC_CMD_TESTASSERT_IN_LEN 0 -#define MC_CMD_TESTASSERT_OUT_LEN 0 - -/* MC_CMD_WORKAROUND 0x4a - * - * Enable/Disable a given workaround. The mcfw will return EINVAL if it - * doesn't understand the given workaround number - which should not - * be treated as a hard error by client code. - * - * This op does not imply any semantics about each workaround, that's between - * the driver and the mcfw on a per-workaround basis. - * - * Locks required: None - * Returns: 0, EINVAL - */ -#define MC_CMD_WORKAROUND 0x4a -#define MC_CMD_WORKAROUND_IN_LEN 8 -#define MC_CMD_WORKAROUND_IN_TYPE_OFST 0 -#define MC_CMD_WORKAROUND_BUG17230 1 -#define MC_CMD_WORKAROUND_IN_ENABLED_OFST 4 -#define MC_CMD_WORKAROUND_OUT_LEN 0 - -/* MC_CMD_GET_PHY_MEDIA_INFO: - * Read media-specific data from PHY (e.g. SFP/SFP+ module ID information for - * SFP+ PHYs). - * - * The "media type" can be found via GET_PHY_CFG (GET_PHY_CFG_OUT_MEDIA_TYPE); - * the valid "page number" input values, and the output data, are interpreted - * on a per-type basis. - * - * For SFP+: PAGE=0 or 1 returns a 128-byte block read from module I2C address - * 0xA0 offset 0 or 0x80. - * Anything else: currently undefined. - * - * Locks required: None - * Return code: 0 - */ -#define MC_CMD_GET_PHY_MEDIA_INFO 0x4b -#define MC_CMD_GET_PHY_MEDIA_INFO_IN_LEN 4 -#define MC_CMD_GET_PHY_MEDIA_INFO_IN_PAGE_OFST 0 -#define MC_CMD_GET_PHY_MEDIA_INFO_OUT_LEN(_num_bytes) (4 + (_num_bytes)) -#define MC_CMD_GET_PHY_MEDIA_INFO_OUT_DATALEN_OFST 0 -#define MC_CMD_GET_PHY_MEDIA_INFO_OUT_DATA_OFST 4 - -/* MC_CMD_NVRAM_TEST: - * Test a particular NVRAM partition for valid contents (where "valid" - * depends on the type of partition). - * - * Locks required: None - * Return code: 0 - */ -#define MC_CMD_NVRAM_TEST 0x4c -#define MC_CMD_NVRAM_TEST_IN_LEN 4 -#define MC_CMD_NVRAM_TEST_IN_TYPE_OFST 0 -#define MC_CMD_NVRAM_TEST_OUT_LEN 4 -#define MC_CMD_NVRAM_TEST_OUT_RESULT_OFST 0 -#define MC_CMD_NVRAM_TEST_PASS 0 -#define MC_CMD_NVRAM_TEST_FAIL 1 -#define MC_CMD_NVRAM_TEST_NOTSUPP 2 - -/* MC_CMD_MRSFP_TWEAK: (debug) - * Read status and/or set parameters for the "mrsfp" driver in mr_rusty builds. - * I2C I/O expander bits are always read; if equaliser parameters are supplied, - * they are configured first. - * - * Locks required: None - * Return code: 0, EINVAL - */ -#define MC_CMD_MRSFP_TWEAK 0x4d -#define MC_CMD_MRSFP_TWEAK_IN_LEN_READ_ONLY 0 -#define MC_CMD_MRSFP_TWEAK_IN_LEN_EQ_CONFIG 16 -#define MC_CMD_MRSFP_TWEAK_IN_TXEQ_LEVEL_OFST 0 /* 0-6 low->high de-emph. */ -#define MC_CMD_MRSFP_TWEAK_IN_TXEQ_DT_CFG_OFST 4 /* 0-8 low->high ref.V */ -#define MC_CMD_MRSFP_TWEAK_IN_RXEQ_BOOST_OFST 8 /* 0-8 low->high boost */ -#define MC_CMD_MRSFP_TWEAK_IN_RXEQ_DT_CFG_OFST 12 /* 0-8 low->high ref.V */ -#define MC_CMD_MRSFP_TWEAK_OUT_LEN 12 -#define MC_CMD_MRSFP_TWEAK_OUT_IOEXP_INPUTS_OFST 0 /* input bits */ -#define MC_CMD_MRSFP_TWEAK_OUT_IOEXP_OUTPUTS_OFST 4 /* output bits */ -#define MC_CMD_MRSFP_TWEAK_OUT_IOEXP_DIRECTION_OFST 8 /* dirs: 0=out, 1=in */ - -/* MC_CMD_TEST_HACK: (debug (unsurprisingly)) - * Change bits of network port state for test purposes in ways that would never be - * useful in normal operation and so need a special command to change. */ -#define MC_CMD_TEST_HACK 0x2f -#define MC_CMD_TEST_HACK_IN_LEN 8 -#define MC_CMD_TEST_HACK_IN_TXPAD_OFST 0 -#define MC_CMD_TEST_HACK_IN_TXPAD_AUTO 0 /* Let the MC manage things */ -#define MC_CMD_TEST_HACK_IN_TXPAD_ON 1 /* Force on */ -#define MC_CMD_TEST_HACK_IN_TXPAD_OFF 2 /* Force on */ -#define MC_CMD_TEST_HACK_IN_IPG_OFST 4 /* Takes a value in bits */ -#define MC_CMD_TEST_HACK_IN_IPG_AUTO 0 /* The MC picks the value */ -#define MC_CMD_TEST_HACK_OUT_LEN 0 - -/* MC_CMD_SENSOR_SET_LIMS: (debug) (mostly) adjust the sensor limits. This - * is a warranty-voiding operation. - * - * IN: sensor identifier (one of the enumeration starting with MC_CMD_SENSOR_CONTROLLER_TEMP - * followed by 4 32-bit values: min(warning) max(warning), min(fatal), max(fatal). Which - * of these limits are meaningful and what their interpretation is is sensor-specific. - * - * OUT: nothing - * - * Returns: ENOENT if the sensor specified does not exist, EINVAL if the limits are - * out of range. - */ -#define MC_CMD_SENSOR_SET_LIMS 0x4e -#define MC_CMD_SENSOR_SET_LIMS_IN_LEN 20 -#define MC_CMD_SENSOR_SET_LIMS_IN_SENSOR_OFST 0 -#define MC_CMD_SENSOR_SET_LIMS_IN_LOW0_OFST 4 -#define MC_CMD_SENSOR_SET_LIMS_IN_HI0_OFST 8 -#define MC_CMD_SENSOR_SET_LIMS_IN_LOW1_OFST 12 -#define MC_CMD_SENSOR_SET_LIMS_IN_HI1_OFST 16 - -/* Do NOT add new commands beyond 0x4f as part of 3.0 : 0x50 - 0x7f will be - * used for post-3.0 extensions. If you run out of space, look for gaps or - * commands that are unused in the existing range. */ - -#endif /* MCDI_PCOL_H */ diff --git a/drivers/net/sfc/mcdi_phy.c b/drivers/net/sfc/mcdi_phy.c deleted file mode 100644 index 6c63ab0..0000000 --- a/drivers/net/sfc/mcdi_phy.c +++ /dev/null @@ -1,754 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2009-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -/* - * Driver for PHY related operations via MCDI. - */ - -#include <linux/slab.h> -#include "efx.h" -#include "phy.h" -#include "mcdi.h" -#include "mcdi_pcol.h" -#include "nic.h" -#include "selftest.h" - -struct efx_mcdi_phy_data { - u32 flags; - u32 type; - u32 supported_cap; - u32 channel; - u32 port; - u32 stats_mask; - u8 name[20]; - u32 media; - u32 mmd_mask; - u8 revision[20]; - u32 forced_cap; -}; - -static int -efx_mcdi_get_phy_cfg(struct efx_nic *efx, struct efx_mcdi_phy_data *cfg) -{ - u8 outbuf[MC_CMD_GET_PHY_CFG_OUT_LEN]; - size_t outlen; - int rc; - - BUILD_BUG_ON(MC_CMD_GET_PHY_CFG_IN_LEN != 0); - BUILD_BUG_ON(MC_CMD_GET_PHY_CFG_OUT_NAME_LEN != sizeof(cfg->name)); - - rc = efx_mcdi_rpc(efx, MC_CMD_GET_PHY_CFG, NULL, 0, - outbuf, sizeof(outbuf), &outlen); - if (rc) - goto fail; - - if (outlen < MC_CMD_GET_PHY_CFG_OUT_LEN) { - rc = -EIO; - goto fail; - } - - cfg->flags = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_FLAGS); - cfg->type = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_TYPE); - cfg->supported_cap = - MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_SUPPORTED_CAP); - cfg->channel = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_CHANNEL); - cfg->port = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_PRT); - cfg->stats_mask = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_STATS_MASK); - memcpy(cfg->name, MCDI_PTR(outbuf, GET_PHY_CFG_OUT_NAME), - sizeof(cfg->name)); - cfg->media = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_MEDIA_TYPE); - cfg->mmd_mask = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_MMD_MASK); - memcpy(cfg->revision, MCDI_PTR(outbuf, GET_PHY_CFG_OUT_REVISION), - sizeof(cfg->revision)); - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -static int efx_mcdi_set_link(struct efx_nic *efx, u32 capabilities, - u32 flags, u32 loopback_mode, - u32 loopback_speed) -{ - u8 inbuf[MC_CMD_SET_LINK_IN_LEN]; - int rc; - - BUILD_BUG_ON(MC_CMD_SET_LINK_OUT_LEN != 0); - - MCDI_SET_DWORD(inbuf, SET_LINK_IN_CAP, capabilities); - MCDI_SET_DWORD(inbuf, SET_LINK_IN_FLAGS, flags); - MCDI_SET_DWORD(inbuf, SET_LINK_IN_LOOPBACK_MODE, loopback_mode); - MCDI_SET_DWORD(inbuf, SET_LINK_IN_LOOPBACK_SPEED, loopback_speed); - - rc = efx_mcdi_rpc(efx, MC_CMD_SET_LINK, inbuf, sizeof(inbuf), - NULL, 0, NULL); - if (rc) - goto fail; - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -static int efx_mcdi_loopback_modes(struct efx_nic *efx, u64 *loopback_modes) -{ - u8 outbuf[MC_CMD_GET_LOOPBACK_MODES_OUT_LEN]; - size_t outlen; - int rc; - - rc = efx_mcdi_rpc(efx, MC_CMD_GET_LOOPBACK_MODES, NULL, 0, - outbuf, sizeof(outbuf), &outlen); - if (rc) - goto fail; - - if (outlen < MC_CMD_GET_LOOPBACK_MODES_OUT_LEN) { - rc = -EIO; - goto fail; - } - - *loopback_modes = MCDI_QWORD(outbuf, GET_LOOPBACK_MODES_SUGGESTED); - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -int efx_mcdi_mdio_read(struct efx_nic *efx, unsigned int bus, - unsigned int prtad, unsigned int devad, u16 addr, - u16 *value_out, u32 *status_out) -{ - u8 inbuf[MC_CMD_MDIO_READ_IN_LEN]; - u8 outbuf[MC_CMD_MDIO_READ_OUT_LEN]; - size_t outlen; - int rc; - - MCDI_SET_DWORD(inbuf, MDIO_READ_IN_BUS, bus); - MCDI_SET_DWORD(inbuf, MDIO_READ_IN_PRTAD, prtad); - MCDI_SET_DWORD(inbuf, MDIO_READ_IN_DEVAD, devad); - MCDI_SET_DWORD(inbuf, MDIO_READ_IN_ADDR, addr); - - rc = efx_mcdi_rpc(efx, MC_CMD_MDIO_READ, inbuf, sizeof(inbuf), - outbuf, sizeof(outbuf), &outlen); - if (rc) - goto fail; - - *value_out = (u16)MCDI_DWORD(outbuf, MDIO_READ_OUT_VALUE); - *status_out = MCDI_DWORD(outbuf, MDIO_READ_OUT_STATUS); - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -int efx_mcdi_mdio_write(struct efx_nic *efx, unsigned int bus, - unsigned int prtad, unsigned int devad, u16 addr, - u16 value, u32 *status_out) -{ - u8 inbuf[MC_CMD_MDIO_WRITE_IN_LEN]; - u8 outbuf[MC_CMD_MDIO_WRITE_OUT_LEN]; - size_t outlen; - int rc; - - MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_BUS, bus); - MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_PRTAD, prtad); - MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_DEVAD, devad); - MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_ADDR, addr); - MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_VALUE, value); - - rc = efx_mcdi_rpc(efx, MC_CMD_MDIO_WRITE, inbuf, sizeof(inbuf), - outbuf, sizeof(outbuf), &outlen); - if (rc) - goto fail; - - *status_out = MCDI_DWORD(outbuf, MDIO_WRITE_OUT_STATUS); - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); - return rc; -} - -static u32 mcdi_to_ethtool_cap(u32 media, u32 cap) -{ - u32 result = 0; - - switch (media) { - case MC_CMD_MEDIA_KX4: - result |= SUPPORTED_Backplane; - if (cap & (1 << MC_CMD_PHY_CAP_1000FDX_LBN)) - result |= SUPPORTED_1000baseKX_Full; - if (cap & (1 << MC_CMD_PHY_CAP_10000FDX_LBN)) - result |= SUPPORTED_10000baseKX4_Full; - break; - - case MC_CMD_MEDIA_XFP: - case MC_CMD_MEDIA_SFP_PLUS: - result |= SUPPORTED_FIBRE; - break; - - case MC_CMD_MEDIA_BASE_T: - result |= SUPPORTED_TP; - if (cap & (1 << MC_CMD_PHY_CAP_10HDX_LBN)) - result |= SUPPORTED_10baseT_Half; - if (cap & (1 << MC_CMD_PHY_CAP_10FDX_LBN)) - result |= SUPPORTED_10baseT_Full; - if (cap & (1 << MC_CMD_PHY_CAP_100HDX_LBN)) - result |= SUPPORTED_100baseT_Half; - if (cap & (1 << MC_CMD_PHY_CAP_100FDX_LBN)) - result |= SUPPORTED_100baseT_Full; - if (cap & (1 << MC_CMD_PHY_CAP_1000HDX_LBN)) - result |= SUPPORTED_1000baseT_Half; - if (cap & (1 << MC_CMD_PHY_CAP_1000FDX_LBN)) - result |= SUPPORTED_1000baseT_Full; - if (cap & (1 << MC_CMD_PHY_CAP_10000FDX_LBN)) - result |= SUPPORTED_10000baseT_Full; - break; - } - - if (cap & (1 << MC_CMD_PHY_CAP_PAUSE_LBN)) - result |= SUPPORTED_Pause; - if (cap & (1 << MC_CMD_PHY_CAP_ASYM_LBN)) - result |= SUPPORTED_Asym_Pause; - if (cap & (1 << MC_CMD_PHY_CAP_AN_LBN)) - result |= SUPPORTED_Autoneg; - - return result; -} - -static u32 ethtool_to_mcdi_cap(u32 cap) -{ - u32 result = 0; - - if (cap & SUPPORTED_10baseT_Half) - result |= (1 << MC_CMD_PHY_CAP_10HDX_LBN); - if (cap & SUPPORTED_10baseT_Full) - result |= (1 << MC_CMD_PHY_CAP_10FDX_LBN); - if (cap & SUPPORTED_100baseT_Half) - result |= (1 << MC_CMD_PHY_CAP_100HDX_LBN); - if (cap & SUPPORTED_100baseT_Full) - result |= (1 << MC_CMD_PHY_CAP_100FDX_LBN); - if (cap & SUPPORTED_1000baseT_Half) - result |= (1 << MC_CMD_PHY_CAP_1000HDX_LBN); - if (cap & (SUPPORTED_1000baseT_Full | SUPPORTED_1000baseKX_Full)) - result |= (1 << MC_CMD_PHY_CAP_1000FDX_LBN); - if (cap & (SUPPORTED_10000baseT_Full | SUPPORTED_10000baseKX4_Full)) - result |= (1 << MC_CMD_PHY_CAP_10000FDX_LBN); - if (cap & SUPPORTED_Pause) - result |= (1 << MC_CMD_PHY_CAP_PAUSE_LBN); - if (cap & SUPPORTED_Asym_Pause) - result |= (1 << MC_CMD_PHY_CAP_ASYM_LBN); - if (cap & SUPPORTED_Autoneg) - result |= (1 << MC_CMD_PHY_CAP_AN_LBN); - - return result; -} - -static u32 efx_get_mcdi_phy_flags(struct efx_nic *efx) -{ - struct efx_mcdi_phy_data *phy_cfg = efx->phy_data; - enum efx_phy_mode mode, supported; - u32 flags; - - /* TODO: Advertise the capabilities supported by this PHY */ - supported = 0; - if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_TXDIS_LBN)) - supported |= PHY_MODE_TX_DISABLED; - if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_LOWPOWER_LBN)) - supported |= PHY_MODE_LOW_POWER; - if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_POWEROFF_LBN)) - supported |= PHY_MODE_OFF; - - mode = efx->phy_mode & supported; - - flags = 0; - if (mode & PHY_MODE_TX_DISABLED) - flags |= (1 << MC_CMD_SET_LINK_TXDIS_LBN); - if (mode & PHY_MODE_LOW_POWER) - flags |= (1 << MC_CMD_SET_LINK_LOWPOWER_LBN); - if (mode & PHY_MODE_OFF) - flags |= (1 << MC_CMD_SET_LINK_POWEROFF_LBN); - - return flags; -} - -static u32 mcdi_to_ethtool_media(u32 media) -{ - switch (media) { - case MC_CMD_MEDIA_XAUI: - case MC_CMD_MEDIA_CX4: - case MC_CMD_MEDIA_KX4: - return PORT_OTHER; - - case MC_CMD_MEDIA_XFP: - case MC_CMD_MEDIA_SFP_PLUS: - return PORT_FIBRE; - - case MC_CMD_MEDIA_BASE_T: - return PORT_TP; - - default: - return PORT_OTHER; - } -} - -static int efx_mcdi_phy_probe(struct efx_nic *efx) -{ - struct efx_mcdi_phy_data *phy_data; - u8 outbuf[MC_CMD_GET_LINK_OUT_LEN]; - u32 caps; - int rc; - - /* Initialise and populate phy_data */ - phy_data = kzalloc(sizeof(*phy_data), GFP_KERNEL); - if (phy_data == NULL) - return -ENOMEM; - - rc = efx_mcdi_get_phy_cfg(efx, phy_data); - if (rc != 0) - goto fail; - - /* Read initial link advertisement */ - BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0); - rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0, - outbuf, sizeof(outbuf), NULL); - if (rc) - goto fail; - - /* Fill out nic state */ - efx->phy_data = phy_data; - efx->phy_type = phy_data->type; - - efx->mdio_bus = phy_data->channel; - efx->mdio.prtad = phy_data->port; - efx->mdio.mmds = phy_data->mmd_mask & ~(1 << MC_CMD_MMD_CLAUSE22); - efx->mdio.mode_support = 0; - if (phy_data->mmd_mask & (1 << MC_CMD_MMD_CLAUSE22)) - efx->mdio.mode_support |= MDIO_SUPPORTS_C22; - if (phy_data->mmd_mask & ~(1 << MC_CMD_MMD_CLAUSE22)) - efx->mdio.mode_support |= MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; - - caps = MCDI_DWORD(outbuf, GET_LINK_OUT_CAP); - if (caps & (1 << MC_CMD_PHY_CAP_AN_LBN)) - efx->link_advertising = - mcdi_to_ethtool_cap(phy_data->media, caps); - else - phy_data->forced_cap = caps; - - /* Assert that we can map efx -> mcdi loopback modes */ - BUILD_BUG_ON(LOOPBACK_NONE != MC_CMD_LOOPBACK_NONE); - BUILD_BUG_ON(LOOPBACK_DATA != MC_CMD_LOOPBACK_DATA); - BUILD_BUG_ON(LOOPBACK_GMAC != MC_CMD_LOOPBACK_GMAC); - BUILD_BUG_ON(LOOPBACK_XGMII != MC_CMD_LOOPBACK_XGMII); - BUILD_BUG_ON(LOOPBACK_XGXS != MC_CMD_LOOPBACK_XGXS); - BUILD_BUG_ON(LOOPBACK_XAUI != MC_CMD_LOOPBACK_XAUI); - BUILD_BUG_ON(LOOPBACK_GMII != MC_CMD_LOOPBACK_GMII); - BUILD_BUG_ON(LOOPBACK_SGMII != MC_CMD_LOOPBACK_SGMII); - BUILD_BUG_ON(LOOPBACK_XGBR != MC_CMD_LOOPBACK_XGBR); - BUILD_BUG_ON(LOOPBACK_XFI != MC_CMD_LOOPBACK_XFI); - BUILD_BUG_ON(LOOPBACK_XAUI_FAR != MC_CMD_LOOPBACK_XAUI_FAR); - BUILD_BUG_ON(LOOPBACK_GMII_FAR != MC_CMD_LOOPBACK_GMII_FAR); - BUILD_BUG_ON(LOOPBACK_SGMII_FAR != MC_CMD_LOOPBACK_SGMII_FAR); - BUILD_BUG_ON(LOOPBACK_XFI_FAR != MC_CMD_LOOPBACK_XFI_FAR); - BUILD_BUG_ON(LOOPBACK_GPHY != MC_CMD_LOOPBACK_GPHY); - BUILD_BUG_ON(LOOPBACK_PHYXS != MC_CMD_LOOPBACK_PHYXS); - BUILD_BUG_ON(LOOPBACK_PCS != MC_CMD_LOOPBACK_PCS); - BUILD_BUG_ON(LOOPBACK_PMAPMD != MC_CMD_LOOPBACK_PMAPMD); - BUILD_BUG_ON(LOOPBACK_XPORT != MC_CMD_LOOPBACK_XPORT); - BUILD_BUG_ON(LOOPBACK_XGMII_WS != MC_CMD_LOOPBACK_XGMII_WS); - BUILD_BUG_ON(LOOPBACK_XAUI_WS != MC_CMD_LOOPBACK_XAUI_WS); - BUILD_BUG_ON(LOOPBACK_XAUI_WS_FAR != MC_CMD_LOOPBACK_XAUI_WS_FAR); - BUILD_BUG_ON(LOOPBACK_XAUI_WS_NEAR != MC_CMD_LOOPBACK_XAUI_WS_NEAR); - BUILD_BUG_ON(LOOPBACK_GMII_WS != MC_CMD_LOOPBACK_GMII_WS); - BUILD_BUG_ON(LOOPBACK_XFI_WS != MC_CMD_LOOPBACK_XFI_WS); - BUILD_BUG_ON(LOOPBACK_XFI_WS_FAR != MC_CMD_LOOPBACK_XFI_WS_FAR); - BUILD_BUG_ON(LOOPBACK_PHYXS_WS != MC_CMD_LOOPBACK_PHYXS_WS); - - rc = efx_mcdi_loopback_modes(efx, &efx->loopback_modes); - if (rc != 0) - goto fail; - /* The MC indicates that LOOPBACK_NONE is a valid loopback mode, - * but by convention we don't */ - efx->loopback_modes &= ~(1 << LOOPBACK_NONE); - - /* Set the initial link mode */ - efx_mcdi_phy_decode_link( - efx, &efx->link_state, - MCDI_DWORD(outbuf, GET_LINK_OUT_LINK_SPEED), - MCDI_DWORD(outbuf, GET_LINK_OUT_FLAGS), - MCDI_DWORD(outbuf, GET_LINK_OUT_FCNTL)); - - /* Default to Autonegotiated flow control if the PHY supports it */ - efx->wanted_fc = EFX_FC_RX | EFX_FC_TX; - if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN)) - efx->wanted_fc |= EFX_FC_AUTO; - efx_link_set_wanted_fc(efx, efx->wanted_fc); - - return 0; - -fail: - kfree(phy_data); - return rc; -} - -int efx_mcdi_phy_reconfigure(struct efx_nic *efx) -{ - struct efx_mcdi_phy_data *phy_cfg = efx->phy_data; - u32 caps = (efx->link_advertising ? - ethtool_to_mcdi_cap(efx->link_advertising) : - phy_cfg->forced_cap); - - return efx_mcdi_set_link(efx, caps, efx_get_mcdi_phy_flags(efx), - efx->loopback_mode, 0); -} - -void efx_mcdi_phy_decode_link(struct efx_nic *efx, - struct efx_link_state *link_state, - u32 speed, u32 flags, u32 fcntl) -{ - switch (fcntl) { - case MC_CMD_FCNTL_AUTO: - WARN_ON(1); /* This is not a link mode */ - link_state->fc = EFX_FC_AUTO | EFX_FC_TX | EFX_FC_RX; - break; - case MC_CMD_FCNTL_BIDIR: - link_state->fc = EFX_FC_TX | EFX_FC_RX; - break; - case MC_CMD_FCNTL_RESPOND: - link_state->fc = EFX_FC_RX; - break; - default: - WARN_ON(1); - case MC_CMD_FCNTL_OFF: - link_state->fc = 0; - break; - } - - link_state->up = !!(flags & (1 << MC_CMD_GET_LINK_LINK_UP_LBN)); - link_state->fd = !!(flags & (1 << MC_CMD_GET_LINK_FULL_DUPLEX_LBN)); - link_state->speed = speed; -} - -/* Verify that the forced flow control settings (!EFX_FC_AUTO) are - * supported by the link partner. Warn the user if this isn't the case - */ -void efx_mcdi_phy_check_fcntl(struct efx_nic *efx, u32 lpa) -{ - struct efx_mcdi_phy_data *phy_cfg = efx->phy_data; - u32 rmtadv; - - /* The link partner capabilities are only relevant if the - * link supports flow control autonegotiation */ - if (~phy_cfg->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN)) - return; - - /* If flow control autoneg is supported and enabled, then fine */ - if (efx->wanted_fc & EFX_FC_AUTO) - return; - - rmtadv = 0; - if (lpa & (1 << MC_CMD_PHY_CAP_PAUSE_LBN)) - rmtadv |= ADVERTISED_Pause; - if (lpa & (1 << MC_CMD_PHY_CAP_ASYM_LBN)) - rmtadv |= ADVERTISED_Asym_Pause; - - if ((efx->wanted_fc & EFX_FC_TX) && rmtadv == ADVERTISED_Asym_Pause) - netif_err(efx, link, efx->net_dev, - "warning: link partner doesn't support pause frames"); -} - -static bool efx_mcdi_phy_poll(struct efx_nic *efx) -{ - struct efx_link_state old_state = efx->link_state; - u8 outbuf[MC_CMD_GET_LINK_OUT_LEN]; - int rc; - - WARN_ON(!mutex_is_locked(&efx->mac_lock)); - - BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0); - - rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0, - outbuf, sizeof(outbuf), NULL); - if (rc) { - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", - __func__, rc); - efx->link_state.up = false; - } else { - efx_mcdi_phy_decode_link( - efx, &efx->link_state, - MCDI_DWORD(outbuf, GET_LINK_OUT_LINK_SPEED), - MCDI_DWORD(outbuf, GET_LINK_OUT_FLAGS), - MCDI_DWORD(outbuf, GET_LINK_OUT_FCNTL)); - } - - return !efx_link_state_equal(&efx->link_state, &old_state); -} - -static void efx_mcdi_phy_remove(struct efx_nic *efx) -{ - struct efx_mcdi_phy_data *phy_data = efx->phy_data; - - efx->phy_data = NULL; - kfree(phy_data); -} - -static void efx_mcdi_phy_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd) -{ - struct efx_mcdi_phy_data *phy_cfg = efx->phy_data; - u8 outbuf[MC_CMD_GET_LINK_OUT_LEN]; - int rc; - - ecmd->supported = - mcdi_to_ethtool_cap(phy_cfg->media, phy_cfg->supported_cap); - ecmd->advertising = efx->link_advertising; - ethtool_cmd_speed_set(ecmd, efx->link_state.speed); - ecmd->duplex = efx->link_state.fd; - ecmd->port = mcdi_to_ethtool_media(phy_cfg->media); - ecmd->phy_address = phy_cfg->port; - ecmd->transceiver = XCVR_INTERNAL; - ecmd->autoneg = !!(efx->link_advertising & ADVERTISED_Autoneg); - ecmd->mdio_support = (efx->mdio.mode_support & - (MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22)); - - BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0); - rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0, - outbuf, sizeof(outbuf), NULL); - if (rc) { - netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", - __func__, rc); - return; - } - ecmd->lp_advertising = - mcdi_to_ethtool_cap(phy_cfg->media, - MCDI_DWORD(outbuf, GET_LINK_OUT_LP_CAP)); -} - -static int efx_mcdi_phy_set_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd) -{ - struct efx_mcdi_phy_data *phy_cfg = efx->phy_data; - u32 caps; - int rc; - - if (ecmd->autoneg) { - caps = (ethtool_to_mcdi_cap(ecmd->advertising) | - 1 << MC_CMD_PHY_CAP_AN_LBN); - } else if (ecmd->duplex) { - switch (ethtool_cmd_speed(ecmd)) { - case 10: caps = 1 << MC_CMD_PHY_CAP_10FDX_LBN; break; - case 100: caps = 1 << MC_CMD_PHY_CAP_100FDX_LBN; break; - case 1000: caps = 1 << MC_CMD_PHY_CAP_1000FDX_LBN; break; - case 10000: caps = 1 << MC_CMD_PHY_CAP_10000FDX_LBN; break; - default: return -EINVAL; - } - } else { - switch (ethtool_cmd_speed(ecmd)) { - case 10: caps = 1 << MC_CMD_PHY_CAP_10HDX_LBN; break; - case 100: caps = 1 << MC_CMD_PHY_CAP_100HDX_LBN; break; - case 1000: caps = 1 << MC_CMD_PHY_CAP_1000HDX_LBN; break; - default: return -EINVAL; - } - } - - rc = efx_mcdi_set_link(efx, caps, efx_get_mcdi_phy_flags(efx), - efx->loopback_mode, 0); - if (rc) - return rc; - - if (ecmd->autoneg) { - efx_link_set_advertising( - efx, ecmd->advertising | ADVERTISED_Autoneg); - phy_cfg->forced_cap = 0; - } else { - efx_link_set_advertising(efx, 0); - phy_cfg->forced_cap = caps; - } - return 0; -} - -static int efx_mcdi_phy_test_alive(struct efx_nic *efx) -{ - u8 outbuf[MC_CMD_GET_PHY_STATE_OUT_LEN]; - size_t outlen; - int rc; - - BUILD_BUG_ON(MC_CMD_GET_PHY_STATE_IN_LEN != 0); - - rc = efx_mcdi_rpc(efx, MC_CMD_GET_PHY_STATE, NULL, 0, - outbuf, sizeof(outbuf), &outlen); - if (rc) - return rc; - - if (outlen < MC_CMD_GET_PHY_STATE_OUT_LEN) - return -EIO; - if (MCDI_DWORD(outbuf, GET_PHY_STATE_STATE) != MC_CMD_PHY_STATE_OK) - return -EINVAL; - - return 0; -} - -static const char *const mcdi_sft9001_cable_diag_names[] = { - "cable.pairA.length", - "cable.pairB.length", - "cable.pairC.length", - "cable.pairD.length", - "cable.pairA.status", - "cable.pairB.status", - "cable.pairC.status", - "cable.pairD.status", -}; - -static int efx_mcdi_bist(struct efx_nic *efx, unsigned int bist_mode, - int *results) -{ - unsigned int retry, i, count = 0; - size_t outlen; - u32 status; - u8 *buf, *ptr; - int rc; - - buf = kzalloc(0x100, GFP_KERNEL); - if (buf == NULL) - return -ENOMEM; - - BUILD_BUG_ON(MC_CMD_START_BIST_OUT_LEN != 0); - MCDI_SET_DWORD(buf, START_BIST_IN_TYPE, bist_mode); - rc = efx_mcdi_rpc(efx, MC_CMD_START_BIST, buf, MC_CMD_START_BIST_IN_LEN, - NULL, 0, NULL); - if (rc) - goto out; - - /* Wait up to 10s for BIST to finish */ - for (retry = 0; retry < 100; ++retry) { - BUILD_BUG_ON(MC_CMD_POLL_BIST_IN_LEN != 0); - rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0, - buf, 0x100, &outlen); - if (rc) - goto out; - - status = MCDI_DWORD(buf, POLL_BIST_OUT_RESULT); - if (status != MC_CMD_POLL_BIST_RUNNING) - goto finished; - - msleep(100); - } - - rc = -ETIMEDOUT; - goto out; - -finished: - results[count++] = (status == MC_CMD_POLL_BIST_PASSED) ? 1 : -1; - - /* SFT9001 specific cable diagnostics output */ - if (efx->phy_type == PHY_TYPE_SFT9001B && - (bist_mode == MC_CMD_PHY_BIST_CABLE_SHORT || - bist_mode == MC_CMD_PHY_BIST_CABLE_LONG)) { - ptr = MCDI_PTR(buf, POLL_BIST_OUT_SFT9001_CABLE_LENGTH_A); - if (status == MC_CMD_POLL_BIST_PASSED && - outlen >= MC_CMD_POLL_BIST_OUT_SFT9001_LEN) { - for (i = 0; i < 8; i++) { - results[count + i] = - EFX_DWORD_FIELD(((efx_dword_t *)ptr)[i], - EFX_DWORD_0); - } - } - count += 8; - } - rc = count; - -out: - kfree(buf); - - return rc; -} - -static int efx_mcdi_phy_run_tests(struct efx_nic *efx, int *results, - unsigned flags) -{ - struct efx_mcdi_phy_data *phy_cfg = efx->phy_data; - u32 mode; - int rc; - - if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_BIST_LBN)) { - rc = efx_mcdi_bist(efx, MC_CMD_PHY_BIST, results); - if (rc < 0) - return rc; - - results += rc; - } - - /* If we support both LONG and SHORT, then run each in response to - * break or not. Otherwise, run the one we support */ - mode = 0; - if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_BIST_CABLE_SHORT_LBN)) { - if ((flags & ETH_TEST_FL_OFFLINE) && - (phy_cfg->flags & - (1 << MC_CMD_GET_PHY_CFG_BIST_CABLE_LONG_LBN))) - mode = MC_CMD_PHY_BIST_CABLE_LONG; - else - mode = MC_CMD_PHY_BIST_CABLE_SHORT; - } else if (phy_cfg->flags & - (1 << MC_CMD_GET_PHY_CFG_BIST_CABLE_LONG_LBN)) - mode = MC_CMD_PHY_BIST_CABLE_LONG; - - if (mode != 0) { - rc = efx_mcdi_bist(efx, mode, results); - if (rc < 0) - return rc; - results += rc; - } - - return 0; -} - -static const char *efx_mcdi_phy_test_name(struct efx_nic *efx, - unsigned int index) -{ - struct efx_mcdi_phy_data *phy_cfg = efx->phy_data; - - if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_BIST_LBN)) { - if (index == 0) - return "bist"; - --index; - } - - if (phy_cfg->flags & ((1 << MC_CMD_GET_PHY_CFG_BIST_CABLE_SHORT_LBN) | - (1 << MC_CMD_GET_PHY_CFG_BIST_CABLE_LONG_LBN))) { - if (index == 0) - return "cable"; - --index; - - if (efx->phy_type == PHY_TYPE_SFT9001B) { - if (index < ARRAY_SIZE(mcdi_sft9001_cable_diag_names)) - return mcdi_sft9001_cable_diag_names[index]; - index -= ARRAY_SIZE(mcdi_sft9001_cable_diag_names); - } - } - - return NULL; -} - -const struct efx_phy_operations efx_mcdi_phy_ops = { - .probe = efx_mcdi_phy_probe, - .init = efx_port_dummy_op_int, - .reconfigure = efx_mcdi_phy_reconfigure, - .poll = efx_mcdi_phy_poll, - .fini = efx_port_dummy_op_void, - .remove = efx_mcdi_phy_remove, - .get_settings = efx_mcdi_phy_get_settings, - .set_settings = efx_mcdi_phy_set_settings, - .test_alive = efx_mcdi_phy_test_alive, - .run_tests = efx_mcdi_phy_run_tests, - .test_name = efx_mcdi_phy_test_name, -}; diff --git a/drivers/net/sfc/mdio_10g.c b/drivers/net/sfc/mdio_10g.c deleted file mode 100644 index 7ab385c..0000000 --- a/drivers/net/sfc/mdio_10g.c +++ /dev/null @@ -1,323 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2006-2011 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ -/* - * Useful functions for working with MDIO clause 45 PHYs - */ -#include <linux/types.h> -#include <linux/ethtool.h> -#include <linux/delay.h> -#include "net_driver.h" -#include "mdio_10g.h" -#include "workarounds.h" - -unsigned efx_mdio_id_oui(u32 id) -{ - unsigned oui = 0; - int i; - - /* The bits of the OUI are designated a..x, with a=0 and b variable. - * In the id register c is the MSB but the OUI is conventionally - * written as bytes h..a, p..i, x..q. Reorder the bits accordingly. */ - for (i = 0; i < 22; ++i) - if (id & (1 << (i + 10))) - oui |= 1 << (i ^ 7); - - return oui; -} - -int efx_mdio_reset_mmd(struct efx_nic *port, int mmd, - int spins, int spintime) -{ - u32 ctrl; - - /* Catch callers passing values in the wrong units (or just silly) */ - EFX_BUG_ON_PARANOID(spins * spintime >= 5000); - - efx_mdio_write(port, mmd, MDIO_CTRL1, MDIO_CTRL1_RESET); - /* Wait for the reset bit to clear. */ - do { - msleep(spintime); - ctrl = efx_mdio_read(port, mmd, MDIO_CTRL1); - spins--; - - } while (spins && (ctrl & MDIO_CTRL1_RESET)); - - return spins ? spins : -ETIMEDOUT; -} - -static int efx_mdio_check_mmd(struct efx_nic *efx, int mmd) -{ - int status; - - if (mmd != MDIO_MMD_AN) { - /* Read MMD STATUS2 to check it is responding. */ - status = efx_mdio_read(efx, mmd, MDIO_STAT2); - if ((status & MDIO_STAT2_DEVPRST) != MDIO_STAT2_DEVPRST_VAL) { - netif_err(efx, hw, efx->net_dev, - "PHY MMD %d not responding.\n", mmd); - return -EIO; - } - } - - return 0; -} - -/* This ought to be ridiculous overkill. We expect it to fail rarely */ -#define MDIO45_RESET_TIME 1000 /* ms */ -#define MDIO45_RESET_ITERS 100 - -int efx_mdio_wait_reset_mmds(struct efx_nic *efx, unsigned int mmd_mask) -{ - const int spintime = MDIO45_RESET_TIME / MDIO45_RESET_ITERS; - int tries = MDIO45_RESET_ITERS; - int rc = 0; - int in_reset; - - while (tries) { - int mask = mmd_mask; - int mmd = 0; - int stat; - in_reset = 0; - while (mask) { - if (mask & 1) { - stat = efx_mdio_read(efx, mmd, MDIO_CTRL1); - if (stat < 0) { - netif_err(efx, hw, efx->net_dev, - "failed to read status of" - " MMD %d\n", mmd); - return -EIO; - } - if (stat & MDIO_CTRL1_RESET) - in_reset |= (1 << mmd); - } - mask = mask >> 1; - mmd++; - } - if (!in_reset) - break; - tries--; - msleep(spintime); - } - if (in_reset != 0) { - netif_err(efx, hw, efx->net_dev, - "not all MMDs came out of reset in time." - " MMDs still in reset: %x\n", in_reset); - rc = -ETIMEDOUT; - } - return rc; -} - -int efx_mdio_check_mmds(struct efx_nic *efx, unsigned int mmd_mask) -{ - int mmd = 0, probe_mmd, devs1, devs2; - u32 devices; - - /* Historically we have probed the PHYXS to find out what devices are - * present,but that doesn't work so well if the PHYXS isn't expected - * to exist, if so just find the first item in the list supplied. */ - probe_mmd = (mmd_mask & MDIO_DEVS_PHYXS) ? MDIO_MMD_PHYXS : - __ffs(mmd_mask); - - /* Check all the expected MMDs are present */ - devs1 = efx_mdio_read(efx, probe_mmd, MDIO_DEVS1); - devs2 = efx_mdio_read(efx, probe_mmd, MDIO_DEVS2); - if (devs1 < 0 || devs2 < 0) { - netif_err(efx, hw, efx->net_dev, - "failed to read devices present\n"); - return -EIO; - } - devices = devs1 | (devs2 << 16); - if ((devices & mmd_mask) != mmd_mask) { - netif_err(efx, hw, efx->net_dev, - "required MMDs not present: got %x, wanted %x\n", - devices, mmd_mask); - return -ENODEV; - } - netif_vdbg(efx, hw, efx->net_dev, "Devices present: %x\n", devices); - - /* Check all required MMDs are responding and happy. */ - while (mmd_mask) { - if ((mmd_mask & 1) && efx_mdio_check_mmd(efx, mmd)) - return -EIO; - mmd_mask = mmd_mask >> 1; - mmd++; - } - - return 0; -} - -bool efx_mdio_links_ok(struct efx_nic *efx, unsigned int mmd_mask) -{ - /* If the port is in loopback, then we should only consider a subset - * of mmd's */ - if (LOOPBACK_INTERNAL(efx)) - return true; - else if (LOOPBACK_MASK(efx) & LOOPBACKS_WS) - return false; - else if (efx_phy_mode_disabled(efx->phy_mode)) - return false; - else if (efx->loopback_mode == LOOPBACK_PHYXS) - mmd_mask &= ~(MDIO_DEVS_PHYXS | - MDIO_DEVS_PCS | - MDIO_DEVS_PMAPMD | - MDIO_DEVS_AN); - else if (efx->loopback_mode == LOOPBACK_PCS) - mmd_mask &= ~(MDIO_DEVS_PCS | - MDIO_DEVS_PMAPMD | - MDIO_DEVS_AN); - else if (efx->loopback_mode == LOOPBACK_PMAPMD) - mmd_mask &= ~(MDIO_DEVS_PMAPMD | - MDIO_DEVS_AN); - - return mdio45_links_ok(&efx->mdio, mmd_mask); -} - -void efx_mdio_transmit_disable(struct efx_nic *efx) -{ - efx_mdio_set_flag(efx, MDIO_MMD_PMAPMD, - MDIO_PMA_TXDIS, MDIO_PMD_TXDIS_GLOBAL, - efx->phy_mode & PHY_MODE_TX_DISABLED); -} - -void efx_mdio_phy_reconfigure(struct efx_nic *efx) -{ - efx_mdio_set_flag(efx, MDIO_MMD_PMAPMD, - MDIO_CTRL1, MDIO_PMA_CTRL1_LOOPBACK, - efx->loopback_mode == LOOPBACK_PMAPMD); - efx_mdio_set_flag(efx, MDIO_MMD_PCS, - MDIO_CTRL1, MDIO_PCS_CTRL1_LOOPBACK, - efx->loopback_mode == LOOPBACK_PCS); - efx_mdio_set_flag(efx, MDIO_MMD_PHYXS, - MDIO_CTRL1, MDIO_PHYXS_CTRL1_LOOPBACK, - efx->loopback_mode == LOOPBACK_PHYXS_WS); -} - -static void efx_mdio_set_mmd_lpower(struct efx_nic *efx, - int lpower, int mmd) -{ - int stat = efx_mdio_read(efx, mmd, MDIO_STAT1); - - netif_vdbg(efx, drv, efx->net_dev, "Setting low power mode for MMD %d to %d\n", - mmd, lpower); - - if (stat & MDIO_STAT1_LPOWERABLE) { - efx_mdio_set_flag(efx, mmd, MDIO_CTRL1, - MDIO_CTRL1_LPOWER, lpower); - } -} - -void efx_mdio_set_mmds_lpower(struct efx_nic *efx, - int low_power, unsigned int mmd_mask) -{ - int mmd = 0; - mmd_mask &= ~MDIO_DEVS_AN; - while (mmd_mask) { - if (mmd_mask & 1) - efx_mdio_set_mmd_lpower(efx, low_power, mmd); - mmd_mask = (mmd_mask >> 1); - mmd++; - } -} - -/** - * efx_mdio_set_settings - Set (some of) the PHY settings over MDIO. - * @efx: Efx NIC - * @ecmd: New settings - */ -int efx_mdio_set_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd) -{ - struct ethtool_cmd prev = { .cmd = ETHTOOL_GSET }; - - efx->phy_op->get_settings(efx, &prev); - - if (ecmd->advertising == prev.advertising && - ethtool_cmd_speed(ecmd) == ethtool_cmd_speed(&prev) && - ecmd->duplex == prev.duplex && - ecmd->port == prev.port && - ecmd->autoneg == prev.autoneg) - return 0; - - /* We can only change these settings for -T PHYs */ - if (prev.port != PORT_TP || ecmd->port != PORT_TP) - return -EINVAL; - - /* Check that PHY supports these settings */ - if (!ecmd->autoneg || - (ecmd->advertising | SUPPORTED_Autoneg) & ~prev.supported) - return -EINVAL; - - efx_link_set_advertising(efx, ecmd->advertising | ADVERTISED_Autoneg); - efx_mdio_an_reconfigure(efx); - return 0; -} - -/** - * efx_mdio_an_reconfigure - Push advertising flags and restart autonegotiation - * @efx: Efx NIC - */ -void efx_mdio_an_reconfigure(struct efx_nic *efx) -{ - int reg; - - WARN_ON(!(efx->mdio.mmds & MDIO_DEVS_AN)); - - /* Set up the base page */ - reg = ADVERTISE_CSMA | ADVERTISE_RESV; - if (efx->link_advertising & ADVERTISED_Pause) - reg |= ADVERTISE_PAUSE_CAP; - if (efx->link_advertising & ADVERTISED_Asym_Pause) - reg |= ADVERTISE_PAUSE_ASYM; - efx_mdio_write(efx, MDIO_MMD_AN, MDIO_AN_ADVERTISE, reg); - - /* Set up the (extended) next page */ - efx->phy_op->set_npage_adv(efx, efx->link_advertising); - - /* Enable and restart AN */ - reg = efx_mdio_read(efx, MDIO_MMD_AN, MDIO_CTRL1); - reg |= MDIO_AN_CTRL1_ENABLE | MDIO_AN_CTRL1_RESTART | MDIO_AN_CTRL1_XNP; - efx_mdio_write(efx, MDIO_MMD_AN, MDIO_CTRL1, reg); -} - -u8 efx_mdio_get_pause(struct efx_nic *efx) -{ - BUILD_BUG_ON(EFX_FC_AUTO & (EFX_FC_RX | EFX_FC_TX)); - - if (!(efx->wanted_fc & EFX_FC_AUTO)) - return efx->wanted_fc; - - WARN_ON(!(efx->mdio.mmds & MDIO_DEVS_AN)); - - return mii_resolve_flowctrl_fdx( - mii_advertise_flowctrl(efx->wanted_fc), - efx_mdio_read(efx, MDIO_MMD_AN, MDIO_AN_LPA)); -} - -int efx_mdio_test_alive(struct efx_nic *efx) -{ - int rc; - int devad = __ffs(efx->mdio.mmds); - u16 physid1, physid2; - - mutex_lock(&efx->mac_lock); - - physid1 = efx_mdio_read(efx, devad, MDIO_DEVID1); - physid2 = efx_mdio_read(efx, devad, MDIO_DEVID2); - - if ((physid1 == 0x0000) || (physid1 == 0xffff) || - (physid2 == 0x0000) || (physid2 == 0xffff)) { - netif_err(efx, hw, efx->net_dev, - "no MDIO PHY present with ID %d\n", efx->mdio.prtad); - rc = -EINVAL; - } else { - rc = efx_mdio_check_mmds(efx, efx->mdio.mmds); - } - - mutex_unlock(&efx->mac_lock); - return rc; -} diff --git a/drivers/net/sfc/mdio_10g.h b/drivers/net/sfc/mdio_10g.h deleted file mode 100644 index a97dbbd..0000000 --- a/drivers/net/sfc/mdio_10g.h +++ /dev/null @@ -1,112 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2006-2011 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_MDIO_10G_H -#define EFX_MDIO_10G_H - -#include <linux/mdio.h> - -/* - * Helper functions for doing 10G MDIO as specified in IEEE 802.3 clause 45. - */ - -#include "efx.h" - -static inline unsigned efx_mdio_id_rev(u32 id) { return id & 0xf; } -static inline unsigned efx_mdio_id_model(u32 id) { return (id >> 4) & 0x3f; } -extern unsigned efx_mdio_id_oui(u32 id); - -static inline int efx_mdio_read(struct efx_nic *efx, int devad, int addr) -{ - return efx->mdio.mdio_read(efx->net_dev, efx->mdio.prtad, devad, addr); -} - -static inline void -efx_mdio_write(struct efx_nic *efx, int devad, int addr, int value) -{ - efx->mdio.mdio_write(efx->net_dev, efx->mdio.prtad, devad, addr, value); -} - -static inline u32 efx_mdio_read_id(struct efx_nic *efx, int mmd) -{ - u16 id_low = efx_mdio_read(efx, mmd, MDIO_DEVID2); - u16 id_hi = efx_mdio_read(efx, mmd, MDIO_DEVID1); - return (id_hi << 16) | (id_low); -} - -static inline bool efx_mdio_phyxgxs_lane_sync(struct efx_nic *efx) -{ - int i, lane_status; - bool sync; - - for (i = 0; i < 2; ++i) - lane_status = efx_mdio_read(efx, MDIO_MMD_PHYXS, - MDIO_PHYXS_LNSTAT); - - sync = !!(lane_status & MDIO_PHYXS_LNSTAT_ALIGN); - if (!sync) - netif_dbg(efx, hw, efx->net_dev, "XGXS lane status: %x\n", - lane_status); - return sync; -} - -extern const char *efx_mdio_mmd_name(int mmd); - -/* - * Reset a specific MMD and wait for reset to clear. - * Return number of spins left (>0) on success, -%ETIMEDOUT on failure. - * - * This function will sleep - */ -extern int efx_mdio_reset_mmd(struct efx_nic *efx, int mmd, - int spins, int spintime); - -/* As efx_mdio_check_mmd but for multiple MMDs */ -int efx_mdio_check_mmds(struct efx_nic *efx, unsigned int mmd_mask); - -/* Check the link status of specified mmds in bit mask */ -extern bool efx_mdio_links_ok(struct efx_nic *efx, unsigned int mmd_mask); - -/* Generic transmit disable support though PMAPMD */ -extern void efx_mdio_transmit_disable(struct efx_nic *efx); - -/* Generic part of reconfigure: set/clear loopback bits */ -extern void efx_mdio_phy_reconfigure(struct efx_nic *efx); - -/* Set the power state of the specified MMDs */ -extern void efx_mdio_set_mmds_lpower(struct efx_nic *efx, - int low_power, unsigned int mmd_mask); - -/* Set (some of) the PHY settings over MDIO */ -extern int efx_mdio_set_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd); - -/* Push advertising flags and restart autonegotiation */ -extern void efx_mdio_an_reconfigure(struct efx_nic *efx); - -/* Get pause parameters from AN if available (otherwise return - * requested pause parameters) - */ -u8 efx_mdio_get_pause(struct efx_nic *efx); - -/* Wait for specified MMDs to exit reset within a timeout */ -extern int efx_mdio_wait_reset_mmds(struct efx_nic *efx, - unsigned int mmd_mask); - -/* Set or clear flag, debouncing */ -static inline void -efx_mdio_set_flag(struct efx_nic *efx, int devad, int addr, - int mask, bool state) -{ - mdio_set_flag(&efx->mdio, efx->mdio.prtad, devad, addr, mask, state); -} - -/* Liveness self-test for MDIO PHYs */ -extern int efx_mdio_test_alive(struct efx_nic *efx); - -#endif /* EFX_MDIO_10G_H */ diff --git a/drivers/net/sfc/mtd.c b/drivers/net/sfc/mtd.c deleted file mode 100644 index b630448..0000000 --- a/drivers/net/sfc/mtd.c +++ /dev/null @@ -1,693 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/bitops.h> -#include <linux/module.h> -#include <linux/mtd/mtd.h> -#include <linux/delay.h> -#include <linux/slab.h> -#include <linux/rtnetlink.h> - -#include "net_driver.h" -#include "spi.h" -#include "efx.h" -#include "nic.h" -#include "mcdi.h" -#include "mcdi_pcol.h" - -#define EFX_SPI_VERIFY_BUF_LEN 16 - -struct efx_mtd_partition { - struct mtd_info mtd; - union { - struct { - bool updating; - u8 nvram_type; - u16 fw_subtype; - } mcdi; - size_t offset; - }; - const char *type_name; - char name[IFNAMSIZ + 20]; -}; - -struct efx_mtd_ops { - int (*read)(struct mtd_info *mtd, loff_t start, size_t len, - size_t *retlen, u8 *buffer); - int (*erase)(struct mtd_info *mtd, loff_t start, size_t len); - int (*write)(struct mtd_info *mtd, loff_t start, size_t len, - size_t *retlen, const u8 *buffer); - int (*sync)(struct mtd_info *mtd); -}; - -struct efx_mtd { - struct list_head node; - struct efx_nic *efx; - const struct efx_spi_device *spi; - const char *name; - const struct efx_mtd_ops *ops; - size_t n_parts; - struct efx_mtd_partition part[0]; -}; - -#define efx_for_each_partition(part, efx_mtd) \ - for ((part) = &(efx_mtd)->part[0]; \ - (part) != &(efx_mtd)->part[(efx_mtd)->n_parts]; \ - (part)++) - -#define to_efx_mtd_partition(mtd) \ - container_of(mtd, struct efx_mtd_partition, mtd) - -static int falcon_mtd_probe(struct efx_nic *efx); -static int siena_mtd_probe(struct efx_nic *efx); - -/* SPI utilities */ - -static int -efx_spi_slow_wait(struct efx_mtd_partition *part, bool uninterruptible) -{ - struct efx_mtd *efx_mtd = part->mtd.priv; - const struct efx_spi_device *spi = efx_mtd->spi; - struct efx_nic *efx = efx_mtd->efx; - u8 status; - int rc, i; - - /* Wait up to 4s for flash/EEPROM to finish a slow operation. */ - for (i = 0; i < 40; i++) { - __set_current_state(uninterruptible ? - TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE); - schedule_timeout(HZ / 10); - rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, - &status, sizeof(status)); - if (rc) - return rc; - if (!(status & SPI_STATUS_NRDY)) - return 0; - if (signal_pending(current)) - return -EINTR; - } - pr_err("%s: timed out waiting for %s\n", part->name, efx_mtd->name); - return -ETIMEDOUT; -} - -static int -efx_spi_unlock(struct efx_nic *efx, const struct efx_spi_device *spi) -{ - const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 | - SPI_STATUS_BP0); - u8 status; - int rc; - - rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL, - &status, sizeof(status)); - if (rc) - return rc; - - if (!(status & unlock_mask)) - return 0; /* already unlocked */ - - rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); - if (rc) - return rc; - rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0); - if (rc) - return rc; - - status &= ~unlock_mask; - rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status, - NULL, sizeof(status)); - if (rc) - return rc; - rc = falcon_spi_wait_write(efx, spi); - if (rc) - return rc; - - return 0; -} - -static int -efx_spi_erase(struct efx_mtd_partition *part, loff_t start, size_t len) -{ - struct efx_mtd *efx_mtd = part->mtd.priv; - const struct efx_spi_device *spi = efx_mtd->spi; - struct efx_nic *efx = efx_mtd->efx; - unsigned pos, block_len; - u8 empty[EFX_SPI_VERIFY_BUF_LEN]; - u8 buffer[EFX_SPI_VERIFY_BUF_LEN]; - int rc; - - if (len != spi->erase_size) - return -EINVAL; - - if (spi->erase_command == 0) - return -EOPNOTSUPP; - - rc = efx_spi_unlock(efx, spi); - if (rc) - return rc; - rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0); - if (rc) - return rc; - rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL, - NULL, 0); - if (rc) - return rc; - rc = efx_spi_slow_wait(part, false); - - /* Verify the entire region has been wiped */ - memset(empty, 0xff, sizeof(empty)); - for (pos = 0; pos < len; pos += block_len) { - block_len = min(len - pos, sizeof(buffer)); - rc = falcon_spi_read(efx, spi, start + pos, block_len, - NULL, buffer); - if (rc) - return rc; - if (memcmp(empty, buffer, block_len)) - return -EIO; - - /* Avoid locking up the system */ - cond_resched(); - if (signal_pending(current)) - return -EINTR; - } - - return rc; -} - -/* MTD interface */ - -static int efx_mtd_erase(struct mtd_info *mtd, struct erase_info *erase) -{ - struct efx_mtd *efx_mtd = mtd->priv; - int rc; - - rc = efx_mtd->ops->erase(mtd, erase->addr, erase->len); - if (rc == 0) { - erase->state = MTD_ERASE_DONE; - } else { - erase->state = MTD_ERASE_FAILED; - erase->fail_addr = 0xffffffff; - } - mtd_erase_callback(erase); - return rc; -} - -static void efx_mtd_sync(struct mtd_info *mtd) -{ - struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); - struct efx_mtd *efx_mtd = mtd->priv; - int rc; - - rc = efx_mtd->ops->sync(mtd); - if (rc) - pr_err("%s: %s sync failed (%d)\n", - part->name, efx_mtd->name, rc); -} - -static void efx_mtd_remove_partition(struct efx_mtd_partition *part) -{ - int rc; - - for (;;) { - rc = mtd_device_unregister(&part->mtd); - if (rc != -EBUSY) - break; - ssleep(1); - } - WARN_ON(rc); -} - -static void efx_mtd_remove_device(struct efx_mtd *efx_mtd) -{ - struct efx_mtd_partition *part; - - efx_for_each_partition(part, efx_mtd) - efx_mtd_remove_partition(part); - list_del(&efx_mtd->node); - kfree(efx_mtd); -} - -static void efx_mtd_rename_device(struct efx_mtd *efx_mtd) -{ - struct efx_mtd_partition *part; - - efx_for_each_partition(part, efx_mtd) - if (efx_nic_rev(efx_mtd->efx) >= EFX_REV_SIENA_A0) - snprintf(part->name, sizeof(part->name), - "%s %s:%02x", efx_mtd->efx->name, - part->type_name, part->mcdi.fw_subtype); - else - snprintf(part->name, sizeof(part->name), - "%s %s", efx_mtd->efx->name, - part->type_name); -} - -static int efx_mtd_probe_device(struct efx_nic *efx, struct efx_mtd *efx_mtd) -{ - struct efx_mtd_partition *part; - - efx_mtd->efx = efx; - - efx_mtd_rename_device(efx_mtd); - - efx_for_each_partition(part, efx_mtd) { - part->mtd.writesize = 1; - - part->mtd.owner = THIS_MODULE; - part->mtd.priv = efx_mtd; - part->mtd.name = part->name; - part->mtd.erase = efx_mtd_erase; - part->mtd.read = efx_mtd->ops->read; - part->mtd.write = efx_mtd->ops->write; - part->mtd.sync = efx_mtd_sync; - - if (mtd_device_register(&part->mtd, NULL, 0)) - goto fail; - } - - list_add(&efx_mtd->node, &efx->mtd_list); - return 0; - -fail: - while (part != &efx_mtd->part[0]) { - --part; - efx_mtd_remove_partition(part); - } - /* mtd_device_register() returns 1 if the MTD table is full */ - return -ENOMEM; -} - -void efx_mtd_remove(struct efx_nic *efx) -{ - struct efx_mtd *efx_mtd, *next; - - WARN_ON(efx_dev_registered(efx)); - - list_for_each_entry_safe(efx_mtd, next, &efx->mtd_list, node) - efx_mtd_remove_device(efx_mtd); -} - -void efx_mtd_rename(struct efx_nic *efx) -{ - struct efx_mtd *efx_mtd; - - ASSERT_RTNL(); - - list_for_each_entry(efx_mtd, &efx->mtd_list, node) - efx_mtd_rename_device(efx_mtd); -} - -int efx_mtd_probe(struct efx_nic *efx) -{ - if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) - return siena_mtd_probe(efx); - else - return falcon_mtd_probe(efx); -} - -/* Implementation of MTD operations for Falcon */ - -static int falcon_mtd_read(struct mtd_info *mtd, loff_t start, - size_t len, size_t *retlen, u8 *buffer) -{ - struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); - struct efx_mtd *efx_mtd = mtd->priv; - const struct efx_spi_device *spi = efx_mtd->spi; - struct efx_nic *efx = efx_mtd->efx; - struct falcon_nic_data *nic_data = efx->nic_data; - int rc; - - rc = mutex_lock_interruptible(&nic_data->spi_lock); - if (rc) - return rc; - rc = falcon_spi_read(efx, spi, part->offset + start, len, - retlen, buffer); - mutex_unlock(&nic_data->spi_lock); - return rc; -} - -static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) -{ - struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); - struct efx_mtd *efx_mtd = mtd->priv; - struct efx_nic *efx = efx_mtd->efx; - struct falcon_nic_data *nic_data = efx->nic_data; - int rc; - - rc = mutex_lock_interruptible(&nic_data->spi_lock); - if (rc) - return rc; - rc = efx_spi_erase(part, part->offset + start, len); - mutex_unlock(&nic_data->spi_lock); - return rc; -} - -static int falcon_mtd_write(struct mtd_info *mtd, loff_t start, - size_t len, size_t *retlen, const u8 *buffer) -{ - struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); - struct efx_mtd *efx_mtd = mtd->priv; - const struct efx_spi_device *spi = efx_mtd->spi; - struct efx_nic *efx = efx_mtd->efx; - struct falcon_nic_data *nic_data = efx->nic_data; - int rc; - - rc = mutex_lock_interruptible(&nic_data->spi_lock); - if (rc) - return rc; - rc = falcon_spi_write(efx, spi, part->offset + start, len, - retlen, buffer); - mutex_unlock(&nic_data->spi_lock); - return rc; -} - -static int falcon_mtd_sync(struct mtd_info *mtd) -{ - struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); - struct efx_mtd *efx_mtd = mtd->priv; - struct efx_nic *efx = efx_mtd->efx; - struct falcon_nic_data *nic_data = efx->nic_data; - int rc; - - mutex_lock(&nic_data->spi_lock); - rc = efx_spi_slow_wait(part, true); - mutex_unlock(&nic_data->spi_lock); - return rc; -} - -static struct efx_mtd_ops falcon_mtd_ops = { - .read = falcon_mtd_read, - .erase = falcon_mtd_erase, - .write = falcon_mtd_write, - .sync = falcon_mtd_sync, -}; - -static int falcon_mtd_probe(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - struct efx_spi_device *spi; - struct efx_mtd *efx_mtd; - int rc = -ENODEV; - - ASSERT_RTNL(); - - spi = &nic_data->spi_flash; - if (efx_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) { - efx_mtd = kzalloc(sizeof(*efx_mtd) + sizeof(efx_mtd->part[0]), - GFP_KERNEL); - if (!efx_mtd) - return -ENOMEM; - - efx_mtd->spi = spi; - efx_mtd->name = "flash"; - efx_mtd->ops = &falcon_mtd_ops; - - efx_mtd->n_parts = 1; - efx_mtd->part[0].mtd.type = MTD_NORFLASH; - efx_mtd->part[0].mtd.flags = MTD_CAP_NORFLASH; - efx_mtd->part[0].mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START; - efx_mtd->part[0].mtd.erasesize = spi->erase_size; - efx_mtd->part[0].offset = FALCON_FLASH_BOOTCODE_START; - efx_mtd->part[0].type_name = "sfc_flash_bootrom"; - - rc = efx_mtd_probe_device(efx, efx_mtd); - if (rc) { - kfree(efx_mtd); - return rc; - } - } - - spi = &nic_data->spi_eeprom; - if (efx_spi_present(spi) && spi->size > EFX_EEPROM_BOOTCONFIG_START) { - efx_mtd = kzalloc(sizeof(*efx_mtd) + sizeof(efx_mtd->part[0]), - GFP_KERNEL); - if (!efx_mtd) - return -ENOMEM; - - efx_mtd->spi = spi; - efx_mtd->name = "EEPROM"; - efx_mtd->ops = &falcon_mtd_ops; - - efx_mtd->n_parts = 1; - efx_mtd->part[0].mtd.type = MTD_RAM; - efx_mtd->part[0].mtd.flags = MTD_CAP_RAM; - efx_mtd->part[0].mtd.size = - min(spi->size, EFX_EEPROM_BOOTCONFIG_END) - - EFX_EEPROM_BOOTCONFIG_START; - efx_mtd->part[0].mtd.erasesize = spi->erase_size; - efx_mtd->part[0].offset = EFX_EEPROM_BOOTCONFIG_START; - efx_mtd->part[0].type_name = "sfc_bootconfig"; - - rc = efx_mtd_probe_device(efx, efx_mtd); - if (rc) { - kfree(efx_mtd); - return rc; - } - } - - return rc; -} - -/* Implementation of MTD operations for Siena */ - -static int siena_mtd_read(struct mtd_info *mtd, loff_t start, - size_t len, size_t *retlen, u8 *buffer) -{ - struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); - struct efx_mtd *efx_mtd = mtd->priv; - struct efx_nic *efx = efx_mtd->efx; - loff_t offset = start; - loff_t end = min_t(loff_t, start + len, mtd->size); - size_t chunk; - int rc = 0; - - while (offset < end) { - chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); - rc = efx_mcdi_nvram_read(efx, part->mcdi.nvram_type, offset, - buffer, chunk); - if (rc) - goto out; - offset += chunk; - buffer += chunk; - } -out: - *retlen = offset - start; - return rc; -} - -static int siena_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) -{ - struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); - struct efx_mtd *efx_mtd = mtd->priv; - struct efx_nic *efx = efx_mtd->efx; - loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); - loff_t end = min_t(loff_t, start + len, mtd->size); - size_t chunk = part->mtd.erasesize; - int rc = 0; - - if (!part->mcdi.updating) { - rc = efx_mcdi_nvram_update_start(efx, part->mcdi.nvram_type); - if (rc) - goto out; - part->mcdi.updating = 1; - } - - /* The MCDI interface can in fact do multiple erase blocks at once; - * but erasing may be slow, so we make multiple calls here to avoid - * tripping the MCDI RPC timeout. */ - while (offset < end) { - rc = efx_mcdi_nvram_erase(efx, part->mcdi.nvram_type, offset, - chunk); - if (rc) - goto out; - offset += chunk; - } -out: - return rc; -} - -static int siena_mtd_write(struct mtd_info *mtd, loff_t start, - size_t len, size_t *retlen, const u8 *buffer) -{ - struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); - struct efx_mtd *efx_mtd = mtd->priv; - struct efx_nic *efx = efx_mtd->efx; - loff_t offset = start; - loff_t end = min_t(loff_t, start + len, mtd->size); - size_t chunk; - int rc = 0; - - if (!part->mcdi.updating) { - rc = efx_mcdi_nvram_update_start(efx, part->mcdi.nvram_type); - if (rc) - goto out; - part->mcdi.updating = 1; - } - - while (offset < end) { - chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); - rc = efx_mcdi_nvram_write(efx, part->mcdi.nvram_type, offset, - buffer, chunk); - if (rc) - goto out; - offset += chunk; - buffer += chunk; - } -out: - *retlen = offset - start; - return rc; -} - -static int siena_mtd_sync(struct mtd_info *mtd) -{ - struct efx_mtd_partition *part = to_efx_mtd_partition(mtd); - struct efx_mtd *efx_mtd = mtd->priv; - struct efx_nic *efx = efx_mtd->efx; - int rc = 0; - - if (part->mcdi.updating) { - part->mcdi.updating = 0; - rc = efx_mcdi_nvram_update_finish(efx, part->mcdi.nvram_type); - } - - return rc; -} - -static struct efx_mtd_ops siena_mtd_ops = { - .read = siena_mtd_read, - .erase = siena_mtd_erase, - .write = siena_mtd_write, - .sync = siena_mtd_sync, -}; - -struct siena_nvram_type_info { - int port; - const char *name; -}; - -static struct siena_nvram_type_info siena_nvram_types[] = { - [MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO] = { 0, "sfc_dummy_phy" }, - [MC_CMD_NVRAM_TYPE_MC_FW] = { 0, "sfc_mcfw" }, - [MC_CMD_NVRAM_TYPE_MC_FW_BACKUP] = { 0, "sfc_mcfw_backup" }, - [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0] = { 0, "sfc_static_cfg" }, - [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1] = { 1, "sfc_static_cfg" }, - [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0] = { 0, "sfc_dynamic_cfg" }, - [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1] = { 1, "sfc_dynamic_cfg" }, - [MC_CMD_NVRAM_TYPE_EXP_ROM] = { 0, "sfc_exp_rom" }, - [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0] = { 0, "sfc_exp_rom_cfg" }, - [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1] = { 1, "sfc_exp_rom_cfg" }, - [MC_CMD_NVRAM_TYPE_PHY_PORT0] = { 0, "sfc_phy_fw" }, - [MC_CMD_NVRAM_TYPE_PHY_PORT1] = { 1, "sfc_phy_fw" }, -}; - -static int siena_mtd_probe_partition(struct efx_nic *efx, - struct efx_mtd *efx_mtd, - unsigned int part_id, - unsigned int type) -{ - struct efx_mtd_partition *part = &efx_mtd->part[part_id]; - struct siena_nvram_type_info *info; - size_t size, erase_size; - bool protected; - int rc; - - if (type >= ARRAY_SIZE(siena_nvram_types)) - return -ENODEV; - - info = &siena_nvram_types[type]; - - if (info->port != efx_port_num(efx)) - return -ENODEV; - - rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected); - if (rc) - return rc; - if (protected) - return -ENODEV; /* hide it */ - - part->mcdi.nvram_type = type; - part->type_name = info->name; - - part->mtd.type = MTD_NORFLASH; - part->mtd.flags = MTD_CAP_NORFLASH; - part->mtd.size = size; - part->mtd.erasesize = erase_size; - - return 0; -} - -static int siena_mtd_get_fw_subtypes(struct efx_nic *efx, - struct efx_mtd *efx_mtd) -{ - struct efx_mtd_partition *part; - uint16_t fw_subtype_list[MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_LEN / - sizeof(uint16_t)]; - int rc; - - rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list); - if (rc) - return rc; - - efx_for_each_partition(part, efx_mtd) - part->mcdi.fw_subtype = fw_subtype_list[part->mcdi.nvram_type]; - - return 0; -} - -static int siena_mtd_probe(struct efx_nic *efx) -{ - struct efx_mtd *efx_mtd; - int rc = -ENODEV; - u32 nvram_types; - unsigned int type; - - ASSERT_RTNL(); - - rc = efx_mcdi_nvram_types(efx, &nvram_types); - if (rc) - return rc; - - efx_mtd = kzalloc(sizeof(*efx_mtd) + - hweight32(nvram_types) * sizeof(efx_mtd->part[0]), - GFP_KERNEL); - if (!efx_mtd) - return -ENOMEM; - - efx_mtd->name = "Siena NVRAM manager"; - - efx_mtd->ops = &siena_mtd_ops; - - type = 0; - efx_mtd->n_parts = 0; - - while (nvram_types != 0) { - if (nvram_types & 1) { - rc = siena_mtd_probe_partition(efx, efx_mtd, - efx_mtd->n_parts, type); - if (rc == 0) - efx_mtd->n_parts++; - else if (rc != -ENODEV) - goto fail; - } - type++; - nvram_types >>= 1; - } - - rc = siena_mtd_get_fw_subtypes(efx, efx_mtd); - if (rc) - goto fail; - - rc = efx_mtd_probe_device(efx, efx_mtd); -fail: - if (rc) - kfree(efx_mtd); - return rc; -} - diff --git a/drivers/net/sfc/net_driver.h b/drivers/net/sfc/net_driver.h deleted file mode 100644 index b8e251a..0000000 --- a/drivers/net/sfc/net_driver.h +++ /dev/null @@ -1,1060 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2005-2011 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -/* Common definitions for all Efx net driver code */ - -#ifndef EFX_NET_DRIVER_H -#define EFX_NET_DRIVER_H - -#if defined(EFX_ENABLE_DEBUG) && !defined(DEBUG) -#define DEBUG -#endif - -#include <linux/netdevice.h> -#include <linux/etherdevice.h> -#include <linux/ethtool.h> -#include <linux/if_vlan.h> -#include <linux/timer.h> -#include <linux/mdio.h> -#include <linux/list.h> -#include <linux/pci.h> -#include <linux/device.h> -#include <linux/highmem.h> -#include <linux/workqueue.h> -#include <linux/vmalloc.h> -#include <linux/i2c.h> - -#include "enum.h" -#include "bitfield.h" - -/************************************************************************** - * - * Build definitions - * - **************************************************************************/ - -#define EFX_DRIVER_VERSION "3.1" - -#ifdef EFX_ENABLE_DEBUG -#define EFX_BUG_ON_PARANOID(x) BUG_ON(x) -#define EFX_WARN_ON_PARANOID(x) WARN_ON(x) -#else -#define EFX_BUG_ON_PARANOID(x) do {} while (0) -#define EFX_WARN_ON_PARANOID(x) do {} while (0) -#endif - -/************************************************************************** - * - * Efx data structures - * - **************************************************************************/ - -#define EFX_MAX_CHANNELS 32 -#define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS - -/* Checksum generation is a per-queue option in hardware, so each - * queue visible to the networking core is backed by two hardware TX - * queues. */ -#define EFX_MAX_TX_TC 2 -#define EFX_MAX_CORE_TX_QUEUES (EFX_MAX_TX_TC * EFX_MAX_CHANNELS) -#define EFX_TXQ_TYPE_OFFLOAD 1 /* flag */ -#define EFX_TXQ_TYPE_HIGHPRI 2 /* flag */ -#define EFX_TXQ_TYPES 4 -#define EFX_MAX_TX_QUEUES (EFX_TXQ_TYPES * EFX_MAX_CHANNELS) - -/** - * struct efx_special_buffer - An Efx special buffer - * @addr: CPU base address of the buffer - * @dma_addr: DMA base address of the buffer - * @len: Buffer length, in bytes - * @index: Buffer index within controller;s buffer table - * @entries: Number of buffer table entries - * - * Special buffers are used for the event queues and the TX and RX - * descriptor queues for each channel. They are *not* used for the - * actual transmit and receive buffers. - */ -struct efx_special_buffer { - void *addr; - dma_addr_t dma_addr; - unsigned int len; - int index; - int entries; -}; - -enum efx_flush_state { - FLUSH_NONE, - FLUSH_PENDING, - FLUSH_FAILED, - FLUSH_DONE, -}; - -/** - * struct efx_tx_buffer - An Efx TX buffer - * @skb: The associated socket buffer. - * Set only on the final fragment of a packet; %NULL for all other - * fragments. When this fragment completes, then we can free this - * skb. - * @tsoh: The associated TSO header structure, or %NULL if this - * buffer is not a TSO header. - * @dma_addr: DMA address of the fragment. - * @len: Length of this fragment. - * This field is zero when the queue slot is empty. - * @continuation: True if this fragment is not the end of a packet. - * @unmap_single: True if pci_unmap_single should be used. - * @unmap_len: Length of this fragment to unmap - */ -struct efx_tx_buffer { - const struct sk_buff *skb; - struct efx_tso_header *tsoh; - dma_addr_t dma_addr; - unsigned short len; - bool continuation; - bool unmap_single; - unsigned short unmap_len; -}; - -/** - * struct efx_tx_queue - An Efx TX queue - * - * This is a ring buffer of TX fragments. - * Since the TX completion path always executes on the same - * CPU and the xmit path can operate on different CPUs, - * performance is increased by ensuring that the completion - * path and the xmit path operate on different cache lines. - * This is particularly important if the xmit path is always - * executing on one CPU which is different from the completion - * path. There is also a cache line for members which are - * read but not written on the fast path. - * - * @efx: The associated Efx NIC - * @queue: DMA queue number - * @channel: The associated channel - * @core_txq: The networking core TX queue structure - * @buffer: The software buffer ring - * @txd: The hardware descriptor ring - * @ptr_mask: The size of the ring minus 1. - * @initialised: Has hardware queue been initialised? - * @flushed: Used when handling queue flushing - * @read_count: Current read pointer. - * This is the number of buffers that have been removed from both rings. - * @old_write_count: The value of @write_count when last checked. - * This is here for performance reasons. The xmit path will - * only get the up-to-date value of @write_count if this - * variable indicates that the queue is empty. This is to - * avoid cache-line ping-pong between the xmit path and the - * completion path. - * @insert_count: Current insert pointer - * This is the number of buffers that have been added to the - * software ring. - * @write_count: Current write pointer - * This is the number of buffers that have been added to the - * hardware ring. - * @old_read_count: The value of read_count when last checked. - * This is here for performance reasons. The xmit path will - * only get the up-to-date value of read_count if this - * variable indicates that the queue is full. This is to - * avoid cache-line ping-pong between the xmit path and the - * completion path. - * @tso_headers_free: A list of TSO headers allocated for this TX queue - * that are not in use, and so available for new TSO sends. The list - * is protected by the TX queue lock. - * @tso_bursts: Number of times TSO xmit invoked by kernel - * @tso_long_headers: Number of packets with headers too long for standard - * blocks - * @tso_packets: Number of packets via the TSO xmit path - * @pushes: Number of times the TX push feature has been used - * @empty_read_count: If the completion path has seen the queue as empty - * and the transmission path has not yet checked this, the value of - * @read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0. - */ -struct efx_tx_queue { - /* Members which don't change on the fast path */ - struct efx_nic *efx ____cacheline_aligned_in_smp; - unsigned queue; - struct efx_channel *channel; - struct netdev_queue *core_txq; - struct efx_tx_buffer *buffer; - struct efx_special_buffer txd; - unsigned int ptr_mask; - bool initialised; - enum efx_flush_state flushed; - - /* Members used mainly on the completion path */ - unsigned int read_count ____cacheline_aligned_in_smp; - unsigned int old_write_count; - - /* Members used only on the xmit path */ - unsigned int insert_count ____cacheline_aligned_in_smp; - unsigned int write_count; - unsigned int old_read_count; - struct efx_tso_header *tso_headers_free; - unsigned int tso_bursts; - unsigned int tso_long_headers; - unsigned int tso_packets; - unsigned int pushes; - - /* Members shared between paths and sometimes updated */ - unsigned int empty_read_count ____cacheline_aligned_in_smp; -#define EFX_EMPTY_COUNT_VALID 0x80000000 -}; - -/** - * struct efx_rx_buffer - An Efx RX data buffer - * @dma_addr: DMA base address of the buffer - * @skb: The associated socket buffer, if any. - * If both this and page are %NULL, the buffer slot is currently free. - * @page: The associated page buffer, if any. - * If both this and skb are %NULL, the buffer slot is currently free. - * @len: Buffer length, in bytes. - * @is_page: Indicates if @page is valid. If false, @skb is valid. - */ -struct efx_rx_buffer { - dma_addr_t dma_addr; - union { - struct sk_buff *skb; - struct page *page; - } u; - unsigned int len; - bool is_page; -}; - -/** - * struct efx_rx_page_state - Page-based rx buffer state - * - * Inserted at the start of every page allocated for receive buffers. - * Used to facilitate sharing dma mappings between recycled rx buffers - * and those passed up to the kernel. - * - * @refcnt: Number of struct efx_rx_buffer's referencing this page. - * When refcnt falls to zero, the page is unmapped for dma - * @dma_addr: The dma address of this page. - */ -struct efx_rx_page_state { - unsigned refcnt; - dma_addr_t dma_addr; - - unsigned int __pad[0] ____cacheline_aligned; -}; - -/** - * struct efx_rx_queue - An Efx RX queue - * @efx: The associated Efx NIC - * @buffer: The software buffer ring - * @rxd: The hardware descriptor ring - * @ptr_mask: The size of the ring minus 1. - * @added_count: Number of buffers added to the receive queue. - * @notified_count: Number of buffers given to NIC (<= @added_count). - * @removed_count: Number of buffers removed from the receive queue. - * @max_fill: RX descriptor maximum fill level (<= ring size) - * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill - * (<= @max_fill) - * @fast_fill_limit: The level to which a fast fill will fill - * (@fast_fill_trigger <= @fast_fill_limit <= @max_fill) - * @min_fill: RX descriptor minimum non-zero fill level. - * This records the minimum fill level observed when a ring - * refill was triggered. - * @alloc_page_count: RX allocation strategy counter. - * @alloc_skb_count: RX allocation strategy counter. - * @slow_fill: Timer used to defer efx_nic_generate_fill_event(). - * @flushed: Use when handling queue flushing - */ -struct efx_rx_queue { - struct efx_nic *efx; - struct efx_rx_buffer *buffer; - struct efx_special_buffer rxd; - unsigned int ptr_mask; - - int added_count; - int notified_count; - int removed_count; - unsigned int max_fill; - unsigned int fast_fill_trigger; - unsigned int fast_fill_limit; - unsigned int min_fill; - unsigned int min_overfill; - unsigned int alloc_page_count; - unsigned int alloc_skb_count; - struct timer_list slow_fill; - unsigned int slow_fill_count; - - enum efx_flush_state flushed; -}; - -/** - * struct efx_buffer - An Efx general-purpose buffer - * @addr: host base address of the buffer - * @dma_addr: DMA base address of the buffer - * @len: Buffer length, in bytes - * - * The NIC uses these buffers for its interrupt status registers and - * MAC stats dumps. - */ -struct efx_buffer { - void *addr; - dma_addr_t dma_addr; - unsigned int len; -}; - - -enum efx_rx_alloc_method { - RX_ALLOC_METHOD_AUTO = 0, - RX_ALLOC_METHOD_SKB = 1, - RX_ALLOC_METHOD_PAGE = 2, -}; - -/** - * struct efx_channel - An Efx channel - * - * A channel comprises an event queue, at least one TX queue, at least - * one RX queue, and an associated tasklet for processing the event - * queue. - * - * @efx: Associated Efx NIC - * @channel: Channel instance number - * @enabled: Channel enabled indicator - * @irq: IRQ number (MSI and MSI-X only) - * @irq_moderation: IRQ moderation value (in hardware ticks) - * @napi_dev: Net device used with NAPI - * @napi_str: NAPI control structure - * @work_pending: Is work pending via NAPI? - * @eventq: Event queue buffer - * @eventq_mask: Event queue pointer mask - * @eventq_read_ptr: Event queue read pointer - * @last_eventq_read_ptr: Last event queue read pointer value. - * @irq_count: Number of IRQs since last adaptive moderation decision - * @irq_mod_score: IRQ moderation score - * @rx_alloc_level: Watermark based heuristic counter for pushing descriptors - * and diagnostic counters - * @rx_alloc_push_pages: RX allocation method currently in use for pushing - * descriptors - * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors - * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors - * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors - * @n_rx_mcast_mismatch: Count of unmatched multicast frames - * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors - * @n_rx_overlength: Count of RX_OVERLENGTH errors - * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun - * @rx_queue: RX queue for this channel - * @tx_queue: TX queues for this channel - */ -struct efx_channel { - struct efx_nic *efx; - int channel; - bool enabled; - int irq; - unsigned int irq_moderation; - struct net_device *napi_dev; - struct napi_struct napi_str; - bool work_pending; - struct efx_special_buffer eventq; - unsigned int eventq_mask; - unsigned int eventq_read_ptr; - unsigned int last_eventq_read_ptr; - - unsigned int irq_count; - unsigned int irq_mod_score; -#ifdef CONFIG_RFS_ACCEL - unsigned int rfs_filters_added; -#endif - - int rx_alloc_level; - int rx_alloc_push_pages; - - unsigned n_rx_tobe_disc; - unsigned n_rx_ip_hdr_chksum_err; - unsigned n_rx_tcp_udp_chksum_err; - unsigned n_rx_mcast_mismatch; - unsigned n_rx_frm_trunc; - unsigned n_rx_overlength; - unsigned n_skbuff_leaks; - - /* Used to pipeline received packets in order to optimise memory - * access with prefetches. - */ - struct efx_rx_buffer *rx_pkt; - bool rx_pkt_csummed; - - struct efx_rx_queue rx_queue; - struct efx_tx_queue tx_queue[EFX_TXQ_TYPES]; -}; - -enum efx_led_mode { - EFX_LED_OFF = 0, - EFX_LED_ON = 1, - EFX_LED_DEFAULT = 2 -}; - -#define STRING_TABLE_LOOKUP(val, member) \ - ((val) < member ## _max) ? member ## _names[val] : "(invalid)" - -extern const char *efx_loopback_mode_names[]; -extern const unsigned int efx_loopback_mode_max; -#define LOOPBACK_MODE(efx) \ - STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode) - -extern const char *efx_reset_type_names[]; -extern const unsigned int efx_reset_type_max; -#define RESET_TYPE(type) \ - STRING_TABLE_LOOKUP(type, efx_reset_type) - -enum efx_int_mode { - /* Be careful if altering to correct macro below */ - EFX_INT_MODE_MSIX = 0, - EFX_INT_MODE_MSI = 1, - EFX_INT_MODE_LEGACY = 2, - EFX_INT_MODE_MAX /* Insert any new items before this */ -}; -#define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI) - -enum nic_state { - STATE_INIT = 0, - STATE_RUNNING = 1, - STATE_FINI = 2, - STATE_DISABLED = 3, - STATE_MAX, -}; - -/* - * Alignment of page-allocated RX buffers - * - * Controls the number of bytes inserted at the start of an RX buffer. - * This is the equivalent of NET_IP_ALIGN [which controls the alignment - * of the skb->head for hardware DMA]. - */ -#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS -#define EFX_PAGE_IP_ALIGN 0 -#else -#define EFX_PAGE_IP_ALIGN NET_IP_ALIGN -#endif - -/* - * Alignment of the skb->head which wraps a page-allocated RX buffer - * - * The skb allocated to wrap an rx_buffer can have this alignment. Since - * the data is memcpy'd from the rx_buf, it does not need to be equal to - * EFX_PAGE_IP_ALIGN. - */ -#define EFX_PAGE_SKB_ALIGN 2 - -/* Forward declaration */ -struct efx_nic; - -/* Pseudo bit-mask flow control field */ -#define EFX_FC_RX FLOW_CTRL_RX -#define EFX_FC_TX FLOW_CTRL_TX -#define EFX_FC_AUTO 4 - -/** - * struct efx_link_state - Current state of the link - * @up: Link is up - * @fd: Link is full-duplex - * @fc: Actual flow control flags - * @speed: Link speed (Mbps) - */ -struct efx_link_state { - bool up; - bool fd; - u8 fc; - unsigned int speed; -}; - -static inline bool efx_link_state_equal(const struct efx_link_state *left, - const struct efx_link_state *right) -{ - return left->up == right->up && left->fd == right->fd && - left->fc == right->fc && left->speed == right->speed; -} - -/** - * struct efx_mac_operations - Efx MAC operations table - * @reconfigure: Reconfigure MAC. Serialised by the mac_lock - * @update_stats: Update statistics - * @check_fault: Check fault state. True if fault present. - */ -struct efx_mac_operations { - int (*reconfigure) (struct efx_nic *efx); - void (*update_stats) (struct efx_nic *efx); - bool (*check_fault)(struct efx_nic *efx); -}; - -/** - * struct efx_phy_operations - Efx PHY operations table - * @probe: Probe PHY and initialise efx->mdio.mode_support, efx->mdio.mmds, - * efx->loopback_modes. - * @init: Initialise PHY - * @fini: Shut down PHY - * @reconfigure: Reconfigure PHY (e.g. for new link parameters) - * @poll: Update @link_state and report whether it changed. - * Serialised by the mac_lock. - * @get_settings: Get ethtool settings. Serialised by the mac_lock. - * @set_settings: Set ethtool settings. Serialised by the mac_lock. - * @set_npage_adv: Set abilities advertised in (Extended) Next Page - * (only needed where AN bit is set in mmds) - * @test_alive: Test that PHY is 'alive' (online) - * @test_name: Get the name of a PHY-specific test/result - * @run_tests: Run tests and record results as appropriate (offline). - * Flags are the ethtool tests flags. - */ -struct efx_phy_operations { - int (*probe) (struct efx_nic *efx); - int (*init) (struct efx_nic *efx); - void (*fini) (struct efx_nic *efx); - void (*remove) (struct efx_nic *efx); - int (*reconfigure) (struct efx_nic *efx); - bool (*poll) (struct efx_nic *efx); - void (*get_settings) (struct efx_nic *efx, - struct ethtool_cmd *ecmd); - int (*set_settings) (struct efx_nic *efx, - struct ethtool_cmd *ecmd); - void (*set_npage_adv) (struct efx_nic *efx, u32); - int (*test_alive) (struct efx_nic *efx); - const char *(*test_name) (struct efx_nic *efx, unsigned int index); - int (*run_tests) (struct efx_nic *efx, int *results, unsigned flags); -}; - -/** - * @enum efx_phy_mode - PHY operating mode flags - * @PHY_MODE_NORMAL: on and should pass traffic - * @PHY_MODE_TX_DISABLED: on with TX disabled - * @PHY_MODE_LOW_POWER: set to low power through MDIO - * @PHY_MODE_OFF: switched off through external control - * @PHY_MODE_SPECIAL: on but will not pass traffic - */ -enum efx_phy_mode { - PHY_MODE_NORMAL = 0, - PHY_MODE_TX_DISABLED = 1, - PHY_MODE_LOW_POWER = 2, - PHY_MODE_OFF = 4, - PHY_MODE_SPECIAL = 8, -}; - -static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode) -{ - return !!(mode & ~PHY_MODE_TX_DISABLED); -} - -/* - * Efx extended statistics - * - * Not all statistics are provided by all supported MACs. The purpose - * is this structure is to contain the raw statistics provided by each - * MAC. - */ -struct efx_mac_stats { - u64 tx_bytes; - u64 tx_good_bytes; - u64 tx_bad_bytes; - unsigned long tx_packets; - unsigned long tx_bad; - unsigned long tx_pause; - unsigned long tx_control; - unsigned long tx_unicast; - unsigned long tx_multicast; - unsigned long tx_broadcast; - unsigned long tx_lt64; - unsigned long tx_64; - unsigned long tx_65_to_127; - unsigned long tx_128_to_255; - unsigned long tx_256_to_511; - unsigned long tx_512_to_1023; - unsigned long tx_1024_to_15xx; - unsigned long tx_15xx_to_jumbo; - unsigned long tx_gtjumbo; - unsigned long tx_collision; - unsigned long tx_single_collision; - unsigned long tx_multiple_collision; - unsigned long tx_excessive_collision; - unsigned long tx_deferred; - unsigned long tx_late_collision; - unsigned long tx_excessive_deferred; - unsigned long tx_non_tcpudp; - unsigned long tx_mac_src_error; - unsigned long tx_ip_src_error; - u64 rx_bytes; - u64 rx_good_bytes; - u64 rx_bad_bytes; - unsigned long rx_packets; - unsigned long rx_good; - unsigned long rx_bad; - unsigned long rx_pause; - unsigned long rx_control; - unsigned long rx_unicast; - unsigned long rx_multicast; - unsigned long rx_broadcast; - unsigned long rx_lt64; - unsigned long rx_64; - unsigned long rx_65_to_127; - unsigned long rx_128_to_255; - unsigned long rx_256_to_511; - unsigned long rx_512_to_1023; - unsigned long rx_1024_to_15xx; - unsigned long rx_15xx_to_jumbo; - unsigned long rx_gtjumbo; - unsigned long rx_bad_lt64; - unsigned long rx_bad_64_to_15xx; - unsigned long rx_bad_15xx_to_jumbo; - unsigned long rx_bad_gtjumbo; - unsigned long rx_overflow; - unsigned long rx_missed; - unsigned long rx_false_carrier; - unsigned long rx_symbol_error; - unsigned long rx_align_error; - unsigned long rx_length_error; - unsigned long rx_internal_error; - unsigned long rx_good_lt64; -}; - -/* Number of bits used in a multicast filter hash address */ -#define EFX_MCAST_HASH_BITS 8 - -/* Number of (single-bit) entries in a multicast filter hash */ -#define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS) - -/* An Efx multicast filter hash */ -union efx_multicast_hash { - u8 byte[EFX_MCAST_HASH_ENTRIES / 8]; - efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8]; -}; - -struct efx_filter_state; - -/** - * struct efx_nic - an Efx NIC - * @name: Device name (net device name or bus id before net device registered) - * @pci_dev: The PCI device - * @type: Controller type attributes - * @legacy_irq: IRQ number - * @legacy_irq_enabled: Are IRQs enabled on NIC (INT_EN_KER register)? - * @workqueue: Workqueue for port reconfigures and the HW monitor. - * Work items do not hold and must not acquire RTNL. - * @workqueue_name: Name of workqueue - * @reset_work: Scheduled reset workitem - * @membase_phys: Memory BAR value as physical address - * @membase: Memory BAR value - * @interrupt_mode: Interrupt mode - * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues - * @irq_rx_moderation: IRQ moderation time for RX event queues - * @msg_enable: Log message enable flags - * @state: Device state flag. Serialised by the rtnl_lock. - * @reset_pending: Bitmask for pending resets - * @tx_queue: TX DMA queues - * @rx_queue: RX DMA queues - * @channel: Channels - * @channel_name: Names for channels and their IRQs - * @rxq_entries: Size of receive queues requested by user. - * @txq_entries: Size of transmit queues requested by user. - * @next_buffer_table: First available buffer table id - * @n_channels: Number of channels in use - * @n_rx_channels: Number of channels used for RX (= number of RX queues) - * @n_tx_channels: Number of channels used for TX - * @rx_buffer_len: RX buffer length - * @rx_buffer_order: Order (log2) of number of pages for each RX buffer - * @rx_hash_key: Toeplitz hash key for RSS - * @rx_indir_table: Indirection table for RSS - * @int_error_count: Number of internal errors seen recently - * @int_error_expire: Time at which error count will be expired - * @irq_status: Interrupt status buffer - * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 - * @fatal_irq_level: IRQ level (bit number) used for serious errors - * @mtd_list: List of MTDs attached to the NIC - * @nic_data: Hardware dependent state - * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, - * efx_monitor() and efx_reconfigure_port() - * @port_enabled: Port enabled indicator. - * Serialises efx_stop_all(), efx_start_all(), efx_monitor() and - * efx_mac_work() with kernel interfaces. Safe to read under any - * one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must - * be held to modify it. - * @port_initialized: Port initialized? - * @net_dev: Operating system network device. Consider holding the rtnl lock - * @stats_buffer: DMA buffer for statistics - * @mac_op: MAC interface - * @phy_type: PHY type - * @phy_op: PHY interface - * @phy_data: PHY private data (including PHY-specific stats) - * @mdio: PHY MDIO interface - * @mdio_bus: PHY MDIO bus ID (only used by Siena) - * @phy_mode: PHY operating mode. Serialised by @mac_lock. - * @link_advertising: Autonegotiation advertising flags - * @link_state: Current state of the link - * @n_link_state_changes: Number of times the link has changed state - * @promiscuous: Promiscuous flag. Protected by netif_tx_lock. - * @multicast_hash: Multicast hash table - * @wanted_fc: Wanted flow control flags - * @mac_work: Work item for changing MAC promiscuity and multicast hash - * @loopback_mode: Loopback status - * @loopback_modes: Supported loopback mode bitmask - * @loopback_selftest: Offline self-test private state - * @monitor_work: Hardware monitor workitem - * @biu_lock: BIU (bus interface unit) lock - * @last_irq_cpu: Last CPU to handle interrupt. - * This register is written with the SMP processor ID whenever an - * interrupt is handled. It is used by efx_nic_test_interrupt() - * to verify that an interrupt has occurred. - * @n_rx_nodesc_drop_cnt: RX no descriptor drop count - * @mac_stats: MAC statistics. These include all statistics the MACs - * can provide. Generic code converts these into a standard - * &struct net_device_stats. - * @stats_lock: Statistics update lock. Serialises statistics fetches - * - * This is stored in the private area of the &struct net_device. - */ -struct efx_nic { - /* The following fields should be written very rarely */ - - char name[IFNAMSIZ]; - struct pci_dev *pci_dev; - const struct efx_nic_type *type; - int legacy_irq; - bool legacy_irq_enabled; - struct workqueue_struct *workqueue; - char workqueue_name[16]; - struct work_struct reset_work; - resource_size_t membase_phys; - void __iomem *membase; - - enum efx_int_mode interrupt_mode; - bool irq_rx_adaptive; - unsigned int irq_rx_moderation; - u32 msg_enable; - - enum nic_state state; - unsigned long reset_pending; - - struct efx_channel *channel[EFX_MAX_CHANNELS]; - char channel_name[EFX_MAX_CHANNELS][IFNAMSIZ + 6]; - - unsigned rxq_entries; - unsigned txq_entries; - unsigned next_buffer_table; - unsigned n_channels; - unsigned n_rx_channels; - unsigned tx_channel_offset; - unsigned n_tx_channels; - unsigned int rx_buffer_len; - unsigned int rx_buffer_order; - u8 rx_hash_key[40]; - u32 rx_indir_table[128]; - - unsigned int_error_count; - unsigned long int_error_expire; - - struct efx_buffer irq_status; - unsigned irq_zero_count; - unsigned fatal_irq_level; - -#ifdef CONFIG_SFC_MTD - struct list_head mtd_list; -#endif - - void *nic_data; - - struct mutex mac_lock; - struct work_struct mac_work; - bool port_enabled; - - bool port_initialized; - struct net_device *net_dev; - - struct efx_buffer stats_buffer; - - const struct efx_mac_operations *mac_op; - - unsigned int phy_type; - const struct efx_phy_operations *phy_op; - void *phy_data; - struct mdio_if_info mdio; - unsigned int mdio_bus; - enum efx_phy_mode phy_mode; - - u32 link_advertising; - struct efx_link_state link_state; - unsigned int n_link_state_changes; - - bool promiscuous; - union efx_multicast_hash multicast_hash; - u8 wanted_fc; - - atomic_t rx_reset; - enum efx_loopback_mode loopback_mode; - u64 loopback_modes; - - void *loopback_selftest; - - struct efx_filter_state *filter_state; - - /* The following fields may be written more often */ - - struct delayed_work monitor_work ____cacheline_aligned_in_smp; - spinlock_t biu_lock; - volatile signed int last_irq_cpu; - unsigned n_rx_nodesc_drop_cnt; - struct efx_mac_stats mac_stats; - spinlock_t stats_lock; -}; - -static inline int efx_dev_registered(struct efx_nic *efx) -{ - return efx->net_dev->reg_state == NETREG_REGISTERED; -} - -/* Net device name, for inclusion in log messages if it has been registered. - * Use efx->name not efx->net_dev->name so that races with (un)registration - * are harmless. - */ -static inline const char *efx_dev_name(struct efx_nic *efx) -{ - return efx_dev_registered(efx) ? efx->name : ""; -} - -static inline unsigned int efx_port_num(struct efx_nic *efx) -{ - return efx->net_dev->dev_id; -} - -/** - * struct efx_nic_type - Efx device type definition - * @probe: Probe the controller - * @remove: Free resources allocated by probe() - * @init: Initialise the controller - * @fini: Shut down the controller - * @monitor: Periodic function for polling link state and hardware monitor - * @map_reset_reason: Map ethtool reset reason to a reset method - * @map_reset_flags: Map ethtool reset flags to a reset method, if possible - * @reset: Reset the controller hardware and possibly the PHY. This will - * be called while the controller is uninitialised. - * @probe_port: Probe the MAC and PHY - * @remove_port: Free resources allocated by probe_port() - * @handle_global_event: Handle a "global" event (may be %NULL) - * @prepare_flush: Prepare the hardware for flushing the DMA queues - * @update_stats: Update statistics not provided by event handling - * @start_stats: Start the regular fetching of statistics - * @stop_stats: Stop the regular fetching of statistics - * @set_id_led: Set state of identifying LED or revert to automatic function - * @push_irq_moderation: Apply interrupt moderation value - * @push_multicast_hash: Apply multicast hash table - * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY - * @get_wol: Get WoL configuration from driver state - * @set_wol: Push WoL configuration to the NIC - * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume) - * @test_registers: Test read/write functionality of control registers - * @test_nvram: Test validity of NVRAM contents - * @default_mac_ops: efx_mac_operations to set at startup - * @revision: Hardware architecture revision - * @mem_map_size: Memory BAR mapped size - * @txd_ptr_tbl_base: TX descriptor ring base address - * @rxd_ptr_tbl_base: RX descriptor ring base address - * @buf_tbl_base: Buffer table base address - * @evq_ptr_tbl_base: Event queue pointer table base address - * @evq_rptr_tbl_base: Event queue read-pointer table base address - * @max_dma_mask: Maximum possible DMA mask - * @rx_buffer_hash_size: Size of hash at start of RX buffer - * @rx_buffer_padding: Size of padding at end of RX buffer - * @max_interrupt_mode: Highest capability interrupt mode supported - * from &enum efx_init_mode. - * @phys_addr_channels: Number of channels with physically addressed - * descriptors - * @tx_dc_base: Base address in SRAM of TX queue descriptor caches - * @rx_dc_base: Base address in SRAM of RX queue descriptor caches - * @offload_features: net_device feature flags for protocol offload - * features implemented in hardware - */ -struct efx_nic_type { - int (*probe)(struct efx_nic *efx); - void (*remove)(struct efx_nic *efx); - int (*init)(struct efx_nic *efx); - void (*fini)(struct efx_nic *efx); - void (*monitor)(struct efx_nic *efx); - enum reset_type (*map_reset_reason)(enum reset_type reason); - int (*map_reset_flags)(u32 *flags); - int (*reset)(struct efx_nic *efx, enum reset_type method); - int (*probe_port)(struct efx_nic *efx); - void (*remove_port)(struct efx_nic *efx); - bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *); - void (*prepare_flush)(struct efx_nic *efx); - void (*update_stats)(struct efx_nic *efx); - void (*start_stats)(struct efx_nic *efx); - void (*stop_stats)(struct efx_nic *efx); - void (*set_id_led)(struct efx_nic *efx, enum efx_led_mode mode); - void (*push_irq_moderation)(struct efx_channel *channel); - void (*push_multicast_hash)(struct efx_nic *efx); - int (*reconfigure_port)(struct efx_nic *efx); - void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol); - int (*set_wol)(struct efx_nic *efx, u32 type); - void (*resume_wol)(struct efx_nic *efx); - int (*test_registers)(struct efx_nic *efx); - int (*test_nvram)(struct efx_nic *efx); - const struct efx_mac_operations *default_mac_ops; - - int revision; - unsigned int mem_map_size; - unsigned int txd_ptr_tbl_base; - unsigned int rxd_ptr_tbl_base; - unsigned int buf_tbl_base; - unsigned int evq_ptr_tbl_base; - unsigned int evq_rptr_tbl_base; - u64 max_dma_mask; - unsigned int rx_buffer_hash_size; - unsigned int rx_buffer_padding; - unsigned int max_interrupt_mode; - unsigned int phys_addr_channels; - unsigned int tx_dc_base; - unsigned int rx_dc_base; - u32 offload_features; -}; - -/************************************************************************** - * - * Prototypes and inline functions - * - *************************************************************************/ - -static inline struct efx_channel * -efx_get_channel(struct efx_nic *efx, unsigned index) -{ - EFX_BUG_ON_PARANOID(index >= efx->n_channels); - return efx->channel[index]; -} - -/* Iterate over all used channels */ -#define efx_for_each_channel(_channel, _efx) \ - for (_channel = (_efx)->channel[0]; \ - _channel; \ - _channel = (_channel->channel + 1 < (_efx)->n_channels) ? \ - (_efx)->channel[_channel->channel + 1] : NULL) - -static inline struct efx_tx_queue * -efx_get_tx_queue(struct efx_nic *efx, unsigned index, unsigned type) -{ - EFX_BUG_ON_PARANOID(index >= efx->n_tx_channels || - type >= EFX_TXQ_TYPES); - return &efx->channel[efx->tx_channel_offset + index]->tx_queue[type]; -} - -static inline bool efx_channel_has_tx_queues(struct efx_channel *channel) -{ - return channel->channel - channel->efx->tx_channel_offset < - channel->efx->n_tx_channels; -} - -static inline struct efx_tx_queue * -efx_channel_get_tx_queue(struct efx_channel *channel, unsigned type) -{ - EFX_BUG_ON_PARANOID(!efx_channel_has_tx_queues(channel) || - type >= EFX_TXQ_TYPES); - return &channel->tx_queue[type]; -} - -static inline bool efx_tx_queue_used(struct efx_tx_queue *tx_queue) -{ - return !(tx_queue->efx->net_dev->num_tc < 2 && - tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI); -} - -/* Iterate over all TX queues belonging to a channel */ -#define efx_for_each_channel_tx_queue(_tx_queue, _channel) \ - if (!efx_channel_has_tx_queues(_channel)) \ - ; \ - else \ - for (_tx_queue = (_channel)->tx_queue; \ - _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES && \ - efx_tx_queue_used(_tx_queue); \ - _tx_queue++) - -/* Iterate over all possible TX queues belonging to a channel */ -#define efx_for_each_possible_channel_tx_queue(_tx_queue, _channel) \ - for (_tx_queue = (_channel)->tx_queue; \ - _tx_queue < (_channel)->tx_queue + EFX_TXQ_TYPES; \ - _tx_queue++) - -static inline struct efx_rx_queue * -efx_get_rx_queue(struct efx_nic *efx, unsigned index) -{ - EFX_BUG_ON_PARANOID(index >= efx->n_rx_channels); - return &efx->channel[index]->rx_queue; -} - -static inline bool efx_channel_has_rx_queue(struct efx_channel *channel) -{ - return channel->channel < channel->efx->n_rx_channels; -} - -static inline struct efx_rx_queue * -efx_channel_get_rx_queue(struct efx_channel *channel) -{ - EFX_BUG_ON_PARANOID(!efx_channel_has_rx_queue(channel)); - return &channel->rx_queue; -} - -/* Iterate over all RX queues belonging to a channel */ -#define efx_for_each_channel_rx_queue(_rx_queue, _channel) \ - if (!efx_channel_has_rx_queue(_channel)) \ - ; \ - else \ - for (_rx_queue = &(_channel)->rx_queue; \ - _rx_queue; \ - _rx_queue = NULL) - -static inline struct efx_channel * -efx_rx_queue_channel(struct efx_rx_queue *rx_queue) -{ - return container_of(rx_queue, struct efx_channel, rx_queue); -} - -static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue) -{ - return efx_rx_queue_channel(rx_queue)->channel; -} - -/* Returns a pointer to the specified receive buffer in the RX - * descriptor queue. - */ -static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue, - unsigned int index) -{ - return &rx_queue->buffer[index]; -} - -/* Set bit in a little-endian bitfield */ -static inline void set_bit_le(unsigned nr, unsigned char *addr) -{ - addr[nr / 8] |= (1 << (nr % 8)); -} - -/* Clear bit in a little-endian bitfield */ -static inline void clear_bit_le(unsigned nr, unsigned char *addr) -{ - addr[nr / 8] &= ~(1 << (nr % 8)); -} - - -/** - * EFX_MAX_FRAME_LEN - calculate maximum frame length - * - * This calculates the maximum frame length that will be used for a - * given MTU. The frame length will be equal to the MTU plus a - * constant amount of header space and padding. This is the quantity - * that the net driver will program into the MAC as the maximum frame - * length. - * - * The 10G MAC requires 8-byte alignment on the frame - * length, so we round up to the nearest 8. - * - * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an - * XGMII cycle). If the frame length reaches the maximum value in the - * same cycle, the XMAC can miss the IPG altogether. We work around - * this by adding a further 16 bytes. - */ -#define EFX_MAX_FRAME_LEN(mtu) \ - ((((mtu) + ETH_HLEN + VLAN_HLEN + 4/* FCS */ + 7) & ~7) + 16) - - -#endif /* EFX_NET_DRIVER_H */ diff --git a/drivers/net/sfc/nic.c b/drivers/net/sfc/nic.c deleted file mode 100644 index bafa23a..0000000 --- a/drivers/net/sfc/nic.c +++ /dev/null @@ -1,1969 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2011 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/bitops.h> -#include <linux/delay.h> -#include <linux/interrupt.h> -#include <linux/pci.h> -#include <linux/module.h> -#include <linux/seq_file.h> -#include "net_driver.h" -#include "bitfield.h" -#include "efx.h" -#include "nic.h" -#include "regs.h" -#include "io.h" -#include "workarounds.h" - -/************************************************************************** - * - * Configurable values - * - ************************************************************************** - */ - -/* This is set to 16 for a good reason. In summary, if larger than - * 16, the descriptor cache holds more than a default socket - * buffer's worth of packets (for UDP we can only have at most one - * socket buffer's worth outstanding). This combined with the fact - * that we only get 1 TX event per descriptor cache means the NIC - * goes idle. - */ -#define TX_DC_ENTRIES 16 -#define TX_DC_ENTRIES_ORDER 1 - -#define RX_DC_ENTRIES 64 -#define RX_DC_ENTRIES_ORDER 3 - -/* If EFX_MAX_INT_ERRORS internal errors occur within - * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and - * disable it. - */ -#define EFX_INT_ERROR_EXPIRE 3600 -#define EFX_MAX_INT_ERRORS 5 - -/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times - */ -#define EFX_FLUSH_INTERVAL 10 -#define EFX_FLUSH_POLL_COUNT 100 - -/* Size and alignment of special buffers (4KB) */ -#define EFX_BUF_SIZE 4096 - -/* Depth of RX flush request fifo */ -#define EFX_RX_FLUSH_COUNT 4 - -/* Generated event code for efx_generate_test_event() */ -#define EFX_CHANNEL_MAGIC_TEST(_channel) \ - (0x00010100 + (_channel)->channel) - -/* Generated event code for efx_generate_fill_event() */ -#define EFX_CHANNEL_MAGIC_FILL(_channel) \ - (0x00010200 + (_channel)->channel) - -/************************************************************************** - * - * Solarstorm hardware access - * - **************************************************************************/ - -static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value, - unsigned int index) -{ - efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base, - value, index); -} - -/* Read the current event from the event queue */ -static inline efx_qword_t *efx_event(struct efx_channel *channel, - unsigned int index) -{ - return ((efx_qword_t *) (channel->eventq.addr)) + - (index & channel->eventq_mask); -} - -/* See if an event is present - * - * We check both the high and low dword of the event for all ones. We - * wrote all ones when we cleared the event, and no valid event can - * have all ones in either its high or low dwords. This approach is - * robust against reordering. - * - * Note that using a single 64-bit comparison is incorrect; even - * though the CPU read will be atomic, the DMA write may not be. - */ -static inline int efx_event_present(efx_qword_t *event) -{ - return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | - EFX_DWORD_IS_ALL_ONES(event->dword[1])); -} - -static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b, - const efx_oword_t *mask) -{ - return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) || - ((a->u64[1] ^ b->u64[1]) & mask->u64[1]); -} - -int efx_nic_test_registers(struct efx_nic *efx, - const struct efx_nic_register_test *regs, - size_t n_regs) -{ - unsigned address = 0, i, j; - efx_oword_t mask, imask, original, reg, buf; - - /* Falcon should be in loopback to isolate the XMAC from the PHY */ - WARN_ON(!LOOPBACK_INTERNAL(efx)); - - for (i = 0; i < n_regs; ++i) { - address = regs[i].address; - mask = imask = regs[i].mask; - EFX_INVERT_OWORD(imask); - - efx_reado(efx, &original, address); - - /* bit sweep on and off */ - for (j = 0; j < 128; j++) { - if (!EFX_EXTRACT_OWORD32(mask, j, j)) - continue; - - /* Test this testable bit can be set in isolation */ - EFX_AND_OWORD(reg, original, mask); - EFX_SET_OWORD32(reg, j, j, 1); - - efx_writeo(efx, ®, address); - efx_reado(efx, &buf, address); - - if (efx_masked_compare_oword(®, &buf, &mask)) - goto fail; - - /* Test this testable bit can be cleared in isolation */ - EFX_OR_OWORD(reg, original, mask); - EFX_SET_OWORD32(reg, j, j, 0); - - efx_writeo(efx, ®, address); - efx_reado(efx, &buf, address); - - if (efx_masked_compare_oword(®, &buf, &mask)) - goto fail; - } - - efx_writeo(efx, &original, address); - } - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, - "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT - " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg), - EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask)); - return -EIO; -} - -/************************************************************************** - * - * Special buffer handling - * Special buffers are used for event queues and the TX and RX - * descriptor rings. - * - *************************************************************************/ - -/* - * Initialise a special buffer - * - * This will define a buffer (previously allocated via - * efx_alloc_special_buffer()) in the buffer table, allowing - * it to be used for event queues, descriptor rings etc. - */ -static void -efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) -{ - efx_qword_t buf_desc; - int index; - dma_addr_t dma_addr; - int i; - - EFX_BUG_ON_PARANOID(!buffer->addr); - - /* Write buffer descriptors to NIC */ - for (i = 0; i < buffer->entries; i++) { - index = buffer->index + i; - dma_addr = buffer->dma_addr + (i * 4096); - netif_dbg(efx, probe, efx->net_dev, - "mapping special buffer %d at %llx\n", - index, (unsigned long long)dma_addr); - EFX_POPULATE_QWORD_3(buf_desc, - FRF_AZ_BUF_ADR_REGION, 0, - FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12, - FRF_AZ_BUF_OWNER_ID_FBUF, 0); - efx_write_buf_tbl(efx, &buf_desc, index); - } -} - -/* Unmaps a buffer and clears the buffer table entries */ -static void -efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) -{ - efx_oword_t buf_tbl_upd; - unsigned int start = buffer->index; - unsigned int end = (buffer->index + buffer->entries - 1); - - if (!buffer->entries) - return; - - netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n", - buffer->index, buffer->index + buffer->entries - 1); - - EFX_POPULATE_OWORD_4(buf_tbl_upd, - FRF_AZ_BUF_UPD_CMD, 0, - FRF_AZ_BUF_CLR_CMD, 1, - FRF_AZ_BUF_CLR_END_ID, end, - FRF_AZ_BUF_CLR_START_ID, start); - efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD); -} - -/* - * Allocate a new special buffer - * - * This allocates memory for a new buffer, clears it and allocates a - * new buffer ID range. It does not write into the buffer table. - * - * This call will allocate 4KB buffers, since 8KB buffers can't be - * used for event queues and descriptor rings. - */ -static int efx_alloc_special_buffer(struct efx_nic *efx, - struct efx_special_buffer *buffer, - unsigned int len) -{ - len = ALIGN(len, EFX_BUF_SIZE); - - buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len, - &buffer->dma_addr, GFP_KERNEL); - if (!buffer->addr) - return -ENOMEM; - buffer->len = len; - buffer->entries = len / EFX_BUF_SIZE; - BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1)); - - /* All zeros is a potentially valid event so memset to 0xff */ - memset(buffer->addr, 0xff, len); - - /* Select new buffer ID */ - buffer->index = efx->next_buffer_table; - efx->next_buffer_table += buffer->entries; - - netif_dbg(efx, probe, efx->net_dev, - "allocating special buffers %d-%d at %llx+%x " - "(virt %p phys %llx)\n", buffer->index, - buffer->index + buffer->entries - 1, - (u64)buffer->dma_addr, len, - buffer->addr, (u64)virt_to_phys(buffer->addr)); - - return 0; -} - -static void -efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer) -{ - if (!buffer->addr) - return; - - netif_dbg(efx, hw, efx->net_dev, - "deallocating special buffers %d-%d at %llx+%x " - "(virt %p phys %llx)\n", buffer->index, - buffer->index + buffer->entries - 1, - (u64)buffer->dma_addr, buffer->len, - buffer->addr, (u64)virt_to_phys(buffer->addr)); - - dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr, - buffer->dma_addr); - buffer->addr = NULL; - buffer->entries = 0; -} - -/************************************************************************** - * - * Generic buffer handling - * These buffers are used for interrupt status and MAC stats - * - **************************************************************************/ - -int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, - unsigned int len) -{ - buffer->addr = pci_alloc_consistent(efx->pci_dev, len, - &buffer->dma_addr); - if (!buffer->addr) - return -ENOMEM; - buffer->len = len; - memset(buffer->addr, 0, len); - return 0; -} - -void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) -{ - if (buffer->addr) { - pci_free_consistent(efx->pci_dev, buffer->len, - buffer->addr, buffer->dma_addr); - buffer->addr = NULL; - } -} - -/************************************************************************** - * - * TX path - * - **************************************************************************/ - -/* Returns a pointer to the specified transmit descriptor in the TX - * descriptor queue belonging to the specified channel. - */ -static inline efx_qword_t * -efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index) -{ - return ((efx_qword_t *) (tx_queue->txd.addr)) + index; -} - -/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ -static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue) -{ - unsigned write_ptr; - efx_dword_t reg; - - write_ptr = tx_queue->write_count & tx_queue->ptr_mask; - EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr); - efx_writed_page(tx_queue->efx, ®, - FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue); -} - -/* Write pointer and first descriptor for TX descriptor ring */ -static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue, - const efx_qword_t *txd) -{ - unsigned write_ptr; - efx_oword_t reg; - - BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0); - BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0); - - write_ptr = tx_queue->write_count & tx_queue->ptr_mask; - EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true, - FRF_AZ_TX_DESC_WPTR, write_ptr); - reg.qword[0] = *txd; - efx_writeo_page(tx_queue->efx, ®, - FR_BZ_TX_DESC_UPD_P0, tx_queue->queue); -} - -static inline bool -efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count) -{ - unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count); - - if (empty_read_count == 0) - return false; - - tx_queue->empty_read_count = 0; - return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0; -} - -/* For each entry inserted into the software descriptor ring, create a - * descriptor in the hardware TX descriptor ring (in host memory), and - * write a doorbell. - */ -void efx_nic_push_buffers(struct efx_tx_queue *tx_queue) -{ - - struct efx_tx_buffer *buffer; - efx_qword_t *txd; - unsigned write_ptr; - unsigned old_write_count = tx_queue->write_count; - - BUG_ON(tx_queue->write_count == tx_queue->insert_count); - - do { - write_ptr = tx_queue->write_count & tx_queue->ptr_mask; - buffer = &tx_queue->buffer[write_ptr]; - txd = efx_tx_desc(tx_queue, write_ptr); - ++tx_queue->write_count; - - /* Create TX descriptor ring entry */ - EFX_POPULATE_QWORD_4(*txd, - FSF_AZ_TX_KER_CONT, buffer->continuation, - FSF_AZ_TX_KER_BYTE_COUNT, buffer->len, - FSF_AZ_TX_KER_BUF_REGION, 0, - FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr); - } while (tx_queue->write_count != tx_queue->insert_count); - - wmb(); /* Ensure descriptors are written before they are fetched */ - - if (efx_may_push_tx_desc(tx_queue, old_write_count)) { - txd = efx_tx_desc(tx_queue, - old_write_count & tx_queue->ptr_mask); - efx_push_tx_desc(tx_queue, txd); - ++tx_queue->pushes; - } else { - efx_notify_tx_desc(tx_queue); - } -} - -/* Allocate hardware resources for a TX queue */ -int efx_nic_probe_tx(struct efx_tx_queue *tx_queue) -{ - struct efx_nic *efx = tx_queue->efx; - unsigned entries; - - entries = tx_queue->ptr_mask + 1; - return efx_alloc_special_buffer(efx, &tx_queue->txd, - entries * sizeof(efx_qword_t)); -} - -void efx_nic_init_tx(struct efx_tx_queue *tx_queue) -{ - struct efx_nic *efx = tx_queue->efx; - efx_oword_t reg; - - tx_queue->flushed = FLUSH_NONE; - - /* Pin TX descriptor ring */ - efx_init_special_buffer(efx, &tx_queue->txd); - - /* Push TX descriptor ring to card */ - EFX_POPULATE_OWORD_10(reg, - FRF_AZ_TX_DESCQ_EN, 1, - FRF_AZ_TX_ISCSI_DDIG_EN, 0, - FRF_AZ_TX_ISCSI_HDIG_EN, 0, - FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, - FRF_AZ_TX_DESCQ_EVQ_ID, - tx_queue->channel->channel, - FRF_AZ_TX_DESCQ_OWNER_ID, 0, - FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue, - FRF_AZ_TX_DESCQ_SIZE, - __ffs(tx_queue->txd.entries), - FRF_AZ_TX_DESCQ_TYPE, 0, - FRF_BZ_TX_NON_IP_DROP_DIS, 1); - - if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { - int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD; - EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum); - EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS, - !csum); - } - - efx_writeo_table(efx, ®, efx->type->txd_ptr_tbl_base, - tx_queue->queue); - - if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) { - /* Only 128 bits in this register */ - BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128); - - efx_reado(efx, ®, FR_AA_TX_CHKSM_CFG); - if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD) - clear_bit_le(tx_queue->queue, (void *)®); - else - set_bit_le(tx_queue->queue, (void *)®); - efx_writeo(efx, ®, FR_AA_TX_CHKSM_CFG); - } - - if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { - EFX_POPULATE_OWORD_1(reg, - FRF_BZ_TX_PACE, - (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? - FFE_BZ_TX_PACE_OFF : - FFE_BZ_TX_PACE_RESERVED); - efx_writeo_table(efx, ®, FR_BZ_TX_PACE_TBL, - tx_queue->queue); - } -} - -static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue) -{ - struct efx_nic *efx = tx_queue->efx; - efx_oword_t tx_flush_descq; - - tx_queue->flushed = FLUSH_PENDING; - - /* Post a flush command */ - EFX_POPULATE_OWORD_2(tx_flush_descq, - FRF_AZ_TX_FLUSH_DESCQ_CMD, 1, - FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue); - efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ); -} - -void efx_nic_fini_tx(struct efx_tx_queue *tx_queue) -{ - struct efx_nic *efx = tx_queue->efx; - efx_oword_t tx_desc_ptr; - - /* The queue should have been flushed */ - WARN_ON(tx_queue->flushed != FLUSH_DONE); - - /* Remove TX descriptor ring from card */ - EFX_ZERO_OWORD(tx_desc_ptr); - efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, - tx_queue->queue); - - /* Unpin TX descriptor ring */ - efx_fini_special_buffer(efx, &tx_queue->txd); -} - -/* Free buffers backing TX queue */ -void efx_nic_remove_tx(struct efx_tx_queue *tx_queue) -{ - efx_free_special_buffer(tx_queue->efx, &tx_queue->txd); -} - -/************************************************************************** - * - * RX path - * - **************************************************************************/ - -/* Returns a pointer to the specified descriptor in the RX descriptor queue */ -static inline efx_qword_t * -efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index) -{ - return ((efx_qword_t *) (rx_queue->rxd.addr)) + index; -} - -/* This creates an entry in the RX descriptor queue */ -static inline void -efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index) -{ - struct efx_rx_buffer *rx_buf; - efx_qword_t *rxd; - - rxd = efx_rx_desc(rx_queue, index); - rx_buf = efx_rx_buffer(rx_queue, index); - EFX_POPULATE_QWORD_3(*rxd, - FSF_AZ_RX_KER_BUF_SIZE, - rx_buf->len - - rx_queue->efx->type->rx_buffer_padding, - FSF_AZ_RX_KER_BUF_REGION, 0, - FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr); -} - -/* This writes to the RX_DESC_WPTR register for the specified receive - * descriptor ring. - */ -void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue) -{ - struct efx_nic *efx = rx_queue->efx; - efx_dword_t reg; - unsigned write_ptr; - - while (rx_queue->notified_count != rx_queue->added_count) { - efx_build_rx_desc( - rx_queue, - rx_queue->notified_count & rx_queue->ptr_mask); - ++rx_queue->notified_count; - } - - wmb(); - write_ptr = rx_queue->added_count & rx_queue->ptr_mask; - EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr); - efx_writed_page(efx, ®, FR_AZ_RX_DESC_UPD_DWORD_P0, - efx_rx_queue_index(rx_queue)); -} - -int efx_nic_probe_rx(struct efx_rx_queue *rx_queue) -{ - struct efx_nic *efx = rx_queue->efx; - unsigned entries; - - entries = rx_queue->ptr_mask + 1; - return efx_alloc_special_buffer(efx, &rx_queue->rxd, - entries * sizeof(efx_qword_t)); -} - -void efx_nic_init_rx(struct efx_rx_queue *rx_queue) -{ - efx_oword_t rx_desc_ptr; - struct efx_nic *efx = rx_queue->efx; - bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0; - bool iscsi_digest_en = is_b0; - - netif_dbg(efx, hw, efx->net_dev, - "RX queue %d ring in special buffers %d-%d\n", - efx_rx_queue_index(rx_queue), rx_queue->rxd.index, - rx_queue->rxd.index + rx_queue->rxd.entries - 1); - - rx_queue->flushed = FLUSH_NONE; - - /* Pin RX descriptor ring */ - efx_init_special_buffer(efx, &rx_queue->rxd); - - /* Push RX descriptor ring to card */ - EFX_POPULATE_OWORD_10(rx_desc_ptr, - FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en, - FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en, - FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, - FRF_AZ_RX_DESCQ_EVQ_ID, - efx_rx_queue_channel(rx_queue)->channel, - FRF_AZ_RX_DESCQ_OWNER_ID, 0, - FRF_AZ_RX_DESCQ_LABEL, - efx_rx_queue_index(rx_queue), - FRF_AZ_RX_DESCQ_SIZE, - __ffs(rx_queue->rxd.entries), - FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ , - /* For >=B0 this is scatter so disable */ - FRF_AZ_RX_DESCQ_JUMBO, !is_b0, - FRF_AZ_RX_DESCQ_EN, 1); - efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, - efx_rx_queue_index(rx_queue)); -} - -static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue) -{ - struct efx_nic *efx = rx_queue->efx; - efx_oword_t rx_flush_descq; - - rx_queue->flushed = FLUSH_PENDING; - - /* Post a flush command */ - EFX_POPULATE_OWORD_2(rx_flush_descq, - FRF_AZ_RX_FLUSH_DESCQ_CMD, 1, - FRF_AZ_RX_FLUSH_DESCQ, - efx_rx_queue_index(rx_queue)); - efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ); -} - -void efx_nic_fini_rx(struct efx_rx_queue *rx_queue) -{ - efx_oword_t rx_desc_ptr; - struct efx_nic *efx = rx_queue->efx; - - /* The queue should already have been flushed */ - WARN_ON(rx_queue->flushed != FLUSH_DONE); - - /* Remove RX descriptor ring from card */ - EFX_ZERO_OWORD(rx_desc_ptr); - efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, - efx_rx_queue_index(rx_queue)); - - /* Unpin RX descriptor ring */ - efx_fini_special_buffer(efx, &rx_queue->rxd); -} - -/* Free buffers backing RX queue */ -void efx_nic_remove_rx(struct efx_rx_queue *rx_queue) -{ - efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd); -} - -/************************************************************************** - * - * Event queue processing - * Event queues are processed by per-channel tasklets. - * - **************************************************************************/ - -/* Update a channel's event queue's read pointer (RPTR) register - * - * This writes the EVQ_RPTR_REG register for the specified channel's - * event queue. - */ -void efx_nic_eventq_read_ack(struct efx_channel *channel) -{ - efx_dword_t reg; - struct efx_nic *efx = channel->efx; - - EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, - channel->eventq_read_ptr & channel->eventq_mask); - efx_writed_table(efx, ®, efx->type->evq_rptr_tbl_base, - channel->channel); -} - -/* Use HW to insert a SW defined event */ -static void efx_generate_event(struct efx_channel *channel, efx_qword_t *event) -{ - efx_oword_t drv_ev_reg; - - BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 || - FRF_AZ_DRV_EV_DATA_WIDTH != 64); - drv_ev_reg.u32[0] = event->u32[0]; - drv_ev_reg.u32[1] = event->u32[1]; - drv_ev_reg.u32[2] = 0; - drv_ev_reg.u32[3] = 0; - EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel); - efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV); -} - -/* Handle a transmit completion event - * - * The NIC batches TX completion events; the message we receive is of - * the form "complete all TX events up to this index". - */ -static int -efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event) -{ - unsigned int tx_ev_desc_ptr; - unsigned int tx_ev_q_label; - struct efx_tx_queue *tx_queue; - struct efx_nic *efx = channel->efx; - int tx_packets = 0; - - if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) { - /* Transmit completion */ - tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR); - tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); - tx_queue = efx_channel_get_tx_queue( - channel, tx_ev_q_label % EFX_TXQ_TYPES); - tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & - tx_queue->ptr_mask); - channel->irq_mod_score += tx_packets; - efx_xmit_done(tx_queue, tx_ev_desc_ptr); - } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { - /* Rewrite the FIFO write pointer */ - tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL); - tx_queue = efx_channel_get_tx_queue( - channel, tx_ev_q_label % EFX_TXQ_TYPES); - - if (efx_dev_registered(efx)) - netif_tx_lock(efx->net_dev); - efx_notify_tx_desc(tx_queue); - if (efx_dev_registered(efx)) - netif_tx_unlock(efx->net_dev); - } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) && - EFX_WORKAROUND_10727(efx)) { - efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); - } else { - netif_err(efx, tx_err, efx->net_dev, - "channel %d unexpected TX event " - EFX_QWORD_FMT"\n", channel->channel, - EFX_QWORD_VAL(*event)); - } - - return tx_packets; -} - -/* Detect errors included in the rx_evt_pkt_ok bit. */ -static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue, - const efx_qword_t *event, - bool *rx_ev_pkt_ok, - bool *discard) -{ - struct efx_channel *channel = efx_rx_queue_channel(rx_queue); - struct efx_nic *efx = rx_queue->efx; - bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; - bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; - bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; - bool rx_ev_other_err, rx_ev_pause_frm; - bool rx_ev_hdr_type, rx_ev_mcast_pkt; - unsigned rx_ev_pkt_type; - - rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); - rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); - rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC); - rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE); - rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, - FSF_AZ_RX_EV_BUF_OWNER_ID_ERR); - rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, - FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR); - rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, - FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR); - rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR); - rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC); - rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ? - 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB)); - rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR); - - /* Every error apart from tobe_disc and pause_frm */ - rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | - rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | - rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); - - /* Count errors that are not in MAC stats. Ignore expected - * checksum errors during self-test. */ - if (rx_ev_frm_trunc) - ++channel->n_rx_frm_trunc; - else if (rx_ev_tobe_disc) - ++channel->n_rx_tobe_disc; - else if (!efx->loopback_selftest) { - if (rx_ev_ip_hdr_chksum_err) - ++channel->n_rx_ip_hdr_chksum_err; - else if (rx_ev_tcp_udp_chksum_err) - ++channel->n_rx_tcp_udp_chksum_err; - } - - /* The frame must be discarded if any of these are true. */ - *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | - rx_ev_tobe_disc | rx_ev_pause_frm); - - /* TOBE_DISC is expected on unicast mismatches; don't print out an - * error message. FRM_TRUNC indicates RXDP dropped the packet due - * to a FIFO overflow. - */ -#ifdef EFX_ENABLE_DEBUG - if (rx_ev_other_err && net_ratelimit()) { - netif_dbg(efx, rx_err, efx->net_dev, - " RX queue %d unexpected RX event " - EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n", - efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event), - rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", - rx_ev_ip_hdr_chksum_err ? - " [IP_HDR_CHKSUM_ERR]" : "", - rx_ev_tcp_udp_chksum_err ? - " [TCP_UDP_CHKSUM_ERR]" : "", - rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", - rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", - rx_ev_drib_nib ? " [DRIB_NIB]" : "", - rx_ev_tobe_disc ? " [TOBE_DISC]" : "", - rx_ev_pause_frm ? " [PAUSE]" : ""); - } -#endif -} - -/* Handle receive events that are not in-order. */ -static void -efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index) -{ - struct efx_nic *efx = rx_queue->efx; - unsigned expected, dropped; - - expected = rx_queue->removed_count & rx_queue->ptr_mask; - dropped = (index - expected) & rx_queue->ptr_mask; - netif_info(efx, rx_err, efx->net_dev, - "dropped %d events (index=%d expected=%d)\n", - dropped, index, expected); - - efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? - RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); -} - -/* Handle a packet received event - * - * The NIC gives a "discard" flag if it's a unicast packet with the - * wrong destination address - * Also "is multicast" and "matches multicast filter" flags can be used to - * discard non-matching multicast packets. - */ -static void -efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event) -{ - unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt; - unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt; - unsigned expected_ptr; - bool rx_ev_pkt_ok, discard = false, checksummed; - struct efx_rx_queue *rx_queue; - - /* Basic packet information */ - rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT); - rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK); - rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE); - WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT)); - WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1); - WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) != - channel->channel); - - rx_queue = efx_channel_get_rx_queue(channel); - - rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR); - expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask; - if (unlikely(rx_ev_desc_ptr != expected_ptr)) - efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr); - - if (likely(rx_ev_pkt_ok)) { - /* If packet is marked as OK and packet type is TCP/IP or - * UDP/IP, then we can rely on the hardware checksum. - */ - checksummed = - rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP || - rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP; - } else { - efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard); - checksummed = false; - } - - /* Detect multicast packets that didn't match the filter */ - rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT); - if (rx_ev_mcast_pkt) { - unsigned int rx_ev_mcast_hash_match = - EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH); - - if (unlikely(!rx_ev_mcast_hash_match)) { - ++channel->n_rx_mcast_mismatch; - discard = true; - } - } - - channel->irq_mod_score += 2; - - /* Handle received packet */ - efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, - checksummed, discard); -} - -static void -efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event) -{ - struct efx_nic *efx = channel->efx; - unsigned code; - - code = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC); - if (code == EFX_CHANNEL_MAGIC_TEST(channel)) - ; /* ignore */ - else if (code == EFX_CHANNEL_MAGIC_FILL(channel)) - /* The queue must be empty, so we won't receive any rx - * events, so efx_process_channel() won't refill the - * queue. Refill it here */ - efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel)); - else - netif_dbg(efx, hw, efx->net_dev, "channel %d received " - "generated event "EFX_QWORD_FMT"\n", - channel->channel, EFX_QWORD_VAL(*event)); -} - -static void -efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event) -{ - struct efx_nic *efx = channel->efx; - unsigned int ev_sub_code; - unsigned int ev_sub_data; - - ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE); - ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA); - - switch (ev_sub_code) { - case FSE_AZ_TX_DESCQ_FLS_DONE_EV: - netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n", - channel->channel, ev_sub_data); - break; - case FSE_AZ_RX_DESCQ_FLS_DONE_EV: - netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n", - channel->channel, ev_sub_data); - break; - case FSE_AZ_EVQ_INIT_DONE_EV: - netif_dbg(efx, hw, efx->net_dev, - "channel %d EVQ %d initialised\n", - channel->channel, ev_sub_data); - break; - case FSE_AZ_SRM_UPD_DONE_EV: - netif_vdbg(efx, hw, efx->net_dev, - "channel %d SRAM update done\n", channel->channel); - break; - case FSE_AZ_WAKE_UP_EV: - netif_vdbg(efx, hw, efx->net_dev, - "channel %d RXQ %d wakeup event\n", - channel->channel, ev_sub_data); - break; - case FSE_AZ_TIMER_EV: - netif_vdbg(efx, hw, efx->net_dev, - "channel %d RX queue %d timer expired\n", - channel->channel, ev_sub_data); - break; - case FSE_AA_RX_RECOVER_EV: - netif_err(efx, rx_err, efx->net_dev, - "channel %d seen DRIVER RX_RESET event. " - "Resetting.\n", channel->channel); - atomic_inc(&efx->rx_reset); - efx_schedule_reset(efx, - EFX_WORKAROUND_6555(efx) ? - RESET_TYPE_RX_RECOVERY : - RESET_TYPE_DISABLE); - break; - case FSE_BZ_RX_DSC_ERROR_EV: - netif_err(efx, rx_err, efx->net_dev, - "RX DMA Q %d reports descriptor fetch error." - " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); - efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); - break; - case FSE_BZ_TX_DSC_ERROR_EV: - netif_err(efx, tx_err, efx->net_dev, - "TX DMA Q %d reports descriptor fetch error." - " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); - efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); - break; - default: - netif_vdbg(efx, hw, efx->net_dev, - "channel %d unknown driver event code %d " - "data %04x\n", channel->channel, ev_sub_code, - ev_sub_data); - break; - } -} - -int efx_nic_process_eventq(struct efx_channel *channel, int budget) -{ - struct efx_nic *efx = channel->efx; - unsigned int read_ptr; - efx_qword_t event, *p_event; - int ev_code; - int tx_packets = 0; - int spent = 0; - - read_ptr = channel->eventq_read_ptr; - - for (;;) { - p_event = efx_event(channel, read_ptr); - event = *p_event; - - if (!efx_event_present(&event)) - /* End of events */ - break; - - netif_vdbg(channel->efx, intr, channel->efx->net_dev, - "channel %d event is "EFX_QWORD_FMT"\n", - channel->channel, EFX_QWORD_VAL(event)); - - /* Clear this event by marking it all ones */ - EFX_SET_QWORD(*p_event); - - ++read_ptr; - - ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE); - - switch (ev_code) { - case FSE_AZ_EV_CODE_RX_EV: - efx_handle_rx_event(channel, &event); - if (++spent == budget) - goto out; - break; - case FSE_AZ_EV_CODE_TX_EV: - tx_packets += efx_handle_tx_event(channel, &event); - if (tx_packets > efx->txq_entries) { - spent = budget; - goto out; - } - break; - case FSE_AZ_EV_CODE_DRV_GEN_EV: - efx_handle_generated_event(channel, &event); - break; - case FSE_AZ_EV_CODE_DRIVER_EV: - efx_handle_driver_event(channel, &event); - break; - case FSE_CZ_EV_CODE_MCDI_EV: - efx_mcdi_process_event(channel, &event); - break; - case FSE_AZ_EV_CODE_GLOBAL_EV: - if (efx->type->handle_global_event && - efx->type->handle_global_event(channel, &event)) - break; - /* else fall through */ - default: - netif_err(channel->efx, hw, channel->efx->net_dev, - "channel %d unknown event type %d (data " - EFX_QWORD_FMT ")\n", channel->channel, - ev_code, EFX_QWORD_VAL(event)); - } - } - -out: - channel->eventq_read_ptr = read_ptr; - return spent; -} - -/* Check whether an event is present in the eventq at the current - * read pointer. Only useful for self-test. - */ -bool efx_nic_event_present(struct efx_channel *channel) -{ - return efx_event_present(efx_event(channel, channel->eventq_read_ptr)); -} - -/* Allocate buffer table entries for event queue */ -int efx_nic_probe_eventq(struct efx_channel *channel) -{ - struct efx_nic *efx = channel->efx; - unsigned entries; - - entries = channel->eventq_mask + 1; - return efx_alloc_special_buffer(efx, &channel->eventq, - entries * sizeof(efx_qword_t)); -} - -void efx_nic_init_eventq(struct efx_channel *channel) -{ - efx_oword_t reg; - struct efx_nic *efx = channel->efx; - - netif_dbg(efx, hw, efx->net_dev, - "channel %d event queue in special buffers %d-%d\n", - channel->channel, channel->eventq.index, - channel->eventq.index + channel->eventq.entries - 1); - - if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) { - EFX_POPULATE_OWORD_3(reg, - FRF_CZ_TIMER_Q_EN, 1, - FRF_CZ_HOST_NOTIFY_MODE, 0, - FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS); - efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); - } - - /* Pin event queue buffer */ - efx_init_special_buffer(efx, &channel->eventq); - - /* Fill event queue with all ones (i.e. empty events) */ - memset(channel->eventq.addr, 0xff, channel->eventq.len); - - /* Push event queue to card */ - EFX_POPULATE_OWORD_3(reg, - FRF_AZ_EVQ_EN, 1, - FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries), - FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index); - efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, - channel->channel); - - efx->type->push_irq_moderation(channel); -} - -void efx_nic_fini_eventq(struct efx_channel *channel) -{ - efx_oword_t reg; - struct efx_nic *efx = channel->efx; - - /* Remove event queue from card */ - EFX_ZERO_OWORD(reg); - efx_writeo_table(efx, ®, efx->type->evq_ptr_tbl_base, - channel->channel); - if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) - efx_writeo_table(efx, ®, FR_BZ_TIMER_TBL, channel->channel); - - /* Unpin event queue */ - efx_fini_special_buffer(efx, &channel->eventq); -} - -/* Free buffers backing event queue */ -void efx_nic_remove_eventq(struct efx_channel *channel) -{ - efx_free_special_buffer(channel->efx, &channel->eventq); -} - - -void efx_nic_generate_test_event(struct efx_channel *channel) -{ - unsigned int magic = EFX_CHANNEL_MAGIC_TEST(channel); - efx_qword_t test_event; - - EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, - FSE_AZ_EV_CODE_DRV_GEN_EV, - FSF_AZ_DRV_GEN_EV_MAGIC, magic); - efx_generate_event(channel, &test_event); -} - -void efx_nic_generate_fill_event(struct efx_channel *channel) -{ - unsigned int magic = EFX_CHANNEL_MAGIC_FILL(channel); - efx_qword_t test_event; - - EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE, - FSE_AZ_EV_CODE_DRV_GEN_EV, - FSF_AZ_DRV_GEN_EV_MAGIC, magic); - efx_generate_event(channel, &test_event); -} - -/************************************************************************** - * - * Flush handling - * - **************************************************************************/ - - -static void efx_poll_flush_events(struct efx_nic *efx) -{ - struct efx_channel *channel = efx_get_channel(efx, 0); - struct efx_tx_queue *tx_queue; - struct efx_rx_queue *rx_queue; - unsigned int read_ptr = channel->eventq_read_ptr; - unsigned int end_ptr = read_ptr + channel->eventq_mask - 1; - - do { - efx_qword_t *event = efx_event(channel, read_ptr); - int ev_code, ev_sub_code, ev_queue; - bool ev_failed; - - if (!efx_event_present(event)) - break; - - ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE); - ev_sub_code = EFX_QWORD_FIELD(*event, - FSF_AZ_DRIVER_EV_SUBCODE); - if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && - ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) { - ev_queue = EFX_QWORD_FIELD(*event, - FSF_AZ_DRIVER_EV_SUBDATA); - if (ev_queue < EFX_TXQ_TYPES * efx->n_tx_channels) { - tx_queue = efx_get_tx_queue( - efx, ev_queue / EFX_TXQ_TYPES, - ev_queue % EFX_TXQ_TYPES); - tx_queue->flushed = FLUSH_DONE; - } - } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV && - ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) { - ev_queue = EFX_QWORD_FIELD( - *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID); - ev_failed = EFX_QWORD_FIELD( - *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL); - if (ev_queue < efx->n_rx_channels) { - rx_queue = efx_get_rx_queue(efx, ev_queue); - rx_queue->flushed = - ev_failed ? FLUSH_FAILED : FLUSH_DONE; - } - } - - /* We're about to destroy the queue anyway, so - * it's ok to throw away every non-flush event */ - EFX_SET_QWORD(*event); - - ++read_ptr; - } while (read_ptr != end_ptr); - - channel->eventq_read_ptr = read_ptr; -} - -/* Handle tx and rx flushes at the same time, since they run in - * parallel in the hardware and there's no reason for us to - * serialise them */ -int efx_nic_flush_queues(struct efx_nic *efx) -{ - struct efx_channel *channel; - struct efx_rx_queue *rx_queue; - struct efx_tx_queue *tx_queue; - int i, tx_pending, rx_pending; - - /* If necessary prepare the hardware for flushing */ - efx->type->prepare_flush(efx); - - /* Flush all tx queues in parallel */ - efx_for_each_channel(channel, efx) { - efx_for_each_possible_channel_tx_queue(tx_queue, channel) { - if (tx_queue->initialised) - efx_flush_tx_queue(tx_queue); - } - } - - /* The hardware supports four concurrent rx flushes, each of which may - * need to be retried if there is an outstanding descriptor fetch */ - for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) { - rx_pending = tx_pending = 0; - efx_for_each_channel(channel, efx) { - efx_for_each_channel_rx_queue(rx_queue, channel) { - if (rx_queue->flushed == FLUSH_PENDING) - ++rx_pending; - } - } - efx_for_each_channel(channel, efx) { - efx_for_each_channel_rx_queue(rx_queue, channel) { - if (rx_pending == EFX_RX_FLUSH_COUNT) - break; - if (rx_queue->flushed == FLUSH_FAILED || - rx_queue->flushed == FLUSH_NONE) { - efx_flush_rx_queue(rx_queue); - ++rx_pending; - } - } - efx_for_each_possible_channel_tx_queue(tx_queue, channel) { - if (tx_queue->initialised && - tx_queue->flushed != FLUSH_DONE) - ++tx_pending; - } - } - - if (rx_pending == 0 && tx_pending == 0) - return 0; - - msleep(EFX_FLUSH_INTERVAL); - efx_poll_flush_events(efx); - } - - /* Mark the queues as all flushed. We're going to return failure - * leading to a reset, or fake up success anyway */ - efx_for_each_channel(channel, efx) { - efx_for_each_possible_channel_tx_queue(tx_queue, channel) { - if (tx_queue->initialised && - tx_queue->flushed != FLUSH_DONE) - netif_err(efx, hw, efx->net_dev, - "tx queue %d flush command timed out\n", - tx_queue->queue); - tx_queue->flushed = FLUSH_DONE; - } - efx_for_each_channel_rx_queue(rx_queue, channel) { - if (rx_queue->flushed != FLUSH_DONE) - netif_err(efx, hw, efx->net_dev, - "rx queue %d flush command timed out\n", - efx_rx_queue_index(rx_queue)); - rx_queue->flushed = FLUSH_DONE; - } - } - - return -ETIMEDOUT; -} - -/************************************************************************** - * - * Hardware interrupts - * The hardware interrupt handler does very little work; all the event - * queue processing is carried out by per-channel tasklets. - * - **************************************************************************/ - -/* Enable/disable/generate interrupts */ -static inline void efx_nic_interrupts(struct efx_nic *efx, - bool enabled, bool force) -{ - efx_oword_t int_en_reg_ker; - - EFX_POPULATE_OWORD_3(int_en_reg_ker, - FRF_AZ_KER_INT_LEVE_SEL, efx->fatal_irq_level, - FRF_AZ_KER_INT_KER, force, - FRF_AZ_DRV_INT_EN_KER, enabled); - efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER); -} - -void efx_nic_enable_interrupts(struct efx_nic *efx) -{ - struct efx_channel *channel; - - EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); - wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ - - /* Enable interrupts */ - efx_nic_interrupts(efx, true, false); - - /* Force processing of all the channels to get the EVQ RPTRs up to - date */ - efx_for_each_channel(channel, efx) - efx_schedule_channel(channel); -} - -void efx_nic_disable_interrupts(struct efx_nic *efx) -{ - /* Disable interrupts */ - efx_nic_interrupts(efx, false, false); -} - -/* Generate a test interrupt - * Interrupt must already have been enabled, otherwise nasty things - * may happen. - */ -void efx_nic_generate_interrupt(struct efx_nic *efx) -{ - efx_nic_interrupts(efx, true, true); -} - -/* Process a fatal interrupt - * Disable bus mastering ASAP and schedule a reset - */ -irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx) -{ - struct falcon_nic_data *nic_data = efx->nic_data; - efx_oword_t *int_ker = efx->irq_status.addr; - efx_oword_t fatal_intr; - int error, mem_perr; - - efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER); - error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR); - - netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status " - EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), - EFX_OWORD_VAL(fatal_intr), - error ? "disabling bus mastering" : "no recognised error"); - - /* If this is a memory parity error dump which blocks are offending */ - mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) || - EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER)); - if (mem_perr) { - efx_oword_t reg; - efx_reado(efx, ®, FR_AZ_MEM_STAT); - netif_err(efx, hw, efx->net_dev, - "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n", - EFX_OWORD_VAL(reg)); - } - - /* Disable both devices */ - pci_clear_master(efx->pci_dev); - if (efx_nic_is_dual_func(efx)) - pci_clear_master(nic_data->pci_dev2); - efx_nic_disable_interrupts(efx); - - /* Count errors and reset or disable the NIC accordingly */ - if (efx->int_error_count == 0 || - time_after(jiffies, efx->int_error_expire)) { - efx->int_error_count = 0; - efx->int_error_expire = - jiffies + EFX_INT_ERROR_EXPIRE * HZ; - } - if (++efx->int_error_count < EFX_MAX_INT_ERRORS) { - netif_err(efx, hw, efx->net_dev, - "SYSTEM ERROR - reset scheduled\n"); - efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); - } else { - netif_err(efx, hw, efx->net_dev, - "SYSTEM ERROR - max number of errors seen." - "NIC will be disabled\n"); - efx_schedule_reset(efx, RESET_TYPE_DISABLE); - } - - return IRQ_HANDLED; -} - -/* Handle a legacy interrupt - * Acknowledges the interrupt and schedule event queue processing. - */ -static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id) -{ - struct efx_nic *efx = dev_id; - efx_oword_t *int_ker = efx->irq_status.addr; - irqreturn_t result = IRQ_NONE; - struct efx_channel *channel; - efx_dword_t reg; - u32 queues; - int syserr; - - /* Could this be ours? If interrupts are disabled then the - * channel state may not be valid. - */ - if (!efx->legacy_irq_enabled) - return result; - - /* Read the ISR which also ACKs the interrupts */ - efx_readd(efx, ®, FR_BZ_INT_ISR0); - queues = EFX_EXTRACT_DWORD(reg, 0, 31); - - /* Check to see if we have a serious error condition */ - if (queues & (1U << efx->fatal_irq_level)) { - syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); - if (unlikely(syserr)) - return efx_nic_fatal_interrupt(efx); - } - - if (queues != 0) { - if (EFX_WORKAROUND_15783(efx)) - efx->irq_zero_count = 0; - - /* Schedule processing of any interrupting queues */ - efx_for_each_channel(channel, efx) { - if (queues & 1) - efx_schedule_channel(channel); - queues >>= 1; - } - result = IRQ_HANDLED; - - } else if (EFX_WORKAROUND_15783(efx)) { - efx_qword_t *event; - - /* We can't return IRQ_HANDLED more than once on seeing ISR=0 - * because this might be a shared interrupt. */ - if (efx->irq_zero_count++ == 0) - result = IRQ_HANDLED; - - /* Ensure we schedule or rearm all event queues */ - efx_for_each_channel(channel, efx) { - event = efx_event(channel, channel->eventq_read_ptr); - if (efx_event_present(event)) - efx_schedule_channel(channel); - else - efx_nic_eventq_read_ack(channel); - } - } - - if (result == IRQ_HANDLED) { - efx->last_irq_cpu = raw_smp_processor_id(); - netif_vdbg(efx, intr, efx->net_dev, - "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", - irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); - } - - return result; -} - -/* Handle an MSI interrupt - * - * Handle an MSI hardware interrupt. This routine schedules event - * queue processing. No interrupt acknowledgement cycle is necessary. - * Also, we never need to check that the interrupt is for us, since - * MSI interrupts cannot be shared. - */ -static irqreturn_t efx_msi_interrupt(int irq, void *dev_id) -{ - struct efx_channel *channel = *(struct efx_channel **)dev_id; - struct efx_nic *efx = channel->efx; - efx_oword_t *int_ker = efx->irq_status.addr; - int syserr; - - efx->last_irq_cpu = raw_smp_processor_id(); - netif_vdbg(efx, intr, efx->net_dev, - "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", - irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); - - /* Check to see if we have a serious error condition */ - if (channel->channel == efx->fatal_irq_level) { - syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT); - if (unlikely(syserr)) - return efx_nic_fatal_interrupt(efx); - } - - /* Schedule processing of the channel */ - efx_schedule_channel(channel); - - return IRQ_HANDLED; -} - - -/* Setup RSS indirection table. - * This maps from the hash value of the packet to RXQ - */ -void efx_nic_push_rx_indir_table(struct efx_nic *efx) -{ - size_t i = 0; - efx_dword_t dword; - - if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) - return; - - BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) != - FR_BZ_RX_INDIRECTION_TBL_ROWS); - - for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) { - EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE, - efx->rx_indir_table[i]); - efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i); - } -} - -/* Hook interrupt handler(s) - * Try MSI and then legacy interrupts. - */ -int efx_nic_init_interrupt(struct efx_nic *efx) -{ - struct efx_channel *channel; - int rc; - - if (!EFX_INT_MODE_USE_MSI(efx)) { - irq_handler_t handler; - if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) - handler = efx_legacy_interrupt; - else - handler = falcon_legacy_interrupt_a1; - - rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, - efx->name, efx); - if (rc) { - netif_err(efx, drv, efx->net_dev, - "failed to hook legacy IRQ %d\n", - efx->pci_dev->irq); - goto fail1; - } - return 0; - } - - /* Hook MSI or MSI-X interrupt */ - efx_for_each_channel(channel, efx) { - rc = request_irq(channel->irq, efx_msi_interrupt, - IRQF_PROBE_SHARED, /* Not shared */ - efx->channel_name[channel->channel], - &efx->channel[channel->channel]); - if (rc) { - netif_err(efx, drv, efx->net_dev, - "failed to hook IRQ %d\n", channel->irq); - goto fail2; - } - } - - return 0; - - fail2: - efx_for_each_channel(channel, efx) - free_irq(channel->irq, &efx->channel[channel->channel]); - fail1: - return rc; -} - -void efx_nic_fini_interrupt(struct efx_nic *efx) -{ - struct efx_channel *channel; - efx_oword_t reg; - - /* Disable MSI/MSI-X interrupts */ - efx_for_each_channel(channel, efx) { - if (channel->irq) - free_irq(channel->irq, &efx->channel[channel->channel]); - } - - /* ACK legacy interrupt */ - if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) - efx_reado(efx, ®, FR_BZ_INT_ISR0); - else - falcon_irq_ack_a1(efx); - - /* Disable legacy interrupt */ - if (efx->legacy_irq) - free_irq(efx->legacy_irq, efx); -} - -u32 efx_nic_fpga_ver(struct efx_nic *efx) -{ - efx_oword_t altera_build; - efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD); - return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER); -} - -void efx_nic_init_common(struct efx_nic *efx) -{ - efx_oword_t temp; - - /* Set positions of descriptor caches in SRAM. */ - EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, - efx->type->tx_dc_base / 8); - efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG); - EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, - efx->type->rx_dc_base / 8); - efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG); - - /* Set TX descriptor cache size. */ - BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER)); - EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER); - efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG); - - /* Set RX descriptor cache size. Set low watermark to size-8, as - * this allows most efficient prefetching. - */ - BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER)); - EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER); - efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG); - EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8); - efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM); - - /* Program INT_KER address */ - EFX_POPULATE_OWORD_2(temp, - FRF_AZ_NORM_INT_VEC_DIS_KER, - EFX_INT_MODE_USE_MSI(efx), - FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr); - efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER); - - if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx)) - /* Use an interrupt level unused by event queues */ - efx->fatal_irq_level = 0x1f; - else - /* Use a valid MSI-X vector */ - efx->fatal_irq_level = 0; - - /* Enable all the genuinely fatal interrupts. (They are still - * masked by the overall interrupt mask, controlled by - * falcon_interrupts()). - * - * Note: All other fatal interrupts are enabled - */ - EFX_POPULATE_OWORD_3(temp, - FRF_AZ_ILL_ADR_INT_KER_EN, 1, - FRF_AZ_RBUF_OWN_INT_KER_EN, 1, - FRF_AZ_TBUF_OWN_INT_KER_EN, 1); - if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) - EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1); - EFX_INVERT_OWORD(temp); - efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER); - - efx_nic_push_rx_indir_table(efx); - - /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be - * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. - */ - efx_reado(efx, &temp, FR_AZ_TX_RESERVED); - EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe); - EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1); - EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1); - EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1); - EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1); - /* Enable SW_EV to inherit in char driver - assume harmless here */ - EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1); - /* Prefetch threshold 2 => fetch when descriptor cache half empty */ - EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2); - /* Disable hardware watchdog which can misfire */ - EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff); - /* Squash TX of packets of 16 bytes or less */ - if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) - EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); - efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); - - if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) { - EFX_POPULATE_OWORD_4(temp, - /* Default values */ - FRF_BZ_TX_PACE_SB_NOT_AF, 0x15, - FRF_BZ_TX_PACE_SB_AF, 0xb, - FRF_BZ_TX_PACE_FB_BASE, 0, - /* Allow large pace values in the - * fast bin. */ - FRF_BZ_TX_PACE_BIN_TH, - FFE_BZ_TX_PACE_RESERVED); - efx_writeo(efx, &temp, FR_BZ_TX_PACE); - } -} - -/* Register dump */ - -#define REGISTER_REVISION_A 1 -#define REGISTER_REVISION_B 2 -#define REGISTER_REVISION_C 3 -#define REGISTER_REVISION_Z 3 /* latest revision */ - -struct efx_nic_reg { - u32 offset:24; - u32 min_revision:2, max_revision:2; -}; - -#define REGISTER(name, min_rev, max_rev) { \ - FR_ ## min_rev ## max_rev ## _ ## name, \ - REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \ -} -#define REGISTER_AA(name) REGISTER(name, A, A) -#define REGISTER_AB(name) REGISTER(name, A, B) -#define REGISTER_AZ(name) REGISTER(name, A, Z) -#define REGISTER_BB(name) REGISTER(name, B, B) -#define REGISTER_BZ(name) REGISTER(name, B, Z) -#define REGISTER_CZ(name) REGISTER(name, C, Z) - -static const struct efx_nic_reg efx_nic_regs[] = { - REGISTER_AZ(ADR_REGION), - REGISTER_AZ(INT_EN_KER), - REGISTER_BZ(INT_EN_CHAR), - REGISTER_AZ(INT_ADR_KER), - REGISTER_BZ(INT_ADR_CHAR), - /* INT_ACK_KER is WO */ - /* INT_ISR0 is RC */ - REGISTER_AZ(HW_INIT), - REGISTER_CZ(USR_EV_CFG), - REGISTER_AB(EE_SPI_HCMD), - REGISTER_AB(EE_SPI_HADR), - REGISTER_AB(EE_SPI_HDATA), - REGISTER_AB(EE_BASE_PAGE), - REGISTER_AB(EE_VPD_CFG0), - /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */ - /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */ - /* PCIE_CORE_INDIRECT is indirect */ - REGISTER_AB(NIC_STAT), - REGISTER_AB(GPIO_CTL), - REGISTER_AB(GLB_CTL), - /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */ - REGISTER_BZ(DP_CTRL), - REGISTER_AZ(MEM_STAT), - REGISTER_AZ(CS_DEBUG), - REGISTER_AZ(ALTERA_BUILD), - REGISTER_AZ(CSR_SPARE), - REGISTER_AB(PCIE_SD_CTL0123), - REGISTER_AB(PCIE_SD_CTL45), - REGISTER_AB(PCIE_PCS_CTL_STAT), - /* DEBUG_DATA_OUT is not used */ - /* DRV_EV is WO */ - REGISTER_AZ(EVQ_CTL), - REGISTER_AZ(EVQ_CNT1), - REGISTER_AZ(EVQ_CNT2), - REGISTER_AZ(BUF_TBL_CFG), - REGISTER_AZ(SRM_RX_DC_CFG), - REGISTER_AZ(SRM_TX_DC_CFG), - REGISTER_AZ(SRM_CFG), - /* BUF_TBL_UPD is WO */ - REGISTER_AZ(SRM_UPD_EVQ), - REGISTER_AZ(SRAM_PARITY), - REGISTER_AZ(RX_CFG), - REGISTER_BZ(RX_FILTER_CTL), - /* RX_FLUSH_DESCQ is WO */ - REGISTER_AZ(RX_DC_CFG), - REGISTER_AZ(RX_DC_PF_WM), - REGISTER_BZ(RX_RSS_TKEY), - /* RX_NODESC_DROP is RC */ - REGISTER_AA(RX_SELF_RST), - /* RX_DEBUG, RX_PUSH_DROP are not used */ - REGISTER_CZ(RX_RSS_IPV6_REG1), - REGISTER_CZ(RX_RSS_IPV6_REG2), - REGISTER_CZ(RX_RSS_IPV6_REG3), - /* TX_FLUSH_DESCQ is WO */ - REGISTER_AZ(TX_DC_CFG), - REGISTER_AA(TX_CHKSM_CFG), - REGISTER_AZ(TX_CFG), - /* TX_PUSH_DROP is not used */ - REGISTER_AZ(TX_RESERVED), - REGISTER_BZ(TX_PACE), - /* TX_PACE_DROP_QID is RC */ - REGISTER_BB(TX_VLAN), - REGISTER_BZ(TX_IPFIL_PORTEN), - REGISTER_AB(MD_TXD), - REGISTER_AB(MD_RXD), - REGISTER_AB(MD_CS), - REGISTER_AB(MD_PHY_ADR), - REGISTER_AB(MD_ID), - /* MD_STAT is RC */ - REGISTER_AB(MAC_STAT_DMA), - REGISTER_AB(MAC_CTRL), - REGISTER_BB(GEN_MODE), - REGISTER_AB(MAC_MC_HASH_REG0), - REGISTER_AB(MAC_MC_HASH_REG1), - REGISTER_AB(GM_CFG1), - REGISTER_AB(GM_CFG2), - /* GM_IPG and GM_HD are not used */ - REGISTER_AB(GM_MAX_FLEN), - /* GM_TEST is not used */ - REGISTER_AB(GM_ADR1), - REGISTER_AB(GM_ADR2), - REGISTER_AB(GMF_CFG0), - REGISTER_AB(GMF_CFG1), - REGISTER_AB(GMF_CFG2), - REGISTER_AB(GMF_CFG3), - REGISTER_AB(GMF_CFG4), - REGISTER_AB(GMF_CFG5), - REGISTER_BB(TX_SRC_MAC_CTL), - REGISTER_AB(XM_ADR_LO), - REGISTER_AB(XM_ADR_HI), - REGISTER_AB(XM_GLB_CFG), - REGISTER_AB(XM_TX_CFG), - REGISTER_AB(XM_RX_CFG), - REGISTER_AB(XM_MGT_INT_MASK), - REGISTER_AB(XM_FC), - REGISTER_AB(XM_PAUSE_TIME), - REGISTER_AB(XM_TX_PARAM), - REGISTER_AB(XM_RX_PARAM), - /* XM_MGT_INT_MSK (note no 'A') is RC */ - REGISTER_AB(XX_PWR_RST), - REGISTER_AB(XX_SD_CTL), - REGISTER_AB(XX_TXDRV_CTL), - /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */ - /* XX_CORE_STAT is partly RC */ -}; - -struct efx_nic_reg_table { - u32 offset:24; - u32 min_revision:2, max_revision:2; - u32 step:6, rows:21; -}; - -#define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \ - offset, \ - REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \ - step, rows \ -} -#define REGISTER_TABLE(name, min_rev, max_rev) \ - REGISTER_TABLE_DIMENSIONS( \ - name, FR_ ## min_rev ## max_rev ## _ ## name, \ - min_rev, max_rev, \ - FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \ - FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS) -#define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A) -#define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z) -#define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B) -#define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z) -#define REGISTER_TABLE_BB_CZ(name) \ - REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \ - FR_BZ_ ## name ## _STEP, \ - FR_BB_ ## name ## _ROWS), \ - REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \ - FR_BZ_ ## name ## _STEP, \ - FR_CZ_ ## name ## _ROWS) -#define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z) - -static const struct efx_nic_reg_table efx_nic_reg_tables[] = { - /* DRIVER is not used */ - /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */ - REGISTER_TABLE_BB(TX_IPFIL_TBL), - REGISTER_TABLE_BB(TX_SRC_MAC_TBL), - REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER), - REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL), - REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER), - REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL), - REGISTER_TABLE_AA(EVQ_PTR_TBL_KER), - REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL), - /* We can't reasonably read all of the buffer table (up to 8MB!). - * However this driver will only use a few entries. Reading - * 1K entries allows for some expansion of queue count and - * size before we need to change the version. */ - REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER, - A, A, 8, 1024), - REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL, - B, Z, 8, 1024), - REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0), - REGISTER_TABLE_BB_CZ(TIMER_TBL), - REGISTER_TABLE_BB_CZ(TX_PACE_TBL), - REGISTER_TABLE_BZ(RX_INDIRECTION_TBL), - /* TX_FILTER_TBL0 is huge and not used by this driver */ - REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0), - REGISTER_TABLE_CZ(MC_TREG_SMEM), - /* MSIX_PBA_TABLE is not mapped */ - /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */ - REGISTER_TABLE_BZ(RX_FILTER_TBL0), -}; - -size_t efx_nic_get_regs_len(struct efx_nic *efx) -{ - const struct efx_nic_reg *reg; - const struct efx_nic_reg_table *table; - size_t len = 0; - - for (reg = efx_nic_regs; - reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); - reg++) - if (efx->type->revision >= reg->min_revision && - efx->type->revision <= reg->max_revision) - len += sizeof(efx_oword_t); - - for (table = efx_nic_reg_tables; - table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); - table++) - if (efx->type->revision >= table->min_revision && - efx->type->revision <= table->max_revision) - len += table->rows * min_t(size_t, table->step, 16); - - return len; -} - -void efx_nic_get_regs(struct efx_nic *efx, void *buf) -{ - const struct efx_nic_reg *reg; - const struct efx_nic_reg_table *table; - - for (reg = efx_nic_regs; - reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs); - reg++) { - if (efx->type->revision >= reg->min_revision && - efx->type->revision <= reg->max_revision) { - efx_reado(efx, (efx_oword_t *)buf, reg->offset); - buf += sizeof(efx_oword_t); - } - } - - for (table = efx_nic_reg_tables; - table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables); - table++) { - size_t size, i; - - if (!(efx->type->revision >= table->min_revision && - efx->type->revision <= table->max_revision)) - continue; - - size = min_t(size_t, table->step, 16); - - if (table->offset >= efx->type->mem_map_size) { - /* No longer mapped; return dummy data */ - memcpy(buf, "\xde\xc0\xad\xde", 4); - buf += table->rows * size; - continue; - } - - for (i = 0; i < table->rows; i++) { - switch (table->step) { - case 4: /* 32-bit register or SRAM */ - efx_readd_table(efx, buf, table->offset, i); - break; - case 8: /* 64-bit SRAM */ - efx_sram_readq(efx, - efx->membase + table->offset, - buf, i); - break; - case 16: /* 128-bit register */ - efx_reado_table(efx, buf, table->offset, i); - break; - case 32: /* 128-bit register, interleaved */ - efx_reado_table(efx, buf, table->offset, 2 * i); - break; - default: - WARN_ON(1); - return; - } - buf += size; - } - } -} diff --git a/drivers/net/sfc/nic.h b/drivers/net/sfc/nic.h deleted file mode 100644 index 4bd1f28..0000000 --- a/drivers/net/sfc/nic.h +++ /dev/null @@ -1,273 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2011 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_NIC_H -#define EFX_NIC_H - -#include <linux/i2c-algo-bit.h> -#include "net_driver.h" -#include "efx.h" -#include "mcdi.h" -#include "spi.h" - -/* - * Falcon hardware control - */ - -enum { - EFX_REV_FALCON_A0 = 0, - EFX_REV_FALCON_A1 = 1, - EFX_REV_FALCON_B0 = 2, - EFX_REV_SIENA_A0 = 3, -}; - -static inline int efx_nic_rev(struct efx_nic *efx) -{ - return efx->type->revision; -} - -extern u32 efx_nic_fpga_ver(struct efx_nic *efx); - -static inline bool efx_nic_has_mc(struct efx_nic *efx) -{ - return efx_nic_rev(efx) >= EFX_REV_SIENA_A0; -} -/* NIC has two interlinked PCI functions for the same port. */ -static inline bool efx_nic_is_dual_func(struct efx_nic *efx) -{ - return efx_nic_rev(efx) < EFX_REV_FALCON_B0; -} - -enum { - PHY_TYPE_NONE = 0, - PHY_TYPE_TXC43128 = 1, - PHY_TYPE_88E1111 = 2, - PHY_TYPE_SFX7101 = 3, - PHY_TYPE_QT2022C2 = 4, - PHY_TYPE_PM8358 = 6, - PHY_TYPE_SFT9001A = 8, - PHY_TYPE_QT2025C = 9, - PHY_TYPE_SFT9001B = 10, -}; - -#define FALCON_XMAC_LOOPBACKS \ - ((1 << LOOPBACK_XGMII) | \ - (1 << LOOPBACK_XGXS) | \ - (1 << LOOPBACK_XAUI)) - -#define FALCON_GMAC_LOOPBACKS \ - (1 << LOOPBACK_GMAC) - -/** - * struct falcon_board_type - board operations and type information - * @id: Board type id, as found in NVRAM - * @ref_model: Model number of Solarflare reference design - * @gen_type: Generic board type description - * @init: Allocate resources and initialise peripheral hardware - * @init_phy: Do board-specific PHY initialisation - * @fini: Shut down hardware and free resources - * @set_id_led: Set state of identifying LED or revert to automatic function - * @monitor: Board-specific health check function - */ -struct falcon_board_type { - u8 id; - const char *ref_model; - const char *gen_type; - int (*init) (struct efx_nic *nic); - void (*init_phy) (struct efx_nic *efx); - void (*fini) (struct efx_nic *nic); - void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode); - int (*monitor) (struct efx_nic *nic); -}; - -/** - * struct falcon_board - board information - * @type: Type of board - * @major: Major rev. ('A', 'B' ...) - * @minor: Minor rev. (0, 1, ...) - * @i2c_adap: I2C adapter for on-board peripherals - * @i2c_data: Data for bit-banging algorithm - * @hwmon_client: I2C client for hardware monitor - * @ioexp_client: I2C client for power/port control - */ -struct falcon_board { - const struct falcon_board_type *type; - int major; - int minor; - struct i2c_adapter i2c_adap; - struct i2c_algo_bit_data i2c_data; - struct i2c_client *hwmon_client, *ioexp_client; -}; - -/** - * struct falcon_nic_data - Falcon NIC state - * @pci_dev2: Secondary function of Falcon A - * @board: Board state and functions - * @stats_disable_count: Nest count for disabling statistics fetches - * @stats_pending: Is there a pending DMA of MAC statistics. - * @stats_timer: A timer for regularly fetching MAC statistics. - * @stats_dma_done: Pointer to the flag which indicates DMA completion. - * @spi_flash: SPI flash device - * @spi_eeprom: SPI EEPROM device - * @spi_lock: SPI bus lock - * @mdio_lock: MDIO bus lock - * @xmac_poll_required: XMAC link state needs polling - */ -struct falcon_nic_data { - struct pci_dev *pci_dev2; - struct falcon_board board; - unsigned int stats_disable_count; - bool stats_pending; - struct timer_list stats_timer; - u32 *stats_dma_done; - struct efx_spi_device spi_flash; - struct efx_spi_device spi_eeprom; - struct mutex spi_lock; - struct mutex mdio_lock; - bool xmac_poll_required; -}; - -static inline struct falcon_board *falcon_board(struct efx_nic *efx) -{ - struct falcon_nic_data *data = efx->nic_data; - return &data->board; -} - -/** - * struct siena_nic_data - Siena NIC state - * @mcdi: Management-Controller-to-Driver Interface - * @mcdi_smem: MCDI shared memory mapping. The mapping is always uncacheable. - * @wol_filter_id: Wake-on-LAN packet filter id - */ -struct siena_nic_data { - struct efx_mcdi_iface mcdi; - void __iomem *mcdi_smem; - int wol_filter_id; -}; - -extern const struct efx_nic_type falcon_a1_nic_type; -extern const struct efx_nic_type falcon_b0_nic_type; -extern const struct efx_nic_type siena_a0_nic_type; - -/************************************************************************** - * - * Externs - * - ************************************************************************** - */ - -extern int falcon_probe_board(struct efx_nic *efx, u16 revision_info); - -/* TX data path */ -extern int efx_nic_probe_tx(struct efx_tx_queue *tx_queue); -extern void efx_nic_init_tx(struct efx_tx_queue *tx_queue); -extern void efx_nic_fini_tx(struct efx_tx_queue *tx_queue); -extern void efx_nic_remove_tx(struct efx_tx_queue *tx_queue); -extern void efx_nic_push_buffers(struct efx_tx_queue *tx_queue); - -/* RX data path */ -extern int efx_nic_probe_rx(struct efx_rx_queue *rx_queue); -extern void efx_nic_init_rx(struct efx_rx_queue *rx_queue); -extern void efx_nic_fini_rx(struct efx_rx_queue *rx_queue); -extern void efx_nic_remove_rx(struct efx_rx_queue *rx_queue); -extern void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue); - -/* Event data path */ -extern int efx_nic_probe_eventq(struct efx_channel *channel); -extern void efx_nic_init_eventq(struct efx_channel *channel); -extern void efx_nic_fini_eventq(struct efx_channel *channel); -extern void efx_nic_remove_eventq(struct efx_channel *channel); -extern int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota); -extern void efx_nic_eventq_read_ack(struct efx_channel *channel); -extern bool efx_nic_event_present(struct efx_channel *channel); - -/* MAC/PHY */ -extern void falcon_drain_tx_fifo(struct efx_nic *efx); -extern void falcon_reconfigure_mac_wrapper(struct efx_nic *efx); - -/* Interrupts and test events */ -extern int efx_nic_init_interrupt(struct efx_nic *efx); -extern void efx_nic_enable_interrupts(struct efx_nic *efx); -extern void efx_nic_generate_test_event(struct efx_channel *channel); -extern void efx_nic_generate_fill_event(struct efx_channel *channel); -extern void efx_nic_generate_interrupt(struct efx_nic *efx); -extern void efx_nic_disable_interrupts(struct efx_nic *efx); -extern void efx_nic_fini_interrupt(struct efx_nic *efx); -extern irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx); -extern irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id); -extern void falcon_irq_ack_a1(struct efx_nic *efx); - -#define EFX_IRQ_MOD_RESOLUTION 5 - -/* Global Resources */ -extern int efx_nic_flush_queues(struct efx_nic *efx); -extern void falcon_start_nic_stats(struct efx_nic *efx); -extern void falcon_stop_nic_stats(struct efx_nic *efx); -extern void falcon_setup_xaui(struct efx_nic *efx); -extern int falcon_reset_xaui(struct efx_nic *efx); -extern void efx_nic_init_common(struct efx_nic *efx); -extern void efx_nic_push_rx_indir_table(struct efx_nic *efx); - -int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer, - unsigned int len); -void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer); - -/* Tests */ -struct efx_nic_register_test { - unsigned address; - efx_oword_t mask; -}; -extern int efx_nic_test_registers(struct efx_nic *efx, - const struct efx_nic_register_test *regs, - size_t n_regs); - -extern size_t efx_nic_get_regs_len(struct efx_nic *efx); -extern void efx_nic_get_regs(struct efx_nic *efx, void *buf); - -/************************************************************************** - * - * Falcon MAC stats - * - ************************************************************************** - */ - -#define FALCON_STAT_OFFSET(falcon_stat) EFX_VAL(falcon_stat, offset) -#define FALCON_STAT_WIDTH(falcon_stat) EFX_VAL(falcon_stat, WIDTH) - -/* Retrieve statistic from statistics block */ -#define FALCON_STAT(efx, falcon_stat, efx_stat) do { \ - if (FALCON_STAT_WIDTH(falcon_stat) == 16) \ - (efx)->mac_stats.efx_stat += le16_to_cpu( \ - *((__force __le16 *) \ - (efx->stats_buffer.addr + \ - FALCON_STAT_OFFSET(falcon_stat)))); \ - else if (FALCON_STAT_WIDTH(falcon_stat) == 32) \ - (efx)->mac_stats.efx_stat += le32_to_cpu( \ - *((__force __le32 *) \ - (efx->stats_buffer.addr + \ - FALCON_STAT_OFFSET(falcon_stat)))); \ - else \ - (efx)->mac_stats.efx_stat += le64_to_cpu( \ - *((__force __le64 *) \ - (efx->stats_buffer.addr + \ - FALCON_STAT_OFFSET(falcon_stat)))); \ - } while (0) - -#define FALCON_MAC_STATS_SIZE 0x100 - -#define MAC_DATA_LBN 0 -#define MAC_DATA_WIDTH 32 - -extern void efx_nic_generate_event(struct efx_channel *channel, - efx_qword_t *event); - -extern void falcon_poll_xmac(struct efx_nic *efx); - -#endif /* EFX_NIC_H */ diff --git a/drivers/net/sfc/phy.h b/drivers/net/sfc/phy.h deleted file mode 100644 index 11d148c..0000000 --- a/drivers/net/sfc/phy.h +++ /dev/null @@ -1,67 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2007-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_PHY_H -#define EFX_PHY_H - -/**************************************************************************** - * 10Xpress (SFX7101) PHY - */ -extern const struct efx_phy_operations falcon_sfx7101_phy_ops; - -extern void tenxpress_set_id_led(struct efx_nic *efx, enum efx_led_mode mode); - -/**************************************************************************** - * AMCC/Quake QT202x PHYs - */ -extern const struct efx_phy_operations falcon_qt202x_phy_ops; - -/* These PHYs provide various H/W control states for LEDs */ -#define QUAKE_LED_LINK_INVAL (0) -#define QUAKE_LED_LINK_STAT (1) -#define QUAKE_LED_LINK_ACT (2) -#define QUAKE_LED_LINK_ACTSTAT (3) -#define QUAKE_LED_OFF (4) -#define QUAKE_LED_ON (5) -#define QUAKE_LED_LINK_INPUT (6) /* Pin is an input. */ -/* What link the LED tracks */ -#define QUAKE_LED_TXLINK (0) -#define QUAKE_LED_RXLINK (8) - -extern void falcon_qt202x_set_led(struct efx_nic *p, int led, int state); - -/**************************************************************************** -* Transwitch CX4 retimer -*/ -extern const struct efx_phy_operations falcon_txc_phy_ops; - -#define TXC_GPIO_DIR_INPUT 0 -#define TXC_GPIO_DIR_OUTPUT 1 - -extern void falcon_txc_set_gpio_dir(struct efx_nic *efx, int pin, int dir); -extern void falcon_txc_set_gpio_val(struct efx_nic *efx, int pin, int val); - -/**************************************************************************** - * Siena managed PHYs - */ -extern const struct efx_phy_operations efx_mcdi_phy_ops; - -extern int efx_mcdi_mdio_read(struct efx_nic *efx, unsigned int bus, - unsigned int prtad, unsigned int devad, - u16 addr, u16 *value_out, u32 *status_out); -extern int efx_mcdi_mdio_write(struct efx_nic *efx, unsigned int bus, - unsigned int prtad, unsigned int devad, - u16 addr, u16 value, u32 *status_out); -extern void efx_mcdi_phy_decode_link(struct efx_nic *efx, - struct efx_link_state *link_state, - u32 speed, u32 flags, u32 fcntl); -extern int efx_mcdi_phy_reconfigure(struct efx_nic *efx); -extern void efx_mcdi_phy_check_fcntl(struct efx_nic *efx, u32 lpa); - -#endif diff --git a/drivers/net/sfc/qt202x_phy.c b/drivers/net/sfc/qt202x_phy.c deleted file mode 100644 index 7ad97e3..0000000 --- a/drivers/net/sfc/qt202x_phy.c +++ /dev/null @@ -1,462 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ -/* - * Driver for AMCC QT202x SFP+ and XFP adapters; see www.amcc.com for details - */ - -#include <linux/slab.h> -#include <linux/timer.h> -#include <linux/delay.h> -#include "efx.h" -#include "mdio_10g.h" -#include "phy.h" -#include "nic.h" - -#define QT202X_REQUIRED_DEVS (MDIO_DEVS_PCS | \ - MDIO_DEVS_PMAPMD | \ - MDIO_DEVS_PHYXS) - -#define QT202X_LOOPBACKS ((1 << LOOPBACK_PCS) | \ - (1 << LOOPBACK_PMAPMD) | \ - (1 << LOOPBACK_PHYXS_WS)) - -/****************************************************************************/ -/* Quake-specific MDIO registers */ -#define MDIO_QUAKE_LED0_REG (0xD006) - -/* QT2025C only */ -#define PCS_FW_HEARTBEAT_REG 0xd7ee -#define PCS_FW_HEARTB_LBN 0 -#define PCS_FW_HEARTB_WIDTH 8 -#define PCS_FW_PRODUCT_CODE_1 0xd7f0 -#define PCS_FW_VERSION_1 0xd7f3 -#define PCS_FW_BUILD_1 0xd7f6 -#define PCS_UC8051_STATUS_REG 0xd7fd -#define PCS_UC_STATUS_LBN 0 -#define PCS_UC_STATUS_WIDTH 8 -#define PCS_UC_STATUS_FW_SAVE 0x20 -#define PMA_PMD_MODE_REG 0xc301 -#define PMA_PMD_RXIN_SEL_LBN 6 -#define PMA_PMD_FTX_CTRL2_REG 0xc309 -#define PMA_PMD_FTX_STATIC_LBN 13 -#define PMA_PMD_VEND1_REG 0xc001 -#define PMA_PMD_VEND1_LBTXD_LBN 15 -#define PCS_VEND1_REG 0xc000 -#define PCS_VEND1_LBTXD_LBN 5 - -void falcon_qt202x_set_led(struct efx_nic *p, int led, int mode) -{ - int addr = MDIO_QUAKE_LED0_REG + led; - efx_mdio_write(p, MDIO_MMD_PMAPMD, addr, mode); -} - -struct qt202x_phy_data { - enum efx_phy_mode phy_mode; - bool bug17190_in_bad_state; - unsigned long bug17190_timer; - u32 firmware_ver; -}; - -#define QT2022C2_MAX_RESET_TIME 500 -#define QT2022C2_RESET_WAIT 10 - -#define QT2025C_MAX_HEARTB_TIME (5 * HZ) -#define QT2025C_HEARTB_WAIT 100 -#define QT2025C_MAX_FWSTART_TIME (25 * HZ / 10) -#define QT2025C_FWSTART_WAIT 100 - -#define BUG17190_INTERVAL (2 * HZ) - -static int qt2025c_wait_heartbeat(struct efx_nic *efx) -{ - unsigned long timeout = jiffies + QT2025C_MAX_HEARTB_TIME; - int reg, old_counter = 0; - - /* Wait for firmware heartbeat to start */ - for (;;) { - int counter; - reg = efx_mdio_read(efx, MDIO_MMD_PCS, PCS_FW_HEARTBEAT_REG); - if (reg < 0) - return reg; - counter = ((reg >> PCS_FW_HEARTB_LBN) & - ((1 << PCS_FW_HEARTB_WIDTH) - 1)); - if (old_counter == 0) - old_counter = counter; - else if (counter != old_counter) - break; - if (time_after(jiffies, timeout)) { - /* Some cables have EEPROMs that conflict with the - * PHY's on-board EEPROM so it cannot load firmware */ - netif_err(efx, hw, efx->net_dev, - "If an SFP+ direct attach cable is" - " connected, please check that it complies" - " with the SFP+ specification\n"); - return -ETIMEDOUT; - } - msleep(QT2025C_HEARTB_WAIT); - } - - return 0; -} - -static int qt2025c_wait_fw_status_good(struct efx_nic *efx) -{ - unsigned long timeout = jiffies + QT2025C_MAX_FWSTART_TIME; - int reg; - - /* Wait for firmware status to look good */ - for (;;) { - reg = efx_mdio_read(efx, MDIO_MMD_PCS, PCS_UC8051_STATUS_REG); - if (reg < 0) - return reg; - if ((reg & - ((1 << PCS_UC_STATUS_WIDTH) - 1) << PCS_UC_STATUS_LBN) >= - PCS_UC_STATUS_FW_SAVE) - break; - if (time_after(jiffies, timeout)) - return -ETIMEDOUT; - msleep(QT2025C_FWSTART_WAIT); - } - - return 0; -} - -static void qt2025c_restart_firmware(struct efx_nic *efx) -{ - /* Restart microcontroller execution of firmware from RAM */ - efx_mdio_write(efx, 3, 0xe854, 0x00c0); - efx_mdio_write(efx, 3, 0xe854, 0x0040); - msleep(50); -} - -static int qt2025c_wait_reset(struct efx_nic *efx) -{ - int rc; - - rc = qt2025c_wait_heartbeat(efx); - if (rc != 0) - return rc; - - rc = qt2025c_wait_fw_status_good(efx); - if (rc == -ETIMEDOUT) { - /* Bug 17689: occasionally heartbeat starts but firmware status - * code never progresses beyond 0x00. Try again, once, after - * restarting execution of the firmware image. */ - netif_dbg(efx, hw, efx->net_dev, - "bashing QT2025C microcontroller\n"); - qt2025c_restart_firmware(efx); - rc = qt2025c_wait_heartbeat(efx); - if (rc != 0) - return rc; - rc = qt2025c_wait_fw_status_good(efx); - } - - return rc; -} - -static void qt2025c_firmware_id(struct efx_nic *efx) -{ - struct qt202x_phy_data *phy_data = efx->phy_data; - u8 firmware_id[9]; - size_t i; - - for (i = 0; i < sizeof(firmware_id); i++) - firmware_id[i] = efx_mdio_read(efx, MDIO_MMD_PCS, - PCS_FW_PRODUCT_CODE_1 + i); - netif_info(efx, probe, efx->net_dev, - "QT2025C firmware %xr%d v%d.%d.%d.%d [20%02d-%02d-%02d]\n", - (firmware_id[0] << 8) | firmware_id[1], firmware_id[2], - firmware_id[3] >> 4, firmware_id[3] & 0xf, - firmware_id[4], firmware_id[5], - firmware_id[6], firmware_id[7], firmware_id[8]); - phy_data->firmware_ver = ((firmware_id[3] & 0xf0) << 20) | - ((firmware_id[3] & 0x0f) << 16) | - (firmware_id[4] << 8) | firmware_id[5]; -} - -static void qt2025c_bug17190_workaround(struct efx_nic *efx) -{ - struct qt202x_phy_data *phy_data = efx->phy_data; - - /* The PHY can get stuck in a state where it reports PHY_XS and PMA/PMD - * layers up, but PCS down (no block_lock). If we notice this state - * persisting for a couple of seconds, we switch PMA/PMD loopback - * briefly on and then off again, which is normally sufficient to - * recover it. - */ - if (efx->link_state.up || - !efx_mdio_links_ok(efx, MDIO_DEVS_PMAPMD | MDIO_DEVS_PHYXS)) { - phy_data->bug17190_in_bad_state = false; - return; - } - - if (!phy_data->bug17190_in_bad_state) { - phy_data->bug17190_in_bad_state = true; - phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL; - return; - } - - if (time_after_eq(jiffies, phy_data->bug17190_timer)) { - netif_dbg(efx, hw, efx->net_dev, "bashing QT2025C PMA/PMD\n"); - efx_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1, - MDIO_PMA_CTRL1_LOOPBACK, true); - msleep(100); - efx_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1, - MDIO_PMA_CTRL1_LOOPBACK, false); - phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL; - } -} - -static int qt2025c_select_phy_mode(struct efx_nic *efx) -{ - struct qt202x_phy_data *phy_data = efx->phy_data; - struct falcon_board *board = falcon_board(efx); - int reg, rc, i; - uint16_t phy_op_mode; - - /* Only 2.0.1.0+ PHY firmware supports the more optimal SFP+ - * Self-Configure mode. Don't attempt any switching if we encounter - * older firmware. */ - if (phy_data->firmware_ver < 0x02000100) - return 0; - - /* In general we will get optimal behaviour in "SFP+ Self-Configure" - * mode; however, that powers down most of the PHY when no module is - * present, so we must use a different mode (any fixed mode will do) - * to be sure that loopbacks will work. */ - phy_op_mode = (efx->loopback_mode == LOOPBACK_NONE) ? 0x0038 : 0x0020; - - /* Only change mode if really necessary */ - reg = efx_mdio_read(efx, 1, 0xc319); - if ((reg & 0x0038) == phy_op_mode) - return 0; - netif_dbg(efx, hw, efx->net_dev, "Switching PHY to mode 0x%04x\n", - phy_op_mode); - - /* This sequence replicates the register writes configured in the boot - * EEPROM (including the differences between board revisions), except - * that the operating mode is changed, and the PHY is prevented from - * unnecessarily reloading the main firmware image again. */ - efx_mdio_write(efx, 1, 0xc300, 0x0000); - /* (Note: this portion of the boot EEPROM sequence, which bit-bashes 9 - * STOPs onto the firmware/module I2C bus to reset it, varies across - * board revisions, as the bus is connected to different GPIO/LED - * outputs on the PHY.) */ - if (board->major == 0 && board->minor < 2) { - efx_mdio_write(efx, 1, 0xc303, 0x4498); - for (i = 0; i < 9; i++) { - efx_mdio_write(efx, 1, 0xc303, 0x4488); - efx_mdio_write(efx, 1, 0xc303, 0x4480); - efx_mdio_write(efx, 1, 0xc303, 0x4490); - efx_mdio_write(efx, 1, 0xc303, 0x4498); - } - } else { - efx_mdio_write(efx, 1, 0xc303, 0x0920); - efx_mdio_write(efx, 1, 0xd008, 0x0004); - for (i = 0; i < 9; i++) { - efx_mdio_write(efx, 1, 0xc303, 0x0900); - efx_mdio_write(efx, 1, 0xd008, 0x0005); - efx_mdio_write(efx, 1, 0xc303, 0x0920); - efx_mdio_write(efx, 1, 0xd008, 0x0004); - } - efx_mdio_write(efx, 1, 0xc303, 0x4900); - } - efx_mdio_write(efx, 1, 0xc303, 0x4900); - efx_mdio_write(efx, 1, 0xc302, 0x0004); - efx_mdio_write(efx, 1, 0xc316, 0x0013); - efx_mdio_write(efx, 1, 0xc318, 0x0054); - efx_mdio_write(efx, 1, 0xc319, phy_op_mode); - efx_mdio_write(efx, 1, 0xc31a, 0x0098); - efx_mdio_write(efx, 3, 0x0026, 0x0e00); - efx_mdio_write(efx, 3, 0x0027, 0x0013); - efx_mdio_write(efx, 3, 0x0028, 0xa528); - efx_mdio_write(efx, 1, 0xd006, 0x000a); - efx_mdio_write(efx, 1, 0xd007, 0x0009); - efx_mdio_write(efx, 1, 0xd008, 0x0004); - /* This additional write is not present in the boot EEPROM. It - * prevents the PHY's internal boot ROM doing another pointless (and - * slow) reload of the firmware image (the microcontroller's code - * memory is not affected by the microcontroller reset). */ - efx_mdio_write(efx, 1, 0xc317, 0x00ff); - /* PMA/PMD loopback sets RXIN to inverse polarity and the firmware - * restart doesn't reset it. We need to do that ourselves. */ - efx_mdio_set_flag(efx, 1, PMA_PMD_MODE_REG, - 1 << PMA_PMD_RXIN_SEL_LBN, false); - efx_mdio_write(efx, 1, 0xc300, 0x0002); - msleep(20); - - /* Restart microcontroller execution of firmware from RAM */ - qt2025c_restart_firmware(efx); - - /* Wait for the microcontroller to be ready again */ - rc = qt2025c_wait_reset(efx); - if (rc < 0) { - netif_err(efx, hw, efx->net_dev, - "PHY microcontroller reset during mode switch " - "timed out\n"); - return rc; - } - - return 0; -} - -static int qt202x_reset_phy(struct efx_nic *efx) -{ - int rc; - - if (efx->phy_type == PHY_TYPE_QT2025C) { - /* Wait for the reset triggered by falcon_reset_hw() - * to complete */ - rc = qt2025c_wait_reset(efx); - if (rc < 0) - goto fail; - } else { - /* Reset the PHYXS MMD. This is documented as doing - * a complete soft reset. */ - rc = efx_mdio_reset_mmd(efx, MDIO_MMD_PHYXS, - QT2022C2_MAX_RESET_TIME / - QT2022C2_RESET_WAIT, - QT2022C2_RESET_WAIT); - if (rc < 0) - goto fail; - } - - /* Wait 250ms for the PHY to complete bootup */ - msleep(250); - - falcon_board(efx)->type->init_phy(efx); - - return 0; - - fail: - netif_err(efx, hw, efx->net_dev, "PHY reset timed out\n"); - return rc; -} - -static int qt202x_phy_probe(struct efx_nic *efx) -{ - struct qt202x_phy_data *phy_data; - - phy_data = kzalloc(sizeof(struct qt202x_phy_data), GFP_KERNEL); - if (!phy_data) - return -ENOMEM; - efx->phy_data = phy_data; - phy_data->phy_mode = efx->phy_mode; - phy_data->bug17190_in_bad_state = false; - phy_data->bug17190_timer = 0; - - efx->mdio.mmds = QT202X_REQUIRED_DEVS; - efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; - efx->loopback_modes = QT202X_LOOPBACKS | FALCON_XMAC_LOOPBACKS; - return 0; -} - -static int qt202x_phy_init(struct efx_nic *efx) -{ - u32 devid; - int rc; - - rc = qt202x_reset_phy(efx); - if (rc) { - netif_err(efx, probe, efx->net_dev, "PHY init failed\n"); - return rc; - } - - devid = efx_mdio_read_id(efx, MDIO_MMD_PHYXS); - netif_info(efx, probe, efx->net_dev, - "PHY ID reg %x (OUI %06x model %02x revision %x)\n", - devid, efx_mdio_id_oui(devid), efx_mdio_id_model(devid), - efx_mdio_id_rev(devid)); - - if (efx->phy_type == PHY_TYPE_QT2025C) - qt2025c_firmware_id(efx); - - return 0; -} - -static int qt202x_link_ok(struct efx_nic *efx) -{ - return efx_mdio_links_ok(efx, QT202X_REQUIRED_DEVS); -} - -static bool qt202x_phy_poll(struct efx_nic *efx) -{ - bool was_up = efx->link_state.up; - - efx->link_state.up = qt202x_link_ok(efx); - efx->link_state.speed = 10000; - efx->link_state.fd = true; - efx->link_state.fc = efx->wanted_fc; - - if (efx->phy_type == PHY_TYPE_QT2025C) - qt2025c_bug17190_workaround(efx); - - return efx->link_state.up != was_up; -} - -static int qt202x_phy_reconfigure(struct efx_nic *efx) -{ - struct qt202x_phy_data *phy_data = efx->phy_data; - - if (efx->phy_type == PHY_TYPE_QT2025C) { - int rc = qt2025c_select_phy_mode(efx); - if (rc) - return rc; - - /* There are several different register bits which can - * disable TX (and save power) on direct-attach cables - * or optical transceivers, varying somewhat between - * firmware versions. Only 'static mode' appears to - * cover everything. */ - mdio_set_flag( - &efx->mdio, efx->mdio.prtad, MDIO_MMD_PMAPMD, - PMA_PMD_FTX_CTRL2_REG, 1 << PMA_PMD_FTX_STATIC_LBN, - efx->phy_mode & PHY_MODE_TX_DISABLED || - efx->phy_mode & PHY_MODE_LOW_POWER || - efx->loopback_mode == LOOPBACK_PCS || - efx->loopback_mode == LOOPBACK_PMAPMD); - } else { - /* Reset the PHY when moving from tx off to tx on */ - if (!(efx->phy_mode & PHY_MODE_TX_DISABLED) && - (phy_data->phy_mode & PHY_MODE_TX_DISABLED)) - qt202x_reset_phy(efx); - - efx_mdio_transmit_disable(efx); - } - - efx_mdio_phy_reconfigure(efx); - - phy_data->phy_mode = efx->phy_mode; - - return 0; -} - -static void qt202x_phy_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd) -{ - mdio45_ethtool_gset(&efx->mdio, ecmd); -} - -static void qt202x_phy_remove(struct efx_nic *efx) -{ - /* Free the context block */ - kfree(efx->phy_data); - efx->phy_data = NULL; -} - -const struct efx_phy_operations falcon_qt202x_phy_ops = { - .probe = qt202x_phy_probe, - .init = qt202x_phy_init, - .reconfigure = qt202x_phy_reconfigure, - .poll = qt202x_phy_poll, - .fini = efx_port_dummy_op_void, - .remove = qt202x_phy_remove, - .get_settings = qt202x_phy_get_settings, - .set_settings = efx_mdio_set_settings, - .test_alive = efx_mdio_test_alive, -}; diff --git a/drivers/net/sfc/regs.h b/drivers/net/sfc/regs.h deleted file mode 100644 index cc2c86b..0000000 --- a/drivers/net/sfc/regs.h +++ /dev/null @@ -1,3188 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_REGS_H -#define EFX_REGS_H - -/* - * Falcon hardware architecture definitions have a name prefix following - * the format: - * - * F<type>_<min-rev><max-rev>_ - * - * The following <type> strings are used: - * - * MMIO register MC register Host memory structure - * ------------------------------------------------------------- - * Address R MCR - * Bitfield RF MCRF SF - * Enumerator FE MCFE SE - * - * <min-rev> is the first revision to which the definition applies: - * - * A: Falcon A1 (SFC4000AB) - * B: Falcon B0 (SFC4000BA) - * C: Siena A0 (SFL9021AA) - * - * If the definition has been changed or removed in later revisions - * then <max-rev> is the last revision to which the definition applies; - * otherwise it is "Z". - */ - -/************************************************************************** - * - * Falcon/Siena registers and descriptors - * - ************************************************************************** - */ - -/* ADR_REGION_REG: Address region register */ -#define FR_AZ_ADR_REGION 0x00000000 -#define FRF_AZ_ADR_REGION3_LBN 96 -#define FRF_AZ_ADR_REGION3_WIDTH 18 -#define FRF_AZ_ADR_REGION2_LBN 64 -#define FRF_AZ_ADR_REGION2_WIDTH 18 -#define FRF_AZ_ADR_REGION1_LBN 32 -#define FRF_AZ_ADR_REGION1_WIDTH 18 -#define FRF_AZ_ADR_REGION0_LBN 0 -#define FRF_AZ_ADR_REGION0_WIDTH 18 - -/* INT_EN_REG_KER: Kernel driver Interrupt enable register */ -#define FR_AZ_INT_EN_KER 0x00000010 -#define FRF_AZ_KER_INT_LEVE_SEL_LBN 8 -#define FRF_AZ_KER_INT_LEVE_SEL_WIDTH 6 -#define FRF_AZ_KER_INT_CHAR_LBN 4 -#define FRF_AZ_KER_INT_CHAR_WIDTH 1 -#define FRF_AZ_KER_INT_KER_LBN 3 -#define FRF_AZ_KER_INT_KER_WIDTH 1 -#define FRF_AZ_DRV_INT_EN_KER_LBN 0 -#define FRF_AZ_DRV_INT_EN_KER_WIDTH 1 - -/* INT_EN_REG_CHAR: Char Driver interrupt enable register */ -#define FR_BZ_INT_EN_CHAR 0x00000020 -#define FRF_BZ_CHAR_INT_LEVE_SEL_LBN 8 -#define FRF_BZ_CHAR_INT_LEVE_SEL_WIDTH 6 -#define FRF_BZ_CHAR_INT_CHAR_LBN 4 -#define FRF_BZ_CHAR_INT_CHAR_WIDTH 1 -#define FRF_BZ_CHAR_INT_KER_LBN 3 -#define FRF_BZ_CHAR_INT_KER_WIDTH 1 -#define FRF_BZ_DRV_INT_EN_CHAR_LBN 0 -#define FRF_BZ_DRV_INT_EN_CHAR_WIDTH 1 - -/* INT_ADR_REG_KER: Interrupt host address for Kernel driver */ -#define FR_AZ_INT_ADR_KER 0x00000030 -#define FRF_AZ_NORM_INT_VEC_DIS_KER_LBN 64 -#define FRF_AZ_NORM_INT_VEC_DIS_KER_WIDTH 1 -#define FRF_AZ_INT_ADR_KER_LBN 0 -#define FRF_AZ_INT_ADR_KER_WIDTH 64 - -/* INT_ADR_REG_CHAR: Interrupt host address for Char driver */ -#define FR_BZ_INT_ADR_CHAR 0x00000040 -#define FRF_BZ_NORM_INT_VEC_DIS_CHAR_LBN 64 -#define FRF_BZ_NORM_INT_VEC_DIS_CHAR_WIDTH 1 -#define FRF_BZ_INT_ADR_CHAR_LBN 0 -#define FRF_BZ_INT_ADR_CHAR_WIDTH 64 - -/* INT_ACK_KER: Kernel interrupt acknowledge register */ -#define FR_AA_INT_ACK_KER 0x00000050 -#define FRF_AA_INT_ACK_KER_FIELD_LBN 0 -#define FRF_AA_INT_ACK_KER_FIELD_WIDTH 32 - -/* INT_ISR0_REG: Function 0 Interrupt Acknowledge Status register */ -#define FR_BZ_INT_ISR0 0x00000090 -#define FRF_BZ_INT_ISR_REG_LBN 0 -#define FRF_BZ_INT_ISR_REG_WIDTH 64 - -/* HW_INIT_REG: Hardware initialization register */ -#define FR_AZ_HW_INIT 0x000000c0 -#define FRF_BB_BDMRD_CPLF_FULL_LBN 124 -#define FRF_BB_BDMRD_CPLF_FULL_WIDTH 1 -#define FRF_BB_PCIE_CPL_TIMEOUT_CTRL_LBN 121 -#define FRF_BB_PCIE_CPL_TIMEOUT_CTRL_WIDTH 3 -#define FRF_CZ_TX_MRG_TAGS_LBN 120 -#define FRF_CZ_TX_MRG_TAGS_WIDTH 1 -#define FRF_AB_TRGT_MASK_ALL_LBN 100 -#define FRF_AB_TRGT_MASK_ALL_WIDTH 1 -#define FRF_AZ_DOORBELL_DROP_LBN 92 -#define FRF_AZ_DOORBELL_DROP_WIDTH 8 -#define FRF_AB_TX_RREQ_MASK_EN_LBN 76 -#define FRF_AB_TX_RREQ_MASK_EN_WIDTH 1 -#define FRF_AB_PE_EIDLE_DIS_LBN 75 -#define FRF_AB_PE_EIDLE_DIS_WIDTH 1 -#define FRF_AA_FC_BLOCKING_EN_LBN 45 -#define FRF_AA_FC_BLOCKING_EN_WIDTH 1 -#define FRF_BZ_B2B_REQ_EN_LBN 45 -#define FRF_BZ_B2B_REQ_EN_WIDTH 1 -#define FRF_AA_B2B_REQ_EN_LBN 44 -#define FRF_AA_B2B_REQ_EN_WIDTH 1 -#define FRF_BB_FC_BLOCKING_EN_LBN 44 -#define FRF_BB_FC_BLOCKING_EN_WIDTH 1 -#define FRF_AZ_POST_WR_MASK_LBN 40 -#define FRF_AZ_POST_WR_MASK_WIDTH 4 -#define FRF_AZ_TLP_TC_LBN 34 -#define FRF_AZ_TLP_TC_WIDTH 3 -#define FRF_AZ_TLP_ATTR_LBN 32 -#define FRF_AZ_TLP_ATTR_WIDTH 2 -#define FRF_AB_INTB_VEC_LBN 24 -#define FRF_AB_INTB_VEC_WIDTH 5 -#define FRF_AB_INTA_VEC_LBN 16 -#define FRF_AB_INTA_VEC_WIDTH 5 -#define FRF_AZ_WD_TIMER_LBN 8 -#define FRF_AZ_WD_TIMER_WIDTH 8 -#define FRF_AZ_US_DISABLE_LBN 5 -#define FRF_AZ_US_DISABLE_WIDTH 1 -#define FRF_AZ_TLP_EP_LBN 4 -#define FRF_AZ_TLP_EP_WIDTH 1 -#define FRF_AZ_ATTR_SEL_LBN 3 -#define FRF_AZ_ATTR_SEL_WIDTH 1 -#define FRF_AZ_TD_SEL_LBN 1 -#define FRF_AZ_TD_SEL_WIDTH 1 -#define FRF_AZ_TLP_TD_LBN 0 -#define FRF_AZ_TLP_TD_WIDTH 1 - -/* EE_SPI_HCMD_REG: SPI host command register */ -#define FR_AB_EE_SPI_HCMD 0x00000100 -#define FRF_AB_EE_SPI_HCMD_CMD_EN_LBN 31 -#define FRF_AB_EE_SPI_HCMD_CMD_EN_WIDTH 1 -#define FRF_AB_EE_WR_TIMER_ACTIVE_LBN 28 -#define FRF_AB_EE_WR_TIMER_ACTIVE_WIDTH 1 -#define FRF_AB_EE_SPI_HCMD_SF_SEL_LBN 24 -#define FRF_AB_EE_SPI_HCMD_SF_SEL_WIDTH 1 -#define FRF_AB_EE_SPI_HCMD_DABCNT_LBN 16 -#define FRF_AB_EE_SPI_HCMD_DABCNT_WIDTH 5 -#define FRF_AB_EE_SPI_HCMD_READ_LBN 15 -#define FRF_AB_EE_SPI_HCMD_READ_WIDTH 1 -#define FRF_AB_EE_SPI_HCMD_DUBCNT_LBN 12 -#define FRF_AB_EE_SPI_HCMD_DUBCNT_WIDTH 2 -#define FRF_AB_EE_SPI_HCMD_ADBCNT_LBN 8 -#define FRF_AB_EE_SPI_HCMD_ADBCNT_WIDTH 2 -#define FRF_AB_EE_SPI_HCMD_ENC_LBN 0 -#define FRF_AB_EE_SPI_HCMD_ENC_WIDTH 8 - -/* USR_EV_CFG: User Level Event Configuration register */ -#define FR_CZ_USR_EV_CFG 0x00000100 -#define FRF_CZ_USREV_DIS_LBN 16 -#define FRF_CZ_USREV_DIS_WIDTH 1 -#define FRF_CZ_DFLT_EVQ_LBN 0 -#define FRF_CZ_DFLT_EVQ_WIDTH 10 - -/* EE_SPI_HADR_REG: SPI host address register */ -#define FR_AB_EE_SPI_HADR 0x00000110 -#define FRF_AB_EE_SPI_HADR_DUBYTE_LBN 24 -#define FRF_AB_EE_SPI_HADR_DUBYTE_WIDTH 8 -#define FRF_AB_EE_SPI_HADR_ADR_LBN 0 -#define FRF_AB_EE_SPI_HADR_ADR_WIDTH 24 - -/* EE_SPI_HDATA_REG: SPI host data register */ -#define FR_AB_EE_SPI_HDATA 0x00000120 -#define FRF_AB_EE_SPI_HDATA3_LBN 96 -#define FRF_AB_EE_SPI_HDATA3_WIDTH 32 -#define FRF_AB_EE_SPI_HDATA2_LBN 64 -#define FRF_AB_EE_SPI_HDATA2_WIDTH 32 -#define FRF_AB_EE_SPI_HDATA1_LBN 32 -#define FRF_AB_EE_SPI_HDATA1_WIDTH 32 -#define FRF_AB_EE_SPI_HDATA0_LBN 0 -#define FRF_AB_EE_SPI_HDATA0_WIDTH 32 - -/* EE_BASE_PAGE_REG: Expansion ROM base mirror register */ -#define FR_AB_EE_BASE_PAGE 0x00000130 -#define FRF_AB_EE_EXPROM_MASK_LBN 16 -#define FRF_AB_EE_EXPROM_MASK_WIDTH 13 -#define FRF_AB_EE_EXP_ROM_WINDOW_BASE_LBN 0 -#define FRF_AB_EE_EXP_ROM_WINDOW_BASE_WIDTH 13 - -/* EE_VPD_CFG0_REG: SPI/VPD configuration register 0 */ -#define FR_AB_EE_VPD_CFG0 0x00000140 -#define FRF_AB_EE_SF_FASTRD_EN_LBN 127 -#define FRF_AB_EE_SF_FASTRD_EN_WIDTH 1 -#define FRF_AB_EE_SF_CLOCK_DIV_LBN 120 -#define FRF_AB_EE_SF_CLOCK_DIV_WIDTH 7 -#define FRF_AB_EE_VPD_WIP_POLL_LBN 119 -#define FRF_AB_EE_VPD_WIP_POLL_WIDTH 1 -#define FRF_AB_EE_EE_CLOCK_DIV_LBN 112 -#define FRF_AB_EE_EE_CLOCK_DIV_WIDTH 7 -#define FRF_AB_EE_EE_WR_TMR_VALUE_LBN 96 -#define FRF_AB_EE_EE_WR_TMR_VALUE_WIDTH 16 -#define FRF_AB_EE_VPDW_LENGTH_LBN 80 -#define FRF_AB_EE_VPDW_LENGTH_WIDTH 15 -#define FRF_AB_EE_VPDW_BASE_LBN 64 -#define FRF_AB_EE_VPDW_BASE_WIDTH 15 -#define FRF_AB_EE_VPD_WR_CMD_EN_LBN 56 -#define FRF_AB_EE_VPD_WR_CMD_EN_WIDTH 8 -#define FRF_AB_EE_VPD_BASE_LBN 32 -#define FRF_AB_EE_VPD_BASE_WIDTH 24 -#define FRF_AB_EE_VPD_LENGTH_LBN 16 -#define FRF_AB_EE_VPD_LENGTH_WIDTH 15 -#define FRF_AB_EE_VPD_AD_SIZE_LBN 8 -#define FRF_AB_EE_VPD_AD_SIZE_WIDTH 5 -#define FRF_AB_EE_VPD_ACCESS_ON_LBN 5 -#define FRF_AB_EE_VPD_ACCESS_ON_WIDTH 1 -#define FRF_AB_EE_VPD_ACCESS_BLOCK_LBN 4 -#define FRF_AB_EE_VPD_ACCESS_BLOCK_WIDTH 1 -#define FRF_AB_EE_VPD_DEV_SF_SEL_LBN 2 -#define FRF_AB_EE_VPD_DEV_SF_SEL_WIDTH 1 -#define FRF_AB_EE_VPD_EN_AD9_MODE_LBN 1 -#define FRF_AB_EE_VPD_EN_AD9_MODE_WIDTH 1 -#define FRF_AB_EE_VPD_EN_LBN 0 -#define FRF_AB_EE_VPD_EN_WIDTH 1 - -/* EE_VPD_SW_CNTL_REG: VPD access SW control register */ -#define FR_AB_EE_VPD_SW_CNTL 0x00000150 -#define FRF_AB_EE_VPD_CYCLE_PENDING_LBN 31 -#define FRF_AB_EE_VPD_CYCLE_PENDING_WIDTH 1 -#define FRF_AB_EE_VPD_CYC_WRITE_LBN 28 -#define FRF_AB_EE_VPD_CYC_WRITE_WIDTH 1 -#define FRF_AB_EE_VPD_CYC_ADR_LBN 0 -#define FRF_AB_EE_VPD_CYC_ADR_WIDTH 15 - -/* EE_VPD_SW_DATA_REG: VPD access SW data register */ -#define FR_AB_EE_VPD_SW_DATA 0x00000160 -#define FRF_AB_EE_VPD_CYC_DAT_LBN 0 -#define FRF_AB_EE_VPD_CYC_DAT_WIDTH 32 - -/* PBMX_DBG_IADDR_REG: Capture Module address register */ -#define FR_CZ_PBMX_DBG_IADDR 0x000001f0 -#define FRF_CZ_PBMX_DBG_IADDR_LBN 0 -#define FRF_CZ_PBMX_DBG_IADDR_WIDTH 32 - -/* PCIE_CORE_INDIRECT_REG: Indirect Access to PCIE Core registers */ -#define FR_BB_PCIE_CORE_INDIRECT 0x000001f0 -#define FRF_BB_PCIE_CORE_TARGET_DATA_LBN 32 -#define FRF_BB_PCIE_CORE_TARGET_DATA_WIDTH 32 -#define FRF_BB_PCIE_CORE_INDIRECT_ACCESS_DIR_LBN 15 -#define FRF_BB_PCIE_CORE_INDIRECT_ACCESS_DIR_WIDTH 1 -#define FRF_BB_PCIE_CORE_TARGET_REG_ADRS_LBN 0 -#define FRF_BB_PCIE_CORE_TARGET_REG_ADRS_WIDTH 12 - -/* PBMX_DBG_IDATA_REG: Capture Module data register */ -#define FR_CZ_PBMX_DBG_IDATA 0x000001f8 -#define FRF_CZ_PBMX_DBG_IDATA_LBN 0 -#define FRF_CZ_PBMX_DBG_IDATA_WIDTH 64 - -/* NIC_STAT_REG: NIC status register */ -#define FR_AB_NIC_STAT 0x00000200 -#define FRF_BB_AER_DIS_LBN 34 -#define FRF_BB_AER_DIS_WIDTH 1 -#define FRF_BB_EE_STRAP_EN_LBN 31 -#define FRF_BB_EE_STRAP_EN_WIDTH 1 -#define FRF_BB_EE_STRAP_LBN 24 -#define FRF_BB_EE_STRAP_WIDTH 4 -#define FRF_BB_REVISION_ID_LBN 17 -#define FRF_BB_REVISION_ID_WIDTH 7 -#define FRF_AB_ONCHIP_SRAM_LBN 16 -#define FRF_AB_ONCHIP_SRAM_WIDTH 1 -#define FRF_AB_SF_PRST_LBN 9 -#define FRF_AB_SF_PRST_WIDTH 1 -#define FRF_AB_EE_PRST_LBN 8 -#define FRF_AB_EE_PRST_WIDTH 1 -#define FRF_AB_ATE_MODE_LBN 3 -#define FRF_AB_ATE_MODE_WIDTH 1 -#define FRF_AB_STRAP_PINS_LBN 0 -#define FRF_AB_STRAP_PINS_WIDTH 3 - -/* GPIO_CTL_REG: GPIO control register */ -#define FR_AB_GPIO_CTL 0x00000210 -#define FRF_AB_GPIO_OUT3_LBN 112 -#define FRF_AB_GPIO_OUT3_WIDTH 16 -#define FRF_AB_GPIO_IN3_LBN 104 -#define FRF_AB_GPIO_IN3_WIDTH 8 -#define FRF_AB_GPIO_PWRUP_VALUE3_LBN 96 -#define FRF_AB_GPIO_PWRUP_VALUE3_WIDTH 8 -#define FRF_AB_GPIO_OUT2_LBN 80 -#define FRF_AB_GPIO_OUT2_WIDTH 16 -#define FRF_AB_GPIO_IN2_LBN 72 -#define FRF_AB_GPIO_IN2_WIDTH 8 -#define FRF_AB_GPIO_PWRUP_VALUE2_LBN 64 -#define FRF_AB_GPIO_PWRUP_VALUE2_WIDTH 8 -#define FRF_AB_GPIO15_OEN_LBN 63 -#define FRF_AB_GPIO15_OEN_WIDTH 1 -#define FRF_AB_GPIO14_OEN_LBN 62 -#define FRF_AB_GPIO14_OEN_WIDTH 1 -#define FRF_AB_GPIO13_OEN_LBN 61 -#define FRF_AB_GPIO13_OEN_WIDTH 1 -#define FRF_AB_GPIO12_OEN_LBN 60 -#define FRF_AB_GPIO12_OEN_WIDTH 1 -#define FRF_AB_GPIO11_OEN_LBN 59 -#define FRF_AB_GPIO11_OEN_WIDTH 1 -#define FRF_AB_GPIO10_OEN_LBN 58 -#define FRF_AB_GPIO10_OEN_WIDTH 1 -#define FRF_AB_GPIO9_OEN_LBN 57 -#define FRF_AB_GPIO9_OEN_WIDTH 1 -#define FRF_AB_GPIO8_OEN_LBN 56 -#define FRF_AB_GPIO8_OEN_WIDTH 1 -#define FRF_AB_GPIO15_OUT_LBN 55 -#define FRF_AB_GPIO15_OUT_WIDTH 1 -#define FRF_AB_GPIO14_OUT_LBN 54 -#define FRF_AB_GPIO14_OUT_WIDTH 1 -#define FRF_AB_GPIO13_OUT_LBN 53 -#define FRF_AB_GPIO13_OUT_WIDTH 1 -#define FRF_AB_GPIO12_OUT_LBN 52 -#define FRF_AB_GPIO12_OUT_WIDTH 1 -#define FRF_AB_GPIO11_OUT_LBN 51 -#define FRF_AB_GPIO11_OUT_WIDTH 1 -#define FRF_AB_GPIO10_OUT_LBN 50 -#define FRF_AB_GPIO10_OUT_WIDTH 1 -#define FRF_AB_GPIO9_OUT_LBN 49 -#define FRF_AB_GPIO9_OUT_WIDTH 1 -#define FRF_AB_GPIO8_OUT_LBN 48 -#define FRF_AB_GPIO8_OUT_WIDTH 1 -#define FRF_AB_GPIO15_IN_LBN 47 -#define FRF_AB_GPIO15_IN_WIDTH 1 -#define FRF_AB_GPIO14_IN_LBN 46 -#define FRF_AB_GPIO14_IN_WIDTH 1 -#define FRF_AB_GPIO13_IN_LBN 45 -#define FRF_AB_GPIO13_IN_WIDTH 1 -#define FRF_AB_GPIO12_IN_LBN 44 -#define FRF_AB_GPIO12_IN_WIDTH 1 -#define FRF_AB_GPIO11_IN_LBN 43 -#define FRF_AB_GPIO11_IN_WIDTH 1 -#define FRF_AB_GPIO10_IN_LBN 42 -#define FRF_AB_GPIO10_IN_WIDTH 1 -#define FRF_AB_GPIO9_IN_LBN 41 -#define FRF_AB_GPIO9_IN_WIDTH 1 -#define FRF_AB_GPIO8_IN_LBN 40 -#define FRF_AB_GPIO8_IN_WIDTH 1 -#define FRF_AB_GPIO15_PWRUP_VALUE_LBN 39 -#define FRF_AB_GPIO15_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO14_PWRUP_VALUE_LBN 38 -#define FRF_AB_GPIO14_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO13_PWRUP_VALUE_LBN 37 -#define FRF_AB_GPIO13_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO12_PWRUP_VALUE_LBN 36 -#define FRF_AB_GPIO12_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO11_PWRUP_VALUE_LBN 35 -#define FRF_AB_GPIO11_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO10_PWRUP_VALUE_LBN 34 -#define FRF_AB_GPIO10_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO9_PWRUP_VALUE_LBN 33 -#define FRF_AB_GPIO9_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO8_PWRUP_VALUE_LBN 32 -#define FRF_AB_GPIO8_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_CLK156_OUT_EN_LBN 31 -#define FRF_AB_CLK156_OUT_EN_WIDTH 1 -#define FRF_AB_USE_NIC_CLK_LBN 30 -#define FRF_AB_USE_NIC_CLK_WIDTH 1 -#define FRF_AB_GPIO5_OEN_LBN 29 -#define FRF_AB_GPIO5_OEN_WIDTH 1 -#define FRF_AB_GPIO4_OEN_LBN 28 -#define FRF_AB_GPIO4_OEN_WIDTH 1 -#define FRF_AB_GPIO3_OEN_LBN 27 -#define FRF_AB_GPIO3_OEN_WIDTH 1 -#define FRF_AB_GPIO2_OEN_LBN 26 -#define FRF_AB_GPIO2_OEN_WIDTH 1 -#define FRF_AB_GPIO1_OEN_LBN 25 -#define FRF_AB_GPIO1_OEN_WIDTH 1 -#define FRF_AB_GPIO0_OEN_LBN 24 -#define FRF_AB_GPIO0_OEN_WIDTH 1 -#define FRF_AB_GPIO7_OUT_LBN 23 -#define FRF_AB_GPIO7_OUT_WIDTH 1 -#define FRF_AB_GPIO6_OUT_LBN 22 -#define FRF_AB_GPIO6_OUT_WIDTH 1 -#define FRF_AB_GPIO5_OUT_LBN 21 -#define FRF_AB_GPIO5_OUT_WIDTH 1 -#define FRF_AB_GPIO4_OUT_LBN 20 -#define FRF_AB_GPIO4_OUT_WIDTH 1 -#define FRF_AB_GPIO3_OUT_LBN 19 -#define FRF_AB_GPIO3_OUT_WIDTH 1 -#define FRF_AB_GPIO2_OUT_LBN 18 -#define FRF_AB_GPIO2_OUT_WIDTH 1 -#define FRF_AB_GPIO1_OUT_LBN 17 -#define FRF_AB_GPIO1_OUT_WIDTH 1 -#define FRF_AB_GPIO0_OUT_LBN 16 -#define FRF_AB_GPIO0_OUT_WIDTH 1 -#define FRF_AB_GPIO7_IN_LBN 15 -#define FRF_AB_GPIO7_IN_WIDTH 1 -#define FRF_AB_GPIO6_IN_LBN 14 -#define FRF_AB_GPIO6_IN_WIDTH 1 -#define FRF_AB_GPIO5_IN_LBN 13 -#define FRF_AB_GPIO5_IN_WIDTH 1 -#define FRF_AB_GPIO4_IN_LBN 12 -#define FRF_AB_GPIO4_IN_WIDTH 1 -#define FRF_AB_GPIO3_IN_LBN 11 -#define FRF_AB_GPIO3_IN_WIDTH 1 -#define FRF_AB_GPIO2_IN_LBN 10 -#define FRF_AB_GPIO2_IN_WIDTH 1 -#define FRF_AB_GPIO1_IN_LBN 9 -#define FRF_AB_GPIO1_IN_WIDTH 1 -#define FRF_AB_GPIO0_IN_LBN 8 -#define FRF_AB_GPIO0_IN_WIDTH 1 -#define FRF_AB_GPIO7_PWRUP_VALUE_LBN 7 -#define FRF_AB_GPIO7_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO6_PWRUP_VALUE_LBN 6 -#define FRF_AB_GPIO6_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO5_PWRUP_VALUE_LBN 5 -#define FRF_AB_GPIO5_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO4_PWRUP_VALUE_LBN 4 -#define FRF_AB_GPIO4_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO3_PWRUP_VALUE_LBN 3 -#define FRF_AB_GPIO3_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO2_PWRUP_VALUE_LBN 2 -#define FRF_AB_GPIO2_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO1_PWRUP_VALUE_LBN 1 -#define FRF_AB_GPIO1_PWRUP_VALUE_WIDTH 1 -#define FRF_AB_GPIO0_PWRUP_VALUE_LBN 0 -#define FRF_AB_GPIO0_PWRUP_VALUE_WIDTH 1 - -/* GLB_CTL_REG: Global control register */ -#define FR_AB_GLB_CTL 0x00000220 -#define FRF_AB_EXT_PHY_RST_CTL_LBN 63 -#define FRF_AB_EXT_PHY_RST_CTL_WIDTH 1 -#define FRF_AB_XAUI_SD_RST_CTL_LBN 62 -#define FRF_AB_XAUI_SD_RST_CTL_WIDTH 1 -#define FRF_AB_PCIE_SD_RST_CTL_LBN 61 -#define FRF_AB_PCIE_SD_RST_CTL_WIDTH 1 -#define FRF_AA_PCIX_RST_CTL_LBN 60 -#define FRF_AA_PCIX_RST_CTL_WIDTH 1 -#define FRF_BB_BIU_RST_CTL_LBN 60 -#define FRF_BB_BIU_RST_CTL_WIDTH 1 -#define FRF_AB_PCIE_STKY_RST_CTL_LBN 59 -#define FRF_AB_PCIE_STKY_RST_CTL_WIDTH 1 -#define FRF_AB_PCIE_NSTKY_RST_CTL_LBN 58 -#define FRF_AB_PCIE_NSTKY_RST_CTL_WIDTH 1 -#define FRF_AB_PCIE_CORE_RST_CTL_LBN 57 -#define FRF_AB_PCIE_CORE_RST_CTL_WIDTH 1 -#define FRF_AB_XGRX_RST_CTL_LBN 56 -#define FRF_AB_XGRX_RST_CTL_WIDTH 1 -#define FRF_AB_XGTX_RST_CTL_LBN 55 -#define FRF_AB_XGTX_RST_CTL_WIDTH 1 -#define FRF_AB_EM_RST_CTL_LBN 54 -#define FRF_AB_EM_RST_CTL_WIDTH 1 -#define FRF_AB_EV_RST_CTL_LBN 53 -#define FRF_AB_EV_RST_CTL_WIDTH 1 -#define FRF_AB_SR_RST_CTL_LBN 52 -#define FRF_AB_SR_RST_CTL_WIDTH 1 -#define FRF_AB_RX_RST_CTL_LBN 51 -#define FRF_AB_RX_RST_CTL_WIDTH 1 -#define FRF_AB_TX_RST_CTL_LBN 50 -#define FRF_AB_TX_RST_CTL_WIDTH 1 -#define FRF_AB_EE_RST_CTL_LBN 49 -#define FRF_AB_EE_RST_CTL_WIDTH 1 -#define FRF_AB_CS_RST_CTL_LBN 48 -#define FRF_AB_CS_RST_CTL_WIDTH 1 -#define FRF_AB_HOT_RST_CTL_LBN 40 -#define FRF_AB_HOT_RST_CTL_WIDTH 2 -#define FRF_AB_RST_EXT_PHY_LBN 31 -#define FRF_AB_RST_EXT_PHY_WIDTH 1 -#define FRF_AB_RST_XAUI_SD_LBN 30 -#define FRF_AB_RST_XAUI_SD_WIDTH 1 -#define FRF_AB_RST_PCIE_SD_LBN 29 -#define FRF_AB_RST_PCIE_SD_WIDTH 1 -#define FRF_AA_RST_PCIX_LBN 28 -#define FRF_AA_RST_PCIX_WIDTH 1 -#define FRF_BB_RST_BIU_LBN 28 -#define FRF_BB_RST_BIU_WIDTH 1 -#define FRF_AB_RST_PCIE_STKY_LBN 27 -#define FRF_AB_RST_PCIE_STKY_WIDTH 1 -#define FRF_AB_RST_PCIE_NSTKY_LBN 26 -#define FRF_AB_RST_PCIE_NSTKY_WIDTH 1 -#define FRF_AB_RST_PCIE_CORE_LBN 25 -#define FRF_AB_RST_PCIE_CORE_WIDTH 1 -#define FRF_AB_RST_XGRX_LBN 24 -#define FRF_AB_RST_XGRX_WIDTH 1 -#define FRF_AB_RST_XGTX_LBN 23 -#define FRF_AB_RST_XGTX_WIDTH 1 -#define FRF_AB_RST_EM_LBN 22 -#define FRF_AB_RST_EM_WIDTH 1 -#define FRF_AB_RST_EV_LBN 21 -#define FRF_AB_RST_EV_WIDTH 1 -#define FRF_AB_RST_SR_LBN 20 -#define FRF_AB_RST_SR_WIDTH 1 -#define FRF_AB_RST_RX_LBN 19 -#define FRF_AB_RST_RX_WIDTH 1 -#define FRF_AB_RST_TX_LBN 18 -#define FRF_AB_RST_TX_WIDTH 1 -#define FRF_AB_RST_SF_LBN 17 -#define FRF_AB_RST_SF_WIDTH 1 -#define FRF_AB_RST_CS_LBN 16 -#define FRF_AB_RST_CS_WIDTH 1 -#define FRF_AB_INT_RST_DUR_LBN 4 -#define FRF_AB_INT_RST_DUR_WIDTH 3 -#define FRF_AB_EXT_PHY_RST_DUR_LBN 1 -#define FRF_AB_EXT_PHY_RST_DUR_WIDTH 3 -#define FFE_AB_EXT_PHY_RST_DUR_10240US 7 -#define FFE_AB_EXT_PHY_RST_DUR_5120US 6 -#define FFE_AB_EXT_PHY_RST_DUR_2560US 5 -#define FFE_AB_EXT_PHY_RST_DUR_1280US 4 -#define FFE_AB_EXT_PHY_RST_DUR_640US 3 -#define FFE_AB_EXT_PHY_RST_DUR_320US 2 -#define FFE_AB_EXT_PHY_RST_DUR_160US 1 -#define FFE_AB_EXT_PHY_RST_DUR_80US 0 -#define FRF_AB_SWRST_LBN 0 -#define FRF_AB_SWRST_WIDTH 1 - -/* FATAL_INTR_REG_KER: Fatal interrupt register for Kernel */ -#define FR_AZ_FATAL_INTR_KER 0x00000230 -#define FRF_CZ_SRAM_PERR_INT_P_KER_EN_LBN 44 -#define FRF_CZ_SRAM_PERR_INT_P_KER_EN_WIDTH 1 -#define FRF_AB_PCI_BUSERR_INT_KER_EN_LBN 43 -#define FRF_AB_PCI_BUSERR_INT_KER_EN_WIDTH 1 -#define FRF_CZ_MBU_PERR_INT_KER_EN_LBN 43 -#define FRF_CZ_MBU_PERR_INT_KER_EN_WIDTH 1 -#define FRF_AZ_SRAM_OOB_INT_KER_EN_LBN 42 -#define FRF_AZ_SRAM_OOB_INT_KER_EN_WIDTH 1 -#define FRF_AZ_BUFID_OOB_INT_KER_EN_LBN 41 -#define FRF_AZ_BUFID_OOB_INT_KER_EN_WIDTH 1 -#define FRF_AZ_MEM_PERR_INT_KER_EN_LBN 40 -#define FRF_AZ_MEM_PERR_INT_KER_EN_WIDTH 1 -#define FRF_AZ_RBUF_OWN_INT_KER_EN_LBN 39 -#define FRF_AZ_RBUF_OWN_INT_KER_EN_WIDTH 1 -#define FRF_AZ_TBUF_OWN_INT_KER_EN_LBN 38 -#define FRF_AZ_TBUF_OWN_INT_KER_EN_WIDTH 1 -#define FRF_AZ_RDESCQ_OWN_INT_KER_EN_LBN 37 -#define FRF_AZ_RDESCQ_OWN_INT_KER_EN_WIDTH 1 -#define FRF_AZ_TDESCQ_OWN_INT_KER_EN_LBN 36 -#define FRF_AZ_TDESCQ_OWN_INT_KER_EN_WIDTH 1 -#define FRF_AZ_EVQ_OWN_INT_KER_EN_LBN 35 -#define FRF_AZ_EVQ_OWN_INT_KER_EN_WIDTH 1 -#define FRF_AZ_EVF_OFLO_INT_KER_EN_LBN 34 -#define FRF_AZ_EVF_OFLO_INT_KER_EN_WIDTH 1 -#define FRF_AZ_ILL_ADR_INT_KER_EN_LBN 33 -#define FRF_AZ_ILL_ADR_INT_KER_EN_WIDTH 1 -#define FRF_AZ_SRM_PERR_INT_KER_EN_LBN 32 -#define FRF_AZ_SRM_PERR_INT_KER_EN_WIDTH 1 -#define FRF_CZ_SRAM_PERR_INT_P_KER_LBN 12 -#define FRF_CZ_SRAM_PERR_INT_P_KER_WIDTH 1 -#define FRF_AB_PCI_BUSERR_INT_KER_LBN 11 -#define FRF_AB_PCI_BUSERR_INT_KER_WIDTH 1 -#define FRF_CZ_MBU_PERR_INT_KER_LBN 11 -#define FRF_CZ_MBU_PERR_INT_KER_WIDTH 1 -#define FRF_AZ_SRAM_OOB_INT_KER_LBN 10 -#define FRF_AZ_SRAM_OOB_INT_KER_WIDTH 1 -#define FRF_AZ_BUFID_DC_OOB_INT_KER_LBN 9 -#define FRF_AZ_BUFID_DC_OOB_INT_KER_WIDTH 1 -#define FRF_AZ_MEM_PERR_INT_KER_LBN 8 -#define FRF_AZ_MEM_PERR_INT_KER_WIDTH 1 -#define FRF_AZ_RBUF_OWN_INT_KER_LBN 7 -#define FRF_AZ_RBUF_OWN_INT_KER_WIDTH 1 -#define FRF_AZ_TBUF_OWN_INT_KER_LBN 6 -#define FRF_AZ_TBUF_OWN_INT_KER_WIDTH 1 -#define FRF_AZ_RDESCQ_OWN_INT_KER_LBN 5 -#define FRF_AZ_RDESCQ_OWN_INT_KER_WIDTH 1 -#define FRF_AZ_TDESCQ_OWN_INT_KER_LBN 4 -#define FRF_AZ_TDESCQ_OWN_INT_KER_WIDTH 1 -#define FRF_AZ_EVQ_OWN_INT_KER_LBN 3 -#define FRF_AZ_EVQ_OWN_INT_KER_WIDTH 1 -#define FRF_AZ_EVF_OFLO_INT_KER_LBN 2 -#define FRF_AZ_EVF_OFLO_INT_KER_WIDTH 1 -#define FRF_AZ_ILL_ADR_INT_KER_LBN 1 -#define FRF_AZ_ILL_ADR_INT_KER_WIDTH 1 -#define FRF_AZ_SRM_PERR_INT_KER_LBN 0 -#define FRF_AZ_SRM_PERR_INT_KER_WIDTH 1 - -/* FATAL_INTR_REG_CHAR: Fatal interrupt register for Char */ -#define FR_BZ_FATAL_INTR_CHAR 0x00000240 -#define FRF_CZ_SRAM_PERR_INT_P_CHAR_EN_LBN 44 -#define FRF_CZ_SRAM_PERR_INT_P_CHAR_EN_WIDTH 1 -#define FRF_BB_PCI_BUSERR_INT_CHAR_EN_LBN 43 -#define FRF_BB_PCI_BUSERR_INT_CHAR_EN_WIDTH 1 -#define FRF_CZ_MBU_PERR_INT_CHAR_EN_LBN 43 -#define FRF_CZ_MBU_PERR_INT_CHAR_EN_WIDTH 1 -#define FRF_BZ_SRAM_OOB_INT_CHAR_EN_LBN 42 -#define FRF_BZ_SRAM_OOB_INT_CHAR_EN_WIDTH 1 -#define FRF_BZ_BUFID_OOB_INT_CHAR_EN_LBN 41 -#define FRF_BZ_BUFID_OOB_INT_CHAR_EN_WIDTH 1 -#define FRF_BZ_MEM_PERR_INT_CHAR_EN_LBN 40 -#define FRF_BZ_MEM_PERR_INT_CHAR_EN_WIDTH 1 -#define FRF_BZ_RBUF_OWN_INT_CHAR_EN_LBN 39 -#define FRF_BZ_RBUF_OWN_INT_CHAR_EN_WIDTH 1 -#define FRF_BZ_TBUF_OWN_INT_CHAR_EN_LBN 38 -#define FRF_BZ_TBUF_OWN_INT_CHAR_EN_WIDTH 1 -#define FRF_BZ_RDESCQ_OWN_INT_CHAR_EN_LBN 37 -#define FRF_BZ_RDESCQ_OWN_INT_CHAR_EN_WIDTH 1 -#define FRF_BZ_TDESCQ_OWN_INT_CHAR_EN_LBN 36 -#define FRF_BZ_TDESCQ_OWN_INT_CHAR_EN_WIDTH 1 -#define FRF_BZ_EVQ_OWN_INT_CHAR_EN_LBN 35 -#define FRF_BZ_EVQ_OWN_INT_CHAR_EN_WIDTH 1 -#define FRF_BZ_EVF_OFLO_INT_CHAR_EN_LBN 34 -#define FRF_BZ_EVF_OFLO_INT_CHAR_EN_WIDTH 1 -#define FRF_BZ_ILL_ADR_INT_CHAR_EN_LBN 33 -#define FRF_BZ_ILL_ADR_INT_CHAR_EN_WIDTH 1 -#define FRF_BZ_SRM_PERR_INT_CHAR_EN_LBN 32 -#define FRF_BZ_SRM_PERR_INT_CHAR_EN_WIDTH 1 -#define FRF_CZ_SRAM_PERR_INT_P_CHAR_LBN 12 -#define FRF_CZ_SRAM_PERR_INT_P_CHAR_WIDTH 1 -#define FRF_BB_PCI_BUSERR_INT_CHAR_LBN 11 -#define FRF_BB_PCI_BUSERR_INT_CHAR_WIDTH 1 -#define FRF_CZ_MBU_PERR_INT_CHAR_LBN 11 -#define FRF_CZ_MBU_PERR_INT_CHAR_WIDTH 1 -#define FRF_BZ_SRAM_OOB_INT_CHAR_LBN 10 -#define FRF_BZ_SRAM_OOB_INT_CHAR_WIDTH 1 -#define FRF_BZ_BUFID_DC_OOB_INT_CHAR_LBN 9 -#define FRF_BZ_BUFID_DC_OOB_INT_CHAR_WIDTH 1 -#define FRF_BZ_MEM_PERR_INT_CHAR_LBN 8 -#define FRF_BZ_MEM_PERR_INT_CHAR_WIDTH 1 -#define FRF_BZ_RBUF_OWN_INT_CHAR_LBN 7 -#define FRF_BZ_RBUF_OWN_INT_CHAR_WIDTH 1 -#define FRF_BZ_TBUF_OWN_INT_CHAR_LBN 6 -#define FRF_BZ_TBUF_OWN_INT_CHAR_WIDTH 1 -#define FRF_BZ_RDESCQ_OWN_INT_CHAR_LBN 5 -#define FRF_BZ_RDESCQ_OWN_INT_CHAR_WIDTH 1 -#define FRF_BZ_TDESCQ_OWN_INT_CHAR_LBN 4 -#define FRF_BZ_TDESCQ_OWN_INT_CHAR_WIDTH 1 -#define FRF_BZ_EVQ_OWN_INT_CHAR_LBN 3 -#define FRF_BZ_EVQ_OWN_INT_CHAR_WIDTH 1 -#define FRF_BZ_EVF_OFLO_INT_CHAR_LBN 2 -#define FRF_BZ_EVF_OFLO_INT_CHAR_WIDTH 1 -#define FRF_BZ_ILL_ADR_INT_CHAR_LBN 1 -#define FRF_BZ_ILL_ADR_INT_CHAR_WIDTH 1 -#define FRF_BZ_SRM_PERR_INT_CHAR_LBN 0 -#define FRF_BZ_SRM_PERR_INT_CHAR_WIDTH 1 - -/* DP_CTRL_REG: Datapath control register */ -#define FR_BZ_DP_CTRL 0x00000250 -#define FRF_BZ_FLS_EVQ_ID_LBN 0 -#define FRF_BZ_FLS_EVQ_ID_WIDTH 12 - -/* MEM_STAT_REG: Memory status register */ -#define FR_AZ_MEM_STAT 0x00000260 -#define FRF_AB_MEM_PERR_VEC_LBN 53 -#define FRF_AB_MEM_PERR_VEC_WIDTH 38 -#define FRF_AB_MBIST_CORR_LBN 38 -#define FRF_AB_MBIST_CORR_WIDTH 15 -#define FRF_AB_MBIST_ERR_LBN 0 -#define FRF_AB_MBIST_ERR_WIDTH 40 -#define FRF_CZ_MEM_PERR_VEC_LBN 0 -#define FRF_CZ_MEM_PERR_VEC_WIDTH 35 - -/* CS_DEBUG_REG: Debug register */ -#define FR_AZ_CS_DEBUG 0x00000270 -#define FRF_AB_GLB_DEBUG2_SEL_LBN 50 -#define FRF_AB_GLB_DEBUG2_SEL_WIDTH 3 -#define FRF_AB_DEBUG_BLK_SEL2_LBN 47 -#define FRF_AB_DEBUG_BLK_SEL2_WIDTH 3 -#define FRF_AB_DEBUG_BLK_SEL1_LBN 44 -#define FRF_AB_DEBUG_BLK_SEL1_WIDTH 3 -#define FRF_AB_DEBUG_BLK_SEL0_LBN 41 -#define FRF_AB_DEBUG_BLK_SEL0_WIDTH 3 -#define FRF_CZ_CS_PORT_NUM_LBN 40 -#define FRF_CZ_CS_PORT_NUM_WIDTH 2 -#define FRF_AB_MISC_DEBUG_ADDR_LBN 36 -#define FRF_AB_MISC_DEBUG_ADDR_WIDTH 5 -#define FRF_AB_SERDES_DEBUG_ADDR_LBN 31 -#define FRF_AB_SERDES_DEBUG_ADDR_WIDTH 5 -#define FRF_CZ_CS_PORT_FPE_LBN 1 -#define FRF_CZ_CS_PORT_FPE_WIDTH 35 -#define FRF_AB_EM_DEBUG_ADDR_LBN 26 -#define FRF_AB_EM_DEBUG_ADDR_WIDTH 5 -#define FRF_AB_SR_DEBUG_ADDR_LBN 21 -#define FRF_AB_SR_DEBUG_ADDR_WIDTH 5 -#define FRF_AB_EV_DEBUG_ADDR_LBN 16 -#define FRF_AB_EV_DEBUG_ADDR_WIDTH 5 -#define FRF_AB_RX_DEBUG_ADDR_LBN 11 -#define FRF_AB_RX_DEBUG_ADDR_WIDTH 5 -#define FRF_AB_TX_DEBUG_ADDR_LBN 6 -#define FRF_AB_TX_DEBUG_ADDR_WIDTH 5 -#define FRF_AB_CS_BIU_DEBUG_ADDR_LBN 1 -#define FRF_AB_CS_BIU_DEBUG_ADDR_WIDTH 5 -#define FRF_AZ_CS_DEBUG_EN_LBN 0 -#define FRF_AZ_CS_DEBUG_EN_WIDTH 1 - -/* DRIVER_REG: Driver scratch register [0-7] */ -#define FR_AZ_DRIVER 0x00000280 -#define FR_AZ_DRIVER_STEP 16 -#define FR_AZ_DRIVER_ROWS 8 -#define FRF_AZ_DRIVER_DW0_LBN 0 -#define FRF_AZ_DRIVER_DW0_WIDTH 32 - -/* ALTERA_BUILD_REG: Altera build register */ -#define FR_AZ_ALTERA_BUILD 0x00000300 -#define FRF_AZ_ALTERA_BUILD_VER_LBN 0 -#define FRF_AZ_ALTERA_BUILD_VER_WIDTH 32 - -/* CSR_SPARE_REG: Spare register */ -#define FR_AZ_CSR_SPARE 0x00000310 -#define FRF_AB_MEM_PERR_EN_LBN 64 -#define FRF_AB_MEM_PERR_EN_WIDTH 38 -#define FRF_CZ_MEM_PERR_EN_LBN 64 -#define FRF_CZ_MEM_PERR_EN_WIDTH 35 -#define FRF_AB_MEM_PERR_EN_TX_DATA_LBN 72 -#define FRF_AB_MEM_PERR_EN_TX_DATA_WIDTH 2 -#define FRF_AZ_CSR_SPARE_BITS_LBN 0 -#define FRF_AZ_CSR_SPARE_BITS_WIDTH 32 - -/* PCIE_SD_CTL0123_REG: PCIE SerDes control register 0 to 3 */ -#define FR_AB_PCIE_SD_CTL0123 0x00000320 -#define FRF_AB_PCIE_TESTSIG_H_LBN 96 -#define FRF_AB_PCIE_TESTSIG_H_WIDTH 19 -#define FRF_AB_PCIE_TESTSIG_L_LBN 64 -#define FRF_AB_PCIE_TESTSIG_L_WIDTH 19 -#define FRF_AB_PCIE_OFFSET_LBN 56 -#define FRF_AB_PCIE_OFFSET_WIDTH 8 -#define FRF_AB_PCIE_OFFSETEN_H_LBN 55 -#define FRF_AB_PCIE_OFFSETEN_H_WIDTH 1 -#define FRF_AB_PCIE_OFFSETEN_L_LBN 54 -#define FRF_AB_PCIE_OFFSETEN_L_WIDTH 1 -#define FRF_AB_PCIE_HIVMODE_H_LBN 53 -#define FRF_AB_PCIE_HIVMODE_H_WIDTH 1 -#define FRF_AB_PCIE_HIVMODE_L_LBN 52 -#define FRF_AB_PCIE_HIVMODE_L_WIDTH 1 -#define FRF_AB_PCIE_PARRESET_H_LBN 51 -#define FRF_AB_PCIE_PARRESET_H_WIDTH 1 -#define FRF_AB_PCIE_PARRESET_L_LBN 50 -#define FRF_AB_PCIE_PARRESET_L_WIDTH 1 -#define FRF_AB_PCIE_LPBKWDRV_H_LBN 49 -#define FRF_AB_PCIE_LPBKWDRV_H_WIDTH 1 -#define FRF_AB_PCIE_LPBKWDRV_L_LBN 48 -#define FRF_AB_PCIE_LPBKWDRV_L_WIDTH 1 -#define FRF_AB_PCIE_LPBK_LBN 40 -#define FRF_AB_PCIE_LPBK_WIDTH 8 -#define FRF_AB_PCIE_PARLPBK_LBN 32 -#define FRF_AB_PCIE_PARLPBK_WIDTH 8 -#define FRF_AB_PCIE_RXTERMADJ_H_LBN 30 -#define FRF_AB_PCIE_RXTERMADJ_H_WIDTH 2 -#define FRF_AB_PCIE_RXTERMADJ_L_LBN 28 -#define FRF_AB_PCIE_RXTERMADJ_L_WIDTH 2 -#define FFE_AB_PCIE_RXTERMADJ_MIN15PCNT 3 -#define FFE_AB_PCIE_RXTERMADJ_PL10PCNT 2 -#define FFE_AB_PCIE_RXTERMADJ_MIN17PCNT 1 -#define FFE_AB_PCIE_RXTERMADJ_NOMNL 0 -#define FRF_AB_PCIE_TXTERMADJ_H_LBN 26 -#define FRF_AB_PCIE_TXTERMADJ_H_WIDTH 2 -#define FRF_AB_PCIE_TXTERMADJ_L_LBN 24 -#define FRF_AB_PCIE_TXTERMADJ_L_WIDTH 2 -#define FFE_AB_PCIE_TXTERMADJ_MIN15PCNT 3 -#define FFE_AB_PCIE_TXTERMADJ_PL10PCNT 2 -#define FFE_AB_PCIE_TXTERMADJ_MIN17PCNT 1 -#define FFE_AB_PCIE_TXTERMADJ_NOMNL 0 -#define FRF_AB_PCIE_RXEQCTL_H_LBN 18 -#define FRF_AB_PCIE_RXEQCTL_H_WIDTH 2 -#define FRF_AB_PCIE_RXEQCTL_L_LBN 16 -#define FRF_AB_PCIE_RXEQCTL_L_WIDTH 2 -#define FFE_AB_PCIE_RXEQCTL_OFF_ALT 3 -#define FFE_AB_PCIE_RXEQCTL_OFF 2 -#define FFE_AB_PCIE_RXEQCTL_MIN 1 -#define FFE_AB_PCIE_RXEQCTL_MAX 0 -#define FRF_AB_PCIE_HIDRV_LBN 8 -#define FRF_AB_PCIE_HIDRV_WIDTH 8 -#define FRF_AB_PCIE_LODRV_LBN 0 -#define FRF_AB_PCIE_LODRV_WIDTH 8 - -/* PCIE_SD_CTL45_REG: PCIE SerDes control register 4 and 5 */ -#define FR_AB_PCIE_SD_CTL45 0x00000330 -#define FRF_AB_PCIE_DTX7_LBN 60 -#define FRF_AB_PCIE_DTX7_WIDTH 4 -#define FRF_AB_PCIE_DTX6_LBN 56 -#define FRF_AB_PCIE_DTX6_WIDTH 4 -#define FRF_AB_PCIE_DTX5_LBN 52 -#define FRF_AB_PCIE_DTX5_WIDTH 4 -#define FRF_AB_PCIE_DTX4_LBN 48 -#define FRF_AB_PCIE_DTX4_WIDTH 4 -#define FRF_AB_PCIE_DTX3_LBN 44 -#define FRF_AB_PCIE_DTX3_WIDTH 4 -#define FRF_AB_PCIE_DTX2_LBN 40 -#define FRF_AB_PCIE_DTX2_WIDTH 4 -#define FRF_AB_PCIE_DTX1_LBN 36 -#define FRF_AB_PCIE_DTX1_WIDTH 4 -#define FRF_AB_PCIE_DTX0_LBN 32 -#define FRF_AB_PCIE_DTX0_WIDTH 4 -#define FRF_AB_PCIE_DEQ7_LBN 28 -#define FRF_AB_PCIE_DEQ7_WIDTH 4 -#define FRF_AB_PCIE_DEQ6_LBN 24 -#define FRF_AB_PCIE_DEQ6_WIDTH 4 -#define FRF_AB_PCIE_DEQ5_LBN 20 -#define FRF_AB_PCIE_DEQ5_WIDTH 4 -#define FRF_AB_PCIE_DEQ4_LBN 16 -#define FRF_AB_PCIE_DEQ4_WIDTH 4 -#define FRF_AB_PCIE_DEQ3_LBN 12 -#define FRF_AB_PCIE_DEQ3_WIDTH 4 -#define FRF_AB_PCIE_DEQ2_LBN 8 -#define FRF_AB_PCIE_DEQ2_WIDTH 4 -#define FRF_AB_PCIE_DEQ1_LBN 4 -#define FRF_AB_PCIE_DEQ1_WIDTH 4 -#define FRF_AB_PCIE_DEQ0_LBN 0 -#define FRF_AB_PCIE_DEQ0_WIDTH 4 - -/* PCIE_PCS_CTL_STAT_REG: PCIE PCS control and status register */ -#define FR_AB_PCIE_PCS_CTL_STAT 0x00000340 -#define FRF_AB_PCIE_PRBSERRCOUNT0_H_LBN 52 -#define FRF_AB_PCIE_PRBSERRCOUNT0_H_WIDTH 4 -#define FRF_AB_PCIE_PRBSERRCOUNT0_L_LBN 48 -#define FRF_AB_PCIE_PRBSERRCOUNT0_L_WIDTH 4 -#define FRF_AB_PCIE_PRBSERR_LBN 40 -#define FRF_AB_PCIE_PRBSERR_WIDTH 8 -#define FRF_AB_PCIE_PRBSERRH0_LBN 32 -#define FRF_AB_PCIE_PRBSERRH0_WIDTH 8 -#define FRF_AB_PCIE_FASTINIT_H_LBN 15 -#define FRF_AB_PCIE_FASTINIT_H_WIDTH 1 -#define FRF_AB_PCIE_FASTINIT_L_LBN 14 -#define FRF_AB_PCIE_FASTINIT_L_WIDTH 1 -#define FRF_AB_PCIE_CTCDISABLE_H_LBN 13 -#define FRF_AB_PCIE_CTCDISABLE_H_WIDTH 1 -#define FRF_AB_PCIE_CTCDISABLE_L_LBN 12 -#define FRF_AB_PCIE_CTCDISABLE_L_WIDTH 1 -#define FRF_AB_PCIE_PRBSSYNC_H_LBN 11 -#define FRF_AB_PCIE_PRBSSYNC_H_WIDTH 1 -#define FRF_AB_PCIE_PRBSSYNC_L_LBN 10 -#define FRF_AB_PCIE_PRBSSYNC_L_WIDTH 1 -#define FRF_AB_PCIE_PRBSERRACK_H_LBN 9 -#define FRF_AB_PCIE_PRBSERRACK_H_WIDTH 1 -#define FRF_AB_PCIE_PRBSERRACK_L_LBN 8 -#define FRF_AB_PCIE_PRBSERRACK_L_WIDTH 1 -#define FRF_AB_PCIE_PRBSSEL_LBN 0 -#define FRF_AB_PCIE_PRBSSEL_WIDTH 8 - -/* DEBUG_DATA_OUT_REG: Live Debug and Debug 2 out ports */ -#define FR_BB_DEBUG_DATA_OUT 0x00000350 -#define FRF_BB_DEBUG2_PORT_LBN 25 -#define FRF_BB_DEBUG2_PORT_WIDTH 15 -#define FRF_BB_DEBUG1_PORT_LBN 0 -#define FRF_BB_DEBUG1_PORT_WIDTH 25 - -/* EVQ_RPTR_REGP0: Event queue read pointer register */ -#define FR_BZ_EVQ_RPTR_P0 0x00000400 -#define FR_BZ_EVQ_RPTR_P0_STEP 8192 -#define FR_BZ_EVQ_RPTR_P0_ROWS 1024 -/* EVQ_RPTR_REG_KER: Event queue read pointer register */ -#define FR_AA_EVQ_RPTR_KER 0x00011b00 -#define FR_AA_EVQ_RPTR_KER_STEP 4 -#define FR_AA_EVQ_RPTR_KER_ROWS 4 -/* EVQ_RPTR_REG: Event queue read pointer register */ -#define FR_BZ_EVQ_RPTR 0x00fa0000 -#define FR_BZ_EVQ_RPTR_STEP 16 -#define FR_BB_EVQ_RPTR_ROWS 4096 -#define FR_CZ_EVQ_RPTR_ROWS 1024 -/* EVQ_RPTR_REGP123: Event queue read pointer register */ -#define FR_BB_EVQ_RPTR_P123 0x01000400 -#define FR_BB_EVQ_RPTR_P123_STEP 8192 -#define FR_BB_EVQ_RPTR_P123_ROWS 3072 -#define FRF_AZ_EVQ_RPTR_VLD_LBN 15 -#define FRF_AZ_EVQ_RPTR_VLD_WIDTH 1 -#define FRF_AZ_EVQ_RPTR_LBN 0 -#define FRF_AZ_EVQ_RPTR_WIDTH 15 - -/* TIMER_COMMAND_REGP0: Timer Command Registers */ -#define FR_BZ_TIMER_COMMAND_P0 0x00000420 -#define FR_BZ_TIMER_COMMAND_P0_STEP 8192 -#define FR_BZ_TIMER_COMMAND_P0_ROWS 1024 -/* TIMER_COMMAND_REG_KER: Timer Command Registers */ -#define FR_AA_TIMER_COMMAND_KER 0x00000420 -#define FR_AA_TIMER_COMMAND_KER_STEP 8192 -#define FR_AA_TIMER_COMMAND_KER_ROWS 4 -/* TIMER_COMMAND_REGP123: Timer Command Registers */ -#define FR_BB_TIMER_COMMAND_P123 0x01000420 -#define FR_BB_TIMER_COMMAND_P123_STEP 8192 -#define FR_BB_TIMER_COMMAND_P123_ROWS 3072 -#define FRF_CZ_TC_TIMER_MODE_LBN 14 -#define FRF_CZ_TC_TIMER_MODE_WIDTH 2 -#define FRF_AB_TC_TIMER_MODE_LBN 12 -#define FRF_AB_TC_TIMER_MODE_WIDTH 2 -#define FRF_CZ_TC_TIMER_VAL_LBN 0 -#define FRF_CZ_TC_TIMER_VAL_WIDTH 14 -#define FRF_AB_TC_TIMER_VAL_LBN 0 -#define FRF_AB_TC_TIMER_VAL_WIDTH 12 - -/* DRV_EV_REG: Driver generated event register */ -#define FR_AZ_DRV_EV 0x00000440 -#define FRF_AZ_DRV_EV_QID_LBN 64 -#define FRF_AZ_DRV_EV_QID_WIDTH 12 -#define FRF_AZ_DRV_EV_DATA_LBN 0 -#define FRF_AZ_DRV_EV_DATA_WIDTH 64 - -/* EVQ_CTL_REG: Event queue control register */ -#define FR_AZ_EVQ_CTL 0x00000450 -#define FRF_CZ_RX_EVQ_WAKEUP_MASK_LBN 15 -#define FRF_CZ_RX_EVQ_WAKEUP_MASK_WIDTH 10 -#define FRF_BB_RX_EVQ_WAKEUP_MASK_LBN 15 -#define FRF_BB_RX_EVQ_WAKEUP_MASK_WIDTH 6 -#define FRF_AZ_EVQ_OWNERR_CTL_LBN 14 -#define FRF_AZ_EVQ_OWNERR_CTL_WIDTH 1 -#define FRF_AZ_EVQ_FIFO_AF_TH_LBN 7 -#define FRF_AZ_EVQ_FIFO_AF_TH_WIDTH 7 -#define FRF_AZ_EVQ_FIFO_NOTAF_TH_LBN 0 -#define FRF_AZ_EVQ_FIFO_NOTAF_TH_WIDTH 7 - -/* EVQ_CNT1_REG: Event counter 1 register */ -#define FR_AZ_EVQ_CNT1 0x00000460 -#define FRF_AZ_EVQ_CNT_PRE_FIFO_LBN 120 -#define FRF_AZ_EVQ_CNT_PRE_FIFO_WIDTH 7 -#define FRF_AZ_EVQ_CNT_TOBIU_LBN 100 -#define FRF_AZ_EVQ_CNT_TOBIU_WIDTH 20 -#define FRF_AZ_EVQ_TX_REQ_CNT_LBN 80 -#define FRF_AZ_EVQ_TX_REQ_CNT_WIDTH 20 -#define FRF_AZ_EVQ_RX_REQ_CNT_LBN 60 -#define FRF_AZ_EVQ_RX_REQ_CNT_WIDTH 20 -#define FRF_AZ_EVQ_EM_REQ_CNT_LBN 40 -#define FRF_AZ_EVQ_EM_REQ_CNT_WIDTH 20 -#define FRF_AZ_EVQ_CSR_REQ_CNT_LBN 20 -#define FRF_AZ_EVQ_CSR_REQ_CNT_WIDTH 20 -#define FRF_AZ_EVQ_ERR_REQ_CNT_LBN 0 -#define FRF_AZ_EVQ_ERR_REQ_CNT_WIDTH 20 - -/* EVQ_CNT2_REG: Event counter 2 register */ -#define FR_AZ_EVQ_CNT2 0x00000470 -#define FRF_AZ_EVQ_UPD_REQ_CNT_LBN 104 -#define FRF_AZ_EVQ_UPD_REQ_CNT_WIDTH 20 -#define FRF_AZ_EVQ_CLR_REQ_CNT_LBN 84 -#define FRF_AZ_EVQ_CLR_REQ_CNT_WIDTH 20 -#define FRF_AZ_EVQ_RDY_CNT_LBN 80 -#define FRF_AZ_EVQ_RDY_CNT_WIDTH 4 -#define FRF_AZ_EVQ_WU_REQ_CNT_LBN 60 -#define FRF_AZ_EVQ_WU_REQ_CNT_WIDTH 20 -#define FRF_AZ_EVQ_WET_REQ_CNT_LBN 40 -#define FRF_AZ_EVQ_WET_REQ_CNT_WIDTH 20 -#define FRF_AZ_EVQ_INIT_REQ_CNT_LBN 20 -#define FRF_AZ_EVQ_INIT_REQ_CNT_WIDTH 20 -#define FRF_AZ_EVQ_TM_REQ_CNT_LBN 0 -#define FRF_AZ_EVQ_TM_REQ_CNT_WIDTH 20 - -/* USR_EV_REG: Event mailbox register */ -#define FR_CZ_USR_EV 0x00000540 -#define FR_CZ_USR_EV_STEP 8192 -#define FR_CZ_USR_EV_ROWS 1024 -#define FRF_CZ_USR_EV_DATA_LBN 0 -#define FRF_CZ_USR_EV_DATA_WIDTH 32 - -/* BUF_TBL_CFG_REG: Buffer table configuration register */ -#define FR_AZ_BUF_TBL_CFG 0x00000600 -#define FRF_AZ_BUF_TBL_MODE_LBN 3 -#define FRF_AZ_BUF_TBL_MODE_WIDTH 1 - -/* SRM_RX_DC_CFG_REG: SRAM receive descriptor cache configuration register */ -#define FR_AZ_SRM_RX_DC_CFG 0x00000610 -#define FRF_AZ_SRM_CLK_TMP_EN_LBN 21 -#define FRF_AZ_SRM_CLK_TMP_EN_WIDTH 1 -#define FRF_AZ_SRM_RX_DC_BASE_ADR_LBN 0 -#define FRF_AZ_SRM_RX_DC_BASE_ADR_WIDTH 21 - -/* SRM_TX_DC_CFG_REG: SRAM transmit descriptor cache configuration register */ -#define FR_AZ_SRM_TX_DC_CFG 0x00000620 -#define FRF_AZ_SRM_TX_DC_BASE_ADR_LBN 0 -#define FRF_AZ_SRM_TX_DC_BASE_ADR_WIDTH 21 - -/* SRM_CFG_REG: SRAM configuration register */ -#define FR_AZ_SRM_CFG 0x00000630 -#define FRF_AZ_SRM_OOB_ADR_INTEN_LBN 5 -#define FRF_AZ_SRM_OOB_ADR_INTEN_WIDTH 1 -#define FRF_AZ_SRM_OOB_BUF_INTEN_LBN 4 -#define FRF_AZ_SRM_OOB_BUF_INTEN_WIDTH 1 -#define FRF_AZ_SRM_INIT_EN_LBN 3 -#define FRF_AZ_SRM_INIT_EN_WIDTH 1 -#define FRF_AZ_SRM_NUM_BANK_LBN 2 -#define FRF_AZ_SRM_NUM_BANK_WIDTH 1 -#define FRF_AZ_SRM_BANK_SIZE_LBN 0 -#define FRF_AZ_SRM_BANK_SIZE_WIDTH 2 - -/* BUF_TBL_UPD_REG: Buffer table update register */ -#define FR_AZ_BUF_TBL_UPD 0x00000650 -#define FRF_AZ_BUF_UPD_CMD_LBN 63 -#define FRF_AZ_BUF_UPD_CMD_WIDTH 1 -#define FRF_AZ_BUF_CLR_CMD_LBN 62 -#define FRF_AZ_BUF_CLR_CMD_WIDTH 1 -#define FRF_AZ_BUF_CLR_END_ID_LBN 32 -#define FRF_AZ_BUF_CLR_END_ID_WIDTH 20 -#define FRF_AZ_BUF_CLR_START_ID_LBN 0 -#define FRF_AZ_BUF_CLR_START_ID_WIDTH 20 - -/* SRM_UPD_EVQ_REG: Buffer table update register */ -#define FR_AZ_SRM_UPD_EVQ 0x00000660 -#define FRF_AZ_SRM_UPD_EVQ_ID_LBN 0 -#define FRF_AZ_SRM_UPD_EVQ_ID_WIDTH 12 - -/* SRAM_PARITY_REG: SRAM parity register. */ -#define FR_AZ_SRAM_PARITY 0x00000670 -#define FRF_CZ_BYPASS_ECC_LBN 3 -#define FRF_CZ_BYPASS_ECC_WIDTH 1 -#define FRF_CZ_SEC_INT_LBN 2 -#define FRF_CZ_SEC_INT_WIDTH 1 -#define FRF_CZ_FORCE_SRAM_DOUBLE_ERR_LBN 1 -#define FRF_CZ_FORCE_SRAM_DOUBLE_ERR_WIDTH 1 -#define FRF_AB_FORCE_SRAM_PERR_LBN 0 -#define FRF_AB_FORCE_SRAM_PERR_WIDTH 1 -#define FRF_CZ_FORCE_SRAM_SINGLE_ERR_LBN 0 -#define FRF_CZ_FORCE_SRAM_SINGLE_ERR_WIDTH 1 - -/* RX_CFG_REG: Receive configuration register */ -#define FR_AZ_RX_CFG 0x00000800 -#define FRF_CZ_RX_MIN_KBUF_SIZE_LBN 72 -#define FRF_CZ_RX_MIN_KBUF_SIZE_WIDTH 14 -#define FRF_CZ_RX_HDR_SPLIT_EN_LBN 71 -#define FRF_CZ_RX_HDR_SPLIT_EN_WIDTH 1 -#define FRF_CZ_RX_HDR_SPLIT_PLD_BUF_SIZE_LBN 62 -#define FRF_CZ_RX_HDR_SPLIT_PLD_BUF_SIZE_WIDTH 9 -#define FRF_CZ_RX_HDR_SPLIT_HDR_BUF_SIZE_LBN 53 -#define FRF_CZ_RX_HDR_SPLIT_HDR_BUF_SIZE_WIDTH 9 -#define FRF_CZ_RX_PRE_RFF_IPG_LBN 49 -#define FRF_CZ_RX_PRE_RFF_IPG_WIDTH 4 -#define FRF_BZ_RX_TCP_SUP_LBN 48 -#define FRF_BZ_RX_TCP_SUP_WIDTH 1 -#define FRF_BZ_RX_INGR_EN_LBN 47 -#define FRF_BZ_RX_INGR_EN_WIDTH 1 -#define FRF_BZ_RX_IP_HASH_LBN 46 -#define FRF_BZ_RX_IP_HASH_WIDTH 1 -#define FRF_BZ_RX_HASH_ALG_LBN 45 -#define FRF_BZ_RX_HASH_ALG_WIDTH 1 -#define FRF_BZ_RX_HASH_INSRT_HDR_LBN 44 -#define FRF_BZ_RX_HASH_INSRT_HDR_WIDTH 1 -#define FRF_BZ_RX_DESC_PUSH_EN_LBN 43 -#define FRF_BZ_RX_DESC_PUSH_EN_WIDTH 1 -#define FRF_BZ_RX_RDW_PATCH_EN_LBN 42 -#define FRF_BZ_RX_RDW_PATCH_EN_WIDTH 1 -#define FRF_BB_RX_PCI_BURST_SIZE_LBN 39 -#define FRF_BB_RX_PCI_BURST_SIZE_WIDTH 3 -#define FRF_BZ_RX_OWNERR_CTL_LBN 38 -#define FRF_BZ_RX_OWNERR_CTL_WIDTH 1 -#define FRF_BZ_RX_XON_TX_TH_LBN 33 -#define FRF_BZ_RX_XON_TX_TH_WIDTH 5 -#define FRF_AA_RX_DESC_PUSH_EN_LBN 35 -#define FRF_AA_RX_DESC_PUSH_EN_WIDTH 1 -#define FRF_AA_RX_RDW_PATCH_EN_LBN 34 -#define FRF_AA_RX_RDW_PATCH_EN_WIDTH 1 -#define FRF_AA_RX_PCI_BURST_SIZE_LBN 31 -#define FRF_AA_RX_PCI_BURST_SIZE_WIDTH 3 -#define FRF_BZ_RX_XOFF_TX_TH_LBN 28 -#define FRF_BZ_RX_XOFF_TX_TH_WIDTH 5 -#define FRF_AA_RX_OWNERR_CTL_LBN 30 -#define FRF_AA_RX_OWNERR_CTL_WIDTH 1 -#define FRF_AA_RX_XON_TX_TH_LBN 25 -#define FRF_AA_RX_XON_TX_TH_WIDTH 5 -#define FRF_BZ_RX_USR_BUF_SIZE_LBN 19 -#define FRF_BZ_RX_USR_BUF_SIZE_WIDTH 9 -#define FRF_AA_RX_XOFF_TX_TH_LBN 20 -#define FRF_AA_RX_XOFF_TX_TH_WIDTH 5 -#define FRF_AA_RX_USR_BUF_SIZE_LBN 11 -#define FRF_AA_RX_USR_BUF_SIZE_WIDTH 9 -#define FRF_BZ_RX_XON_MAC_TH_LBN 10 -#define FRF_BZ_RX_XON_MAC_TH_WIDTH 9 -#define FRF_AA_RX_XON_MAC_TH_LBN 6 -#define FRF_AA_RX_XON_MAC_TH_WIDTH 5 -#define FRF_BZ_RX_XOFF_MAC_TH_LBN 1 -#define FRF_BZ_RX_XOFF_MAC_TH_WIDTH 9 -#define FRF_AA_RX_XOFF_MAC_TH_LBN 1 -#define FRF_AA_RX_XOFF_MAC_TH_WIDTH 5 -#define FRF_AZ_RX_XOFF_MAC_EN_LBN 0 -#define FRF_AZ_RX_XOFF_MAC_EN_WIDTH 1 - -/* RX_FILTER_CTL_REG: Receive filter control registers */ -#define FR_BZ_RX_FILTER_CTL 0x00000810 -#define FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT_LBN 94 -#define FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT_WIDTH 8 -#define FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT_LBN 86 -#define FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT_WIDTH 8 -#define FRF_CZ_RX_FILTER_ALL_VLAN_ETHERTYPES_LBN 85 -#define FRF_CZ_RX_FILTER_ALL_VLAN_ETHERTYPES_WIDTH 1 -#define FRF_CZ_RX_VLAN_MATCH_ETHERTYPE_LBN 69 -#define FRF_CZ_RX_VLAN_MATCH_ETHERTYPE_WIDTH 16 -#define FRF_CZ_MULTICAST_NOMATCH_Q_ID_LBN 57 -#define FRF_CZ_MULTICAST_NOMATCH_Q_ID_WIDTH 12 -#define FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED_LBN 56 -#define FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED_WIDTH 1 -#define FRF_CZ_MULTICAST_NOMATCH_IP_OVERRIDE_LBN 55 -#define FRF_CZ_MULTICAST_NOMATCH_IP_OVERRIDE_WIDTH 1 -#define FRF_CZ_UNICAST_NOMATCH_Q_ID_LBN 43 -#define FRF_CZ_UNICAST_NOMATCH_Q_ID_WIDTH 12 -#define FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED_LBN 42 -#define FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED_WIDTH 1 -#define FRF_CZ_UNICAST_NOMATCH_IP_OVERRIDE_LBN 41 -#define FRF_CZ_UNICAST_NOMATCH_IP_OVERRIDE_WIDTH 1 -#define FRF_BZ_SCATTER_ENBL_NO_MATCH_Q_LBN 40 -#define FRF_BZ_SCATTER_ENBL_NO_MATCH_Q_WIDTH 1 -#define FRF_BZ_UDP_FULL_SRCH_LIMIT_LBN 32 -#define FRF_BZ_UDP_FULL_SRCH_LIMIT_WIDTH 8 -#define FRF_BZ_NUM_KER_LBN 24 -#define FRF_BZ_NUM_KER_WIDTH 2 -#define FRF_BZ_UDP_WILD_SRCH_LIMIT_LBN 16 -#define FRF_BZ_UDP_WILD_SRCH_LIMIT_WIDTH 8 -#define FRF_BZ_TCP_WILD_SRCH_LIMIT_LBN 8 -#define FRF_BZ_TCP_WILD_SRCH_LIMIT_WIDTH 8 -#define FRF_BZ_TCP_FULL_SRCH_LIMIT_LBN 0 -#define FRF_BZ_TCP_FULL_SRCH_LIMIT_WIDTH 8 - -/* RX_FLUSH_DESCQ_REG: Receive flush descriptor queue register */ -#define FR_AZ_RX_FLUSH_DESCQ 0x00000820 -#define FRF_AZ_RX_FLUSH_DESCQ_CMD_LBN 24 -#define FRF_AZ_RX_FLUSH_DESCQ_CMD_WIDTH 1 -#define FRF_AZ_RX_FLUSH_DESCQ_LBN 0 -#define FRF_AZ_RX_FLUSH_DESCQ_WIDTH 12 - -/* RX_DESC_UPD_REGP0: Receive descriptor update register. */ -#define FR_BZ_RX_DESC_UPD_P0 0x00000830 -#define FR_BZ_RX_DESC_UPD_P0_STEP 8192 -#define FR_BZ_RX_DESC_UPD_P0_ROWS 1024 -/* RX_DESC_UPD_REG_KER: Receive descriptor update register. */ -#define FR_AA_RX_DESC_UPD_KER 0x00000830 -#define FR_AA_RX_DESC_UPD_KER_STEP 8192 -#define FR_AA_RX_DESC_UPD_KER_ROWS 4 -/* RX_DESC_UPD_REGP123: Receive descriptor update register. */ -#define FR_BB_RX_DESC_UPD_P123 0x01000830 -#define FR_BB_RX_DESC_UPD_P123_STEP 8192 -#define FR_BB_RX_DESC_UPD_P123_ROWS 3072 -#define FRF_AZ_RX_DESC_WPTR_LBN 96 -#define FRF_AZ_RX_DESC_WPTR_WIDTH 12 -#define FRF_AZ_RX_DESC_PUSH_CMD_LBN 95 -#define FRF_AZ_RX_DESC_PUSH_CMD_WIDTH 1 -#define FRF_AZ_RX_DESC_LBN 0 -#define FRF_AZ_RX_DESC_WIDTH 64 - -/* RX_DC_CFG_REG: Receive descriptor cache configuration register */ -#define FR_AZ_RX_DC_CFG 0x00000840 -#define FRF_AB_RX_MAX_PF_LBN 2 -#define FRF_AB_RX_MAX_PF_WIDTH 2 -#define FRF_AZ_RX_DC_SIZE_LBN 0 -#define FRF_AZ_RX_DC_SIZE_WIDTH 2 -#define FFE_AZ_RX_DC_SIZE_64 3 -#define FFE_AZ_RX_DC_SIZE_32 2 -#define FFE_AZ_RX_DC_SIZE_16 1 -#define FFE_AZ_RX_DC_SIZE_8 0 - -/* RX_DC_PF_WM_REG: Receive descriptor cache pre-fetch watermark register */ -#define FR_AZ_RX_DC_PF_WM 0x00000850 -#define FRF_AZ_RX_DC_PF_HWM_LBN 6 -#define FRF_AZ_RX_DC_PF_HWM_WIDTH 6 -#define FRF_AZ_RX_DC_PF_LWM_LBN 0 -#define FRF_AZ_RX_DC_PF_LWM_WIDTH 6 - -/* RX_RSS_TKEY_REG: RSS Toeplitz hash key */ -#define FR_BZ_RX_RSS_TKEY 0x00000860 -#define FRF_BZ_RX_RSS_TKEY_HI_LBN 64 -#define FRF_BZ_RX_RSS_TKEY_HI_WIDTH 64 -#define FRF_BZ_RX_RSS_TKEY_LO_LBN 0 -#define FRF_BZ_RX_RSS_TKEY_LO_WIDTH 64 - -/* RX_NODESC_DROP_REG: Receive dropped packet counter register */ -#define FR_AZ_RX_NODESC_DROP 0x00000880 -#define FRF_CZ_RX_NODESC_DROP_CNT_LBN 0 -#define FRF_CZ_RX_NODESC_DROP_CNT_WIDTH 32 -#define FRF_AB_RX_NODESC_DROP_CNT_LBN 0 -#define FRF_AB_RX_NODESC_DROP_CNT_WIDTH 16 - -/* RX_SELF_RST_REG: Receive self reset register */ -#define FR_AA_RX_SELF_RST 0x00000890 -#define FRF_AA_RX_ISCSI_DIS_LBN 17 -#define FRF_AA_RX_ISCSI_DIS_WIDTH 1 -#define FRF_AA_RX_SW_RST_REG_LBN 16 -#define FRF_AA_RX_SW_RST_REG_WIDTH 1 -#define FRF_AA_RX_NODESC_WAIT_DIS_LBN 9 -#define FRF_AA_RX_NODESC_WAIT_DIS_WIDTH 1 -#define FRF_AA_RX_SELF_RST_EN_LBN 8 -#define FRF_AA_RX_SELF_RST_EN_WIDTH 1 -#define FRF_AA_RX_MAX_PF_LAT_LBN 4 -#define FRF_AA_RX_MAX_PF_LAT_WIDTH 4 -#define FRF_AA_RX_MAX_LU_LAT_LBN 0 -#define FRF_AA_RX_MAX_LU_LAT_WIDTH 4 - -/* RX_DEBUG_REG: undocumented register */ -#define FR_AZ_RX_DEBUG 0x000008a0 -#define FRF_AZ_RX_DEBUG_LBN 0 -#define FRF_AZ_RX_DEBUG_WIDTH 64 - -/* RX_PUSH_DROP_REG: Receive descriptor push dropped counter register */ -#define FR_AZ_RX_PUSH_DROP 0x000008b0 -#define FRF_AZ_RX_PUSH_DROP_CNT_LBN 0 -#define FRF_AZ_RX_PUSH_DROP_CNT_WIDTH 32 - -/* RX_RSS_IPV6_REG1: IPv6 RSS Toeplitz hash key low bytes */ -#define FR_CZ_RX_RSS_IPV6_REG1 0x000008d0 -#define FRF_CZ_RX_RSS_IPV6_TKEY_LO_LBN 0 -#define FRF_CZ_RX_RSS_IPV6_TKEY_LO_WIDTH 128 - -/* RX_RSS_IPV6_REG2: IPv6 RSS Toeplitz hash key middle bytes */ -#define FR_CZ_RX_RSS_IPV6_REG2 0x000008e0 -#define FRF_CZ_RX_RSS_IPV6_TKEY_MID_LBN 0 -#define FRF_CZ_RX_RSS_IPV6_TKEY_MID_WIDTH 128 - -/* RX_RSS_IPV6_REG3: IPv6 RSS Toeplitz hash key upper bytes and IPv6 RSS settings */ -#define FR_CZ_RX_RSS_IPV6_REG3 0x000008f0 -#define FRF_CZ_RX_RSS_IPV6_THASH_ENABLE_LBN 66 -#define FRF_CZ_RX_RSS_IPV6_THASH_ENABLE_WIDTH 1 -#define FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE_LBN 65 -#define FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE_WIDTH 1 -#define FRF_CZ_RX_RSS_IPV6_TCP_SUPPRESS_LBN 64 -#define FRF_CZ_RX_RSS_IPV6_TCP_SUPPRESS_WIDTH 1 -#define FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN 0 -#define FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH 64 - -/* TX_FLUSH_DESCQ_REG: Transmit flush descriptor queue register */ -#define FR_AZ_TX_FLUSH_DESCQ 0x00000a00 -#define FRF_AZ_TX_FLUSH_DESCQ_CMD_LBN 12 -#define FRF_AZ_TX_FLUSH_DESCQ_CMD_WIDTH 1 -#define FRF_AZ_TX_FLUSH_DESCQ_LBN 0 -#define FRF_AZ_TX_FLUSH_DESCQ_WIDTH 12 - -/* TX_DESC_UPD_REGP0: Transmit descriptor update register. */ -#define FR_BZ_TX_DESC_UPD_P0 0x00000a10 -#define FR_BZ_TX_DESC_UPD_P0_STEP 8192 -#define FR_BZ_TX_DESC_UPD_P0_ROWS 1024 -/* TX_DESC_UPD_REG_KER: Transmit descriptor update register. */ -#define FR_AA_TX_DESC_UPD_KER 0x00000a10 -#define FR_AA_TX_DESC_UPD_KER_STEP 8192 -#define FR_AA_TX_DESC_UPD_KER_ROWS 8 -/* TX_DESC_UPD_REGP123: Transmit descriptor update register. */ -#define FR_BB_TX_DESC_UPD_P123 0x01000a10 -#define FR_BB_TX_DESC_UPD_P123_STEP 8192 -#define FR_BB_TX_DESC_UPD_P123_ROWS 3072 -#define FRF_AZ_TX_DESC_WPTR_LBN 96 -#define FRF_AZ_TX_DESC_WPTR_WIDTH 12 -#define FRF_AZ_TX_DESC_PUSH_CMD_LBN 95 -#define FRF_AZ_TX_DESC_PUSH_CMD_WIDTH 1 -#define FRF_AZ_TX_DESC_LBN 0 -#define FRF_AZ_TX_DESC_WIDTH 95 - -/* TX_DC_CFG_REG: Transmit descriptor cache configuration register */ -#define FR_AZ_TX_DC_CFG 0x00000a20 -#define FRF_AZ_TX_DC_SIZE_LBN 0 -#define FRF_AZ_TX_DC_SIZE_WIDTH 2 -#define FFE_AZ_TX_DC_SIZE_32 2 -#define FFE_AZ_TX_DC_SIZE_16 1 -#define FFE_AZ_TX_DC_SIZE_8 0 - -/* TX_CHKSM_CFG_REG: Transmit checksum configuration register */ -#define FR_AA_TX_CHKSM_CFG 0x00000a30 -#define FRF_AA_TX_Q_CHKSM_DIS_96_127_LBN 96 -#define FRF_AA_TX_Q_CHKSM_DIS_96_127_WIDTH 32 -#define FRF_AA_TX_Q_CHKSM_DIS_64_95_LBN 64 -#define FRF_AA_TX_Q_CHKSM_DIS_64_95_WIDTH 32 -#define FRF_AA_TX_Q_CHKSM_DIS_32_63_LBN 32 -#define FRF_AA_TX_Q_CHKSM_DIS_32_63_WIDTH 32 -#define FRF_AA_TX_Q_CHKSM_DIS_0_31_LBN 0 -#define FRF_AA_TX_Q_CHKSM_DIS_0_31_WIDTH 32 - -/* TX_CFG_REG: Transmit configuration register */ -#define FR_AZ_TX_CFG 0x00000a50 -#define FRF_CZ_TX_CONT_LOOKUP_THRESH_RANGE_LBN 114 -#define FRF_CZ_TX_CONT_LOOKUP_THRESH_RANGE_WIDTH 8 -#define FRF_CZ_TX_FILTER_TEST_MODE_BIT_LBN 113 -#define FRF_CZ_TX_FILTER_TEST_MODE_BIT_WIDTH 1 -#define FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE_LBN 105 -#define FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE_WIDTH 8 -#define FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE_LBN 97 -#define FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE_WIDTH 8 -#define FRF_CZ_TX_UDPIP_FILTER_WILD_SEARCH_RANGE_LBN 89 -#define FRF_CZ_TX_UDPIP_FILTER_WILD_SEARCH_RANGE_WIDTH 8 -#define FRF_CZ_TX_UDPIP_FILTER_FULL_SEARCH_RANGE_LBN 81 -#define FRF_CZ_TX_UDPIP_FILTER_FULL_SEARCH_RANGE_WIDTH 8 -#define FRF_CZ_TX_TCPIP_FILTER_WILD_SEARCH_RANGE_LBN 73 -#define FRF_CZ_TX_TCPIP_FILTER_WILD_SEARCH_RANGE_WIDTH 8 -#define FRF_CZ_TX_TCPIP_FILTER_FULL_SEARCH_RANGE_LBN 65 -#define FRF_CZ_TX_TCPIP_FILTER_FULL_SEARCH_RANGE_WIDTH 8 -#define FRF_CZ_TX_FILTER_ALL_VLAN_ETHERTYPES_BIT_LBN 64 -#define FRF_CZ_TX_FILTER_ALL_VLAN_ETHERTYPES_BIT_WIDTH 1 -#define FRF_CZ_TX_VLAN_MATCH_ETHERTYPE_RANGE_LBN 48 -#define FRF_CZ_TX_VLAN_MATCH_ETHERTYPE_RANGE_WIDTH 16 -#define FRF_CZ_TX_FILTER_EN_BIT_LBN 47 -#define FRF_CZ_TX_FILTER_EN_BIT_WIDTH 1 -#define FRF_AZ_TX_IP_ID_P0_OFS_LBN 16 -#define FRF_AZ_TX_IP_ID_P0_OFS_WIDTH 15 -#define FRF_AZ_TX_NO_EOP_DISC_EN_LBN 5 -#define FRF_AZ_TX_NO_EOP_DISC_EN_WIDTH 1 -#define FRF_AZ_TX_P1_PRI_EN_LBN 4 -#define FRF_AZ_TX_P1_PRI_EN_WIDTH 1 -#define FRF_AZ_TX_OWNERR_CTL_LBN 2 -#define FRF_AZ_TX_OWNERR_CTL_WIDTH 1 -#define FRF_AA_TX_NON_IP_DROP_DIS_LBN 1 -#define FRF_AA_TX_NON_IP_DROP_DIS_WIDTH 1 -#define FRF_AZ_TX_IP_ID_REP_EN_LBN 0 -#define FRF_AZ_TX_IP_ID_REP_EN_WIDTH 1 - -/* TX_PUSH_DROP_REG: Transmit push dropped register */ -#define FR_AZ_TX_PUSH_DROP 0x00000a60 -#define FRF_AZ_TX_PUSH_DROP_CNT_LBN 0 -#define FRF_AZ_TX_PUSH_DROP_CNT_WIDTH 32 - -/* TX_RESERVED_REG: Transmit configuration register */ -#define FR_AZ_TX_RESERVED 0x00000a80 -#define FRF_AZ_TX_EVT_CNT_LBN 121 -#define FRF_AZ_TX_EVT_CNT_WIDTH 7 -#define FRF_AZ_TX_PREF_AGE_CNT_LBN 119 -#define FRF_AZ_TX_PREF_AGE_CNT_WIDTH 2 -#define FRF_AZ_TX_RD_COMP_TMR_LBN 96 -#define FRF_AZ_TX_RD_COMP_TMR_WIDTH 23 -#define FRF_AZ_TX_PUSH_EN_LBN 89 -#define FRF_AZ_TX_PUSH_EN_WIDTH 1 -#define FRF_AZ_TX_PUSH_CHK_DIS_LBN 88 -#define FRF_AZ_TX_PUSH_CHK_DIS_WIDTH 1 -#define FRF_AZ_TX_D_FF_FULL_P0_LBN 85 -#define FRF_AZ_TX_D_FF_FULL_P0_WIDTH 1 -#define FRF_AZ_TX_DMAR_ST_P0_LBN 81 -#define FRF_AZ_TX_DMAR_ST_P0_WIDTH 1 -#define FRF_AZ_TX_DMAQ_ST_LBN 78 -#define FRF_AZ_TX_DMAQ_ST_WIDTH 1 -#define FRF_AZ_TX_RX_SPACER_LBN 64 -#define FRF_AZ_TX_RX_SPACER_WIDTH 8 -#define FRF_AZ_TX_DROP_ABORT_EN_LBN 60 -#define FRF_AZ_TX_DROP_ABORT_EN_WIDTH 1 -#define FRF_AZ_TX_SOFT_EVT_EN_LBN 59 -#define FRF_AZ_TX_SOFT_EVT_EN_WIDTH 1 -#define FRF_AZ_TX_PS_EVT_DIS_LBN 58 -#define FRF_AZ_TX_PS_EVT_DIS_WIDTH 1 -#define FRF_AZ_TX_RX_SPACER_EN_LBN 57 -#define FRF_AZ_TX_RX_SPACER_EN_WIDTH 1 -#define FRF_AZ_TX_XP_TIMER_LBN 52 -#define FRF_AZ_TX_XP_TIMER_WIDTH 5 -#define FRF_AZ_TX_PREF_SPACER_LBN 44 -#define FRF_AZ_TX_PREF_SPACER_WIDTH 8 -#define FRF_AZ_TX_PREF_WD_TMR_LBN 22 -#define FRF_AZ_TX_PREF_WD_TMR_WIDTH 22 -#define FRF_AZ_TX_ONLY1TAG_LBN 21 -#define FRF_AZ_TX_ONLY1TAG_WIDTH 1 -#define FRF_AZ_TX_PREF_THRESHOLD_LBN 19 -#define FRF_AZ_TX_PREF_THRESHOLD_WIDTH 2 -#define FRF_AZ_TX_ONE_PKT_PER_Q_LBN 18 -#define FRF_AZ_TX_ONE_PKT_PER_Q_WIDTH 1 -#define FRF_AZ_TX_DIS_NON_IP_EV_LBN 17 -#define FRF_AZ_TX_DIS_NON_IP_EV_WIDTH 1 -#define FRF_AA_TX_DMA_FF_THR_LBN 16 -#define FRF_AA_TX_DMA_FF_THR_WIDTH 1 -#define FRF_AZ_TX_DMA_SPACER_LBN 8 -#define FRF_AZ_TX_DMA_SPACER_WIDTH 8 -#define FRF_AA_TX_TCP_DIS_LBN 7 -#define FRF_AA_TX_TCP_DIS_WIDTH 1 -#define FRF_BZ_TX_FLUSH_MIN_LEN_EN_LBN 7 -#define FRF_BZ_TX_FLUSH_MIN_LEN_EN_WIDTH 1 -#define FRF_AA_TX_IP_DIS_LBN 6 -#define FRF_AA_TX_IP_DIS_WIDTH 1 -#define FRF_AZ_TX_MAX_CPL_LBN 2 -#define FRF_AZ_TX_MAX_CPL_WIDTH 2 -#define FFE_AZ_TX_MAX_CPL_16 3 -#define FFE_AZ_TX_MAX_CPL_8 2 -#define FFE_AZ_TX_MAX_CPL_4 1 -#define FFE_AZ_TX_MAX_CPL_NOLIMIT 0 -#define FRF_AZ_TX_MAX_PREF_LBN 0 -#define FRF_AZ_TX_MAX_PREF_WIDTH 2 -#define FFE_AZ_TX_MAX_PREF_32 3 -#define FFE_AZ_TX_MAX_PREF_16 2 -#define FFE_AZ_TX_MAX_PREF_8 1 -#define FFE_AZ_TX_MAX_PREF_OFF 0 - -/* TX_PACE_REG: Transmit pace control register */ -#define FR_BZ_TX_PACE 0x00000a90 -#define FRF_BZ_TX_PACE_SB_NOT_AF_LBN 19 -#define FRF_BZ_TX_PACE_SB_NOT_AF_WIDTH 10 -#define FRF_BZ_TX_PACE_SB_AF_LBN 9 -#define FRF_BZ_TX_PACE_SB_AF_WIDTH 10 -#define FRF_BZ_TX_PACE_FB_BASE_LBN 5 -#define FRF_BZ_TX_PACE_FB_BASE_WIDTH 4 -#define FRF_BZ_TX_PACE_BIN_TH_LBN 0 -#define FRF_BZ_TX_PACE_BIN_TH_WIDTH 5 - -/* TX_PACE_DROP_QID_REG: PACE Drop QID Counter */ -#define FR_BZ_TX_PACE_DROP_QID 0x00000aa0 -#define FRF_BZ_TX_PACE_QID_DRP_CNT_LBN 0 -#define FRF_BZ_TX_PACE_QID_DRP_CNT_WIDTH 16 - -/* TX_VLAN_REG: Transmit VLAN tag register */ -#define FR_BB_TX_VLAN 0x00000ae0 -#define FRF_BB_TX_VLAN_EN_LBN 127 -#define FRF_BB_TX_VLAN_EN_WIDTH 1 -#define FRF_BB_TX_VLAN7_PORT1_EN_LBN 125 -#define FRF_BB_TX_VLAN7_PORT1_EN_WIDTH 1 -#define FRF_BB_TX_VLAN7_PORT0_EN_LBN 124 -#define FRF_BB_TX_VLAN7_PORT0_EN_WIDTH 1 -#define FRF_BB_TX_VLAN7_LBN 112 -#define FRF_BB_TX_VLAN7_WIDTH 12 -#define FRF_BB_TX_VLAN6_PORT1_EN_LBN 109 -#define FRF_BB_TX_VLAN6_PORT1_EN_WIDTH 1 -#define FRF_BB_TX_VLAN6_PORT0_EN_LBN 108 -#define FRF_BB_TX_VLAN6_PORT0_EN_WIDTH 1 -#define FRF_BB_TX_VLAN6_LBN 96 -#define FRF_BB_TX_VLAN6_WIDTH 12 -#define FRF_BB_TX_VLAN5_PORT1_EN_LBN 93 -#define FRF_BB_TX_VLAN5_PORT1_EN_WIDTH 1 -#define FRF_BB_TX_VLAN5_PORT0_EN_LBN 92 -#define FRF_BB_TX_VLAN5_PORT0_EN_WIDTH 1 -#define FRF_BB_TX_VLAN5_LBN 80 -#define FRF_BB_TX_VLAN5_WIDTH 12 -#define FRF_BB_TX_VLAN4_PORT1_EN_LBN 77 -#define FRF_BB_TX_VLAN4_PORT1_EN_WIDTH 1 -#define FRF_BB_TX_VLAN4_PORT0_EN_LBN 76 -#define FRF_BB_TX_VLAN4_PORT0_EN_WIDTH 1 -#define FRF_BB_TX_VLAN4_LBN 64 -#define FRF_BB_TX_VLAN4_WIDTH 12 -#define FRF_BB_TX_VLAN3_PORT1_EN_LBN 61 -#define FRF_BB_TX_VLAN3_PORT1_EN_WIDTH 1 -#define FRF_BB_TX_VLAN3_PORT0_EN_LBN 60 -#define FRF_BB_TX_VLAN3_PORT0_EN_WIDTH 1 -#define FRF_BB_TX_VLAN3_LBN 48 -#define FRF_BB_TX_VLAN3_WIDTH 12 -#define FRF_BB_TX_VLAN2_PORT1_EN_LBN 45 -#define FRF_BB_TX_VLAN2_PORT1_EN_WIDTH 1 -#define FRF_BB_TX_VLAN2_PORT0_EN_LBN 44 -#define FRF_BB_TX_VLAN2_PORT0_EN_WIDTH 1 -#define FRF_BB_TX_VLAN2_LBN 32 -#define FRF_BB_TX_VLAN2_WIDTH 12 -#define FRF_BB_TX_VLAN1_PORT1_EN_LBN 29 -#define FRF_BB_TX_VLAN1_PORT1_EN_WIDTH 1 -#define FRF_BB_TX_VLAN1_PORT0_EN_LBN 28 -#define FRF_BB_TX_VLAN1_PORT0_EN_WIDTH 1 -#define FRF_BB_TX_VLAN1_LBN 16 -#define FRF_BB_TX_VLAN1_WIDTH 12 -#define FRF_BB_TX_VLAN0_PORT1_EN_LBN 13 -#define FRF_BB_TX_VLAN0_PORT1_EN_WIDTH 1 -#define FRF_BB_TX_VLAN0_PORT0_EN_LBN 12 -#define FRF_BB_TX_VLAN0_PORT0_EN_WIDTH 1 -#define FRF_BB_TX_VLAN0_LBN 0 -#define FRF_BB_TX_VLAN0_WIDTH 12 - -/* TX_IPFIL_PORTEN_REG: Transmit filter control register */ -#define FR_BZ_TX_IPFIL_PORTEN 0x00000af0 -#define FRF_BZ_TX_MADR0_FIL_EN_LBN 64 -#define FRF_BZ_TX_MADR0_FIL_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL31_PORT_EN_LBN 62 -#define FRF_BB_TX_IPFIL31_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL30_PORT_EN_LBN 60 -#define FRF_BB_TX_IPFIL30_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL29_PORT_EN_LBN 58 -#define FRF_BB_TX_IPFIL29_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL28_PORT_EN_LBN 56 -#define FRF_BB_TX_IPFIL28_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL27_PORT_EN_LBN 54 -#define FRF_BB_TX_IPFIL27_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL26_PORT_EN_LBN 52 -#define FRF_BB_TX_IPFIL26_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL25_PORT_EN_LBN 50 -#define FRF_BB_TX_IPFIL25_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL24_PORT_EN_LBN 48 -#define FRF_BB_TX_IPFIL24_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL23_PORT_EN_LBN 46 -#define FRF_BB_TX_IPFIL23_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL22_PORT_EN_LBN 44 -#define FRF_BB_TX_IPFIL22_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL21_PORT_EN_LBN 42 -#define FRF_BB_TX_IPFIL21_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL20_PORT_EN_LBN 40 -#define FRF_BB_TX_IPFIL20_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL19_PORT_EN_LBN 38 -#define FRF_BB_TX_IPFIL19_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL18_PORT_EN_LBN 36 -#define FRF_BB_TX_IPFIL18_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL17_PORT_EN_LBN 34 -#define FRF_BB_TX_IPFIL17_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL16_PORT_EN_LBN 32 -#define FRF_BB_TX_IPFIL16_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL15_PORT_EN_LBN 30 -#define FRF_BB_TX_IPFIL15_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL14_PORT_EN_LBN 28 -#define FRF_BB_TX_IPFIL14_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL13_PORT_EN_LBN 26 -#define FRF_BB_TX_IPFIL13_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL12_PORT_EN_LBN 24 -#define FRF_BB_TX_IPFIL12_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL11_PORT_EN_LBN 22 -#define FRF_BB_TX_IPFIL11_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL10_PORT_EN_LBN 20 -#define FRF_BB_TX_IPFIL10_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL9_PORT_EN_LBN 18 -#define FRF_BB_TX_IPFIL9_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL8_PORT_EN_LBN 16 -#define FRF_BB_TX_IPFIL8_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL7_PORT_EN_LBN 14 -#define FRF_BB_TX_IPFIL7_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL6_PORT_EN_LBN 12 -#define FRF_BB_TX_IPFIL6_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL5_PORT_EN_LBN 10 -#define FRF_BB_TX_IPFIL5_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL4_PORT_EN_LBN 8 -#define FRF_BB_TX_IPFIL4_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL3_PORT_EN_LBN 6 -#define FRF_BB_TX_IPFIL3_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL2_PORT_EN_LBN 4 -#define FRF_BB_TX_IPFIL2_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL1_PORT_EN_LBN 2 -#define FRF_BB_TX_IPFIL1_PORT_EN_WIDTH 1 -#define FRF_BB_TX_IPFIL0_PORT_EN_LBN 0 -#define FRF_BB_TX_IPFIL0_PORT_EN_WIDTH 1 - -/* TX_IPFIL_TBL: Transmit IP source address filter table */ -#define FR_BB_TX_IPFIL_TBL 0x00000b00 -#define FR_BB_TX_IPFIL_TBL_STEP 16 -#define FR_BB_TX_IPFIL_TBL_ROWS 16 -#define FRF_BB_TX_IPFIL_MASK_1_LBN 96 -#define FRF_BB_TX_IPFIL_MASK_1_WIDTH 32 -#define FRF_BB_TX_IP_SRC_ADR_1_LBN 64 -#define FRF_BB_TX_IP_SRC_ADR_1_WIDTH 32 -#define FRF_BB_TX_IPFIL_MASK_0_LBN 32 -#define FRF_BB_TX_IPFIL_MASK_0_WIDTH 32 -#define FRF_BB_TX_IP_SRC_ADR_0_LBN 0 -#define FRF_BB_TX_IP_SRC_ADR_0_WIDTH 32 - -/* MD_TXD_REG: PHY management transmit data register */ -#define FR_AB_MD_TXD 0x00000c00 -#define FRF_AB_MD_TXD_LBN 0 -#define FRF_AB_MD_TXD_WIDTH 16 - -/* MD_RXD_REG: PHY management receive data register */ -#define FR_AB_MD_RXD 0x00000c10 -#define FRF_AB_MD_RXD_LBN 0 -#define FRF_AB_MD_RXD_WIDTH 16 - -/* MD_CS_REG: PHY management configuration & status register */ -#define FR_AB_MD_CS 0x00000c20 -#define FRF_AB_MD_RD_EN_CMD_LBN 15 -#define FRF_AB_MD_RD_EN_CMD_WIDTH 1 -#define FRF_AB_MD_WR_EN_CMD_LBN 14 -#define FRF_AB_MD_WR_EN_CMD_WIDTH 1 -#define FRF_AB_MD_ADDR_CMD_LBN 13 -#define FRF_AB_MD_ADDR_CMD_WIDTH 1 -#define FRF_AB_MD_PT_LBN 7 -#define FRF_AB_MD_PT_WIDTH 3 -#define FRF_AB_MD_PL_LBN 6 -#define FRF_AB_MD_PL_WIDTH 1 -#define FRF_AB_MD_INT_CLR_LBN 5 -#define FRF_AB_MD_INT_CLR_WIDTH 1 -#define FRF_AB_MD_GC_LBN 4 -#define FRF_AB_MD_GC_WIDTH 1 -#define FRF_AB_MD_PRSP_LBN 3 -#define FRF_AB_MD_PRSP_WIDTH 1 -#define FRF_AB_MD_RIC_LBN 2 -#define FRF_AB_MD_RIC_WIDTH 1 -#define FRF_AB_MD_RDC_LBN 1 -#define FRF_AB_MD_RDC_WIDTH 1 -#define FRF_AB_MD_WRC_LBN 0 -#define FRF_AB_MD_WRC_WIDTH 1 - -/* MD_PHY_ADR_REG: PHY management PHY address register */ -#define FR_AB_MD_PHY_ADR 0x00000c30 -#define FRF_AB_MD_PHY_ADR_LBN 0 -#define FRF_AB_MD_PHY_ADR_WIDTH 16 - -/* MD_ID_REG: PHY management ID register */ -#define FR_AB_MD_ID 0x00000c40 -#define FRF_AB_MD_PRT_ADR_LBN 11 -#define FRF_AB_MD_PRT_ADR_WIDTH 5 -#define FRF_AB_MD_DEV_ADR_LBN 6 -#define FRF_AB_MD_DEV_ADR_WIDTH 5 - -/* MD_STAT_REG: PHY management status & mask register */ -#define FR_AB_MD_STAT 0x00000c50 -#define FRF_AB_MD_PINT_LBN 4 -#define FRF_AB_MD_PINT_WIDTH 1 -#define FRF_AB_MD_DONE_LBN 3 -#define FRF_AB_MD_DONE_WIDTH 1 -#define FRF_AB_MD_BSERR_LBN 2 -#define FRF_AB_MD_BSERR_WIDTH 1 -#define FRF_AB_MD_LNFL_LBN 1 -#define FRF_AB_MD_LNFL_WIDTH 1 -#define FRF_AB_MD_BSY_LBN 0 -#define FRF_AB_MD_BSY_WIDTH 1 - -/* MAC_STAT_DMA_REG: Port MAC statistical counter DMA register */ -#define FR_AB_MAC_STAT_DMA 0x00000c60 -#define FRF_AB_MAC_STAT_DMA_CMD_LBN 48 -#define FRF_AB_MAC_STAT_DMA_CMD_WIDTH 1 -#define FRF_AB_MAC_STAT_DMA_ADR_LBN 0 -#define FRF_AB_MAC_STAT_DMA_ADR_WIDTH 48 - -/* MAC_CTRL_REG: Port MAC control register */ -#define FR_AB_MAC_CTRL 0x00000c80 -#define FRF_AB_MAC_XOFF_VAL_LBN 16 -#define FRF_AB_MAC_XOFF_VAL_WIDTH 16 -#define FRF_BB_TXFIFO_DRAIN_EN_LBN 7 -#define FRF_BB_TXFIFO_DRAIN_EN_WIDTH 1 -#define FRF_AB_MAC_XG_DISTXCRC_LBN 5 -#define FRF_AB_MAC_XG_DISTXCRC_WIDTH 1 -#define FRF_AB_MAC_BCAD_ACPT_LBN 4 -#define FRF_AB_MAC_BCAD_ACPT_WIDTH 1 -#define FRF_AB_MAC_UC_PROM_LBN 3 -#define FRF_AB_MAC_UC_PROM_WIDTH 1 -#define FRF_AB_MAC_LINK_STATUS_LBN 2 -#define FRF_AB_MAC_LINK_STATUS_WIDTH 1 -#define FRF_AB_MAC_SPEED_LBN 0 -#define FRF_AB_MAC_SPEED_WIDTH 2 -#define FFE_AB_MAC_SPEED_10G 3 -#define FFE_AB_MAC_SPEED_1G 2 -#define FFE_AB_MAC_SPEED_100M 1 -#define FFE_AB_MAC_SPEED_10M 0 - -/* GEN_MODE_REG: General Purpose mode register (external interrupt mask) */ -#define FR_BB_GEN_MODE 0x00000c90 -#define FRF_BB_XFP_PHY_INT_POL_SEL_LBN 3 -#define FRF_BB_XFP_PHY_INT_POL_SEL_WIDTH 1 -#define FRF_BB_XG_PHY_INT_POL_SEL_LBN 2 -#define FRF_BB_XG_PHY_INT_POL_SEL_WIDTH 1 -#define FRF_BB_XFP_PHY_INT_MASK_LBN 1 -#define FRF_BB_XFP_PHY_INT_MASK_WIDTH 1 -#define FRF_BB_XG_PHY_INT_MASK_LBN 0 -#define FRF_BB_XG_PHY_INT_MASK_WIDTH 1 - -/* MAC_MC_HASH_REG0: Multicast address hash table */ -#define FR_AB_MAC_MC_HASH_REG0 0x00000ca0 -#define FRF_AB_MAC_MCAST_HASH0_LBN 0 -#define FRF_AB_MAC_MCAST_HASH0_WIDTH 128 - -/* MAC_MC_HASH_REG1: Multicast address hash table */ -#define FR_AB_MAC_MC_HASH_REG1 0x00000cb0 -#define FRF_AB_MAC_MCAST_HASH1_LBN 0 -#define FRF_AB_MAC_MCAST_HASH1_WIDTH 128 - -/* GM_CFG1_REG: GMAC configuration register 1 */ -#define FR_AB_GM_CFG1 0x00000e00 -#define FRF_AB_GM_SW_RST_LBN 31 -#define FRF_AB_GM_SW_RST_WIDTH 1 -#define FRF_AB_GM_SIM_RST_LBN 30 -#define FRF_AB_GM_SIM_RST_WIDTH 1 -#define FRF_AB_GM_RST_RX_MAC_CTL_LBN 19 -#define FRF_AB_GM_RST_RX_MAC_CTL_WIDTH 1 -#define FRF_AB_GM_RST_TX_MAC_CTL_LBN 18 -#define FRF_AB_GM_RST_TX_MAC_CTL_WIDTH 1 -#define FRF_AB_GM_RST_RX_FUNC_LBN 17 -#define FRF_AB_GM_RST_RX_FUNC_WIDTH 1 -#define FRF_AB_GM_RST_TX_FUNC_LBN 16 -#define FRF_AB_GM_RST_TX_FUNC_WIDTH 1 -#define FRF_AB_GM_LOOP_LBN 8 -#define FRF_AB_GM_LOOP_WIDTH 1 -#define FRF_AB_GM_RX_FC_EN_LBN 5 -#define FRF_AB_GM_RX_FC_EN_WIDTH 1 -#define FRF_AB_GM_TX_FC_EN_LBN 4 -#define FRF_AB_GM_TX_FC_EN_WIDTH 1 -#define FRF_AB_GM_SYNC_RXEN_LBN 3 -#define FRF_AB_GM_SYNC_RXEN_WIDTH 1 -#define FRF_AB_GM_RX_EN_LBN 2 -#define FRF_AB_GM_RX_EN_WIDTH 1 -#define FRF_AB_GM_SYNC_TXEN_LBN 1 -#define FRF_AB_GM_SYNC_TXEN_WIDTH 1 -#define FRF_AB_GM_TX_EN_LBN 0 -#define FRF_AB_GM_TX_EN_WIDTH 1 - -/* GM_CFG2_REG: GMAC configuration register 2 */ -#define FR_AB_GM_CFG2 0x00000e10 -#define FRF_AB_GM_PAMBL_LEN_LBN 12 -#define FRF_AB_GM_PAMBL_LEN_WIDTH 4 -#define FRF_AB_GM_IF_MODE_LBN 8 -#define FRF_AB_GM_IF_MODE_WIDTH 2 -#define FFE_AB_IF_MODE_BYTE_MODE 2 -#define FFE_AB_IF_MODE_NIBBLE_MODE 1 -#define FRF_AB_GM_HUGE_FRM_EN_LBN 5 -#define FRF_AB_GM_HUGE_FRM_EN_WIDTH 1 -#define FRF_AB_GM_LEN_CHK_LBN 4 -#define FRF_AB_GM_LEN_CHK_WIDTH 1 -#define FRF_AB_GM_PAD_CRC_EN_LBN 2 -#define FRF_AB_GM_PAD_CRC_EN_WIDTH 1 -#define FRF_AB_GM_CRC_EN_LBN 1 -#define FRF_AB_GM_CRC_EN_WIDTH 1 -#define FRF_AB_GM_FD_LBN 0 -#define FRF_AB_GM_FD_WIDTH 1 - -/* GM_IPG_REG: GMAC IPG register */ -#define FR_AB_GM_IPG 0x00000e20 -#define FRF_AB_GM_NONB2B_IPG1_LBN 24 -#define FRF_AB_GM_NONB2B_IPG1_WIDTH 7 -#define FRF_AB_GM_NONB2B_IPG2_LBN 16 -#define FRF_AB_GM_NONB2B_IPG2_WIDTH 7 -#define FRF_AB_GM_MIN_IPG_ENF_LBN 8 -#define FRF_AB_GM_MIN_IPG_ENF_WIDTH 8 -#define FRF_AB_GM_B2B_IPG_LBN 0 -#define FRF_AB_GM_B2B_IPG_WIDTH 7 - -/* GM_HD_REG: GMAC half duplex register */ -#define FR_AB_GM_HD 0x00000e30 -#define FRF_AB_GM_ALT_BOFF_VAL_LBN 20 -#define FRF_AB_GM_ALT_BOFF_VAL_WIDTH 4 -#define FRF_AB_GM_ALT_BOFF_EN_LBN 19 -#define FRF_AB_GM_ALT_BOFF_EN_WIDTH 1 -#define FRF_AB_GM_BP_NO_BOFF_LBN 18 -#define FRF_AB_GM_BP_NO_BOFF_WIDTH 1 -#define FRF_AB_GM_DIS_BOFF_LBN 17 -#define FRF_AB_GM_DIS_BOFF_WIDTH 1 -#define FRF_AB_GM_EXDEF_TX_EN_LBN 16 -#define FRF_AB_GM_EXDEF_TX_EN_WIDTH 1 -#define FRF_AB_GM_RTRY_LIMIT_LBN 12 -#define FRF_AB_GM_RTRY_LIMIT_WIDTH 4 -#define FRF_AB_GM_COL_WIN_LBN 0 -#define FRF_AB_GM_COL_WIN_WIDTH 10 - -/* GM_MAX_FLEN_REG: GMAC maximum frame length register */ -#define FR_AB_GM_MAX_FLEN 0x00000e40 -#define FRF_AB_GM_MAX_FLEN_LBN 0 -#define FRF_AB_GM_MAX_FLEN_WIDTH 16 - -/* GM_TEST_REG: GMAC test register */ -#define FR_AB_GM_TEST 0x00000e70 -#define FRF_AB_GM_MAX_BOFF_LBN 3 -#define FRF_AB_GM_MAX_BOFF_WIDTH 1 -#define FRF_AB_GM_REG_TX_FLOW_EN_LBN 2 -#define FRF_AB_GM_REG_TX_FLOW_EN_WIDTH 1 -#define FRF_AB_GM_TEST_PAUSE_LBN 1 -#define FRF_AB_GM_TEST_PAUSE_WIDTH 1 -#define FRF_AB_GM_SHORT_SLOT_LBN 0 -#define FRF_AB_GM_SHORT_SLOT_WIDTH 1 - -/* GM_ADR1_REG: GMAC station address register 1 */ -#define FR_AB_GM_ADR1 0x00000f00 -#define FRF_AB_GM_ADR_B0_LBN 24 -#define FRF_AB_GM_ADR_B0_WIDTH 8 -#define FRF_AB_GM_ADR_B1_LBN 16 -#define FRF_AB_GM_ADR_B1_WIDTH 8 -#define FRF_AB_GM_ADR_B2_LBN 8 -#define FRF_AB_GM_ADR_B2_WIDTH 8 -#define FRF_AB_GM_ADR_B3_LBN 0 -#define FRF_AB_GM_ADR_B3_WIDTH 8 - -/* GM_ADR2_REG: GMAC station address register 2 */ -#define FR_AB_GM_ADR2 0x00000f10 -#define FRF_AB_GM_ADR_B4_LBN 24 -#define FRF_AB_GM_ADR_B4_WIDTH 8 -#define FRF_AB_GM_ADR_B5_LBN 16 -#define FRF_AB_GM_ADR_B5_WIDTH 8 - -/* GMF_CFG0_REG: GMAC FIFO configuration register 0 */ -#define FR_AB_GMF_CFG0 0x00000f20 -#define FRF_AB_GMF_FTFENRPLY_LBN 20 -#define FRF_AB_GMF_FTFENRPLY_WIDTH 1 -#define FRF_AB_GMF_STFENRPLY_LBN 19 -#define FRF_AB_GMF_STFENRPLY_WIDTH 1 -#define FRF_AB_GMF_FRFENRPLY_LBN 18 -#define FRF_AB_GMF_FRFENRPLY_WIDTH 1 -#define FRF_AB_GMF_SRFENRPLY_LBN 17 -#define FRF_AB_GMF_SRFENRPLY_WIDTH 1 -#define FRF_AB_GMF_WTMENRPLY_LBN 16 -#define FRF_AB_GMF_WTMENRPLY_WIDTH 1 -#define FRF_AB_GMF_FTFENREQ_LBN 12 -#define FRF_AB_GMF_FTFENREQ_WIDTH 1 -#define FRF_AB_GMF_STFENREQ_LBN 11 -#define FRF_AB_GMF_STFENREQ_WIDTH 1 -#define FRF_AB_GMF_FRFENREQ_LBN 10 -#define FRF_AB_GMF_FRFENREQ_WIDTH 1 -#define FRF_AB_GMF_SRFENREQ_LBN 9 -#define FRF_AB_GMF_SRFENREQ_WIDTH 1 -#define FRF_AB_GMF_WTMENREQ_LBN 8 -#define FRF_AB_GMF_WTMENREQ_WIDTH 1 -#define FRF_AB_GMF_HSTRSTFT_LBN 4 -#define FRF_AB_GMF_HSTRSTFT_WIDTH 1 -#define FRF_AB_GMF_HSTRSTST_LBN 3 -#define FRF_AB_GMF_HSTRSTST_WIDTH 1 -#define FRF_AB_GMF_HSTRSTFR_LBN 2 -#define FRF_AB_GMF_HSTRSTFR_WIDTH 1 -#define FRF_AB_GMF_HSTRSTSR_LBN 1 -#define FRF_AB_GMF_HSTRSTSR_WIDTH 1 -#define FRF_AB_GMF_HSTRSTWT_LBN 0 -#define FRF_AB_GMF_HSTRSTWT_WIDTH 1 - -/* GMF_CFG1_REG: GMAC FIFO configuration register 1 */ -#define FR_AB_GMF_CFG1 0x00000f30 -#define FRF_AB_GMF_CFGFRTH_LBN 16 -#define FRF_AB_GMF_CFGFRTH_WIDTH 5 -#define FRF_AB_GMF_CFGXOFFRTX_LBN 0 -#define FRF_AB_GMF_CFGXOFFRTX_WIDTH 16 - -/* GMF_CFG2_REG: GMAC FIFO configuration register 2 */ -#define FR_AB_GMF_CFG2 0x00000f40 -#define FRF_AB_GMF_CFGHWM_LBN 16 -#define FRF_AB_GMF_CFGHWM_WIDTH 6 -#define FRF_AB_GMF_CFGLWM_LBN 0 -#define FRF_AB_GMF_CFGLWM_WIDTH 6 - -/* GMF_CFG3_REG: GMAC FIFO configuration register 3 */ -#define FR_AB_GMF_CFG3 0x00000f50 -#define FRF_AB_GMF_CFGHWMFT_LBN 16 -#define FRF_AB_GMF_CFGHWMFT_WIDTH 6 -#define FRF_AB_GMF_CFGFTTH_LBN 0 -#define FRF_AB_GMF_CFGFTTH_WIDTH 6 - -/* GMF_CFG4_REG: GMAC FIFO configuration register 4 */ -#define FR_AB_GMF_CFG4 0x00000f60 -#define FRF_AB_GMF_HSTFLTRFRM_LBN 0 -#define FRF_AB_GMF_HSTFLTRFRM_WIDTH 18 - -/* GMF_CFG5_REG: GMAC FIFO configuration register 5 */ -#define FR_AB_GMF_CFG5 0x00000f70 -#define FRF_AB_GMF_CFGHDPLX_LBN 22 -#define FRF_AB_GMF_CFGHDPLX_WIDTH 1 -#define FRF_AB_GMF_SRFULL_LBN 21 -#define FRF_AB_GMF_SRFULL_WIDTH 1 -#define FRF_AB_GMF_HSTSRFULLCLR_LBN 20 -#define FRF_AB_GMF_HSTSRFULLCLR_WIDTH 1 -#define FRF_AB_GMF_CFGBYTMODE_LBN 19 -#define FRF_AB_GMF_CFGBYTMODE_WIDTH 1 -#define FRF_AB_GMF_HSTDRPLT64_LBN 18 -#define FRF_AB_GMF_HSTDRPLT64_WIDTH 1 -#define FRF_AB_GMF_HSTFLTRFRMDC_LBN 0 -#define FRF_AB_GMF_HSTFLTRFRMDC_WIDTH 18 - -/* TX_SRC_MAC_TBL: Transmit IP source address filter table */ -#define FR_BB_TX_SRC_MAC_TBL 0x00001000 -#define FR_BB_TX_SRC_MAC_TBL_STEP 16 -#define FR_BB_TX_SRC_MAC_TBL_ROWS 16 -#define FRF_BB_TX_SRC_MAC_ADR_1_LBN 64 -#define FRF_BB_TX_SRC_MAC_ADR_1_WIDTH 48 -#define FRF_BB_TX_SRC_MAC_ADR_0_LBN 0 -#define FRF_BB_TX_SRC_MAC_ADR_0_WIDTH 48 - -/* TX_SRC_MAC_CTL_REG: Transmit MAC source address filter control */ -#define FR_BB_TX_SRC_MAC_CTL 0x00001100 -#define FRF_BB_TX_SRC_DROP_CTR_LBN 16 -#define FRF_BB_TX_SRC_DROP_CTR_WIDTH 16 -#define FRF_BB_TX_SRC_FLTR_EN_LBN 15 -#define FRF_BB_TX_SRC_FLTR_EN_WIDTH 1 -#define FRF_BB_TX_DROP_CTR_CLR_LBN 12 -#define FRF_BB_TX_DROP_CTR_CLR_WIDTH 1 -#define FRF_BB_TX_MAC_QID_SEL_LBN 0 -#define FRF_BB_TX_MAC_QID_SEL_WIDTH 3 - -/* XM_ADR_LO_REG: XGMAC address register low */ -#define FR_AB_XM_ADR_LO 0x00001200 -#define FRF_AB_XM_ADR_LO_LBN 0 -#define FRF_AB_XM_ADR_LO_WIDTH 32 - -/* XM_ADR_HI_REG: XGMAC address register high */ -#define FR_AB_XM_ADR_HI 0x00001210 -#define FRF_AB_XM_ADR_HI_LBN 0 -#define FRF_AB_XM_ADR_HI_WIDTH 16 - -/* XM_GLB_CFG_REG: XGMAC global configuration */ -#define FR_AB_XM_GLB_CFG 0x00001220 -#define FRF_AB_XM_RMTFLT_GEN_LBN 17 -#define FRF_AB_XM_RMTFLT_GEN_WIDTH 1 -#define FRF_AB_XM_DEBUG_MODE_LBN 16 -#define FRF_AB_XM_DEBUG_MODE_WIDTH 1 -#define FRF_AB_XM_RX_STAT_EN_LBN 11 -#define FRF_AB_XM_RX_STAT_EN_WIDTH 1 -#define FRF_AB_XM_TX_STAT_EN_LBN 10 -#define FRF_AB_XM_TX_STAT_EN_WIDTH 1 -#define FRF_AB_XM_RX_JUMBO_MODE_LBN 6 -#define FRF_AB_XM_RX_JUMBO_MODE_WIDTH 1 -#define FRF_AB_XM_WAN_MODE_LBN 5 -#define FRF_AB_XM_WAN_MODE_WIDTH 1 -#define FRF_AB_XM_INTCLR_MODE_LBN 3 -#define FRF_AB_XM_INTCLR_MODE_WIDTH 1 -#define FRF_AB_XM_CORE_RST_LBN 0 -#define FRF_AB_XM_CORE_RST_WIDTH 1 - -/* XM_TX_CFG_REG: XGMAC transmit configuration */ -#define FR_AB_XM_TX_CFG 0x00001230 -#define FRF_AB_XM_TX_PROG_LBN 24 -#define FRF_AB_XM_TX_PROG_WIDTH 1 -#define FRF_AB_XM_IPG_LBN 16 -#define FRF_AB_XM_IPG_WIDTH 4 -#define FRF_AB_XM_FCNTL_LBN 10 -#define FRF_AB_XM_FCNTL_WIDTH 1 -#define FRF_AB_XM_TXCRC_LBN 8 -#define FRF_AB_XM_TXCRC_WIDTH 1 -#define FRF_AB_XM_EDRC_LBN 6 -#define FRF_AB_XM_EDRC_WIDTH 1 -#define FRF_AB_XM_AUTO_PAD_LBN 5 -#define FRF_AB_XM_AUTO_PAD_WIDTH 1 -#define FRF_AB_XM_TX_PRMBL_LBN 2 -#define FRF_AB_XM_TX_PRMBL_WIDTH 1 -#define FRF_AB_XM_TXEN_LBN 1 -#define FRF_AB_XM_TXEN_WIDTH 1 -#define FRF_AB_XM_TX_RST_LBN 0 -#define FRF_AB_XM_TX_RST_WIDTH 1 - -/* XM_RX_CFG_REG: XGMAC receive configuration */ -#define FR_AB_XM_RX_CFG 0x00001240 -#define FRF_AB_XM_PASS_LENERR_LBN 26 -#define FRF_AB_XM_PASS_LENERR_WIDTH 1 -#define FRF_AB_XM_PASS_CRC_ERR_LBN 25 -#define FRF_AB_XM_PASS_CRC_ERR_WIDTH 1 -#define FRF_AB_XM_PASS_PRMBLE_ERR_LBN 24 -#define FRF_AB_XM_PASS_PRMBLE_ERR_WIDTH 1 -#define FRF_AB_XM_REJ_BCAST_LBN 20 -#define FRF_AB_XM_REJ_BCAST_WIDTH 1 -#define FRF_AB_XM_ACPT_ALL_MCAST_LBN 11 -#define FRF_AB_XM_ACPT_ALL_MCAST_WIDTH 1 -#define FRF_AB_XM_ACPT_ALL_UCAST_LBN 9 -#define FRF_AB_XM_ACPT_ALL_UCAST_WIDTH 1 -#define FRF_AB_XM_AUTO_DEPAD_LBN 8 -#define FRF_AB_XM_AUTO_DEPAD_WIDTH 1 -#define FRF_AB_XM_RXCRC_LBN 3 -#define FRF_AB_XM_RXCRC_WIDTH 1 -#define FRF_AB_XM_RX_PRMBL_LBN 2 -#define FRF_AB_XM_RX_PRMBL_WIDTH 1 -#define FRF_AB_XM_RXEN_LBN 1 -#define FRF_AB_XM_RXEN_WIDTH 1 -#define FRF_AB_XM_RX_RST_LBN 0 -#define FRF_AB_XM_RX_RST_WIDTH 1 - -/* XM_MGT_INT_MASK: documentation to be written for sum_XM_MGT_INT_MASK */ -#define FR_AB_XM_MGT_INT_MASK 0x00001250 -#define FRF_AB_XM_MSK_STA_INTR_LBN 16 -#define FRF_AB_XM_MSK_STA_INTR_WIDTH 1 -#define FRF_AB_XM_MSK_STAT_CNTR_HF_LBN 9 -#define FRF_AB_XM_MSK_STAT_CNTR_HF_WIDTH 1 -#define FRF_AB_XM_MSK_STAT_CNTR_OF_LBN 8 -#define FRF_AB_XM_MSK_STAT_CNTR_OF_WIDTH 1 -#define FRF_AB_XM_MSK_PRMBLE_ERR_LBN 2 -#define FRF_AB_XM_MSK_PRMBLE_ERR_WIDTH 1 -#define FRF_AB_XM_MSK_RMTFLT_LBN 1 -#define FRF_AB_XM_MSK_RMTFLT_WIDTH 1 -#define FRF_AB_XM_MSK_LCLFLT_LBN 0 -#define FRF_AB_XM_MSK_LCLFLT_WIDTH 1 - -/* XM_FC_REG: XGMAC flow control register */ -#define FR_AB_XM_FC 0x00001270 -#define FRF_AB_XM_PAUSE_TIME_LBN 16 -#define FRF_AB_XM_PAUSE_TIME_WIDTH 16 -#define FRF_AB_XM_RX_MAC_STAT_LBN 11 -#define FRF_AB_XM_RX_MAC_STAT_WIDTH 1 -#define FRF_AB_XM_TX_MAC_STAT_LBN 10 -#define FRF_AB_XM_TX_MAC_STAT_WIDTH 1 -#define FRF_AB_XM_MCNTL_PASS_LBN 8 -#define FRF_AB_XM_MCNTL_PASS_WIDTH 2 -#define FRF_AB_XM_REJ_CNTL_UCAST_LBN 6 -#define FRF_AB_XM_REJ_CNTL_UCAST_WIDTH 1 -#define FRF_AB_XM_REJ_CNTL_MCAST_LBN 5 -#define FRF_AB_XM_REJ_CNTL_MCAST_WIDTH 1 -#define FRF_AB_XM_ZPAUSE_LBN 2 -#define FRF_AB_XM_ZPAUSE_WIDTH 1 -#define FRF_AB_XM_XMIT_PAUSE_LBN 1 -#define FRF_AB_XM_XMIT_PAUSE_WIDTH 1 -#define FRF_AB_XM_DIS_FCNTL_LBN 0 -#define FRF_AB_XM_DIS_FCNTL_WIDTH 1 - -/* XM_PAUSE_TIME_REG: XGMAC pause time register */ -#define FR_AB_XM_PAUSE_TIME 0x00001290 -#define FRF_AB_XM_TX_PAUSE_CNT_LBN 16 -#define FRF_AB_XM_TX_PAUSE_CNT_WIDTH 16 -#define FRF_AB_XM_RX_PAUSE_CNT_LBN 0 -#define FRF_AB_XM_RX_PAUSE_CNT_WIDTH 16 - -/* XM_TX_PARAM_REG: XGMAC transmit parameter register */ -#define FR_AB_XM_TX_PARAM 0x000012d0 -#define FRF_AB_XM_TX_JUMBO_MODE_LBN 31 -#define FRF_AB_XM_TX_JUMBO_MODE_WIDTH 1 -#define FRF_AB_XM_MAX_TX_FRM_SIZE_HI_LBN 19 -#define FRF_AB_XM_MAX_TX_FRM_SIZE_HI_WIDTH 11 -#define FRF_AB_XM_MAX_TX_FRM_SIZE_LO_LBN 16 -#define FRF_AB_XM_MAX_TX_FRM_SIZE_LO_WIDTH 3 -#define FRF_AB_XM_PAD_CHAR_LBN 0 -#define FRF_AB_XM_PAD_CHAR_WIDTH 8 - -/* XM_RX_PARAM_REG: XGMAC receive parameter register */ -#define FR_AB_XM_RX_PARAM 0x000012e0 -#define FRF_AB_XM_MAX_RX_FRM_SIZE_HI_LBN 3 -#define FRF_AB_XM_MAX_RX_FRM_SIZE_HI_WIDTH 11 -#define FRF_AB_XM_MAX_RX_FRM_SIZE_LO_LBN 0 -#define FRF_AB_XM_MAX_RX_FRM_SIZE_LO_WIDTH 3 - -/* XM_MGT_INT_MSK_REG: XGMAC management interrupt mask register */ -#define FR_AB_XM_MGT_INT_MSK 0x000012f0 -#define FRF_AB_XM_STAT_CNTR_OF_LBN 9 -#define FRF_AB_XM_STAT_CNTR_OF_WIDTH 1 -#define FRF_AB_XM_STAT_CNTR_HF_LBN 8 -#define FRF_AB_XM_STAT_CNTR_HF_WIDTH 1 -#define FRF_AB_XM_PRMBLE_ERR_LBN 2 -#define FRF_AB_XM_PRMBLE_ERR_WIDTH 1 -#define FRF_AB_XM_RMTFLT_LBN 1 -#define FRF_AB_XM_RMTFLT_WIDTH 1 -#define FRF_AB_XM_LCLFLT_LBN 0 -#define FRF_AB_XM_LCLFLT_WIDTH 1 - -/* XX_PWR_RST_REG: XGXS/XAUI powerdown/reset register */ -#define FR_AB_XX_PWR_RST 0x00001300 -#define FRF_AB_XX_PWRDND_SIG_LBN 31 -#define FRF_AB_XX_PWRDND_SIG_WIDTH 1 -#define FRF_AB_XX_PWRDNC_SIG_LBN 30 -#define FRF_AB_XX_PWRDNC_SIG_WIDTH 1 -#define FRF_AB_XX_PWRDNB_SIG_LBN 29 -#define FRF_AB_XX_PWRDNB_SIG_WIDTH 1 -#define FRF_AB_XX_PWRDNA_SIG_LBN 28 -#define FRF_AB_XX_PWRDNA_SIG_WIDTH 1 -#define FRF_AB_XX_SIM_MODE_LBN 27 -#define FRF_AB_XX_SIM_MODE_WIDTH 1 -#define FRF_AB_XX_RSTPLLCD_SIG_LBN 25 -#define FRF_AB_XX_RSTPLLCD_SIG_WIDTH 1 -#define FRF_AB_XX_RSTPLLAB_SIG_LBN 24 -#define FRF_AB_XX_RSTPLLAB_SIG_WIDTH 1 -#define FRF_AB_XX_RESETD_SIG_LBN 23 -#define FRF_AB_XX_RESETD_SIG_WIDTH 1 -#define FRF_AB_XX_RESETC_SIG_LBN 22 -#define FRF_AB_XX_RESETC_SIG_WIDTH 1 -#define FRF_AB_XX_RESETB_SIG_LBN 21 -#define FRF_AB_XX_RESETB_SIG_WIDTH 1 -#define FRF_AB_XX_RESETA_SIG_LBN 20 -#define FRF_AB_XX_RESETA_SIG_WIDTH 1 -#define FRF_AB_XX_RSTXGXSRX_SIG_LBN 18 -#define FRF_AB_XX_RSTXGXSRX_SIG_WIDTH 1 -#define FRF_AB_XX_RSTXGXSTX_SIG_LBN 17 -#define FRF_AB_XX_RSTXGXSTX_SIG_WIDTH 1 -#define FRF_AB_XX_SD_RST_ACT_LBN 16 -#define FRF_AB_XX_SD_RST_ACT_WIDTH 1 -#define FRF_AB_XX_PWRDND_EN_LBN 15 -#define FRF_AB_XX_PWRDND_EN_WIDTH 1 -#define FRF_AB_XX_PWRDNC_EN_LBN 14 -#define FRF_AB_XX_PWRDNC_EN_WIDTH 1 -#define FRF_AB_XX_PWRDNB_EN_LBN 13 -#define FRF_AB_XX_PWRDNB_EN_WIDTH 1 -#define FRF_AB_XX_PWRDNA_EN_LBN 12 -#define FRF_AB_XX_PWRDNA_EN_WIDTH 1 -#define FRF_AB_XX_RSTPLLCD_EN_LBN 9 -#define FRF_AB_XX_RSTPLLCD_EN_WIDTH 1 -#define FRF_AB_XX_RSTPLLAB_EN_LBN 8 -#define FRF_AB_XX_RSTPLLAB_EN_WIDTH 1 -#define FRF_AB_XX_RESETD_EN_LBN 7 -#define FRF_AB_XX_RESETD_EN_WIDTH 1 -#define FRF_AB_XX_RESETC_EN_LBN 6 -#define FRF_AB_XX_RESETC_EN_WIDTH 1 -#define FRF_AB_XX_RESETB_EN_LBN 5 -#define FRF_AB_XX_RESETB_EN_WIDTH 1 -#define FRF_AB_XX_RESETA_EN_LBN 4 -#define FRF_AB_XX_RESETA_EN_WIDTH 1 -#define FRF_AB_XX_RSTXGXSRX_EN_LBN 2 -#define FRF_AB_XX_RSTXGXSRX_EN_WIDTH 1 -#define FRF_AB_XX_RSTXGXSTX_EN_LBN 1 -#define FRF_AB_XX_RSTXGXSTX_EN_WIDTH 1 -#define FRF_AB_XX_RST_XX_EN_LBN 0 -#define FRF_AB_XX_RST_XX_EN_WIDTH 1 - -/* XX_SD_CTL_REG: XGXS/XAUI powerdown/reset control register */ -#define FR_AB_XX_SD_CTL 0x00001310 -#define FRF_AB_XX_TERMADJ1_LBN 17 -#define FRF_AB_XX_TERMADJ1_WIDTH 1 -#define FRF_AB_XX_TERMADJ0_LBN 16 -#define FRF_AB_XX_TERMADJ0_WIDTH 1 -#define FRF_AB_XX_HIDRVD_LBN 15 -#define FRF_AB_XX_HIDRVD_WIDTH 1 -#define FRF_AB_XX_LODRVD_LBN 14 -#define FRF_AB_XX_LODRVD_WIDTH 1 -#define FRF_AB_XX_HIDRVC_LBN 13 -#define FRF_AB_XX_HIDRVC_WIDTH 1 -#define FRF_AB_XX_LODRVC_LBN 12 -#define FRF_AB_XX_LODRVC_WIDTH 1 -#define FRF_AB_XX_HIDRVB_LBN 11 -#define FRF_AB_XX_HIDRVB_WIDTH 1 -#define FRF_AB_XX_LODRVB_LBN 10 -#define FRF_AB_XX_LODRVB_WIDTH 1 -#define FRF_AB_XX_HIDRVA_LBN 9 -#define FRF_AB_XX_HIDRVA_WIDTH 1 -#define FRF_AB_XX_LODRVA_LBN 8 -#define FRF_AB_XX_LODRVA_WIDTH 1 -#define FRF_AB_XX_LPBKD_LBN 3 -#define FRF_AB_XX_LPBKD_WIDTH 1 -#define FRF_AB_XX_LPBKC_LBN 2 -#define FRF_AB_XX_LPBKC_WIDTH 1 -#define FRF_AB_XX_LPBKB_LBN 1 -#define FRF_AB_XX_LPBKB_WIDTH 1 -#define FRF_AB_XX_LPBKA_LBN 0 -#define FRF_AB_XX_LPBKA_WIDTH 1 - -/* XX_TXDRV_CTL_REG: XAUI SerDes transmit drive control register */ -#define FR_AB_XX_TXDRV_CTL 0x00001320 -#define FRF_AB_XX_DEQD_LBN 28 -#define FRF_AB_XX_DEQD_WIDTH 4 -#define FRF_AB_XX_DEQC_LBN 24 -#define FRF_AB_XX_DEQC_WIDTH 4 -#define FRF_AB_XX_DEQB_LBN 20 -#define FRF_AB_XX_DEQB_WIDTH 4 -#define FRF_AB_XX_DEQA_LBN 16 -#define FRF_AB_XX_DEQA_WIDTH 4 -#define FRF_AB_XX_DTXD_LBN 12 -#define FRF_AB_XX_DTXD_WIDTH 4 -#define FRF_AB_XX_DTXC_LBN 8 -#define FRF_AB_XX_DTXC_WIDTH 4 -#define FRF_AB_XX_DTXB_LBN 4 -#define FRF_AB_XX_DTXB_WIDTH 4 -#define FRF_AB_XX_DTXA_LBN 0 -#define FRF_AB_XX_DTXA_WIDTH 4 - -/* XX_PRBS_CTL_REG: documentation to be written for sum_XX_PRBS_CTL_REG */ -#define FR_AB_XX_PRBS_CTL 0x00001330 -#define FRF_AB_XX_CH3_RX_PRBS_SEL_LBN 30 -#define FRF_AB_XX_CH3_RX_PRBS_SEL_WIDTH 2 -#define FRF_AB_XX_CH3_RX_PRBS_INV_LBN 29 -#define FRF_AB_XX_CH3_RX_PRBS_INV_WIDTH 1 -#define FRF_AB_XX_CH3_RX_PRBS_CHKEN_LBN 28 -#define FRF_AB_XX_CH3_RX_PRBS_CHKEN_WIDTH 1 -#define FRF_AB_XX_CH2_RX_PRBS_SEL_LBN 26 -#define FRF_AB_XX_CH2_RX_PRBS_SEL_WIDTH 2 -#define FRF_AB_XX_CH2_RX_PRBS_INV_LBN 25 -#define FRF_AB_XX_CH2_RX_PRBS_INV_WIDTH 1 -#define FRF_AB_XX_CH2_RX_PRBS_CHKEN_LBN 24 -#define FRF_AB_XX_CH2_RX_PRBS_CHKEN_WIDTH 1 -#define FRF_AB_XX_CH1_RX_PRBS_SEL_LBN 22 -#define FRF_AB_XX_CH1_RX_PRBS_SEL_WIDTH 2 -#define FRF_AB_XX_CH1_RX_PRBS_INV_LBN 21 -#define FRF_AB_XX_CH1_RX_PRBS_INV_WIDTH 1 -#define FRF_AB_XX_CH1_RX_PRBS_CHKEN_LBN 20 -#define FRF_AB_XX_CH1_RX_PRBS_CHKEN_WIDTH 1 -#define FRF_AB_XX_CH0_RX_PRBS_SEL_LBN 18 -#define FRF_AB_XX_CH0_RX_PRBS_SEL_WIDTH 2 -#define FRF_AB_XX_CH0_RX_PRBS_INV_LBN 17 -#define FRF_AB_XX_CH0_RX_PRBS_INV_WIDTH 1 -#define FRF_AB_XX_CH0_RX_PRBS_CHKEN_LBN 16 -#define FRF_AB_XX_CH0_RX_PRBS_CHKEN_WIDTH 1 -#define FRF_AB_XX_CH3_TX_PRBS_SEL_LBN 14 -#define FRF_AB_XX_CH3_TX_PRBS_SEL_WIDTH 2 -#define FRF_AB_XX_CH3_TX_PRBS_INV_LBN 13 -#define FRF_AB_XX_CH3_TX_PRBS_INV_WIDTH 1 -#define FRF_AB_XX_CH3_TX_PRBS_CHKEN_LBN 12 -#define FRF_AB_XX_CH3_TX_PRBS_CHKEN_WIDTH 1 -#define FRF_AB_XX_CH2_TX_PRBS_SEL_LBN 10 -#define FRF_AB_XX_CH2_TX_PRBS_SEL_WIDTH 2 -#define FRF_AB_XX_CH2_TX_PRBS_INV_LBN 9 -#define FRF_AB_XX_CH2_TX_PRBS_INV_WIDTH 1 -#define FRF_AB_XX_CH2_TX_PRBS_CHKEN_LBN 8 -#define FRF_AB_XX_CH2_TX_PRBS_CHKEN_WIDTH 1 -#define FRF_AB_XX_CH1_TX_PRBS_SEL_LBN 6 -#define FRF_AB_XX_CH1_TX_PRBS_SEL_WIDTH 2 -#define FRF_AB_XX_CH1_TX_PRBS_INV_LBN 5 -#define FRF_AB_XX_CH1_TX_PRBS_INV_WIDTH 1 -#define FRF_AB_XX_CH1_TX_PRBS_CHKEN_LBN 4 -#define FRF_AB_XX_CH1_TX_PRBS_CHKEN_WIDTH 1 -#define FRF_AB_XX_CH0_TX_PRBS_SEL_LBN 2 -#define FRF_AB_XX_CH0_TX_PRBS_SEL_WIDTH 2 -#define FRF_AB_XX_CH0_TX_PRBS_INV_LBN 1 -#define FRF_AB_XX_CH0_TX_PRBS_INV_WIDTH 1 -#define FRF_AB_XX_CH0_TX_PRBS_CHKEN_LBN 0 -#define FRF_AB_XX_CH0_TX_PRBS_CHKEN_WIDTH 1 - -/* XX_PRBS_CHK_REG: documentation to be written for sum_XX_PRBS_CHK_REG */ -#define FR_AB_XX_PRBS_CHK 0x00001340 -#define FRF_AB_XX_REV_LB_EN_LBN 16 -#define FRF_AB_XX_REV_LB_EN_WIDTH 1 -#define FRF_AB_XX_CH3_DEG_DET_LBN 15 -#define FRF_AB_XX_CH3_DEG_DET_WIDTH 1 -#define FRF_AB_XX_CH3_LFSR_LOCK_IND_LBN 14 -#define FRF_AB_XX_CH3_LFSR_LOCK_IND_WIDTH 1 -#define FRF_AB_XX_CH3_PRBS_FRUN_LBN 13 -#define FRF_AB_XX_CH3_PRBS_FRUN_WIDTH 1 -#define FRF_AB_XX_CH3_ERR_CHK_LBN 12 -#define FRF_AB_XX_CH3_ERR_CHK_WIDTH 1 -#define FRF_AB_XX_CH2_DEG_DET_LBN 11 -#define FRF_AB_XX_CH2_DEG_DET_WIDTH 1 -#define FRF_AB_XX_CH2_LFSR_LOCK_IND_LBN 10 -#define FRF_AB_XX_CH2_LFSR_LOCK_IND_WIDTH 1 -#define FRF_AB_XX_CH2_PRBS_FRUN_LBN 9 -#define FRF_AB_XX_CH2_PRBS_FRUN_WIDTH 1 -#define FRF_AB_XX_CH2_ERR_CHK_LBN 8 -#define FRF_AB_XX_CH2_ERR_CHK_WIDTH 1 -#define FRF_AB_XX_CH1_DEG_DET_LBN 7 -#define FRF_AB_XX_CH1_DEG_DET_WIDTH 1 -#define FRF_AB_XX_CH1_LFSR_LOCK_IND_LBN 6 -#define FRF_AB_XX_CH1_LFSR_LOCK_IND_WIDTH 1 -#define FRF_AB_XX_CH1_PRBS_FRUN_LBN 5 -#define FRF_AB_XX_CH1_PRBS_FRUN_WIDTH 1 -#define FRF_AB_XX_CH1_ERR_CHK_LBN 4 -#define FRF_AB_XX_CH1_ERR_CHK_WIDTH 1 -#define FRF_AB_XX_CH0_DEG_DET_LBN 3 -#define FRF_AB_XX_CH0_DEG_DET_WIDTH 1 -#define FRF_AB_XX_CH0_LFSR_LOCK_IND_LBN 2 -#define FRF_AB_XX_CH0_LFSR_LOCK_IND_WIDTH 1 -#define FRF_AB_XX_CH0_PRBS_FRUN_LBN 1 -#define FRF_AB_XX_CH0_PRBS_FRUN_WIDTH 1 -#define FRF_AB_XX_CH0_ERR_CHK_LBN 0 -#define FRF_AB_XX_CH0_ERR_CHK_WIDTH 1 - -/* XX_PRBS_ERR_REG: documentation to be written for sum_XX_PRBS_ERR_REG */ -#define FR_AB_XX_PRBS_ERR 0x00001350 -#define FRF_AB_XX_CH3_PRBS_ERR_CNT_LBN 24 -#define FRF_AB_XX_CH3_PRBS_ERR_CNT_WIDTH 8 -#define FRF_AB_XX_CH2_PRBS_ERR_CNT_LBN 16 -#define FRF_AB_XX_CH2_PRBS_ERR_CNT_WIDTH 8 -#define FRF_AB_XX_CH1_PRBS_ERR_CNT_LBN 8 -#define FRF_AB_XX_CH1_PRBS_ERR_CNT_WIDTH 8 -#define FRF_AB_XX_CH0_PRBS_ERR_CNT_LBN 0 -#define FRF_AB_XX_CH0_PRBS_ERR_CNT_WIDTH 8 - -/* XX_CORE_STAT_REG: XAUI XGXS core status register */ -#define FR_AB_XX_CORE_STAT 0x00001360 -#define FRF_AB_XX_FORCE_SIG3_LBN 31 -#define FRF_AB_XX_FORCE_SIG3_WIDTH 1 -#define FRF_AB_XX_FORCE_SIG3_VAL_LBN 30 -#define FRF_AB_XX_FORCE_SIG3_VAL_WIDTH 1 -#define FRF_AB_XX_FORCE_SIG2_LBN 29 -#define FRF_AB_XX_FORCE_SIG2_WIDTH 1 -#define FRF_AB_XX_FORCE_SIG2_VAL_LBN 28 -#define FRF_AB_XX_FORCE_SIG2_VAL_WIDTH 1 -#define FRF_AB_XX_FORCE_SIG1_LBN 27 -#define FRF_AB_XX_FORCE_SIG1_WIDTH 1 -#define FRF_AB_XX_FORCE_SIG1_VAL_LBN 26 -#define FRF_AB_XX_FORCE_SIG1_VAL_WIDTH 1 -#define FRF_AB_XX_FORCE_SIG0_LBN 25 -#define FRF_AB_XX_FORCE_SIG0_WIDTH 1 -#define FRF_AB_XX_FORCE_SIG0_VAL_LBN 24 -#define FRF_AB_XX_FORCE_SIG0_VAL_WIDTH 1 -#define FRF_AB_XX_XGXS_LB_EN_LBN 23 -#define FRF_AB_XX_XGXS_LB_EN_WIDTH 1 -#define FRF_AB_XX_XGMII_LB_EN_LBN 22 -#define FRF_AB_XX_XGMII_LB_EN_WIDTH 1 -#define FRF_AB_XX_MATCH_FAULT_LBN 21 -#define FRF_AB_XX_MATCH_FAULT_WIDTH 1 -#define FRF_AB_XX_ALIGN_DONE_LBN 20 -#define FRF_AB_XX_ALIGN_DONE_WIDTH 1 -#define FRF_AB_XX_SYNC_STAT3_LBN 19 -#define FRF_AB_XX_SYNC_STAT3_WIDTH 1 -#define FRF_AB_XX_SYNC_STAT2_LBN 18 -#define FRF_AB_XX_SYNC_STAT2_WIDTH 1 -#define FRF_AB_XX_SYNC_STAT1_LBN 17 -#define FRF_AB_XX_SYNC_STAT1_WIDTH 1 -#define FRF_AB_XX_SYNC_STAT0_LBN 16 -#define FRF_AB_XX_SYNC_STAT0_WIDTH 1 -#define FRF_AB_XX_COMMA_DET_CH3_LBN 15 -#define FRF_AB_XX_COMMA_DET_CH3_WIDTH 1 -#define FRF_AB_XX_COMMA_DET_CH2_LBN 14 -#define FRF_AB_XX_COMMA_DET_CH2_WIDTH 1 -#define FRF_AB_XX_COMMA_DET_CH1_LBN 13 -#define FRF_AB_XX_COMMA_DET_CH1_WIDTH 1 -#define FRF_AB_XX_COMMA_DET_CH0_LBN 12 -#define FRF_AB_XX_COMMA_DET_CH0_WIDTH 1 -#define FRF_AB_XX_CGRP_ALIGN_CH3_LBN 11 -#define FRF_AB_XX_CGRP_ALIGN_CH3_WIDTH 1 -#define FRF_AB_XX_CGRP_ALIGN_CH2_LBN 10 -#define FRF_AB_XX_CGRP_ALIGN_CH2_WIDTH 1 -#define FRF_AB_XX_CGRP_ALIGN_CH1_LBN 9 -#define FRF_AB_XX_CGRP_ALIGN_CH1_WIDTH 1 -#define FRF_AB_XX_CGRP_ALIGN_CH0_LBN 8 -#define FRF_AB_XX_CGRP_ALIGN_CH0_WIDTH 1 -#define FRF_AB_XX_CHAR_ERR_CH3_LBN 7 -#define FRF_AB_XX_CHAR_ERR_CH3_WIDTH 1 -#define FRF_AB_XX_CHAR_ERR_CH2_LBN 6 -#define FRF_AB_XX_CHAR_ERR_CH2_WIDTH 1 -#define FRF_AB_XX_CHAR_ERR_CH1_LBN 5 -#define FRF_AB_XX_CHAR_ERR_CH1_WIDTH 1 -#define FRF_AB_XX_CHAR_ERR_CH0_LBN 4 -#define FRF_AB_XX_CHAR_ERR_CH0_WIDTH 1 -#define FRF_AB_XX_DISPERR_CH3_LBN 3 -#define FRF_AB_XX_DISPERR_CH3_WIDTH 1 -#define FRF_AB_XX_DISPERR_CH2_LBN 2 -#define FRF_AB_XX_DISPERR_CH2_WIDTH 1 -#define FRF_AB_XX_DISPERR_CH1_LBN 1 -#define FRF_AB_XX_DISPERR_CH1_WIDTH 1 -#define FRF_AB_XX_DISPERR_CH0_LBN 0 -#define FRF_AB_XX_DISPERR_CH0_WIDTH 1 - -/* RX_DESC_PTR_TBL_KER: Receive descriptor pointer table */ -#define FR_AA_RX_DESC_PTR_TBL_KER 0x00011800 -#define FR_AA_RX_DESC_PTR_TBL_KER_STEP 16 -#define FR_AA_RX_DESC_PTR_TBL_KER_ROWS 4 -/* RX_DESC_PTR_TBL: Receive descriptor pointer table */ -#define FR_BZ_RX_DESC_PTR_TBL 0x00f40000 -#define FR_BZ_RX_DESC_PTR_TBL_STEP 16 -#define FR_BB_RX_DESC_PTR_TBL_ROWS 4096 -#define FR_CZ_RX_DESC_PTR_TBL_ROWS 1024 -#define FRF_CZ_RX_HDR_SPLIT_LBN 90 -#define FRF_CZ_RX_HDR_SPLIT_WIDTH 1 -#define FRF_AA_RX_RESET_LBN 89 -#define FRF_AA_RX_RESET_WIDTH 1 -#define FRF_AZ_RX_ISCSI_DDIG_EN_LBN 88 -#define FRF_AZ_RX_ISCSI_DDIG_EN_WIDTH 1 -#define FRF_AZ_RX_ISCSI_HDIG_EN_LBN 87 -#define FRF_AZ_RX_ISCSI_HDIG_EN_WIDTH 1 -#define FRF_AZ_RX_DESC_PREF_ACT_LBN 86 -#define FRF_AZ_RX_DESC_PREF_ACT_WIDTH 1 -#define FRF_AZ_RX_DC_HW_RPTR_LBN 80 -#define FRF_AZ_RX_DC_HW_RPTR_WIDTH 6 -#define FRF_AZ_RX_DESCQ_HW_RPTR_LBN 68 -#define FRF_AZ_RX_DESCQ_HW_RPTR_WIDTH 12 -#define FRF_AZ_RX_DESCQ_SW_WPTR_LBN 56 -#define FRF_AZ_RX_DESCQ_SW_WPTR_WIDTH 12 -#define FRF_AZ_RX_DESCQ_BUF_BASE_ID_LBN 36 -#define FRF_AZ_RX_DESCQ_BUF_BASE_ID_WIDTH 20 -#define FRF_AZ_RX_DESCQ_EVQ_ID_LBN 24 -#define FRF_AZ_RX_DESCQ_EVQ_ID_WIDTH 12 -#define FRF_AZ_RX_DESCQ_OWNER_ID_LBN 10 -#define FRF_AZ_RX_DESCQ_OWNER_ID_WIDTH 14 -#define FRF_AZ_RX_DESCQ_LABEL_LBN 5 -#define FRF_AZ_RX_DESCQ_LABEL_WIDTH 5 -#define FRF_AZ_RX_DESCQ_SIZE_LBN 3 -#define FRF_AZ_RX_DESCQ_SIZE_WIDTH 2 -#define FFE_AZ_RX_DESCQ_SIZE_4K 3 -#define FFE_AZ_RX_DESCQ_SIZE_2K 2 -#define FFE_AZ_RX_DESCQ_SIZE_1K 1 -#define FFE_AZ_RX_DESCQ_SIZE_512 0 -#define FRF_AZ_RX_DESCQ_TYPE_LBN 2 -#define FRF_AZ_RX_DESCQ_TYPE_WIDTH 1 -#define FRF_AZ_RX_DESCQ_JUMBO_LBN 1 -#define FRF_AZ_RX_DESCQ_JUMBO_WIDTH 1 -#define FRF_AZ_RX_DESCQ_EN_LBN 0 -#define FRF_AZ_RX_DESCQ_EN_WIDTH 1 - -/* TX_DESC_PTR_TBL_KER: Transmit descriptor pointer */ -#define FR_AA_TX_DESC_PTR_TBL_KER 0x00011900 -#define FR_AA_TX_DESC_PTR_TBL_KER_STEP 16 -#define FR_AA_TX_DESC_PTR_TBL_KER_ROWS 8 -/* TX_DESC_PTR_TBL: Transmit descriptor pointer */ -#define FR_BZ_TX_DESC_PTR_TBL 0x00f50000 -#define FR_BZ_TX_DESC_PTR_TBL_STEP 16 -#define FR_BB_TX_DESC_PTR_TBL_ROWS 4096 -#define FR_CZ_TX_DESC_PTR_TBL_ROWS 1024 -#define FRF_CZ_TX_DPT_Q_MASK_WIDTH_LBN 94 -#define FRF_CZ_TX_DPT_Q_MASK_WIDTH_WIDTH 2 -#define FRF_CZ_TX_DPT_ETH_FILT_EN_LBN 93 -#define FRF_CZ_TX_DPT_ETH_FILT_EN_WIDTH 1 -#define FRF_CZ_TX_DPT_IP_FILT_EN_LBN 92 -#define FRF_CZ_TX_DPT_IP_FILT_EN_WIDTH 1 -#define FRF_BZ_TX_NON_IP_DROP_DIS_LBN 91 -#define FRF_BZ_TX_NON_IP_DROP_DIS_WIDTH 1 -#define FRF_BZ_TX_IP_CHKSM_DIS_LBN 90 -#define FRF_BZ_TX_IP_CHKSM_DIS_WIDTH 1 -#define FRF_BZ_TX_TCP_CHKSM_DIS_LBN 89 -#define FRF_BZ_TX_TCP_CHKSM_DIS_WIDTH 1 -#define FRF_AZ_TX_DESCQ_EN_LBN 88 -#define FRF_AZ_TX_DESCQ_EN_WIDTH 1 -#define FRF_AZ_TX_ISCSI_DDIG_EN_LBN 87 -#define FRF_AZ_TX_ISCSI_DDIG_EN_WIDTH 1 -#define FRF_AZ_TX_ISCSI_HDIG_EN_LBN 86 -#define FRF_AZ_TX_ISCSI_HDIG_EN_WIDTH 1 -#define FRF_AZ_TX_DC_HW_RPTR_LBN 80 -#define FRF_AZ_TX_DC_HW_RPTR_WIDTH 6 -#define FRF_AZ_TX_DESCQ_HW_RPTR_LBN 68 -#define FRF_AZ_TX_DESCQ_HW_RPTR_WIDTH 12 -#define FRF_AZ_TX_DESCQ_SW_WPTR_LBN 56 -#define FRF_AZ_TX_DESCQ_SW_WPTR_WIDTH 12 -#define FRF_AZ_TX_DESCQ_BUF_BASE_ID_LBN 36 -#define FRF_AZ_TX_DESCQ_BUF_BASE_ID_WIDTH 20 -#define FRF_AZ_TX_DESCQ_EVQ_ID_LBN 24 -#define FRF_AZ_TX_DESCQ_EVQ_ID_WIDTH 12 -#define FRF_AZ_TX_DESCQ_OWNER_ID_LBN 10 -#define FRF_AZ_TX_DESCQ_OWNER_ID_WIDTH 14 -#define FRF_AZ_TX_DESCQ_LABEL_LBN 5 -#define FRF_AZ_TX_DESCQ_LABEL_WIDTH 5 -#define FRF_AZ_TX_DESCQ_SIZE_LBN 3 -#define FRF_AZ_TX_DESCQ_SIZE_WIDTH 2 -#define FFE_AZ_TX_DESCQ_SIZE_4K 3 -#define FFE_AZ_TX_DESCQ_SIZE_2K 2 -#define FFE_AZ_TX_DESCQ_SIZE_1K 1 -#define FFE_AZ_TX_DESCQ_SIZE_512 0 -#define FRF_AZ_TX_DESCQ_TYPE_LBN 1 -#define FRF_AZ_TX_DESCQ_TYPE_WIDTH 2 -#define FRF_AZ_TX_DESCQ_FLUSH_LBN 0 -#define FRF_AZ_TX_DESCQ_FLUSH_WIDTH 1 - -/* EVQ_PTR_TBL_KER: Event queue pointer table */ -#define FR_AA_EVQ_PTR_TBL_KER 0x00011a00 -#define FR_AA_EVQ_PTR_TBL_KER_STEP 16 -#define FR_AA_EVQ_PTR_TBL_KER_ROWS 4 -/* EVQ_PTR_TBL: Event queue pointer table */ -#define FR_BZ_EVQ_PTR_TBL 0x00f60000 -#define FR_BZ_EVQ_PTR_TBL_STEP 16 -#define FR_CZ_EVQ_PTR_TBL_ROWS 1024 -#define FR_BB_EVQ_PTR_TBL_ROWS 4096 -#define FRF_BZ_EVQ_RPTR_IGN_LBN 40 -#define FRF_BZ_EVQ_RPTR_IGN_WIDTH 1 -#define FRF_AB_EVQ_WKUP_OR_INT_EN_LBN 39 -#define FRF_AB_EVQ_WKUP_OR_INT_EN_WIDTH 1 -#define FRF_CZ_EVQ_DOS_PROTECT_EN_LBN 39 -#define FRF_CZ_EVQ_DOS_PROTECT_EN_WIDTH 1 -#define FRF_AZ_EVQ_NXT_WPTR_LBN 24 -#define FRF_AZ_EVQ_NXT_WPTR_WIDTH 15 -#define FRF_AZ_EVQ_EN_LBN 23 -#define FRF_AZ_EVQ_EN_WIDTH 1 -#define FRF_AZ_EVQ_SIZE_LBN 20 -#define FRF_AZ_EVQ_SIZE_WIDTH 3 -#define FFE_AZ_EVQ_SIZE_32K 6 -#define FFE_AZ_EVQ_SIZE_16K 5 -#define FFE_AZ_EVQ_SIZE_8K 4 -#define FFE_AZ_EVQ_SIZE_4K 3 -#define FFE_AZ_EVQ_SIZE_2K 2 -#define FFE_AZ_EVQ_SIZE_1K 1 -#define FFE_AZ_EVQ_SIZE_512 0 -#define FRF_AZ_EVQ_BUF_BASE_ID_LBN 0 -#define FRF_AZ_EVQ_BUF_BASE_ID_WIDTH 20 - -/* BUF_HALF_TBL_KER: Buffer table in half buffer table mode direct access by driver */ -#define FR_AA_BUF_HALF_TBL_KER 0x00018000 -#define FR_AA_BUF_HALF_TBL_KER_STEP 8 -#define FR_AA_BUF_HALF_TBL_KER_ROWS 4096 -/* BUF_HALF_TBL: Buffer table in half buffer table mode direct access by driver */ -#define FR_BZ_BUF_HALF_TBL 0x00800000 -#define FR_BZ_BUF_HALF_TBL_STEP 8 -#define FR_CZ_BUF_HALF_TBL_ROWS 147456 -#define FR_BB_BUF_HALF_TBL_ROWS 524288 -#define FRF_AZ_BUF_ADR_HBUF_ODD_LBN 44 -#define FRF_AZ_BUF_ADR_HBUF_ODD_WIDTH 20 -#define FRF_AZ_BUF_OWNER_ID_HBUF_ODD_LBN 32 -#define FRF_AZ_BUF_OWNER_ID_HBUF_ODD_WIDTH 12 -#define FRF_AZ_BUF_ADR_HBUF_EVEN_LBN 12 -#define FRF_AZ_BUF_ADR_HBUF_EVEN_WIDTH 20 -#define FRF_AZ_BUF_OWNER_ID_HBUF_EVEN_LBN 0 -#define FRF_AZ_BUF_OWNER_ID_HBUF_EVEN_WIDTH 12 - -/* BUF_FULL_TBL_KER: Buffer table in full buffer table mode direct access by driver */ -#define FR_AA_BUF_FULL_TBL_KER 0x00018000 -#define FR_AA_BUF_FULL_TBL_KER_STEP 8 -#define FR_AA_BUF_FULL_TBL_KER_ROWS 4096 -/* BUF_FULL_TBL: Buffer table in full buffer table mode direct access by driver */ -#define FR_BZ_BUF_FULL_TBL 0x00800000 -#define FR_BZ_BUF_FULL_TBL_STEP 8 -#define FR_CZ_BUF_FULL_TBL_ROWS 147456 -#define FR_BB_BUF_FULL_TBL_ROWS 917504 -#define FRF_AZ_BUF_FULL_UNUSED_LBN 51 -#define FRF_AZ_BUF_FULL_UNUSED_WIDTH 13 -#define FRF_AZ_IP_DAT_BUF_SIZE_LBN 50 -#define FRF_AZ_IP_DAT_BUF_SIZE_WIDTH 1 -#define FRF_AZ_BUF_ADR_REGION_LBN 48 -#define FRF_AZ_BUF_ADR_REGION_WIDTH 2 -#define FFE_AZ_BUF_ADR_REGN3 3 -#define FFE_AZ_BUF_ADR_REGN2 2 -#define FFE_AZ_BUF_ADR_REGN1 1 -#define FFE_AZ_BUF_ADR_REGN0 0 -#define FRF_AZ_BUF_ADR_FBUF_LBN 14 -#define FRF_AZ_BUF_ADR_FBUF_WIDTH 34 -#define FRF_AZ_BUF_OWNER_ID_FBUF_LBN 0 -#define FRF_AZ_BUF_OWNER_ID_FBUF_WIDTH 14 - -/* RX_FILTER_TBL0: TCP/IPv4 Receive filter table */ -#define FR_BZ_RX_FILTER_TBL0 0x00f00000 -#define FR_BZ_RX_FILTER_TBL0_STEP 32 -#define FR_BZ_RX_FILTER_TBL0_ROWS 8192 -/* RX_FILTER_TBL1: TCP/IPv4 Receive filter table */ -#define FR_BB_RX_FILTER_TBL1 0x00f00010 -#define FR_BB_RX_FILTER_TBL1_STEP 32 -#define FR_BB_RX_FILTER_TBL1_ROWS 8192 -#define FRF_BZ_RSS_EN_LBN 110 -#define FRF_BZ_RSS_EN_WIDTH 1 -#define FRF_BZ_SCATTER_EN_LBN 109 -#define FRF_BZ_SCATTER_EN_WIDTH 1 -#define FRF_BZ_TCP_UDP_LBN 108 -#define FRF_BZ_TCP_UDP_WIDTH 1 -#define FRF_BZ_RXQ_ID_LBN 96 -#define FRF_BZ_RXQ_ID_WIDTH 12 -#define FRF_BZ_DEST_IP_LBN 64 -#define FRF_BZ_DEST_IP_WIDTH 32 -#define FRF_BZ_DEST_PORT_TCP_LBN 48 -#define FRF_BZ_DEST_PORT_TCP_WIDTH 16 -#define FRF_BZ_SRC_IP_LBN 16 -#define FRF_BZ_SRC_IP_WIDTH 32 -#define FRF_BZ_SRC_TCP_DEST_UDP_LBN 0 -#define FRF_BZ_SRC_TCP_DEST_UDP_WIDTH 16 - -/* RX_MAC_FILTER_TBL0: Receive Ethernet filter table */ -#define FR_CZ_RX_MAC_FILTER_TBL0 0x00f00010 -#define FR_CZ_RX_MAC_FILTER_TBL0_STEP 32 -#define FR_CZ_RX_MAC_FILTER_TBL0_ROWS 512 -#define FRF_CZ_RMFT_RSS_EN_LBN 75 -#define FRF_CZ_RMFT_RSS_EN_WIDTH 1 -#define FRF_CZ_RMFT_SCATTER_EN_LBN 74 -#define FRF_CZ_RMFT_SCATTER_EN_WIDTH 1 -#define FRF_CZ_RMFT_IP_OVERRIDE_LBN 73 -#define FRF_CZ_RMFT_IP_OVERRIDE_WIDTH 1 -#define FRF_CZ_RMFT_RXQ_ID_LBN 61 -#define FRF_CZ_RMFT_RXQ_ID_WIDTH 12 -#define FRF_CZ_RMFT_WILDCARD_MATCH_LBN 60 -#define FRF_CZ_RMFT_WILDCARD_MATCH_WIDTH 1 -#define FRF_CZ_RMFT_DEST_MAC_LBN 16 -#define FRF_CZ_RMFT_DEST_MAC_WIDTH 44 -#define FRF_CZ_RMFT_VLAN_ID_LBN 0 -#define FRF_CZ_RMFT_VLAN_ID_WIDTH 12 - -/* TIMER_TBL: Timer table */ -#define FR_BZ_TIMER_TBL 0x00f70000 -#define FR_BZ_TIMER_TBL_STEP 16 -#define FR_CZ_TIMER_TBL_ROWS 1024 -#define FR_BB_TIMER_TBL_ROWS 4096 -#define FRF_CZ_TIMER_Q_EN_LBN 33 -#define FRF_CZ_TIMER_Q_EN_WIDTH 1 -#define FRF_CZ_INT_ARMD_LBN 32 -#define FRF_CZ_INT_ARMD_WIDTH 1 -#define FRF_CZ_INT_PEND_LBN 31 -#define FRF_CZ_INT_PEND_WIDTH 1 -#define FRF_CZ_HOST_NOTIFY_MODE_LBN 30 -#define FRF_CZ_HOST_NOTIFY_MODE_WIDTH 1 -#define FRF_CZ_RELOAD_TIMER_VAL_LBN 16 -#define FRF_CZ_RELOAD_TIMER_VAL_WIDTH 14 -#define FRF_CZ_TIMER_MODE_LBN 14 -#define FRF_CZ_TIMER_MODE_WIDTH 2 -#define FFE_CZ_TIMER_MODE_INT_HLDOFF 3 -#define FFE_CZ_TIMER_MODE_TRIG_START 2 -#define FFE_CZ_TIMER_MODE_IMMED_START 1 -#define FFE_CZ_TIMER_MODE_DIS 0 -#define FRF_BB_TIMER_MODE_LBN 12 -#define FRF_BB_TIMER_MODE_WIDTH 2 -#define FFE_BB_TIMER_MODE_INT_HLDOFF 2 -#define FFE_BB_TIMER_MODE_TRIG_START 2 -#define FFE_BB_TIMER_MODE_IMMED_START 1 -#define FFE_BB_TIMER_MODE_DIS 0 -#define FRF_CZ_TIMER_VAL_LBN 0 -#define FRF_CZ_TIMER_VAL_WIDTH 14 -#define FRF_BB_TIMER_VAL_LBN 0 -#define FRF_BB_TIMER_VAL_WIDTH 12 - -/* TX_PACE_TBL: Transmit pacing table */ -#define FR_BZ_TX_PACE_TBL 0x00f80000 -#define FR_BZ_TX_PACE_TBL_STEP 16 -#define FR_CZ_TX_PACE_TBL_ROWS 1024 -#define FR_BB_TX_PACE_TBL_ROWS 4096 -#define FRF_BZ_TX_PACE_LBN 0 -#define FRF_BZ_TX_PACE_WIDTH 5 - -/* RX_INDIRECTION_TBL: RX Indirection Table */ -#define FR_BZ_RX_INDIRECTION_TBL 0x00fb0000 -#define FR_BZ_RX_INDIRECTION_TBL_STEP 16 -#define FR_BZ_RX_INDIRECTION_TBL_ROWS 128 -#define FRF_BZ_IT_QUEUE_LBN 0 -#define FRF_BZ_IT_QUEUE_WIDTH 6 - -/* TX_FILTER_TBL0: TCP/IPv4 Transmit filter table */ -#define FR_CZ_TX_FILTER_TBL0 0x00fc0000 -#define FR_CZ_TX_FILTER_TBL0_STEP 16 -#define FR_CZ_TX_FILTER_TBL0_ROWS 8192 -#define FRF_CZ_TIFT_TCP_UDP_LBN 108 -#define FRF_CZ_TIFT_TCP_UDP_WIDTH 1 -#define FRF_CZ_TIFT_TXQ_ID_LBN 96 -#define FRF_CZ_TIFT_TXQ_ID_WIDTH 12 -#define FRF_CZ_TIFT_DEST_IP_LBN 64 -#define FRF_CZ_TIFT_DEST_IP_WIDTH 32 -#define FRF_CZ_TIFT_DEST_PORT_TCP_LBN 48 -#define FRF_CZ_TIFT_DEST_PORT_TCP_WIDTH 16 -#define FRF_CZ_TIFT_SRC_IP_LBN 16 -#define FRF_CZ_TIFT_SRC_IP_WIDTH 32 -#define FRF_CZ_TIFT_SRC_TCP_DEST_UDP_LBN 0 -#define FRF_CZ_TIFT_SRC_TCP_DEST_UDP_WIDTH 16 - -/* TX_MAC_FILTER_TBL0: Transmit Ethernet filter table */ -#define FR_CZ_TX_MAC_FILTER_TBL0 0x00fe0000 -#define FR_CZ_TX_MAC_FILTER_TBL0_STEP 16 -#define FR_CZ_TX_MAC_FILTER_TBL0_ROWS 512 -#define FRF_CZ_TMFT_TXQ_ID_LBN 61 -#define FRF_CZ_TMFT_TXQ_ID_WIDTH 12 -#define FRF_CZ_TMFT_WILDCARD_MATCH_LBN 60 -#define FRF_CZ_TMFT_WILDCARD_MATCH_WIDTH 1 -#define FRF_CZ_TMFT_SRC_MAC_LBN 16 -#define FRF_CZ_TMFT_SRC_MAC_WIDTH 44 -#define FRF_CZ_TMFT_VLAN_ID_LBN 0 -#define FRF_CZ_TMFT_VLAN_ID_WIDTH 12 - -/* MC_TREG_SMEM: MC Shared Memory */ -#define FR_CZ_MC_TREG_SMEM 0x00ff0000 -#define FR_CZ_MC_TREG_SMEM_STEP 4 -#define FR_CZ_MC_TREG_SMEM_ROWS 512 -#define FRF_CZ_MC_TREG_SMEM_ROW_LBN 0 -#define FRF_CZ_MC_TREG_SMEM_ROW_WIDTH 32 - -/* MSIX_VECTOR_TABLE: MSIX Vector Table */ -#define FR_BB_MSIX_VECTOR_TABLE 0x00ff0000 -#define FR_BZ_MSIX_VECTOR_TABLE_STEP 16 -#define FR_BB_MSIX_VECTOR_TABLE_ROWS 64 -/* MSIX_VECTOR_TABLE: MSIX Vector Table */ -#define FR_CZ_MSIX_VECTOR_TABLE 0x00000000 -/* FR_BZ_MSIX_VECTOR_TABLE_STEP 16 */ -#define FR_CZ_MSIX_VECTOR_TABLE_ROWS 1024 -#define FRF_BZ_MSIX_VECTOR_RESERVED_LBN 97 -#define FRF_BZ_MSIX_VECTOR_RESERVED_WIDTH 31 -#define FRF_BZ_MSIX_VECTOR_MASK_LBN 96 -#define FRF_BZ_MSIX_VECTOR_MASK_WIDTH 1 -#define FRF_BZ_MSIX_MESSAGE_DATA_LBN 64 -#define FRF_BZ_MSIX_MESSAGE_DATA_WIDTH 32 -#define FRF_BZ_MSIX_MESSAGE_ADDRESS_HI_LBN 32 -#define FRF_BZ_MSIX_MESSAGE_ADDRESS_HI_WIDTH 32 -#define FRF_BZ_MSIX_MESSAGE_ADDRESS_LO_LBN 0 -#define FRF_BZ_MSIX_MESSAGE_ADDRESS_LO_WIDTH 32 - -/* MSIX_PBA_TABLE: MSIX Pending Bit Array */ -#define FR_BB_MSIX_PBA_TABLE 0x00ff2000 -#define FR_BZ_MSIX_PBA_TABLE_STEP 4 -#define FR_BB_MSIX_PBA_TABLE_ROWS 2 -/* MSIX_PBA_TABLE: MSIX Pending Bit Array */ -#define FR_CZ_MSIX_PBA_TABLE 0x00008000 -/* FR_BZ_MSIX_PBA_TABLE_STEP 4 */ -#define FR_CZ_MSIX_PBA_TABLE_ROWS 32 -#define FRF_BZ_MSIX_PBA_PEND_DWORD_LBN 0 -#define FRF_BZ_MSIX_PBA_PEND_DWORD_WIDTH 32 - -/* SRM_DBG_REG: SRAM debug access */ -#define FR_BZ_SRM_DBG 0x03000000 -#define FR_BZ_SRM_DBG_STEP 8 -#define FR_CZ_SRM_DBG_ROWS 262144 -#define FR_BB_SRM_DBG_ROWS 2097152 -#define FRF_BZ_SRM_DBG_LBN 0 -#define FRF_BZ_SRM_DBG_WIDTH 64 - -/* TB_MSIX_PBA_TABLE: MSIX Pending Bit Array */ -#define FR_CZ_TB_MSIX_PBA_TABLE 0x00008000 -#define FR_CZ_TB_MSIX_PBA_TABLE_STEP 4 -#define FR_CZ_TB_MSIX_PBA_TABLE_ROWS 1024 -#define FRF_CZ_TB_MSIX_PBA_PEND_DWORD_LBN 0 -#define FRF_CZ_TB_MSIX_PBA_PEND_DWORD_WIDTH 32 - -/* DRIVER_EV */ -#define FSF_AZ_DRIVER_EV_SUBCODE_LBN 56 -#define FSF_AZ_DRIVER_EV_SUBCODE_WIDTH 4 -#define FSE_BZ_TX_DSC_ERROR_EV 15 -#define FSE_BZ_RX_DSC_ERROR_EV 14 -#define FSE_AA_RX_RECOVER_EV 11 -#define FSE_AZ_TIMER_EV 10 -#define FSE_AZ_TX_PKT_NON_TCP_UDP 9 -#define FSE_AZ_WAKE_UP_EV 6 -#define FSE_AZ_SRM_UPD_DONE_EV 5 -#define FSE_AB_EVQ_NOT_EN_EV 3 -#define FSE_AZ_EVQ_INIT_DONE_EV 2 -#define FSE_AZ_RX_DESCQ_FLS_DONE_EV 1 -#define FSE_AZ_TX_DESCQ_FLS_DONE_EV 0 -#define FSF_AZ_DRIVER_EV_SUBDATA_LBN 0 -#define FSF_AZ_DRIVER_EV_SUBDATA_WIDTH 14 - -/* EVENT_ENTRY */ -#define FSF_AZ_EV_CODE_LBN 60 -#define FSF_AZ_EV_CODE_WIDTH 4 -#define FSE_CZ_EV_CODE_MCDI_EV 12 -#define FSE_CZ_EV_CODE_USER_EV 8 -#define FSE_AZ_EV_CODE_DRV_GEN_EV 7 -#define FSE_AZ_EV_CODE_GLOBAL_EV 6 -#define FSE_AZ_EV_CODE_DRIVER_EV 5 -#define FSE_AZ_EV_CODE_TX_EV 2 -#define FSE_AZ_EV_CODE_RX_EV 0 -#define FSF_AZ_EV_DATA_LBN 0 -#define FSF_AZ_EV_DATA_WIDTH 60 - -/* GLOBAL_EV */ -#define FSF_BB_GLB_EV_RX_RECOVERY_LBN 12 -#define FSF_BB_GLB_EV_RX_RECOVERY_WIDTH 1 -#define FSF_AA_GLB_EV_RX_RECOVERY_LBN 11 -#define FSF_AA_GLB_EV_RX_RECOVERY_WIDTH 1 -#define FSF_BB_GLB_EV_XG_MGT_INTR_LBN 11 -#define FSF_BB_GLB_EV_XG_MGT_INTR_WIDTH 1 -#define FSF_AB_GLB_EV_XFP_PHY0_INTR_LBN 10 -#define FSF_AB_GLB_EV_XFP_PHY0_INTR_WIDTH 1 -#define FSF_AB_GLB_EV_XG_PHY0_INTR_LBN 9 -#define FSF_AB_GLB_EV_XG_PHY0_INTR_WIDTH 1 -#define FSF_AB_GLB_EV_G_PHY0_INTR_LBN 7 -#define FSF_AB_GLB_EV_G_PHY0_INTR_WIDTH 1 - -/* LEGACY_INT_VEC */ -#define FSF_AZ_NET_IVEC_FATAL_INT_LBN 64 -#define FSF_AZ_NET_IVEC_FATAL_INT_WIDTH 1 -#define FSF_AZ_NET_IVEC_INT_Q_LBN 40 -#define FSF_AZ_NET_IVEC_INT_Q_WIDTH 4 -#define FSF_AZ_NET_IVEC_INT_FLAG_LBN 32 -#define FSF_AZ_NET_IVEC_INT_FLAG_WIDTH 1 -#define FSF_AZ_NET_IVEC_EVQ_FIFO_HF_LBN 1 -#define FSF_AZ_NET_IVEC_EVQ_FIFO_HF_WIDTH 1 -#define FSF_AZ_NET_IVEC_EVQ_FIFO_AF_LBN 0 -#define FSF_AZ_NET_IVEC_EVQ_FIFO_AF_WIDTH 1 - -/* MC_XGMAC_FLTR_RULE_DEF */ -#define FSF_CZ_MC_XFRC_MODE_LBN 416 -#define FSF_CZ_MC_XFRC_MODE_WIDTH 1 -#define FSE_CZ_MC_XFRC_MODE_LAYERED 1 -#define FSE_CZ_MC_XFRC_MODE_SIMPLE 0 -#define FSF_CZ_MC_XFRC_HASH_LBN 384 -#define FSF_CZ_MC_XFRC_HASH_WIDTH 32 -#define FSF_CZ_MC_XFRC_LAYER4_BYTE_MASK_LBN 256 -#define FSF_CZ_MC_XFRC_LAYER4_BYTE_MASK_WIDTH 128 -#define FSF_CZ_MC_XFRC_LAYER3_BYTE_MASK_LBN 128 -#define FSF_CZ_MC_XFRC_LAYER3_BYTE_MASK_WIDTH 128 -#define FSF_CZ_MC_XFRC_LAYER2_OR_SIMPLE_BYTE_MASK_LBN 0 -#define FSF_CZ_MC_XFRC_LAYER2_OR_SIMPLE_BYTE_MASK_WIDTH 128 - -/* RX_EV */ -#define FSF_CZ_RX_EV_PKT_NOT_PARSED_LBN 58 -#define FSF_CZ_RX_EV_PKT_NOT_PARSED_WIDTH 1 -#define FSF_CZ_RX_EV_IPV6_PKT_LBN 57 -#define FSF_CZ_RX_EV_IPV6_PKT_WIDTH 1 -#define FSF_AZ_RX_EV_PKT_OK_LBN 56 -#define FSF_AZ_RX_EV_PKT_OK_WIDTH 1 -#define FSF_AZ_RX_EV_PAUSE_FRM_ERR_LBN 55 -#define FSF_AZ_RX_EV_PAUSE_FRM_ERR_WIDTH 1 -#define FSF_AZ_RX_EV_BUF_OWNER_ID_ERR_LBN 54 -#define FSF_AZ_RX_EV_BUF_OWNER_ID_ERR_WIDTH 1 -#define FSF_AZ_RX_EV_IP_FRAG_ERR_LBN 53 -#define FSF_AZ_RX_EV_IP_FRAG_ERR_WIDTH 1 -#define FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR_LBN 52 -#define FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR_WIDTH 1 -#define FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR_LBN 51 -#define FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR_WIDTH 1 -#define FSF_AZ_RX_EV_ETH_CRC_ERR_LBN 50 -#define FSF_AZ_RX_EV_ETH_CRC_ERR_WIDTH 1 -#define FSF_AZ_RX_EV_FRM_TRUNC_LBN 49 -#define FSF_AZ_RX_EV_FRM_TRUNC_WIDTH 1 -#define FSF_AA_RX_EV_DRIB_NIB_LBN 49 -#define FSF_AA_RX_EV_DRIB_NIB_WIDTH 1 -#define FSF_AZ_RX_EV_TOBE_DISC_LBN 47 -#define FSF_AZ_RX_EV_TOBE_DISC_WIDTH 1 -#define FSF_AZ_RX_EV_PKT_TYPE_LBN 44 -#define FSF_AZ_RX_EV_PKT_TYPE_WIDTH 3 -#define FSE_AZ_RX_EV_PKT_TYPE_VLAN_JUMBO 5 -#define FSE_AZ_RX_EV_PKT_TYPE_VLAN_LLC 4 -#define FSE_AZ_RX_EV_PKT_TYPE_VLAN 3 -#define FSE_AZ_RX_EV_PKT_TYPE_JUMBO 2 -#define FSE_AZ_RX_EV_PKT_TYPE_LLC 1 -#define FSE_AZ_RX_EV_PKT_TYPE_ETH 0 -#define FSF_AZ_RX_EV_HDR_TYPE_LBN 42 -#define FSF_AZ_RX_EV_HDR_TYPE_WIDTH 2 -#define FSE_AZ_RX_EV_HDR_TYPE_OTHER 3 -#define FSE_AB_RX_EV_HDR_TYPE_IPV4_OTHER 2 -#define FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER 2 -#define FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP 1 -#define FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP 1 -#define FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP 0 -#define FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP 0 -#define FSF_AZ_RX_EV_DESC_Q_EMPTY_LBN 41 -#define FSF_AZ_RX_EV_DESC_Q_EMPTY_WIDTH 1 -#define FSF_AZ_RX_EV_MCAST_HASH_MATCH_LBN 40 -#define FSF_AZ_RX_EV_MCAST_HASH_MATCH_WIDTH 1 -#define FSF_AZ_RX_EV_MCAST_PKT_LBN 39 -#define FSF_AZ_RX_EV_MCAST_PKT_WIDTH 1 -#define FSF_AA_RX_EV_RECOVERY_FLAG_LBN 37 -#define FSF_AA_RX_EV_RECOVERY_FLAG_WIDTH 1 -#define FSF_AZ_RX_EV_Q_LABEL_LBN 32 -#define FSF_AZ_RX_EV_Q_LABEL_WIDTH 5 -#define FSF_AZ_RX_EV_JUMBO_CONT_LBN 31 -#define FSF_AZ_RX_EV_JUMBO_CONT_WIDTH 1 -#define FSF_AZ_RX_EV_PORT_LBN 30 -#define FSF_AZ_RX_EV_PORT_WIDTH 1 -#define FSF_AZ_RX_EV_BYTE_CNT_LBN 16 -#define FSF_AZ_RX_EV_BYTE_CNT_WIDTH 14 -#define FSF_AZ_RX_EV_SOP_LBN 15 -#define FSF_AZ_RX_EV_SOP_WIDTH 1 -#define FSF_AZ_RX_EV_ISCSI_PKT_OK_LBN 14 -#define FSF_AZ_RX_EV_ISCSI_PKT_OK_WIDTH 1 -#define FSF_AZ_RX_EV_ISCSI_DDIG_ERR_LBN 13 -#define FSF_AZ_RX_EV_ISCSI_DDIG_ERR_WIDTH 1 -#define FSF_AZ_RX_EV_ISCSI_HDIG_ERR_LBN 12 -#define FSF_AZ_RX_EV_ISCSI_HDIG_ERR_WIDTH 1 -#define FSF_AZ_RX_EV_DESC_PTR_LBN 0 -#define FSF_AZ_RX_EV_DESC_PTR_WIDTH 12 - -/* RX_KER_DESC */ -#define FSF_AZ_RX_KER_BUF_SIZE_LBN 48 -#define FSF_AZ_RX_KER_BUF_SIZE_WIDTH 14 -#define FSF_AZ_RX_KER_BUF_REGION_LBN 46 -#define FSF_AZ_RX_KER_BUF_REGION_WIDTH 2 -#define FSF_AZ_RX_KER_BUF_ADDR_LBN 0 -#define FSF_AZ_RX_KER_BUF_ADDR_WIDTH 46 - -/* RX_USER_DESC */ -#define FSF_AZ_RX_USER_2BYTE_OFFSET_LBN 20 -#define FSF_AZ_RX_USER_2BYTE_OFFSET_WIDTH 12 -#define FSF_AZ_RX_USER_BUF_ID_LBN 0 -#define FSF_AZ_RX_USER_BUF_ID_WIDTH 20 - -/* TX_EV */ -#define FSF_AZ_TX_EV_PKT_ERR_LBN 38 -#define FSF_AZ_TX_EV_PKT_ERR_WIDTH 1 -#define FSF_AZ_TX_EV_PKT_TOO_BIG_LBN 37 -#define FSF_AZ_TX_EV_PKT_TOO_BIG_WIDTH 1 -#define FSF_AZ_TX_EV_Q_LABEL_LBN 32 -#define FSF_AZ_TX_EV_Q_LABEL_WIDTH 5 -#define FSF_AZ_TX_EV_PORT_LBN 16 -#define FSF_AZ_TX_EV_PORT_WIDTH 1 -#define FSF_AZ_TX_EV_WQ_FF_FULL_LBN 15 -#define FSF_AZ_TX_EV_WQ_FF_FULL_WIDTH 1 -#define FSF_AZ_TX_EV_BUF_OWNER_ID_ERR_LBN 14 -#define FSF_AZ_TX_EV_BUF_OWNER_ID_ERR_WIDTH 1 -#define FSF_AZ_TX_EV_COMP_LBN 12 -#define FSF_AZ_TX_EV_COMP_WIDTH 1 -#define FSF_AZ_TX_EV_DESC_PTR_LBN 0 -#define FSF_AZ_TX_EV_DESC_PTR_WIDTH 12 - -/* TX_KER_DESC */ -#define FSF_AZ_TX_KER_CONT_LBN 62 -#define FSF_AZ_TX_KER_CONT_WIDTH 1 -#define FSF_AZ_TX_KER_BYTE_COUNT_LBN 48 -#define FSF_AZ_TX_KER_BYTE_COUNT_WIDTH 14 -#define FSF_AZ_TX_KER_BUF_REGION_LBN 46 -#define FSF_AZ_TX_KER_BUF_REGION_WIDTH 2 -#define FSF_AZ_TX_KER_BUF_ADDR_LBN 0 -#define FSF_AZ_TX_KER_BUF_ADDR_WIDTH 46 - -/* TX_USER_DESC */ -#define FSF_AZ_TX_USER_SW_EV_EN_LBN 48 -#define FSF_AZ_TX_USER_SW_EV_EN_WIDTH 1 -#define FSF_AZ_TX_USER_CONT_LBN 46 -#define FSF_AZ_TX_USER_CONT_WIDTH 1 -#define FSF_AZ_TX_USER_BYTE_CNT_LBN 33 -#define FSF_AZ_TX_USER_BYTE_CNT_WIDTH 13 -#define FSF_AZ_TX_USER_BUF_ID_LBN 13 -#define FSF_AZ_TX_USER_BUF_ID_WIDTH 20 -#define FSF_AZ_TX_USER_BYTE_OFS_LBN 0 -#define FSF_AZ_TX_USER_BYTE_OFS_WIDTH 13 - -/* USER_EV */ -#define FSF_CZ_USER_QID_LBN 32 -#define FSF_CZ_USER_QID_WIDTH 10 -#define FSF_CZ_USER_EV_REG_VALUE_LBN 0 -#define FSF_CZ_USER_EV_REG_VALUE_WIDTH 32 - -/************************************************************************** - * - * Falcon B0 PCIe core indirect registers - * - ************************************************************************** - */ - -#define FPCR_BB_PCIE_DEVICE_CTRL_STAT 0x68 - -#define FPCR_BB_PCIE_LINK_CTRL_STAT 0x70 - -#define FPCR_BB_ACK_RPL_TIMER 0x700 -#define FPCRF_BB_ACK_TL_LBN 0 -#define FPCRF_BB_ACK_TL_WIDTH 16 -#define FPCRF_BB_RPL_TL_LBN 16 -#define FPCRF_BB_RPL_TL_WIDTH 16 - -#define FPCR_BB_ACK_FREQ 0x70C -#define FPCRF_BB_ACK_FREQ_LBN 0 -#define FPCRF_BB_ACK_FREQ_WIDTH 7 - -/************************************************************************** - * - * Pseudo-registers and fields - * - ************************************************************************** - */ - -/* Interrupt acknowledge work-around register (A0/A1 only) */ -#define FR_AA_WORK_AROUND_BROKEN_PCI_READS 0x0070 - -/* EE_SPI_HCMD_REG: SPI host command register */ -/* Values for the EE_SPI_HCMD_SF_SEL register field */ -#define FFE_AB_SPI_DEVICE_EEPROM 0 -#define FFE_AB_SPI_DEVICE_FLASH 1 - -/* NIC_STAT_REG: NIC status register */ -#define FRF_AB_STRAP_10G_LBN 2 -#define FRF_AB_STRAP_10G_WIDTH 1 -#define FRF_AA_STRAP_PCIE_LBN 0 -#define FRF_AA_STRAP_PCIE_WIDTH 1 - -/* FATAL_INTR_REG_KER: Fatal interrupt register for Kernel */ -#define FRF_AZ_FATAL_INTR_LBN 0 -#define FRF_AZ_FATAL_INTR_WIDTH 12 - -/* SRM_CFG_REG: SRAM configuration register */ -/* We treat the number of SRAM banks and bank size as a single field */ -#define FRF_AZ_SRM_NB_SZ_LBN FRF_AZ_SRM_BANK_SIZE_LBN -#define FRF_AZ_SRM_NB_SZ_WIDTH \ - (FRF_AZ_SRM_BANK_SIZE_WIDTH + FRF_AZ_SRM_NUM_BANK_WIDTH) -#define FFE_AB_SRM_NB1_SZ2M 0 -#define FFE_AB_SRM_NB1_SZ4M 1 -#define FFE_AB_SRM_NB1_SZ8M 2 -#define FFE_AB_SRM_NB_SZ_DEF 3 -#define FFE_AB_SRM_NB2_SZ4M 4 -#define FFE_AB_SRM_NB2_SZ8M 5 -#define FFE_AB_SRM_NB2_SZ16M 6 -#define FFE_AB_SRM_NB_SZ_RES 7 - -/* RX_DESC_UPD_REGP0: Receive descriptor update register. */ -/* We write just the last dword of these registers */ -#define FR_AZ_RX_DESC_UPD_DWORD_P0 \ - (BUILD_BUG_ON_ZERO(FR_AA_RX_DESC_UPD_KER != FR_BZ_RX_DESC_UPD_P0) + \ - FR_BZ_RX_DESC_UPD_P0 + 3 * 4) -#define FRF_AZ_RX_DESC_WPTR_DWORD_LBN (FRF_AZ_RX_DESC_WPTR_LBN - 3 * 32) -#define FRF_AZ_RX_DESC_WPTR_DWORD_WIDTH FRF_AZ_RX_DESC_WPTR_WIDTH - -/* TX_DESC_UPD_REGP0: Transmit descriptor update register. */ -#define FR_AZ_TX_DESC_UPD_DWORD_P0 \ - (BUILD_BUG_ON_ZERO(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0) + \ - FR_BZ_TX_DESC_UPD_P0 + 3 * 4) -#define FRF_AZ_TX_DESC_WPTR_DWORD_LBN (FRF_AZ_TX_DESC_WPTR_LBN - 3 * 32) -#define FRF_AZ_TX_DESC_WPTR_DWORD_WIDTH FRF_AZ_TX_DESC_WPTR_WIDTH - -/* GMF_CFG4_REG: GMAC FIFO configuration register 4 */ -#define FRF_AB_GMF_HSTFLTRFRM_PAUSE_LBN 12 -#define FRF_AB_GMF_HSTFLTRFRM_PAUSE_WIDTH 1 - -/* GMF_CFG5_REG: GMAC FIFO configuration register 5 */ -#define FRF_AB_GMF_HSTFLTRFRMDC_PAUSE_LBN 12 -#define FRF_AB_GMF_HSTFLTRFRMDC_PAUSE_WIDTH 1 - -/* XM_TX_PARAM_REG: XGMAC transmit parameter register */ -#define FRF_AB_XM_MAX_TX_FRM_SIZE_LBN FRF_AB_XM_MAX_TX_FRM_SIZE_LO_LBN -#define FRF_AB_XM_MAX_TX_FRM_SIZE_WIDTH (FRF_AB_XM_MAX_TX_FRM_SIZE_HI_WIDTH + \ - FRF_AB_XM_MAX_TX_FRM_SIZE_LO_WIDTH) - -/* XM_RX_PARAM_REG: XGMAC receive parameter register */ -#define FRF_AB_XM_MAX_RX_FRM_SIZE_LBN FRF_AB_XM_MAX_RX_FRM_SIZE_LO_LBN -#define FRF_AB_XM_MAX_RX_FRM_SIZE_WIDTH (FRF_AB_XM_MAX_RX_FRM_SIZE_HI_WIDTH + \ - FRF_AB_XM_MAX_RX_FRM_SIZE_LO_WIDTH) - -/* XX_TXDRV_CTL_REG: XAUI SerDes transmit drive control register */ -/* Default values */ -#define FFE_AB_XX_TXDRV_DEQ_DEF 0xe /* deq=.6 */ -#define FFE_AB_XX_TXDRV_DTX_DEF 0x5 /* 1.25 */ -#define FFE_AB_XX_SD_CTL_DRV_DEF 0 /* 20mA */ - -/* XX_CORE_STAT_REG: XAUI XGXS core status register */ -/* XGXS all-lanes status fields */ -#define FRF_AB_XX_SYNC_STAT_LBN FRF_AB_XX_SYNC_STAT0_LBN -#define FRF_AB_XX_SYNC_STAT_WIDTH 4 -#define FRF_AB_XX_COMMA_DET_LBN FRF_AB_XX_COMMA_DET_CH0_LBN -#define FRF_AB_XX_COMMA_DET_WIDTH 4 -#define FRF_AB_XX_CHAR_ERR_LBN FRF_AB_XX_CHAR_ERR_CH0_LBN -#define FRF_AB_XX_CHAR_ERR_WIDTH 4 -#define FRF_AB_XX_DISPERR_LBN FRF_AB_XX_DISPERR_CH0_LBN -#define FRF_AB_XX_DISPERR_WIDTH 4 -#define FFE_AB_XX_STAT_ALL_LANES 0xf -#define FRF_AB_XX_FORCE_SIG_LBN FRF_AB_XX_FORCE_SIG0_VAL_LBN -#define FRF_AB_XX_FORCE_SIG_WIDTH 8 -#define FFE_AB_XX_FORCE_SIG_ALL_LANES 0xff - -/* RX_MAC_FILTER_TBL0 */ -/* RMFT_DEST_MAC is wider than 32 bits */ -#define FRF_CZ_RMFT_DEST_MAC_LO_LBN 12 -#define FRF_CZ_RMFT_DEST_MAC_LO_WIDTH 32 -#define FRF_CZ_RMFT_DEST_MAC_HI_LBN 44 -#define FRF_CZ_RMFT_DEST_MAC_HI_WIDTH 16 - -/* TX_MAC_FILTER_TBL0 */ -/* TMFT_SRC_MAC is wider than 32 bits */ -#define FRF_CZ_TMFT_SRC_MAC_LO_LBN 12 -#define FRF_CZ_TMFT_SRC_MAC_LO_WIDTH 32 -#define FRF_CZ_TMFT_SRC_MAC_HI_LBN 44 -#define FRF_CZ_TMFT_SRC_MAC_HI_WIDTH 16 - -/* TX_PACE_TBL */ -/* Values >20 are documented as reserved, but will result in a queue going - * into the fast bin with a pace value of zero. */ -#define FFE_BZ_TX_PACE_OFF 0 -#define FFE_BZ_TX_PACE_RESERVED 21 - -/* DRIVER_EV */ -/* Sub-fields of an RX flush completion event */ -#define FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL_LBN 12 -#define FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL_WIDTH 1 -#define FSF_AZ_DRIVER_EV_RX_DESCQ_ID_LBN 0 -#define FSF_AZ_DRIVER_EV_RX_DESCQ_ID_WIDTH 12 - -/* EVENT_ENTRY */ -/* Magic number field for event test */ -#define FSF_AZ_DRV_GEN_EV_MAGIC_LBN 0 -#define FSF_AZ_DRV_GEN_EV_MAGIC_WIDTH 32 - -/************************************************************************** - * - * Falcon MAC stats - * - ************************************************************************** - * - */ - -#define GRxGoodOct_offset 0x0 -#define GRxGoodOct_WIDTH 48 -#define GRxBadOct_offset 0x8 -#define GRxBadOct_WIDTH 48 -#define GRxMissPkt_offset 0x10 -#define GRxMissPkt_WIDTH 32 -#define GRxFalseCRS_offset 0x14 -#define GRxFalseCRS_WIDTH 32 -#define GRxPausePkt_offset 0x18 -#define GRxPausePkt_WIDTH 32 -#define GRxBadPkt_offset 0x1C -#define GRxBadPkt_WIDTH 32 -#define GRxUcastPkt_offset 0x20 -#define GRxUcastPkt_WIDTH 32 -#define GRxMcastPkt_offset 0x24 -#define GRxMcastPkt_WIDTH 32 -#define GRxBcastPkt_offset 0x28 -#define GRxBcastPkt_WIDTH 32 -#define GRxGoodLt64Pkt_offset 0x2C -#define GRxGoodLt64Pkt_WIDTH 32 -#define GRxBadLt64Pkt_offset 0x30 -#define GRxBadLt64Pkt_WIDTH 32 -#define GRx64Pkt_offset 0x34 -#define GRx64Pkt_WIDTH 32 -#define GRx65to127Pkt_offset 0x38 -#define GRx65to127Pkt_WIDTH 32 -#define GRx128to255Pkt_offset 0x3C -#define GRx128to255Pkt_WIDTH 32 -#define GRx256to511Pkt_offset 0x40 -#define GRx256to511Pkt_WIDTH 32 -#define GRx512to1023Pkt_offset 0x44 -#define GRx512to1023Pkt_WIDTH 32 -#define GRx1024to15xxPkt_offset 0x48 -#define GRx1024to15xxPkt_WIDTH 32 -#define GRx15xxtoJumboPkt_offset 0x4C -#define GRx15xxtoJumboPkt_WIDTH 32 -#define GRxGtJumboPkt_offset 0x50 -#define GRxGtJumboPkt_WIDTH 32 -#define GRxFcsErr64to15xxPkt_offset 0x54 -#define GRxFcsErr64to15xxPkt_WIDTH 32 -#define GRxFcsErr15xxtoJumboPkt_offset 0x58 -#define GRxFcsErr15xxtoJumboPkt_WIDTH 32 -#define GRxFcsErrGtJumboPkt_offset 0x5C -#define GRxFcsErrGtJumboPkt_WIDTH 32 -#define GTxGoodBadOct_offset 0x80 -#define GTxGoodBadOct_WIDTH 48 -#define GTxGoodOct_offset 0x88 -#define GTxGoodOct_WIDTH 48 -#define GTxSglColPkt_offset 0x90 -#define GTxSglColPkt_WIDTH 32 -#define GTxMultColPkt_offset 0x94 -#define GTxMultColPkt_WIDTH 32 -#define GTxExColPkt_offset 0x98 -#define GTxExColPkt_WIDTH 32 -#define GTxDefPkt_offset 0x9C -#define GTxDefPkt_WIDTH 32 -#define GTxLateCol_offset 0xA0 -#define GTxLateCol_WIDTH 32 -#define GTxExDefPkt_offset 0xA4 -#define GTxExDefPkt_WIDTH 32 -#define GTxPausePkt_offset 0xA8 -#define GTxPausePkt_WIDTH 32 -#define GTxBadPkt_offset 0xAC -#define GTxBadPkt_WIDTH 32 -#define GTxUcastPkt_offset 0xB0 -#define GTxUcastPkt_WIDTH 32 -#define GTxMcastPkt_offset 0xB4 -#define GTxMcastPkt_WIDTH 32 -#define GTxBcastPkt_offset 0xB8 -#define GTxBcastPkt_WIDTH 32 -#define GTxLt64Pkt_offset 0xBC -#define GTxLt64Pkt_WIDTH 32 -#define GTx64Pkt_offset 0xC0 -#define GTx64Pkt_WIDTH 32 -#define GTx65to127Pkt_offset 0xC4 -#define GTx65to127Pkt_WIDTH 32 -#define GTx128to255Pkt_offset 0xC8 -#define GTx128to255Pkt_WIDTH 32 -#define GTx256to511Pkt_offset 0xCC -#define GTx256to511Pkt_WIDTH 32 -#define GTx512to1023Pkt_offset 0xD0 -#define GTx512to1023Pkt_WIDTH 32 -#define GTx1024to15xxPkt_offset 0xD4 -#define GTx1024to15xxPkt_WIDTH 32 -#define GTx15xxtoJumboPkt_offset 0xD8 -#define GTx15xxtoJumboPkt_WIDTH 32 -#define GTxGtJumboPkt_offset 0xDC -#define GTxGtJumboPkt_WIDTH 32 -#define GTxNonTcpUdpPkt_offset 0xE0 -#define GTxNonTcpUdpPkt_WIDTH 16 -#define GTxMacSrcErrPkt_offset 0xE4 -#define GTxMacSrcErrPkt_WIDTH 16 -#define GTxIpSrcErrPkt_offset 0xE8 -#define GTxIpSrcErrPkt_WIDTH 16 -#define GDmaDone_offset 0xEC -#define GDmaDone_WIDTH 32 - -#define XgRxOctets_offset 0x0 -#define XgRxOctets_WIDTH 48 -#define XgRxOctetsOK_offset 0x8 -#define XgRxOctetsOK_WIDTH 48 -#define XgRxPkts_offset 0x10 -#define XgRxPkts_WIDTH 32 -#define XgRxPktsOK_offset 0x14 -#define XgRxPktsOK_WIDTH 32 -#define XgRxBroadcastPkts_offset 0x18 -#define XgRxBroadcastPkts_WIDTH 32 -#define XgRxMulticastPkts_offset 0x1C -#define XgRxMulticastPkts_WIDTH 32 -#define XgRxUnicastPkts_offset 0x20 -#define XgRxUnicastPkts_WIDTH 32 -#define XgRxUndersizePkts_offset 0x24 -#define XgRxUndersizePkts_WIDTH 32 -#define XgRxOversizePkts_offset 0x28 -#define XgRxOversizePkts_WIDTH 32 -#define XgRxJabberPkts_offset 0x2C -#define XgRxJabberPkts_WIDTH 32 -#define XgRxUndersizeFCSerrorPkts_offset 0x30 -#define XgRxUndersizeFCSerrorPkts_WIDTH 32 -#define XgRxDropEvents_offset 0x34 -#define XgRxDropEvents_WIDTH 32 -#define XgRxFCSerrorPkts_offset 0x38 -#define XgRxFCSerrorPkts_WIDTH 32 -#define XgRxAlignError_offset 0x3C -#define XgRxAlignError_WIDTH 32 -#define XgRxSymbolError_offset 0x40 -#define XgRxSymbolError_WIDTH 32 -#define XgRxInternalMACError_offset 0x44 -#define XgRxInternalMACError_WIDTH 32 -#define XgRxControlPkts_offset 0x48 -#define XgRxControlPkts_WIDTH 32 -#define XgRxPausePkts_offset 0x4C -#define XgRxPausePkts_WIDTH 32 -#define XgRxPkts64Octets_offset 0x50 -#define XgRxPkts64Octets_WIDTH 32 -#define XgRxPkts65to127Octets_offset 0x54 -#define XgRxPkts65to127Octets_WIDTH 32 -#define XgRxPkts128to255Octets_offset 0x58 -#define XgRxPkts128to255Octets_WIDTH 32 -#define XgRxPkts256to511Octets_offset 0x5C -#define XgRxPkts256to511Octets_WIDTH 32 -#define XgRxPkts512to1023Octets_offset 0x60 -#define XgRxPkts512to1023Octets_WIDTH 32 -#define XgRxPkts1024to15xxOctets_offset 0x64 -#define XgRxPkts1024to15xxOctets_WIDTH 32 -#define XgRxPkts15xxtoMaxOctets_offset 0x68 -#define XgRxPkts15xxtoMaxOctets_WIDTH 32 -#define XgRxLengthError_offset 0x6C -#define XgRxLengthError_WIDTH 32 -#define XgTxPkts_offset 0x80 -#define XgTxPkts_WIDTH 32 -#define XgTxOctets_offset 0x88 -#define XgTxOctets_WIDTH 48 -#define XgTxMulticastPkts_offset 0x90 -#define XgTxMulticastPkts_WIDTH 32 -#define XgTxBroadcastPkts_offset 0x94 -#define XgTxBroadcastPkts_WIDTH 32 -#define XgTxUnicastPkts_offset 0x98 -#define XgTxUnicastPkts_WIDTH 32 -#define XgTxControlPkts_offset 0x9C -#define XgTxControlPkts_WIDTH 32 -#define XgTxPausePkts_offset 0xA0 -#define XgTxPausePkts_WIDTH 32 -#define XgTxPkts64Octets_offset 0xA4 -#define XgTxPkts64Octets_WIDTH 32 -#define XgTxPkts65to127Octets_offset 0xA8 -#define XgTxPkts65to127Octets_WIDTH 32 -#define XgTxPkts128to255Octets_offset 0xAC -#define XgTxPkts128to255Octets_WIDTH 32 -#define XgTxPkts256to511Octets_offset 0xB0 -#define XgTxPkts256to511Octets_WIDTH 32 -#define XgTxPkts512to1023Octets_offset 0xB4 -#define XgTxPkts512to1023Octets_WIDTH 32 -#define XgTxPkts1024to15xxOctets_offset 0xB8 -#define XgTxPkts1024to15xxOctets_WIDTH 32 -#define XgTxPkts1519toMaxOctets_offset 0xBC -#define XgTxPkts1519toMaxOctets_WIDTH 32 -#define XgTxUndersizePkts_offset 0xC0 -#define XgTxUndersizePkts_WIDTH 32 -#define XgTxOversizePkts_offset 0xC4 -#define XgTxOversizePkts_WIDTH 32 -#define XgTxNonTcpUdpPkt_offset 0xC8 -#define XgTxNonTcpUdpPkt_WIDTH 16 -#define XgTxMacSrcErrPkt_offset 0xCC -#define XgTxMacSrcErrPkt_WIDTH 16 -#define XgTxIpSrcErrPkt_offset 0xD0 -#define XgTxIpSrcErrPkt_WIDTH 16 -#define XgDmaDone_offset 0xD4 -#define XgDmaDone_WIDTH 32 - -#define FALCON_STATS_NOT_DONE 0x00000000 -#define FALCON_STATS_DONE 0xffffffff - -/************************************************************************** - * - * Falcon non-volatile configuration - * - ************************************************************************** - */ - -/* Board configuration v2 (v1 is obsolete; later versions are compatible) */ -struct falcon_nvconfig_board_v2 { - __le16 nports; - u8 port0_phy_addr; - u8 port0_phy_type; - u8 port1_phy_addr; - u8 port1_phy_type; - __le16 asic_sub_revision; - __le16 board_revision; -} __packed; - -/* Board configuration v3 extra information */ -struct falcon_nvconfig_board_v3 { - __le32 spi_device_type[2]; -} __packed; - -/* Bit numbers for spi_device_type */ -#define SPI_DEV_TYPE_SIZE_LBN 0 -#define SPI_DEV_TYPE_SIZE_WIDTH 5 -#define SPI_DEV_TYPE_ADDR_LEN_LBN 6 -#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2 -#define SPI_DEV_TYPE_ERASE_CMD_LBN 8 -#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8 -#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16 -#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5 -#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24 -#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5 -#define SPI_DEV_TYPE_FIELD(type, field) \ - (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field))) - -#define FALCON_NVCONFIG_OFFSET 0x300 - -#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C -struct falcon_nvconfig { - efx_oword_t ee_vpd_cfg_reg; /* 0x300 */ - u8 mac_address[2][8]; /* 0x310 */ - efx_oword_t pcie_sd_ctl0123_reg; /* 0x320 */ - efx_oword_t pcie_sd_ctl45_reg; /* 0x330 */ - efx_oword_t pcie_pcs_ctl_stat_reg; /* 0x340 */ - efx_oword_t hw_init_reg; /* 0x350 */ - efx_oword_t nic_stat_reg; /* 0x360 */ - efx_oword_t glb_ctl_reg; /* 0x370 */ - efx_oword_t srm_cfg_reg; /* 0x380 */ - efx_oword_t spare_reg; /* 0x390 */ - __le16 board_magic_num; /* 0x3A0 */ - __le16 board_struct_ver; - __le16 board_checksum; - struct falcon_nvconfig_board_v2 board_v2; - efx_oword_t ee_base_page_reg; /* 0x3B0 */ - struct falcon_nvconfig_board_v3 board_v3; /* 0x3C0 */ -} __packed; - -#endif /* EFX_REGS_H */ diff --git a/drivers/net/sfc/rx.c b/drivers/net/sfc/rx.c deleted file mode 100644 index 62e4364..0000000 --- a/drivers/net/sfc/rx.c +++ /dev/null @@ -1,749 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2005-2011 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/socket.h> -#include <linux/in.h> -#include <linux/slab.h> -#include <linux/ip.h> -#include <linux/tcp.h> -#include <linux/udp.h> -#include <linux/prefetch.h> -#include <net/ip.h> -#include <net/checksum.h> -#include "net_driver.h" -#include "efx.h" -#include "nic.h" -#include "selftest.h" -#include "workarounds.h" - -/* Number of RX descriptors pushed at once. */ -#define EFX_RX_BATCH 8 - -/* Maximum size of a buffer sharing a page */ -#define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state)) - -/* Size of buffer allocated for skb header area. */ -#define EFX_SKB_HEADERS 64u - -/* - * rx_alloc_method - RX buffer allocation method - * - * This driver supports two methods for allocating and using RX buffers: - * each RX buffer may be backed by an skb or by an order-n page. - * - * When GRO is in use then the second method has a lower overhead, - * since we don't have to allocate then free skbs on reassembled frames. - * - * Values: - * - RX_ALLOC_METHOD_AUTO = 0 - * - RX_ALLOC_METHOD_SKB = 1 - * - RX_ALLOC_METHOD_PAGE = 2 - * - * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count - * controlled by the parameters below. - * - * - Since pushing and popping descriptors are separated by the rx_queue - * size, so the watermarks should be ~rxd_size. - * - The performance win by using page-based allocation for GRO is less - * than the performance hit of using page-based allocation of non-GRO, - * so the watermarks should reflect this. - * - * Per channel we maintain a single variable, updated by each channel: - * - * rx_alloc_level += (gro_performed ? RX_ALLOC_FACTOR_GRO : - * RX_ALLOC_FACTOR_SKB) - * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which - * limits the hysteresis), and update the allocation strategy: - * - * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_GRO ? - * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB) - */ -static int rx_alloc_method = RX_ALLOC_METHOD_AUTO; - -#define RX_ALLOC_LEVEL_GRO 0x2000 -#define RX_ALLOC_LEVEL_MAX 0x3000 -#define RX_ALLOC_FACTOR_GRO 1 -#define RX_ALLOC_FACTOR_SKB (-2) - -/* This is the percentage fill level below which new RX descriptors - * will be added to the RX descriptor ring. - */ -static unsigned int rx_refill_threshold = 90; - -/* This is the percentage fill level to which an RX queue will be refilled - * when the "RX refill threshold" is reached. - */ -static unsigned int rx_refill_limit = 95; - -/* - * RX maximum head room required. - * - * This must be at least 1 to prevent overflow and at least 2 to allow - * pipelined receives. - */ -#define EFX_RXD_HEAD_ROOM 2 - -/* Offset of ethernet header within page */ -static inline unsigned int efx_rx_buf_offset(struct efx_nic *efx, - struct efx_rx_buffer *buf) -{ - /* Offset is always within one page, so we don't need to consider - * the page order. - */ - return (((__force unsigned long) buf->dma_addr & (PAGE_SIZE - 1)) + - efx->type->rx_buffer_hash_size); -} -static inline unsigned int efx_rx_buf_size(struct efx_nic *efx) -{ - return PAGE_SIZE << efx->rx_buffer_order; -} - -static u8 *efx_rx_buf_eh(struct efx_nic *efx, struct efx_rx_buffer *buf) -{ - if (buf->is_page) - return page_address(buf->u.page) + efx_rx_buf_offset(efx, buf); - else - return ((u8 *)buf->u.skb->data + - efx->type->rx_buffer_hash_size); -} - -static inline u32 efx_rx_buf_hash(const u8 *eh) -{ - /* The ethernet header is always directly after any hash. */ -#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0 - return __le32_to_cpup((const __le32 *)(eh - 4)); -#else - const u8 *data = eh - 4; - return ((u32)data[0] | - (u32)data[1] << 8 | - (u32)data[2] << 16 | - (u32)data[3] << 24); -#endif -} - -/** - * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers - * - * @rx_queue: Efx RX queue - * - * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a - * struct efx_rx_buffer for each one. Return a negative error code or 0 - * on success. May fail having only inserted fewer than EFX_RX_BATCH - * buffers. - */ -static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue) -{ - struct efx_nic *efx = rx_queue->efx; - struct net_device *net_dev = efx->net_dev; - struct efx_rx_buffer *rx_buf; - struct sk_buff *skb; - int skb_len = efx->rx_buffer_len; - unsigned index, count; - - for (count = 0; count < EFX_RX_BATCH; ++count) { - index = rx_queue->added_count & rx_queue->ptr_mask; - rx_buf = efx_rx_buffer(rx_queue, index); - - rx_buf->u.skb = skb = netdev_alloc_skb(net_dev, skb_len); - if (unlikely(!skb)) - return -ENOMEM; - - /* Adjust the SKB for padding and checksum */ - skb_reserve(skb, NET_IP_ALIGN); - rx_buf->len = skb_len - NET_IP_ALIGN; - rx_buf->is_page = false; - skb->ip_summed = CHECKSUM_UNNECESSARY; - - rx_buf->dma_addr = pci_map_single(efx->pci_dev, - skb->data, rx_buf->len, - PCI_DMA_FROMDEVICE); - if (unlikely(pci_dma_mapping_error(efx->pci_dev, - rx_buf->dma_addr))) { - dev_kfree_skb_any(skb); - rx_buf->u.skb = NULL; - return -EIO; - } - - ++rx_queue->added_count; - ++rx_queue->alloc_skb_count; - } - - return 0; -} - -/** - * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers - * - * @rx_queue: Efx RX queue - * - * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA, - * and populates struct efx_rx_buffers for each one. Return a negative error - * code or 0 on success. If a single page can be split between two buffers, - * then the page will either be inserted fully, or not at at all. - */ -static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue) -{ - struct efx_nic *efx = rx_queue->efx; - struct efx_rx_buffer *rx_buf; - struct page *page; - void *page_addr; - struct efx_rx_page_state *state; - dma_addr_t dma_addr; - unsigned index, count; - - /* We can split a page between two buffers */ - BUILD_BUG_ON(EFX_RX_BATCH & 1); - - for (count = 0; count < EFX_RX_BATCH; ++count) { - page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC, - efx->rx_buffer_order); - if (unlikely(page == NULL)) - return -ENOMEM; - dma_addr = pci_map_page(efx->pci_dev, page, 0, - efx_rx_buf_size(efx), - PCI_DMA_FROMDEVICE); - if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) { - __free_pages(page, efx->rx_buffer_order); - return -EIO; - } - page_addr = page_address(page); - state = page_addr; - state->refcnt = 0; - state->dma_addr = dma_addr; - - page_addr += sizeof(struct efx_rx_page_state); - dma_addr += sizeof(struct efx_rx_page_state); - - split: - index = rx_queue->added_count & rx_queue->ptr_mask; - rx_buf = efx_rx_buffer(rx_queue, index); - rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN; - rx_buf->u.page = page; - rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN; - rx_buf->is_page = true; - ++rx_queue->added_count; - ++rx_queue->alloc_page_count; - ++state->refcnt; - - if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) { - /* Use the second half of the page */ - get_page(page); - dma_addr += (PAGE_SIZE >> 1); - page_addr += (PAGE_SIZE >> 1); - ++count; - goto split; - } - } - - return 0; -} - -static void efx_unmap_rx_buffer(struct efx_nic *efx, - struct efx_rx_buffer *rx_buf) -{ - if (rx_buf->is_page && rx_buf->u.page) { - struct efx_rx_page_state *state; - - state = page_address(rx_buf->u.page); - if (--state->refcnt == 0) { - pci_unmap_page(efx->pci_dev, - state->dma_addr, - efx_rx_buf_size(efx), - PCI_DMA_FROMDEVICE); - } - } else if (!rx_buf->is_page && rx_buf->u.skb) { - pci_unmap_single(efx->pci_dev, rx_buf->dma_addr, - rx_buf->len, PCI_DMA_FROMDEVICE); - } -} - -static void efx_free_rx_buffer(struct efx_nic *efx, - struct efx_rx_buffer *rx_buf) -{ - if (rx_buf->is_page && rx_buf->u.page) { - __free_pages(rx_buf->u.page, efx->rx_buffer_order); - rx_buf->u.page = NULL; - } else if (!rx_buf->is_page && rx_buf->u.skb) { - dev_kfree_skb_any(rx_buf->u.skb); - rx_buf->u.skb = NULL; - } -} - -static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue, - struct efx_rx_buffer *rx_buf) -{ - efx_unmap_rx_buffer(rx_queue->efx, rx_buf); - efx_free_rx_buffer(rx_queue->efx, rx_buf); -} - -/* Attempt to resurrect the other receive buffer that used to share this page, - * which had previously been passed up to the kernel and freed. */ -static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue, - struct efx_rx_buffer *rx_buf) -{ - struct efx_rx_page_state *state = page_address(rx_buf->u.page); - struct efx_rx_buffer *new_buf; - unsigned fill_level, index; - - /* +1 because efx_rx_packet() incremented removed_count. +1 because - * we'd like to insert an additional descriptor whilst leaving - * EFX_RXD_HEAD_ROOM for the non-recycle path */ - fill_level = (rx_queue->added_count - rx_queue->removed_count + 2); - if (unlikely(fill_level > rx_queue->max_fill)) { - /* We could place "state" on a list, and drain the list in - * efx_fast_push_rx_descriptors(). For now, this will do. */ - return; - } - - ++state->refcnt; - get_page(rx_buf->u.page); - - index = rx_queue->added_count & rx_queue->ptr_mask; - new_buf = efx_rx_buffer(rx_queue, index); - new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1); - new_buf->u.page = rx_buf->u.page; - new_buf->len = rx_buf->len; - new_buf->is_page = true; - ++rx_queue->added_count; -} - -/* Recycle the given rx buffer directly back into the rx_queue. There is - * always room to add this buffer, because we've just popped a buffer. */ -static void efx_recycle_rx_buffer(struct efx_channel *channel, - struct efx_rx_buffer *rx_buf) -{ - struct efx_nic *efx = channel->efx; - struct efx_rx_queue *rx_queue = efx_channel_get_rx_queue(channel); - struct efx_rx_buffer *new_buf; - unsigned index; - - if (rx_buf->is_page && efx->rx_buffer_len <= EFX_RX_HALF_PAGE && - page_count(rx_buf->u.page) == 1) - efx_resurrect_rx_buffer(rx_queue, rx_buf); - - index = rx_queue->added_count & rx_queue->ptr_mask; - new_buf = efx_rx_buffer(rx_queue, index); - - memcpy(new_buf, rx_buf, sizeof(*new_buf)); - rx_buf->u.page = NULL; - ++rx_queue->added_count; -} - -/** - * efx_fast_push_rx_descriptors - push new RX descriptors quickly - * @rx_queue: RX descriptor queue - * This will aim to fill the RX descriptor queue up to - * @rx_queue->@fast_fill_limit. If there is insufficient atomic - * memory to do so, a slow fill will be scheduled. - * - * The caller must provide serialisation (none is used here). In practise, - * this means this function must run from the NAPI handler, or be called - * when NAPI is disabled. - */ -void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue) -{ - struct efx_channel *channel = efx_rx_queue_channel(rx_queue); - unsigned fill_level; - int space, rc = 0; - - /* Calculate current fill level, and exit if we don't need to fill */ - fill_level = (rx_queue->added_count - rx_queue->removed_count); - EFX_BUG_ON_PARANOID(fill_level > rx_queue->efx->rxq_entries); - if (fill_level >= rx_queue->fast_fill_trigger) - goto out; - - /* Record minimum fill level */ - if (unlikely(fill_level < rx_queue->min_fill)) { - if (fill_level) - rx_queue->min_fill = fill_level; - } - - space = rx_queue->fast_fill_limit - fill_level; - if (space < EFX_RX_BATCH) - goto out; - - netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, - "RX queue %d fast-filling descriptor ring from" - " level %d to level %d using %s allocation\n", - efx_rx_queue_index(rx_queue), fill_level, - rx_queue->fast_fill_limit, - channel->rx_alloc_push_pages ? "page" : "skb"); - - do { - if (channel->rx_alloc_push_pages) - rc = efx_init_rx_buffers_page(rx_queue); - else - rc = efx_init_rx_buffers_skb(rx_queue); - if (unlikely(rc)) { - /* Ensure that we don't leave the rx queue empty */ - if (rx_queue->added_count == rx_queue->removed_count) - efx_schedule_slow_fill(rx_queue); - goto out; - } - } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH); - - netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev, - "RX queue %d fast-filled descriptor ring " - "to level %d\n", efx_rx_queue_index(rx_queue), - rx_queue->added_count - rx_queue->removed_count); - - out: - if (rx_queue->notified_count != rx_queue->added_count) - efx_nic_notify_rx_desc(rx_queue); -} - -void efx_rx_slow_fill(unsigned long context) -{ - struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context; - struct efx_channel *channel = efx_rx_queue_channel(rx_queue); - - /* Post an event to cause NAPI to run and refill the queue */ - efx_nic_generate_fill_event(channel); - ++rx_queue->slow_fill_count; -} - -static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue, - struct efx_rx_buffer *rx_buf, - int len, bool *discard, - bool *leak_packet) -{ - struct efx_nic *efx = rx_queue->efx; - unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding; - - if (likely(len <= max_len)) - return; - - /* The packet must be discarded, but this is only a fatal error - * if the caller indicated it was - */ - *discard = true; - - if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) { - if (net_ratelimit()) - netif_err(efx, rx_err, efx->net_dev, - " RX queue %d seriously overlength " - "RX event (0x%x > 0x%x+0x%x). Leaking\n", - efx_rx_queue_index(rx_queue), len, max_len, - efx->type->rx_buffer_padding); - /* If this buffer was skb-allocated, then the meta - * data at the end of the skb will be trashed. So - * we have no choice but to leak the fragment. - */ - *leak_packet = !rx_buf->is_page; - efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY); - } else { - if (net_ratelimit()) - netif_err(efx, rx_err, efx->net_dev, - " RX queue %d overlength RX event " - "(0x%x > 0x%x)\n", - efx_rx_queue_index(rx_queue), len, max_len); - } - - efx_rx_queue_channel(rx_queue)->n_rx_overlength++; -} - -/* Pass a received packet up through the generic GRO stack - * - * Handles driverlink veto, and passes the fragment up via - * the appropriate GRO method - */ -static void efx_rx_packet_gro(struct efx_channel *channel, - struct efx_rx_buffer *rx_buf, - const u8 *eh, bool checksummed) -{ - struct napi_struct *napi = &channel->napi_str; - gro_result_t gro_result; - - /* Pass the skb/page into the GRO engine */ - if (rx_buf->is_page) { - struct efx_nic *efx = channel->efx; - struct page *page = rx_buf->u.page; - struct sk_buff *skb; - - rx_buf->u.page = NULL; - - skb = napi_get_frags(napi); - if (!skb) { - put_page(page); - return; - } - - if (efx->net_dev->features & NETIF_F_RXHASH) - skb->rxhash = efx_rx_buf_hash(eh); - - skb_shinfo(skb)->frags[0].page = page; - skb_shinfo(skb)->frags[0].page_offset = - efx_rx_buf_offset(efx, rx_buf); - skb_shinfo(skb)->frags[0].size = rx_buf->len; - skb_shinfo(skb)->nr_frags = 1; - - skb->len = rx_buf->len; - skb->data_len = rx_buf->len; - skb->truesize += rx_buf->len; - skb->ip_summed = - checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE; - - skb_record_rx_queue(skb, channel->channel); - - gro_result = napi_gro_frags(napi); - } else { - struct sk_buff *skb = rx_buf->u.skb; - - EFX_BUG_ON_PARANOID(!checksummed); - rx_buf->u.skb = NULL; - - gro_result = napi_gro_receive(napi, skb); - } - - if (gro_result == GRO_NORMAL) { - channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; - } else if (gro_result != GRO_DROP) { - channel->rx_alloc_level += RX_ALLOC_FACTOR_GRO; - channel->irq_mod_score += 2; - } -} - -void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index, - unsigned int len, bool checksummed, bool discard) -{ - struct efx_nic *efx = rx_queue->efx; - struct efx_channel *channel = efx_rx_queue_channel(rx_queue); - struct efx_rx_buffer *rx_buf; - bool leak_packet = false; - - rx_buf = efx_rx_buffer(rx_queue, index); - - /* This allows the refill path to post another buffer. - * EFX_RXD_HEAD_ROOM ensures that the slot we are using - * isn't overwritten yet. - */ - rx_queue->removed_count++; - - /* Validate the length encoded in the event vs the descriptor pushed */ - efx_rx_packet__check_len(rx_queue, rx_buf, len, - &discard, &leak_packet); - - netif_vdbg(efx, rx_status, efx->net_dev, - "RX queue %d received id %x at %llx+%x %s%s\n", - efx_rx_queue_index(rx_queue), index, - (unsigned long long)rx_buf->dma_addr, len, - (checksummed ? " [SUMMED]" : ""), - (discard ? " [DISCARD]" : "")); - - /* Discard packet, if instructed to do so */ - if (unlikely(discard)) { - if (unlikely(leak_packet)) - channel->n_skbuff_leaks++; - else - efx_recycle_rx_buffer(channel, rx_buf); - - /* Don't hold off the previous receive */ - rx_buf = NULL; - goto out; - } - - /* Release card resources - assumes all RX buffers consumed in-order - * per RX queue - */ - efx_unmap_rx_buffer(efx, rx_buf); - - /* Prefetch nice and early so data will (hopefully) be in cache by - * the time we look at it. - */ - prefetch(efx_rx_buf_eh(efx, rx_buf)); - - /* Pipeline receives so that we give time for packet headers to be - * prefetched into cache. - */ - rx_buf->len = len - efx->type->rx_buffer_hash_size; -out: - if (channel->rx_pkt) - __efx_rx_packet(channel, - channel->rx_pkt, channel->rx_pkt_csummed); - channel->rx_pkt = rx_buf; - channel->rx_pkt_csummed = checksummed; -} - -/* Handle a received packet. Second half: Touches packet payload. */ -void __efx_rx_packet(struct efx_channel *channel, - struct efx_rx_buffer *rx_buf, bool checksummed) -{ - struct efx_nic *efx = channel->efx; - struct sk_buff *skb; - u8 *eh = efx_rx_buf_eh(efx, rx_buf); - - /* If we're in loopback test, then pass the packet directly to the - * loopback layer, and free the rx_buf here - */ - if (unlikely(efx->loopback_selftest)) { - efx_loopback_rx_packet(efx, eh, rx_buf->len); - efx_free_rx_buffer(efx, rx_buf); - return; - } - - if (!rx_buf->is_page) { - skb = rx_buf->u.skb; - - prefetch(skb_shinfo(skb)); - - skb_reserve(skb, efx->type->rx_buffer_hash_size); - skb_put(skb, rx_buf->len); - - if (efx->net_dev->features & NETIF_F_RXHASH) - skb->rxhash = efx_rx_buf_hash(eh); - - /* Move past the ethernet header. rx_buf->data still points - * at the ethernet header */ - skb->protocol = eth_type_trans(skb, efx->net_dev); - - skb_record_rx_queue(skb, channel->channel); - } - - if (unlikely(!(efx->net_dev->features & NETIF_F_RXCSUM))) - checksummed = false; - - if (likely(checksummed || rx_buf->is_page)) { - efx_rx_packet_gro(channel, rx_buf, eh, checksummed); - return; - } - - /* We now own the SKB */ - skb = rx_buf->u.skb; - rx_buf->u.skb = NULL; - - /* Set the SKB flags */ - skb_checksum_none_assert(skb); - - /* Pass the packet up */ - netif_receive_skb(skb); - - /* Update allocation strategy method */ - channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB; -} - -void efx_rx_strategy(struct efx_channel *channel) -{ - enum efx_rx_alloc_method method = rx_alloc_method; - - /* Only makes sense to use page based allocation if GRO is enabled */ - if (!(channel->efx->net_dev->features & NETIF_F_GRO)) { - method = RX_ALLOC_METHOD_SKB; - } else if (method == RX_ALLOC_METHOD_AUTO) { - /* Constrain the rx_alloc_level */ - if (channel->rx_alloc_level < 0) - channel->rx_alloc_level = 0; - else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX) - channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX; - - /* Decide on the allocation method */ - method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_GRO) ? - RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB); - } - - /* Push the option */ - channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE); -} - -int efx_probe_rx_queue(struct efx_rx_queue *rx_queue) -{ - struct efx_nic *efx = rx_queue->efx; - unsigned int entries; - int rc; - - /* Create the smallest power-of-two aligned ring */ - entries = max(roundup_pow_of_two(efx->rxq_entries), EFX_MIN_DMAQ_SIZE); - EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); - rx_queue->ptr_mask = entries - 1; - - netif_dbg(efx, probe, efx->net_dev, - "creating RX queue %d size %#x mask %#x\n", - efx_rx_queue_index(rx_queue), efx->rxq_entries, - rx_queue->ptr_mask); - - /* Allocate RX buffers */ - rx_queue->buffer = kzalloc(entries * sizeof(*rx_queue->buffer), - GFP_KERNEL); - if (!rx_queue->buffer) - return -ENOMEM; - - rc = efx_nic_probe_rx(rx_queue); - if (rc) { - kfree(rx_queue->buffer); - rx_queue->buffer = NULL; - } - return rc; -} - -void efx_init_rx_queue(struct efx_rx_queue *rx_queue) -{ - struct efx_nic *efx = rx_queue->efx; - unsigned int max_fill, trigger, limit; - - netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, - "initialising RX queue %d\n", efx_rx_queue_index(rx_queue)); - - /* Initialise ptr fields */ - rx_queue->added_count = 0; - rx_queue->notified_count = 0; - rx_queue->removed_count = 0; - rx_queue->min_fill = -1U; - - /* Initialise limit fields */ - max_fill = efx->rxq_entries - EFX_RXD_HEAD_ROOM; - trigger = max_fill * min(rx_refill_threshold, 100U) / 100U; - limit = max_fill * min(rx_refill_limit, 100U) / 100U; - - rx_queue->max_fill = max_fill; - rx_queue->fast_fill_trigger = trigger; - rx_queue->fast_fill_limit = limit; - - /* Set up RX descriptor ring */ - efx_nic_init_rx(rx_queue); -} - -void efx_fini_rx_queue(struct efx_rx_queue *rx_queue) -{ - int i; - struct efx_rx_buffer *rx_buf; - - netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, - "shutting down RX queue %d\n", efx_rx_queue_index(rx_queue)); - - del_timer_sync(&rx_queue->slow_fill); - efx_nic_fini_rx(rx_queue); - - /* Release RX buffers NB start at index 0 not current HW ptr */ - if (rx_queue->buffer) { - for (i = 0; i <= rx_queue->ptr_mask; i++) { - rx_buf = efx_rx_buffer(rx_queue, i); - efx_fini_rx_buffer(rx_queue, rx_buf); - } - } -} - -void efx_remove_rx_queue(struct efx_rx_queue *rx_queue) -{ - netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev, - "destroying RX queue %d\n", efx_rx_queue_index(rx_queue)); - - efx_nic_remove_rx(rx_queue); - - kfree(rx_queue->buffer); - rx_queue->buffer = NULL; -} - - -module_param(rx_alloc_method, int, 0644); -MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers"); - -module_param(rx_refill_threshold, uint, 0444); -MODULE_PARM_DESC(rx_refill_threshold, - "RX descriptor ring fast/slow fill threshold (%)"); - diff --git a/drivers/net/sfc/selftest.c b/drivers/net/sfc/selftest.c deleted file mode 100644 index 822f6c2..0000000 --- a/drivers/net/sfc/selftest.c +++ /dev/null @@ -1,761 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/netdevice.h> -#include <linux/module.h> -#include <linux/delay.h> -#include <linux/kernel_stat.h> -#include <linux/pci.h> -#include <linux/ethtool.h> -#include <linux/ip.h> -#include <linux/in.h> -#include <linux/udp.h> -#include <linux/rtnetlink.h> -#include <linux/slab.h> -#include <asm/io.h> -#include "net_driver.h" -#include "efx.h" -#include "nic.h" -#include "selftest.h" -#include "workarounds.h" - -/* - * Loopback test packet structure - * - * The self-test should stress every RSS vector, and unfortunately - * Falcon only performs RSS on TCP/UDP packets. - */ -struct efx_loopback_payload { - struct ethhdr header; - struct iphdr ip; - struct udphdr udp; - __be16 iteration; - const char msg[64]; -} __packed; - -/* Loopback test source MAC address */ -static const unsigned char payload_source[ETH_ALEN] = { - 0x00, 0x0f, 0x53, 0x1b, 0x1b, 0x1b, -}; - -static const char payload_msg[] = - "Hello world! This is an Efx loopback test in progress!"; - -/* Interrupt mode names */ -static const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX; -static const char *efx_interrupt_mode_names[] = { - [EFX_INT_MODE_MSIX] = "MSI-X", - [EFX_INT_MODE_MSI] = "MSI", - [EFX_INT_MODE_LEGACY] = "legacy", -}; -#define INT_MODE(efx) \ - STRING_TABLE_LOOKUP(efx->interrupt_mode, efx_interrupt_mode) - -/** - * efx_loopback_state - persistent state during a loopback selftest - * @flush: Drop all packets in efx_loopback_rx_packet - * @packet_count: Number of packets being used in this test - * @skbs: An array of skbs transmitted - * @offload_csum: Checksums are being offloaded - * @rx_good: RX good packet count - * @rx_bad: RX bad packet count - * @payload: Payload used in tests - */ -struct efx_loopback_state { - bool flush; - int packet_count; - struct sk_buff **skbs; - bool offload_csum; - atomic_t rx_good; - atomic_t rx_bad; - struct efx_loopback_payload payload; -}; - -/************************************************************************** - * - * MII, NVRAM and register tests - * - **************************************************************************/ - -static int efx_test_phy_alive(struct efx_nic *efx, struct efx_self_tests *tests) -{ - int rc = 0; - - if (efx->phy_op->test_alive) { - rc = efx->phy_op->test_alive(efx); - tests->phy_alive = rc ? -1 : 1; - } - - return rc; -} - -static int efx_test_nvram(struct efx_nic *efx, struct efx_self_tests *tests) -{ - int rc = 0; - - if (efx->type->test_nvram) { - rc = efx->type->test_nvram(efx); - tests->nvram = rc ? -1 : 1; - } - - return rc; -} - -static int efx_test_chip(struct efx_nic *efx, struct efx_self_tests *tests) -{ - int rc = 0; - - /* Test register access */ - if (efx->type->test_registers) { - rc = efx->type->test_registers(efx); - tests->registers = rc ? -1 : 1; - } - - return rc; -} - -/************************************************************************** - * - * Interrupt and event queue testing - * - **************************************************************************/ - -/* Test generation and receipt of interrupts */ -static int efx_test_interrupts(struct efx_nic *efx, - struct efx_self_tests *tests) -{ - netif_dbg(efx, drv, efx->net_dev, "testing interrupts\n"); - tests->interrupt = -1; - - /* Reset interrupt flag */ - efx->last_irq_cpu = -1; - smp_wmb(); - - efx_nic_generate_interrupt(efx); - - /* Wait for arrival of test interrupt. */ - netif_dbg(efx, drv, efx->net_dev, "waiting for test interrupt\n"); - schedule_timeout_uninterruptible(HZ / 10); - if (efx->last_irq_cpu >= 0) - goto success; - - netif_err(efx, drv, efx->net_dev, "timed out waiting for interrupt\n"); - return -ETIMEDOUT; - - success: - netif_dbg(efx, drv, efx->net_dev, "%s test interrupt seen on CPU%d\n", - INT_MODE(efx), - efx->last_irq_cpu); - tests->interrupt = 1; - return 0; -} - -/* Test generation and receipt of interrupting events */ -static int efx_test_eventq_irq(struct efx_channel *channel, - struct efx_self_tests *tests) -{ - struct efx_nic *efx = channel->efx; - unsigned int read_ptr, count; - - tests->eventq_dma[channel->channel] = -1; - tests->eventq_int[channel->channel] = -1; - tests->eventq_poll[channel->channel] = -1; - - read_ptr = channel->eventq_read_ptr; - channel->efx->last_irq_cpu = -1; - smp_wmb(); - - efx_nic_generate_test_event(channel); - - /* Wait for arrival of interrupt */ - count = 0; - do { - schedule_timeout_uninterruptible(HZ / 100); - - if (ACCESS_ONCE(channel->eventq_read_ptr) != read_ptr) - goto eventq_ok; - } while (++count < 2); - - netif_err(efx, drv, efx->net_dev, - "channel %d timed out waiting for event queue\n", - channel->channel); - - /* See if interrupt arrived */ - if (channel->efx->last_irq_cpu >= 0) { - netif_err(efx, drv, efx->net_dev, - "channel %d saw interrupt on CPU%d " - "during event queue test\n", channel->channel, - raw_smp_processor_id()); - tests->eventq_int[channel->channel] = 1; - } - - /* Check to see if event was received even if interrupt wasn't */ - if (efx_nic_event_present(channel)) { - netif_err(efx, drv, efx->net_dev, - "channel %d event was generated, but " - "failed to trigger an interrupt\n", channel->channel); - tests->eventq_dma[channel->channel] = 1; - } - - return -ETIMEDOUT; - eventq_ok: - netif_dbg(efx, drv, efx->net_dev, "channel %d event queue passed\n", - channel->channel); - tests->eventq_dma[channel->channel] = 1; - tests->eventq_int[channel->channel] = 1; - tests->eventq_poll[channel->channel] = 1; - return 0; -} - -static int efx_test_phy(struct efx_nic *efx, struct efx_self_tests *tests, - unsigned flags) -{ - int rc; - - if (!efx->phy_op->run_tests) - return 0; - - mutex_lock(&efx->mac_lock); - rc = efx->phy_op->run_tests(efx, tests->phy_ext, flags); - mutex_unlock(&efx->mac_lock); - return rc; -} - -/************************************************************************** - * - * Loopback testing - * NB Only one loopback test can be executing concurrently. - * - **************************************************************************/ - -/* Loopback test RX callback - * This is called for each received packet during loopback testing. - */ -void efx_loopback_rx_packet(struct efx_nic *efx, - const char *buf_ptr, int pkt_len) -{ - struct efx_loopback_state *state = efx->loopback_selftest; - struct efx_loopback_payload *received; - struct efx_loopback_payload *payload; - - BUG_ON(!buf_ptr); - - /* If we are just flushing, then drop the packet */ - if ((state == NULL) || state->flush) - return; - - payload = &state->payload; - - received = (struct efx_loopback_payload *) buf_ptr; - received->ip.saddr = payload->ip.saddr; - if (state->offload_csum) - received->ip.check = payload->ip.check; - - /* Check that header exists */ - if (pkt_len < sizeof(received->header)) { - netif_err(efx, drv, efx->net_dev, - "saw runt RX packet (length %d) in %s loopback " - "test\n", pkt_len, LOOPBACK_MODE(efx)); - goto err; - } - - /* Check that the ethernet header exists */ - if (memcmp(&received->header, &payload->header, ETH_HLEN) != 0) { - netif_err(efx, drv, efx->net_dev, - "saw non-loopback RX packet in %s loopback test\n", - LOOPBACK_MODE(efx)); - goto err; - } - - /* Check packet length */ - if (pkt_len != sizeof(*payload)) { - netif_err(efx, drv, efx->net_dev, - "saw incorrect RX packet length %d (wanted %d) in " - "%s loopback test\n", pkt_len, (int)sizeof(*payload), - LOOPBACK_MODE(efx)); - goto err; - } - - /* Check that IP header matches */ - if (memcmp(&received->ip, &payload->ip, sizeof(payload->ip)) != 0) { - netif_err(efx, drv, efx->net_dev, - "saw corrupted IP header in %s loopback test\n", - LOOPBACK_MODE(efx)); - goto err; - } - - /* Check that msg and padding matches */ - if (memcmp(&received->msg, &payload->msg, sizeof(received->msg)) != 0) { - netif_err(efx, drv, efx->net_dev, - "saw corrupted RX packet in %s loopback test\n", - LOOPBACK_MODE(efx)); - goto err; - } - - /* Check that iteration matches */ - if (received->iteration != payload->iteration) { - netif_err(efx, drv, efx->net_dev, - "saw RX packet from iteration %d (wanted %d) in " - "%s loopback test\n", ntohs(received->iteration), - ntohs(payload->iteration), LOOPBACK_MODE(efx)); - goto err; - } - - /* Increase correct RX count */ - netif_vdbg(efx, drv, efx->net_dev, - "got loopback RX in %s loopback test\n", LOOPBACK_MODE(efx)); - - atomic_inc(&state->rx_good); - return; - - err: -#ifdef EFX_ENABLE_DEBUG - if (atomic_read(&state->rx_bad) == 0) { - netif_err(efx, drv, efx->net_dev, "received packet:\n"); - print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 0x10, 1, - buf_ptr, pkt_len, 0); - netif_err(efx, drv, efx->net_dev, "expected packet:\n"); - print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 0x10, 1, - &state->payload, sizeof(state->payload), 0); - } -#endif - atomic_inc(&state->rx_bad); -} - -/* Initialise an efx_selftest_state for a new iteration */ -static void efx_iterate_state(struct efx_nic *efx) -{ - struct efx_loopback_state *state = efx->loopback_selftest; - struct net_device *net_dev = efx->net_dev; - struct efx_loopback_payload *payload = &state->payload; - - /* Initialise the layerII header */ - memcpy(&payload->header.h_dest, net_dev->dev_addr, ETH_ALEN); - memcpy(&payload->header.h_source, &payload_source, ETH_ALEN); - payload->header.h_proto = htons(ETH_P_IP); - - /* saddr set later and used as incrementing count */ - payload->ip.daddr = htonl(INADDR_LOOPBACK); - payload->ip.ihl = 5; - payload->ip.check = htons(0xdead); - payload->ip.tot_len = htons(sizeof(*payload) - sizeof(struct ethhdr)); - payload->ip.version = IPVERSION; - payload->ip.protocol = IPPROTO_UDP; - - /* Initialise udp header */ - payload->udp.source = 0; - payload->udp.len = htons(sizeof(*payload) - sizeof(struct ethhdr) - - sizeof(struct iphdr)); - payload->udp.check = 0; /* checksum ignored */ - - /* Fill out payload */ - payload->iteration = htons(ntohs(payload->iteration) + 1); - memcpy(&payload->msg, payload_msg, sizeof(payload_msg)); - - /* Fill out remaining state members */ - atomic_set(&state->rx_good, 0); - atomic_set(&state->rx_bad, 0); - smp_wmb(); -} - -static int efx_begin_loopback(struct efx_tx_queue *tx_queue) -{ - struct efx_nic *efx = tx_queue->efx; - struct efx_loopback_state *state = efx->loopback_selftest; - struct efx_loopback_payload *payload; - struct sk_buff *skb; - int i; - netdev_tx_t rc; - - /* Transmit N copies of buffer */ - for (i = 0; i < state->packet_count; i++) { - /* Allocate an skb, holding an extra reference for - * transmit completion counting */ - skb = alloc_skb(sizeof(state->payload), GFP_KERNEL); - if (!skb) - return -ENOMEM; - state->skbs[i] = skb; - skb_get(skb); - - /* Copy the payload in, incrementing the source address to - * exercise the rss vectors */ - payload = ((struct efx_loopback_payload *) - skb_put(skb, sizeof(state->payload))); - memcpy(payload, &state->payload, sizeof(state->payload)); - payload->ip.saddr = htonl(INADDR_LOOPBACK | (i << 2)); - - /* Ensure everything we've written is visible to the - * interrupt handler. */ - smp_wmb(); - - if (efx_dev_registered(efx)) - netif_tx_lock_bh(efx->net_dev); - rc = efx_enqueue_skb(tx_queue, skb); - if (efx_dev_registered(efx)) - netif_tx_unlock_bh(efx->net_dev); - - if (rc != NETDEV_TX_OK) { - netif_err(efx, drv, efx->net_dev, - "TX queue %d could not transmit packet %d of " - "%d in %s loopback test\n", tx_queue->queue, - i + 1, state->packet_count, - LOOPBACK_MODE(efx)); - - /* Defer cleaning up the other skbs for the caller */ - kfree_skb(skb); - return -EPIPE; - } - } - - return 0; -} - -static int efx_poll_loopback(struct efx_nic *efx) -{ - struct efx_loopback_state *state = efx->loopback_selftest; - struct efx_channel *channel; - - /* NAPI polling is not enabled, so process channels - * synchronously */ - efx_for_each_channel(channel, efx) { - if (channel->work_pending) - efx_process_channel_now(channel); - } - return atomic_read(&state->rx_good) == state->packet_count; -} - -static int efx_end_loopback(struct efx_tx_queue *tx_queue, - struct efx_loopback_self_tests *lb_tests) -{ - struct efx_nic *efx = tx_queue->efx; - struct efx_loopback_state *state = efx->loopback_selftest; - struct sk_buff *skb; - int tx_done = 0, rx_good, rx_bad; - int i, rc = 0; - - if (efx_dev_registered(efx)) - netif_tx_lock_bh(efx->net_dev); - - /* Count the number of tx completions, and decrement the refcnt. Any - * skbs not already completed will be free'd when the queue is flushed */ - for (i=0; i < state->packet_count; i++) { - skb = state->skbs[i]; - if (skb && !skb_shared(skb)) - ++tx_done; - dev_kfree_skb_any(skb); - } - - if (efx_dev_registered(efx)) - netif_tx_unlock_bh(efx->net_dev); - - /* Check TX completion and received packet counts */ - rx_good = atomic_read(&state->rx_good); - rx_bad = atomic_read(&state->rx_bad); - if (tx_done != state->packet_count) { - /* Don't free the skbs; they will be picked up on TX - * overflow or channel teardown. - */ - netif_err(efx, drv, efx->net_dev, - "TX queue %d saw only %d out of an expected %d " - "TX completion events in %s loopback test\n", - tx_queue->queue, tx_done, state->packet_count, - LOOPBACK_MODE(efx)); - rc = -ETIMEDOUT; - /* Allow to fall through so we see the RX errors as well */ - } - - /* We may always be up to a flush away from our desired packet total */ - if (rx_good != state->packet_count) { - netif_dbg(efx, drv, efx->net_dev, - "TX queue %d saw only %d out of an expected %d " - "received packets in %s loopback test\n", - tx_queue->queue, rx_good, state->packet_count, - LOOPBACK_MODE(efx)); - rc = -ETIMEDOUT; - /* Fall through */ - } - - /* Update loopback test structure */ - lb_tests->tx_sent[tx_queue->queue] += state->packet_count; - lb_tests->tx_done[tx_queue->queue] += tx_done; - lb_tests->rx_good += rx_good; - lb_tests->rx_bad += rx_bad; - - return rc; -} - -static int -efx_test_loopback(struct efx_tx_queue *tx_queue, - struct efx_loopback_self_tests *lb_tests) -{ - struct efx_nic *efx = tx_queue->efx; - struct efx_loopback_state *state = efx->loopback_selftest; - int i, begin_rc, end_rc; - - for (i = 0; i < 3; i++) { - /* Determine how many packets to send */ - state->packet_count = efx->txq_entries / 3; - state->packet_count = min(1 << (i << 2), state->packet_count); - state->skbs = kzalloc(sizeof(state->skbs[0]) * - state->packet_count, GFP_KERNEL); - if (!state->skbs) - return -ENOMEM; - state->flush = false; - - netif_dbg(efx, drv, efx->net_dev, - "TX queue %d testing %s loopback with %d packets\n", - tx_queue->queue, LOOPBACK_MODE(efx), - state->packet_count); - - efx_iterate_state(efx); - begin_rc = efx_begin_loopback(tx_queue); - - /* This will normally complete very quickly, but be - * prepared to wait up to 100 ms. */ - msleep(1); - if (!efx_poll_loopback(efx)) { - msleep(100); - efx_poll_loopback(efx); - } - - end_rc = efx_end_loopback(tx_queue, lb_tests); - kfree(state->skbs); - - if (begin_rc || end_rc) { - /* Wait a while to ensure there are no packets - * floating around after a failure. */ - schedule_timeout_uninterruptible(HZ / 10); - return begin_rc ? begin_rc : end_rc; - } - } - - netif_dbg(efx, drv, efx->net_dev, - "TX queue %d passed %s loopback test with a burst length " - "of %d packets\n", tx_queue->queue, LOOPBACK_MODE(efx), - state->packet_count); - - return 0; -} - -/* Wait for link up. On Falcon, we would prefer to rely on efx_monitor, but - * any contention on the mac lock (via e.g. efx_mac_mcast_work) causes it - * to delay and retry. Therefore, it's safer to just poll directly. Wait - * for link up and any faults to dissipate. */ -static int efx_wait_for_link(struct efx_nic *efx) -{ - struct efx_link_state *link_state = &efx->link_state; - int count, link_up_count = 0; - bool link_up; - - for (count = 0; count < 40; count++) { - schedule_timeout_uninterruptible(HZ / 10); - - if (efx->type->monitor != NULL) { - mutex_lock(&efx->mac_lock); - efx->type->monitor(efx); - mutex_unlock(&efx->mac_lock); - } else { - struct efx_channel *channel = efx_get_channel(efx, 0); - if (channel->work_pending) - efx_process_channel_now(channel); - } - - mutex_lock(&efx->mac_lock); - link_up = link_state->up; - if (link_up) - link_up = !efx->mac_op->check_fault(efx); - mutex_unlock(&efx->mac_lock); - - if (link_up) { - if (++link_up_count == 2) - return 0; - } else { - link_up_count = 0; - } - } - - return -ETIMEDOUT; -} - -static int efx_test_loopbacks(struct efx_nic *efx, struct efx_self_tests *tests, - unsigned int loopback_modes) -{ - enum efx_loopback_mode mode; - struct efx_loopback_state *state; - struct efx_channel *channel = efx_get_channel(efx, 0); - struct efx_tx_queue *tx_queue; - int rc = 0; - - /* Set the port loopback_selftest member. From this point on - * all received packets will be dropped. Mark the state as - * "flushing" so all inflight packets are dropped */ - state = kzalloc(sizeof(*state), GFP_KERNEL); - if (state == NULL) - return -ENOMEM; - BUG_ON(efx->loopback_selftest); - state->flush = true; - efx->loopback_selftest = state; - - /* Test all supported loopback modes */ - for (mode = LOOPBACK_NONE; mode <= LOOPBACK_TEST_MAX; mode++) { - if (!(loopback_modes & (1 << mode))) - continue; - - /* Move the port into the specified loopback mode. */ - state->flush = true; - mutex_lock(&efx->mac_lock); - efx->loopback_mode = mode; - rc = __efx_reconfigure_port(efx); - mutex_unlock(&efx->mac_lock); - if (rc) { - netif_err(efx, drv, efx->net_dev, - "unable to move into %s loopback\n", - LOOPBACK_MODE(efx)); - goto out; - } - - rc = efx_wait_for_link(efx); - if (rc) { - netif_err(efx, drv, efx->net_dev, - "loopback %s never came up\n", - LOOPBACK_MODE(efx)); - goto out; - } - - /* Test all enabled types of TX queue */ - efx_for_each_channel_tx_queue(tx_queue, channel) { - state->offload_csum = (tx_queue->queue & - EFX_TXQ_TYPE_OFFLOAD); - rc = efx_test_loopback(tx_queue, - &tests->loopback[mode]); - if (rc) - goto out; - } - } - - out: - /* Remove the flush. The caller will remove the loopback setting */ - state->flush = true; - efx->loopback_selftest = NULL; - wmb(); - kfree(state); - - return rc; -} - -/************************************************************************** - * - * Entry point - * - *************************************************************************/ - -int efx_selftest(struct efx_nic *efx, struct efx_self_tests *tests, - unsigned flags) -{ - enum efx_loopback_mode loopback_mode = efx->loopback_mode; - int phy_mode = efx->phy_mode; - enum reset_type reset_method = RESET_TYPE_INVISIBLE; - struct efx_channel *channel; - int rc_test = 0, rc_reset = 0, rc; - - /* Online (i.e. non-disruptive) testing - * This checks interrupt generation, event delivery and PHY presence. */ - - rc = efx_test_phy_alive(efx, tests); - if (rc && !rc_test) - rc_test = rc; - - rc = efx_test_nvram(efx, tests); - if (rc && !rc_test) - rc_test = rc; - - rc = efx_test_interrupts(efx, tests); - if (rc && !rc_test) - rc_test = rc; - - efx_for_each_channel(channel, efx) { - rc = efx_test_eventq_irq(channel, tests); - if (rc && !rc_test) - rc_test = rc; - } - - if (rc_test) - return rc_test; - - if (!(flags & ETH_TEST_FL_OFFLINE)) - return efx_test_phy(efx, tests, flags); - - /* Offline (i.e. disruptive) testing - * This checks MAC and PHY loopback on the specified port. */ - - /* Detach the device so the kernel doesn't transmit during the - * loopback test and the watchdog timeout doesn't fire. - */ - netif_device_detach(efx->net_dev); - - mutex_lock(&efx->mac_lock); - if (efx->loopback_modes) { - /* We need the 312 clock from the PHY to test the XMAC - * registers, so move into XGMII loopback if available */ - if (efx->loopback_modes & (1 << LOOPBACK_XGMII)) - efx->loopback_mode = LOOPBACK_XGMII; - else - efx->loopback_mode = __ffs(efx->loopback_modes); - } - - __efx_reconfigure_port(efx); - mutex_unlock(&efx->mac_lock); - - /* free up all consumers of SRAM (including all the queues) */ - efx_reset_down(efx, reset_method); - - rc = efx_test_chip(efx, tests); - if (rc && !rc_test) - rc_test = rc; - - /* reset the chip to recover from the register test */ - rc_reset = efx->type->reset(efx, reset_method); - - /* Ensure that the phy is powered and out of loopback - * for the bist and loopback tests */ - efx->phy_mode &= ~PHY_MODE_LOW_POWER; - efx->loopback_mode = LOOPBACK_NONE; - - rc = efx_reset_up(efx, reset_method, rc_reset == 0); - if (rc && !rc_reset) - rc_reset = rc; - - if (rc_reset) { - netif_err(efx, drv, efx->net_dev, - "Unable to recover from chip test\n"); - efx_schedule_reset(efx, RESET_TYPE_DISABLE); - return rc_reset; - } - - rc = efx_test_phy(efx, tests, flags); - if (rc && !rc_test) - rc_test = rc; - - rc = efx_test_loopbacks(efx, tests, efx->loopback_modes); - if (rc && !rc_test) - rc_test = rc; - - /* restore the PHY to the previous state */ - mutex_lock(&efx->mac_lock); - efx->phy_mode = phy_mode; - efx->loopback_mode = loopback_mode; - __efx_reconfigure_port(efx); - mutex_unlock(&efx->mac_lock); - - netif_device_attach(efx->net_dev); - - return rc_test; -} - diff --git a/drivers/net/sfc/selftest.h b/drivers/net/sfc/selftest.h deleted file mode 100644 index dba5456..0000000 --- a/drivers/net/sfc/selftest.h +++ /dev/null @@ -1,53 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_SELFTEST_H -#define EFX_SELFTEST_H - -#include "net_driver.h" - -/* - * Self tests - */ - -struct efx_loopback_self_tests { - int tx_sent[EFX_TXQ_TYPES]; - int tx_done[EFX_TXQ_TYPES]; - int rx_good; - int rx_bad; -}; - -#define EFX_MAX_PHY_TESTS 20 - -/* Efx self test results - * For fields which are not counters, 1 indicates success and -1 - * indicates failure. - */ -struct efx_self_tests { - /* online tests */ - int phy_alive; - int nvram; - int interrupt; - int eventq_dma[EFX_MAX_CHANNELS]; - int eventq_int[EFX_MAX_CHANNELS]; - int eventq_poll[EFX_MAX_CHANNELS]; - /* offline tests */ - int registers; - int phy_ext[EFX_MAX_PHY_TESTS]; - struct efx_loopback_self_tests loopback[LOOPBACK_TEST_MAX + 1]; -}; - -extern void efx_loopback_rx_packet(struct efx_nic *efx, - const char *buf_ptr, int pkt_len); -extern int efx_selftest(struct efx_nic *efx, - struct efx_self_tests *tests, - unsigned flags); - -#endif /* EFX_SELFTEST_H */ diff --git a/drivers/net/sfc/siena.c b/drivers/net/sfc/siena.c deleted file mode 100644 index 5735e84..0000000 --- a/drivers/net/sfc/siena.c +++ /dev/null @@ -1,676 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/bitops.h> -#include <linux/delay.h> -#include <linux/pci.h> -#include <linux/module.h> -#include <linux/slab.h> -#include <linux/random.h> -#include "net_driver.h" -#include "bitfield.h" -#include "efx.h" -#include "nic.h" -#include "mac.h" -#include "spi.h" -#include "regs.h" -#include "io.h" -#include "phy.h" -#include "workarounds.h" -#include "mcdi.h" -#include "mcdi_pcol.h" - -/* Hardware control for SFC9000 family including SFL9021 (aka Siena). */ - -static void siena_init_wol(struct efx_nic *efx); - - -static void siena_push_irq_moderation(struct efx_channel *channel) -{ - efx_dword_t timer_cmd; - - if (channel->irq_moderation) - EFX_POPULATE_DWORD_2(timer_cmd, - FRF_CZ_TC_TIMER_MODE, - FFE_CZ_TIMER_MODE_INT_HLDOFF, - FRF_CZ_TC_TIMER_VAL, - channel->irq_moderation - 1); - else - EFX_POPULATE_DWORD_2(timer_cmd, - FRF_CZ_TC_TIMER_MODE, - FFE_CZ_TIMER_MODE_DIS, - FRF_CZ_TC_TIMER_VAL, 0); - efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0, - channel->channel); -} - -static void siena_push_multicast_hash(struct efx_nic *efx) -{ - WARN_ON(!mutex_is_locked(&efx->mac_lock)); - - efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH, - efx->multicast_hash.byte, sizeof(efx->multicast_hash), - NULL, 0, NULL); -} - -static int siena_mdio_write(struct net_device *net_dev, - int prtad, int devad, u16 addr, u16 value) -{ - struct efx_nic *efx = netdev_priv(net_dev); - uint32_t status; - int rc; - - rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad, - addr, value, &status); - if (rc) - return rc; - if (status != MC_CMD_MDIO_STATUS_GOOD) - return -EIO; - - return 0; -} - -static int siena_mdio_read(struct net_device *net_dev, - int prtad, int devad, u16 addr) -{ - struct efx_nic *efx = netdev_priv(net_dev); - uint16_t value; - uint32_t status; - int rc; - - rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad, - addr, &value, &status); - if (rc) - return rc; - if (status != MC_CMD_MDIO_STATUS_GOOD) - return -EIO; - - return (int)value; -} - -/* This call is responsible for hooking in the MAC and PHY operations */ -static int siena_probe_port(struct efx_nic *efx) -{ - int rc; - - /* Hook in PHY operations table */ - efx->phy_op = &efx_mcdi_phy_ops; - - /* Set up MDIO structure for PHY */ - efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; - efx->mdio.mdio_read = siena_mdio_read; - efx->mdio.mdio_write = siena_mdio_write; - - /* Fill out MDIO structure, loopback modes, and initial link state */ - rc = efx->phy_op->probe(efx); - if (rc != 0) - return rc; - - /* Allocate buffer for stats */ - rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer, - MC_CMD_MAC_NSTATS * sizeof(u64)); - if (rc) - return rc; - netif_dbg(efx, probe, efx->net_dev, - "stats buffer at %llx (virt %p phys %llx)\n", - (u64)efx->stats_buffer.dma_addr, - efx->stats_buffer.addr, - (u64)virt_to_phys(efx->stats_buffer.addr)); - - efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1); - - return 0; -} - -static void siena_remove_port(struct efx_nic *efx) -{ - efx->phy_op->remove(efx); - efx_nic_free_buffer(efx, &efx->stats_buffer); -} - -static const struct efx_nic_register_test siena_register_tests[] = { - { FR_AZ_ADR_REGION, - EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) }, - { FR_CZ_USR_EV_CFG, - EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AZ_RX_CFG, - EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) }, - { FR_AZ_TX_CFG, - EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) }, - { FR_AZ_TX_RESERVED, - EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) }, - { FR_AZ_SRM_TX_DC_CFG, - EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AZ_RX_DC_CFG, - EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) }, - { FR_AZ_RX_DC_PF_WM, - EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) }, - { FR_BZ_DP_CTRL, - EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) }, - { FR_BZ_RX_RSS_TKEY, - EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) }, - { FR_CZ_RX_RSS_IPV6_REG1, - EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) }, - { FR_CZ_RX_RSS_IPV6_REG2, - EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) }, - { FR_CZ_RX_RSS_IPV6_REG3, - EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) }, -}; - -static int siena_test_registers(struct efx_nic *efx) -{ - return efx_nic_test_registers(efx, siena_register_tests, - ARRAY_SIZE(siena_register_tests)); -} - -/************************************************************************** - * - * Device reset - * - ************************************************************************** - */ - -static enum reset_type siena_map_reset_reason(enum reset_type reason) -{ - return RESET_TYPE_ALL; -} - -static int siena_map_reset_flags(u32 *flags) -{ - enum { - SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER | - ETH_RESET_OFFLOAD | ETH_RESET_MAC | - ETH_RESET_PHY), - SIENA_RESET_MC = (SIENA_RESET_PORT | - ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT), - }; - - if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) { - *flags &= ~SIENA_RESET_MC; - return RESET_TYPE_WORLD; - } - - if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) { - *flags &= ~SIENA_RESET_PORT; - return RESET_TYPE_ALL; - } - - /* no invisible reset implemented */ - - return -EINVAL; -} - -static int siena_reset_hw(struct efx_nic *efx, enum reset_type method) -{ - int rc; - - /* Recover from a failed assertion pre-reset */ - rc = efx_mcdi_handle_assertion(efx); - if (rc) - return rc; - - if (method == RESET_TYPE_WORLD) - return efx_mcdi_reset_mc(efx); - else - return efx_mcdi_reset_port(efx); -} - -static int siena_probe_nvconfig(struct efx_nic *efx) -{ - return efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL); -} - -static int siena_probe_nic(struct efx_nic *efx) -{ - struct siena_nic_data *nic_data; - bool already_attached = 0; - efx_oword_t reg; - int rc; - - /* Allocate storage for hardware specific data */ - nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL); - if (!nic_data) - return -ENOMEM; - efx->nic_data = nic_data; - - if (efx_nic_fpga_ver(efx) != 0) { - netif_err(efx, probe, efx->net_dev, - "Siena FPGA not supported\n"); - rc = -ENODEV; - goto fail1; - } - - efx_reado(efx, ®, FR_AZ_CS_DEBUG); - efx->net_dev->dev_id = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1; - - /* Initialise MCDI */ - nic_data->mcdi_smem = ioremap_nocache(efx->membase_phys + - FR_CZ_MC_TREG_SMEM, - FR_CZ_MC_TREG_SMEM_STEP * - FR_CZ_MC_TREG_SMEM_ROWS); - if (!nic_data->mcdi_smem) { - netif_err(efx, probe, efx->net_dev, - "could not map MCDI at %llx+%x\n", - (unsigned long long)efx->membase_phys + - FR_CZ_MC_TREG_SMEM, - FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS); - rc = -ENOMEM; - goto fail1; - } - efx_mcdi_init(efx); - - /* Recover from a failed assertion before probing */ - rc = efx_mcdi_handle_assertion(efx); - if (rc) - goto fail2; - - /* Let the BMC know that the driver is now in charge of link and - * filter settings. We must do this before we reset the NIC */ - rc = efx_mcdi_drv_attach(efx, true, &already_attached); - if (rc) { - netif_err(efx, probe, efx->net_dev, - "Unable to register driver with MCPU\n"); - goto fail2; - } - if (already_attached) - /* Not a fatal error */ - netif_err(efx, probe, efx->net_dev, - "Host already registered with MCPU\n"); - - /* Now we can reset the NIC */ - rc = siena_reset_hw(efx, RESET_TYPE_ALL); - if (rc) { - netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n"); - goto fail3; - } - - siena_init_wol(efx); - - /* Allocate memory for INT_KER */ - rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t)); - if (rc) - goto fail4; - BUG_ON(efx->irq_status.dma_addr & 0x0f); - - netif_dbg(efx, probe, efx->net_dev, - "INT_KER at %llx (virt %p phys %llx)\n", - (unsigned long long)efx->irq_status.dma_addr, - efx->irq_status.addr, - (unsigned long long)virt_to_phys(efx->irq_status.addr)); - - /* Read in the non-volatile configuration */ - rc = siena_probe_nvconfig(efx); - if (rc == -EINVAL) { - netif_err(efx, probe, efx->net_dev, - "NVRAM is invalid therefore using defaults\n"); - efx->phy_type = PHY_TYPE_NONE; - efx->mdio.prtad = MDIO_PRTAD_NONE; - } else if (rc) { - goto fail5; - } - - return 0; - -fail5: - efx_nic_free_buffer(efx, &efx->irq_status); -fail4: -fail3: - efx_mcdi_drv_attach(efx, false, NULL); -fail2: - iounmap(nic_data->mcdi_smem); -fail1: - kfree(efx->nic_data); - return rc; -} - -/* This call performs hardware-specific global initialisation, such as - * defining the descriptor cache sizes and number of RSS channels. - * It does not set up any buffers, descriptor rings or event queues. - */ -static int siena_init_nic(struct efx_nic *efx) -{ - efx_oword_t temp; - int rc; - - /* Recover from a failed assertion post-reset */ - rc = efx_mcdi_handle_assertion(efx); - if (rc) - return rc; - - /* Squash TX of packets of 16 bytes or less */ - efx_reado(efx, &temp, FR_AZ_TX_RESERVED); - EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1); - efx_writeo(efx, &temp, FR_AZ_TX_RESERVED); - - /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16 - * descriptors (which is bad). - */ - efx_reado(efx, &temp, FR_AZ_TX_CFG); - EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0); - EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1); - efx_writeo(efx, &temp, FR_AZ_TX_CFG); - - efx_reado(efx, &temp, FR_AZ_RX_CFG); - EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0); - EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1); - /* Enable hash insertion. This is broken for the 'Falcon' hash - * if IPv6 hashing is also enabled, so also select Toeplitz - * TCP/IPv4 and IPv4 hashes. */ - EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1); - EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1); - EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1); - efx_writeo(efx, &temp, FR_AZ_RX_CFG); - - /* Set hash key for IPv4 */ - memcpy(&temp, efx->rx_hash_key, sizeof(temp)); - efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY); - - /* Enable IPv6 RSS */ - BUILD_BUG_ON(sizeof(efx->rx_hash_key) < - 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 || - FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0); - memcpy(&temp, efx->rx_hash_key, sizeof(temp)); - efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1); - memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp)); - efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2); - EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1, - FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1); - memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp), - FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8); - efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3); - - /* Enable event logging */ - rc = efx_mcdi_log_ctrl(efx, true, false, 0); - if (rc) - return rc; - - /* Set destination of both TX and RX Flush events */ - EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0); - efx_writeo(efx, &temp, FR_BZ_DP_CTRL); - - EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1); - efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG); - - efx_nic_init_common(efx); - return 0; -} - -static void siena_remove_nic(struct efx_nic *efx) -{ - struct siena_nic_data *nic_data = efx->nic_data; - - efx_nic_free_buffer(efx, &efx->irq_status); - - siena_reset_hw(efx, RESET_TYPE_ALL); - - /* Relinquish the device back to the BMC */ - if (efx_nic_has_mc(efx)) - efx_mcdi_drv_attach(efx, false, NULL); - - /* Tear down the private nic state */ - iounmap(nic_data->mcdi_smem); - kfree(nic_data); - efx->nic_data = NULL; -} - -#define STATS_GENERATION_INVALID ((__force __le64)(-1)) - -static int siena_try_update_nic_stats(struct efx_nic *efx) -{ - __le64 *dma_stats; - struct efx_mac_stats *mac_stats; - __le64 generation_start, generation_end; - - mac_stats = &efx->mac_stats; - dma_stats = efx->stats_buffer.addr; - - generation_end = dma_stats[MC_CMD_MAC_GENERATION_END]; - if (generation_end == STATS_GENERATION_INVALID) - return 0; - rmb(); - -#define MAC_STAT(M, D) \ - mac_stats->M = le64_to_cpu(dma_stats[MC_CMD_MAC_ ## D]) - - MAC_STAT(tx_bytes, TX_BYTES); - MAC_STAT(tx_bad_bytes, TX_BAD_BYTES); - mac_stats->tx_good_bytes = (mac_stats->tx_bytes - - mac_stats->tx_bad_bytes); - MAC_STAT(tx_packets, TX_PKTS); - MAC_STAT(tx_bad, TX_BAD_FCS_PKTS); - MAC_STAT(tx_pause, TX_PAUSE_PKTS); - MAC_STAT(tx_control, TX_CONTROL_PKTS); - MAC_STAT(tx_unicast, TX_UNICAST_PKTS); - MAC_STAT(tx_multicast, TX_MULTICAST_PKTS); - MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS); - MAC_STAT(tx_lt64, TX_LT64_PKTS); - MAC_STAT(tx_64, TX_64_PKTS); - MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS); - MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS); - MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS); - MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS); - MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS); - MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS); - MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS); - mac_stats->tx_collision = 0; - MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS); - MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS); - MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS); - MAC_STAT(tx_deferred, TX_DEFERRED_PKTS); - MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS); - mac_stats->tx_collision = (mac_stats->tx_single_collision + - mac_stats->tx_multiple_collision + - mac_stats->tx_excessive_collision + - mac_stats->tx_late_collision); - MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS); - MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS); - MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS); - MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS); - MAC_STAT(rx_bytes, RX_BYTES); - MAC_STAT(rx_bad_bytes, RX_BAD_BYTES); - mac_stats->rx_good_bytes = (mac_stats->rx_bytes - - mac_stats->rx_bad_bytes); - MAC_STAT(rx_packets, RX_PKTS); - MAC_STAT(rx_good, RX_GOOD_PKTS); - MAC_STAT(rx_bad, RX_BAD_FCS_PKTS); - MAC_STAT(rx_pause, RX_PAUSE_PKTS); - MAC_STAT(rx_control, RX_CONTROL_PKTS); - MAC_STAT(rx_unicast, RX_UNICAST_PKTS); - MAC_STAT(rx_multicast, RX_MULTICAST_PKTS); - MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS); - MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS); - MAC_STAT(rx_64, RX_64_PKTS); - MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS); - MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS); - MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS); - MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS); - MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS); - MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS); - MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS); - mac_stats->rx_bad_lt64 = 0; - mac_stats->rx_bad_64_to_15xx = 0; - mac_stats->rx_bad_15xx_to_jumbo = 0; - MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS); - MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS); - mac_stats->rx_missed = 0; - MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS); - MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS); - MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS); - MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS); - MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS); - mac_stats->rx_good_lt64 = 0; - - efx->n_rx_nodesc_drop_cnt = - le64_to_cpu(dma_stats[MC_CMD_MAC_RX_NODESC_DROPS]); - -#undef MAC_STAT - - rmb(); - generation_start = dma_stats[MC_CMD_MAC_GENERATION_START]; - if (generation_end != generation_start) - return -EAGAIN; - - return 0; -} - -static void siena_update_nic_stats(struct efx_nic *efx) -{ - int retry; - - /* If we're unlucky enough to read statistics wduring the DMA, wait - * up to 10ms for it to finish (typically takes <500us) */ - for (retry = 0; retry < 100; ++retry) { - if (siena_try_update_nic_stats(efx) == 0) - return; - udelay(100); - } - - /* Use the old values instead */ -} - -static void siena_start_nic_stats(struct efx_nic *efx) -{ - __le64 *dma_stats = efx->stats_buffer.addr; - - dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID; - - efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, - MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0); -} - -static void siena_stop_nic_stats(struct efx_nic *efx) -{ - efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0); -} - -/************************************************************************** - * - * Wake on LAN - * - ************************************************************************** - */ - -static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol) -{ - struct siena_nic_data *nic_data = efx->nic_data; - - wol->supported = WAKE_MAGIC; - if (nic_data->wol_filter_id != -1) - wol->wolopts = WAKE_MAGIC; - else - wol->wolopts = 0; - memset(&wol->sopass, 0, sizeof(wol->sopass)); -} - - -static int siena_set_wol(struct efx_nic *efx, u32 type) -{ - struct siena_nic_data *nic_data = efx->nic_data; - int rc; - - if (type & ~WAKE_MAGIC) - return -EINVAL; - - if (type & WAKE_MAGIC) { - if (nic_data->wol_filter_id != -1) - efx_mcdi_wol_filter_remove(efx, - nic_data->wol_filter_id); - rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr, - &nic_data->wol_filter_id); - if (rc) - goto fail; - - pci_wake_from_d3(efx->pci_dev, true); - } else { - rc = efx_mcdi_wol_filter_reset(efx); - nic_data->wol_filter_id = -1; - pci_wake_from_d3(efx->pci_dev, false); - if (rc) - goto fail; - } - - return 0; - fail: - netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n", - __func__, type, rc); - return rc; -} - - -static void siena_init_wol(struct efx_nic *efx) -{ - struct siena_nic_data *nic_data = efx->nic_data; - int rc; - - rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id); - - if (rc != 0) { - /* If it failed, attempt to get into a synchronised - * state with MC by resetting any set WoL filters */ - efx_mcdi_wol_filter_reset(efx); - nic_data->wol_filter_id = -1; - } else if (nic_data->wol_filter_id != -1) { - pci_wake_from_d3(efx->pci_dev, true); - } -} - - -/************************************************************************** - * - * Revision-dependent attributes used by efx.c and nic.c - * - ************************************************************************** - */ - -const struct efx_nic_type siena_a0_nic_type = { - .probe = siena_probe_nic, - .remove = siena_remove_nic, - .init = siena_init_nic, - .fini = efx_port_dummy_op_void, - .monitor = NULL, - .map_reset_reason = siena_map_reset_reason, - .map_reset_flags = siena_map_reset_flags, - .reset = siena_reset_hw, - .probe_port = siena_probe_port, - .remove_port = siena_remove_port, - .prepare_flush = efx_port_dummy_op_void, - .update_stats = siena_update_nic_stats, - .start_stats = siena_start_nic_stats, - .stop_stats = siena_stop_nic_stats, - .set_id_led = efx_mcdi_set_id_led, - .push_irq_moderation = siena_push_irq_moderation, - .push_multicast_hash = siena_push_multicast_hash, - .reconfigure_port = efx_mcdi_phy_reconfigure, - .get_wol = siena_get_wol, - .set_wol = siena_set_wol, - .resume_wol = siena_init_wol, - .test_registers = siena_test_registers, - .test_nvram = efx_mcdi_nvram_test_all, - .default_mac_ops = &efx_mcdi_mac_operations, - - .revision = EFX_REV_SIENA_A0, - .mem_map_size = FR_CZ_MC_TREG_SMEM, /* MC_TREG_SMEM mapped separately */ - .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL, - .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL, - .buf_tbl_base = FR_BZ_BUF_FULL_TBL, - .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL, - .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR, - .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH), - .rx_buffer_hash_size = 0x10, - .rx_buffer_padding = 0, - .max_interrupt_mode = EFX_INT_MODE_MSIX, - .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy - * interrupt handler only supports 32 - * channels */ - .tx_dc_base = 0x88000, - .rx_dc_base = 0x68000, - .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | - NETIF_F_RXHASH | NETIF_F_NTUPLE), -}; diff --git a/drivers/net/sfc/spi.h b/drivers/net/sfc/spi.h deleted file mode 100644 index 71f2e3e..0000000 --- a/drivers/net/sfc/spi.h +++ /dev/null @@ -1,99 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005 Fen Systems Ltd. - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_SPI_H -#define EFX_SPI_H - -#include "net_driver.h" - -/************************************************************************** - * - * Basic SPI command set and bit definitions - * - *************************************************************************/ - -#define SPI_WRSR 0x01 /* Write status register */ -#define SPI_WRITE 0x02 /* Write data to memory array */ -#define SPI_READ 0x03 /* Read data from memory array */ -#define SPI_WRDI 0x04 /* Reset write enable latch */ -#define SPI_RDSR 0x05 /* Read status register */ -#define SPI_WREN 0x06 /* Set write enable latch */ -#define SPI_SST_EWSR 0x50 /* SST: Enable write to status register */ - -#define SPI_STATUS_WPEN 0x80 /* Write-protect pin enabled */ -#define SPI_STATUS_BP2 0x10 /* Block protection bit 2 */ -#define SPI_STATUS_BP1 0x08 /* Block protection bit 1 */ -#define SPI_STATUS_BP0 0x04 /* Block protection bit 0 */ -#define SPI_STATUS_WEN 0x02 /* State of the write enable latch */ -#define SPI_STATUS_NRDY 0x01 /* Device busy flag */ - -/** - * struct efx_spi_device - an Efx SPI (Serial Peripheral Interface) device - * @device_id: Controller's id for the device - * @size: Size (in bytes) - * @addr_len: Number of address bytes in read/write commands - * @munge_address: Flag whether addresses should be munged. - * Some devices with 9-bit addresses (e.g. AT25040A EEPROM) - * use bit 3 of the command byte as address bit A8, rather - * than having a two-byte address. If this flag is set, then - * commands should be munged in this way. - * @erase_command: Erase command (or 0 if sector erase not needed). - * @erase_size: Erase sector size (in bytes) - * Erase commands affect sectors with this size and alignment. - * This must be a power of two. - * @block_size: Write block size (in bytes). - * Write commands are limited to blocks with this size and alignment. - */ -struct efx_spi_device { - int device_id; - unsigned int size; - unsigned int addr_len; - unsigned int munge_address:1; - u8 erase_command; - unsigned int erase_size; - unsigned int block_size; -}; - -static inline bool efx_spi_present(const struct efx_spi_device *spi) -{ - return spi->size != 0; -} - -int falcon_spi_cmd(struct efx_nic *efx, - const struct efx_spi_device *spi, unsigned int command, - int address, const void* in, void *out, size_t len); -int falcon_spi_wait_write(struct efx_nic *efx, - const struct efx_spi_device *spi); -int falcon_spi_read(struct efx_nic *efx, - const struct efx_spi_device *spi, loff_t start, - size_t len, size_t *retlen, u8 *buffer); -int falcon_spi_write(struct efx_nic *efx, - const struct efx_spi_device *spi, loff_t start, - size_t len, size_t *retlen, const u8 *buffer); - -/* - * SFC4000 flash is partitioned into: - * 0-0x400 chip and board config (see falcon_hwdefs.h) - * 0x400-0x8000 unused (or may contain VPD if EEPROM not present) - * 0x8000-end boot code (mapped to PCI expansion ROM) - * SFC4000 small EEPROM (size < 0x400) is used for VPD only. - * SFC4000 large EEPROM (size >= 0x400) is partitioned into: - * 0-0x400 chip and board config - * configurable VPD - * 0x800-0x1800 boot config - * Aside from the chip and board config, all of these are optional and may - * be absent or truncated depending on the devices used. - */ -#define FALCON_NVCONFIG_END 0x400U -#define FALCON_FLASH_BOOTCODE_START 0x8000U -#define EFX_EEPROM_BOOTCONFIG_START 0x800U -#define EFX_EEPROM_BOOTCONFIG_END 0x1800U - -#endif /* EFX_SPI_H */ diff --git a/drivers/net/sfc/tenxpress.c b/drivers/net/sfc/tenxpress.c deleted file mode 100644 index 7b0fd89..0000000 --- a/drivers/net/sfc/tenxpress.c +++ /dev/null @@ -1,494 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2007-2011 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/delay.h> -#include <linux/rtnetlink.h> -#include <linux/seq_file.h> -#include <linux/slab.h> -#include "efx.h" -#include "mdio_10g.h" -#include "nic.h" -#include "phy.h" -#include "workarounds.h" - -/* We expect these MMDs to be in the package. */ -#define TENXPRESS_REQUIRED_DEVS (MDIO_DEVS_PMAPMD | \ - MDIO_DEVS_PCS | \ - MDIO_DEVS_PHYXS | \ - MDIO_DEVS_AN) - -#define SFX7101_LOOPBACKS ((1 << LOOPBACK_PHYXS) | \ - (1 << LOOPBACK_PCS) | \ - (1 << LOOPBACK_PMAPMD) | \ - (1 << LOOPBACK_PHYXS_WS)) - -/* We complain if we fail to see the link partner as 10G capable this many - * times in a row (must be > 1 as sampling the autoneg. registers is racy) - */ -#define MAX_BAD_LP_TRIES (5) - -/* Extended control register */ -#define PMA_PMD_XCONTROL_REG 49152 -#define PMA_PMD_EXT_GMII_EN_LBN 1 -#define PMA_PMD_EXT_GMII_EN_WIDTH 1 -#define PMA_PMD_EXT_CLK_OUT_LBN 2 -#define PMA_PMD_EXT_CLK_OUT_WIDTH 1 -#define PMA_PMD_LNPGA_POWERDOWN_LBN 8 -#define PMA_PMD_LNPGA_POWERDOWN_WIDTH 1 -#define PMA_PMD_EXT_CLK312_WIDTH 1 -#define PMA_PMD_EXT_LPOWER_LBN 12 -#define PMA_PMD_EXT_LPOWER_WIDTH 1 -#define PMA_PMD_EXT_ROBUST_LBN 14 -#define PMA_PMD_EXT_ROBUST_WIDTH 1 -#define PMA_PMD_EXT_SSR_LBN 15 -#define PMA_PMD_EXT_SSR_WIDTH 1 - -/* extended status register */ -#define PMA_PMD_XSTATUS_REG 49153 -#define PMA_PMD_XSTAT_MDIX_LBN 14 -#define PMA_PMD_XSTAT_FLP_LBN (12) - -/* LED control register */ -#define PMA_PMD_LED_CTRL_REG 49159 -#define PMA_PMA_LED_ACTIVITY_LBN (3) - -/* LED function override register */ -#define PMA_PMD_LED_OVERR_REG 49161 -/* Bit positions for different LEDs (there are more but not wired on SFE4001)*/ -#define PMA_PMD_LED_LINK_LBN (0) -#define PMA_PMD_LED_SPEED_LBN (2) -#define PMA_PMD_LED_TX_LBN (4) -#define PMA_PMD_LED_RX_LBN (6) -/* Override settings */ -#define PMA_PMD_LED_AUTO (0) /* H/W control */ -#define PMA_PMD_LED_ON (1) -#define PMA_PMD_LED_OFF (2) -#define PMA_PMD_LED_FLASH (3) -#define PMA_PMD_LED_MASK 3 -/* All LEDs under hardware control */ -/* Green and Amber under hardware control, Red off */ -#define SFX7101_PMA_PMD_LED_DEFAULT (PMA_PMD_LED_OFF << PMA_PMD_LED_RX_LBN) - -#define PMA_PMD_SPEED_ENABLE_REG 49192 -#define PMA_PMD_100TX_ADV_LBN 1 -#define PMA_PMD_100TX_ADV_WIDTH 1 -#define PMA_PMD_1000T_ADV_LBN 2 -#define PMA_PMD_1000T_ADV_WIDTH 1 -#define PMA_PMD_10000T_ADV_LBN 3 -#define PMA_PMD_10000T_ADV_WIDTH 1 -#define PMA_PMD_SPEED_LBN 4 -#define PMA_PMD_SPEED_WIDTH 4 - -/* Misc register defines */ -#define PCS_CLOCK_CTRL_REG 55297 -#define PLL312_RST_N_LBN 2 - -#define PCS_SOFT_RST2_REG 55302 -#define SERDES_RST_N_LBN 13 -#define XGXS_RST_N_LBN 12 - -#define PCS_TEST_SELECT_REG 55303 /* PRM 10.5.8 */ -#define CLK312_EN_LBN 3 - -/* PHYXS registers */ -#define PHYXS_XCONTROL_REG 49152 -#define PHYXS_RESET_LBN 15 -#define PHYXS_RESET_WIDTH 1 - -#define PHYXS_TEST1 (49162) -#define LOOPBACK_NEAR_LBN (8) -#define LOOPBACK_NEAR_WIDTH (1) - -/* Boot status register */ -#define PCS_BOOT_STATUS_REG 53248 -#define PCS_BOOT_FATAL_ERROR_LBN 0 -#define PCS_BOOT_PROGRESS_LBN 1 -#define PCS_BOOT_PROGRESS_WIDTH 2 -#define PCS_BOOT_PROGRESS_INIT 0 -#define PCS_BOOT_PROGRESS_WAIT_MDIO 1 -#define PCS_BOOT_PROGRESS_CHECKSUM 2 -#define PCS_BOOT_PROGRESS_JUMP 3 -#define PCS_BOOT_DOWNLOAD_WAIT_LBN 3 -#define PCS_BOOT_CODE_STARTED_LBN 4 - -/* 100M/1G PHY registers */ -#define GPHY_XCONTROL_REG 49152 -#define GPHY_ISOLATE_LBN 10 -#define GPHY_ISOLATE_WIDTH 1 -#define GPHY_DUPLEX_LBN 8 -#define GPHY_DUPLEX_WIDTH 1 -#define GPHY_LOOPBACK_NEAR_LBN 14 -#define GPHY_LOOPBACK_NEAR_WIDTH 1 - -#define C22EXT_STATUS_REG 49153 -#define C22EXT_STATUS_LINK_LBN 2 -#define C22EXT_STATUS_LINK_WIDTH 1 - -#define C22EXT_MSTSLV_CTRL 49161 -#define C22EXT_MSTSLV_CTRL_ADV_1000_HD_LBN 8 -#define C22EXT_MSTSLV_CTRL_ADV_1000_FD_LBN 9 - -#define C22EXT_MSTSLV_STATUS 49162 -#define C22EXT_MSTSLV_STATUS_LP_1000_HD_LBN 10 -#define C22EXT_MSTSLV_STATUS_LP_1000_FD_LBN 11 - -/* Time to wait between powering down the LNPGA and turning off the power - * rails */ -#define LNPGA_PDOWN_WAIT (HZ / 5) - -struct tenxpress_phy_data { - enum efx_loopback_mode loopback_mode; - enum efx_phy_mode phy_mode; - int bad_lp_tries; -}; - -static int tenxpress_init(struct efx_nic *efx) -{ - /* Enable 312.5 MHz clock */ - efx_mdio_write(efx, MDIO_MMD_PCS, PCS_TEST_SELECT_REG, - 1 << CLK312_EN_LBN); - - /* Set the LEDs up as: Green = Link, Amber = Link/Act, Red = Off */ - efx_mdio_set_flag(efx, MDIO_MMD_PMAPMD, PMA_PMD_LED_CTRL_REG, - 1 << PMA_PMA_LED_ACTIVITY_LBN, true); - efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_LED_OVERR_REG, - SFX7101_PMA_PMD_LED_DEFAULT); - - return 0; -} - -static int tenxpress_phy_probe(struct efx_nic *efx) -{ - struct tenxpress_phy_data *phy_data; - - /* Allocate phy private storage */ - phy_data = kzalloc(sizeof(*phy_data), GFP_KERNEL); - if (!phy_data) - return -ENOMEM; - efx->phy_data = phy_data; - phy_data->phy_mode = efx->phy_mode; - - efx->mdio.mmds = TENXPRESS_REQUIRED_DEVS; - efx->mdio.mode_support = MDIO_SUPPORTS_C45; - - efx->loopback_modes = SFX7101_LOOPBACKS | FALCON_XMAC_LOOPBACKS; - - efx->link_advertising = (ADVERTISED_TP | ADVERTISED_Autoneg | - ADVERTISED_10000baseT_Full); - - return 0; -} - -static int tenxpress_phy_init(struct efx_nic *efx) -{ - int rc; - - falcon_board(efx)->type->init_phy(efx); - - if (!(efx->phy_mode & PHY_MODE_SPECIAL)) { - rc = efx_mdio_wait_reset_mmds(efx, TENXPRESS_REQUIRED_DEVS); - if (rc < 0) - return rc; - - rc = efx_mdio_check_mmds(efx, TENXPRESS_REQUIRED_DEVS); - if (rc < 0) - return rc; - } - - rc = tenxpress_init(efx); - if (rc < 0) - return rc; - - /* Reinitialise flow control settings */ - efx_link_set_wanted_fc(efx, efx->wanted_fc); - efx_mdio_an_reconfigure(efx); - - schedule_timeout_uninterruptible(HZ / 5); /* 200ms */ - - /* Let XGXS and SerDes out of reset */ - falcon_reset_xaui(efx); - - return 0; -} - -/* Perform a "special software reset" on the PHY. The caller is - * responsible for saving and restoring the PHY hardware registers - * properly, and masking/unmasking LASI */ -static int tenxpress_special_reset(struct efx_nic *efx) -{ - int rc, reg; - - /* The XGMAC clock is driven from the SFX7101 312MHz clock, so - * a special software reset can glitch the XGMAC sufficiently for stats - * requests to fail. */ - falcon_stop_nic_stats(efx); - - /* Initiate reset */ - reg = efx_mdio_read(efx, MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG); - reg |= (1 << PMA_PMD_EXT_SSR_LBN); - efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG, reg); - - mdelay(200); - - /* Wait for the blocks to come out of reset */ - rc = efx_mdio_wait_reset_mmds(efx, TENXPRESS_REQUIRED_DEVS); - if (rc < 0) - goto out; - - /* Try and reconfigure the device */ - rc = tenxpress_init(efx); - if (rc < 0) - goto out; - - /* Wait for the XGXS state machine to churn */ - mdelay(10); -out: - falcon_start_nic_stats(efx); - return rc; -} - -static void sfx7101_check_bad_lp(struct efx_nic *efx, bool link_ok) -{ - struct tenxpress_phy_data *pd = efx->phy_data; - bool bad_lp; - int reg; - - if (link_ok) { - bad_lp = false; - } else { - /* Check that AN has started but not completed. */ - reg = efx_mdio_read(efx, MDIO_MMD_AN, MDIO_STAT1); - if (!(reg & MDIO_AN_STAT1_LPABLE)) - return; /* LP status is unknown */ - bad_lp = !(reg & MDIO_AN_STAT1_COMPLETE); - if (bad_lp) - pd->bad_lp_tries++; - } - - /* Nothing to do if all is well and was previously so. */ - if (!pd->bad_lp_tries) - return; - - /* Use the RX (red) LED as an error indicator once we've seen AN - * failure several times in a row, and also log a message. */ - if (!bad_lp || pd->bad_lp_tries == MAX_BAD_LP_TRIES) { - reg = efx_mdio_read(efx, MDIO_MMD_PMAPMD, - PMA_PMD_LED_OVERR_REG); - reg &= ~(PMA_PMD_LED_MASK << PMA_PMD_LED_RX_LBN); - if (!bad_lp) { - reg |= PMA_PMD_LED_OFF << PMA_PMD_LED_RX_LBN; - } else { - reg |= PMA_PMD_LED_FLASH << PMA_PMD_LED_RX_LBN; - netif_err(efx, link, efx->net_dev, - "appears to be plugged into a port" - " that is not 10GBASE-T capable. The PHY" - " supports 10GBASE-T ONLY, so no link can" - " be established\n"); - } - efx_mdio_write(efx, MDIO_MMD_PMAPMD, - PMA_PMD_LED_OVERR_REG, reg); - pd->bad_lp_tries = bad_lp; - } -} - -static bool sfx7101_link_ok(struct efx_nic *efx) -{ - return efx_mdio_links_ok(efx, - MDIO_DEVS_PMAPMD | - MDIO_DEVS_PCS | - MDIO_DEVS_PHYXS); -} - -static void tenxpress_ext_loopback(struct efx_nic *efx) -{ - efx_mdio_set_flag(efx, MDIO_MMD_PHYXS, PHYXS_TEST1, - 1 << LOOPBACK_NEAR_LBN, - efx->loopback_mode == LOOPBACK_PHYXS); -} - -static void tenxpress_low_power(struct efx_nic *efx) -{ - efx_mdio_set_mmds_lpower( - efx, !!(efx->phy_mode & PHY_MODE_LOW_POWER), - TENXPRESS_REQUIRED_DEVS); -} - -static int tenxpress_phy_reconfigure(struct efx_nic *efx) -{ - struct tenxpress_phy_data *phy_data = efx->phy_data; - bool phy_mode_change, loop_reset; - - if (efx->phy_mode & (PHY_MODE_OFF | PHY_MODE_SPECIAL)) { - phy_data->phy_mode = efx->phy_mode; - return 0; - } - - phy_mode_change = (efx->phy_mode == PHY_MODE_NORMAL && - phy_data->phy_mode != PHY_MODE_NORMAL); - loop_reset = (LOOPBACK_OUT_OF(phy_data, efx, LOOPBACKS_EXTERNAL(efx)) || - LOOPBACK_CHANGED(phy_data, efx, 1 << LOOPBACK_GPHY)); - - if (loop_reset || phy_mode_change) { - tenxpress_special_reset(efx); - falcon_reset_xaui(efx); - } - - tenxpress_low_power(efx); - efx_mdio_transmit_disable(efx); - efx_mdio_phy_reconfigure(efx); - tenxpress_ext_loopback(efx); - efx_mdio_an_reconfigure(efx); - - phy_data->loopback_mode = efx->loopback_mode; - phy_data->phy_mode = efx->phy_mode; - - return 0; -} - -static void -tenxpress_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd); - -/* Poll for link state changes */ -static bool tenxpress_phy_poll(struct efx_nic *efx) -{ - struct efx_link_state old_state = efx->link_state; - - efx->link_state.up = sfx7101_link_ok(efx); - efx->link_state.speed = 10000; - efx->link_state.fd = true; - efx->link_state.fc = efx_mdio_get_pause(efx); - - sfx7101_check_bad_lp(efx, efx->link_state.up); - - return !efx_link_state_equal(&efx->link_state, &old_state); -} - -static void sfx7101_phy_fini(struct efx_nic *efx) -{ - int reg; - - /* Power down the LNPGA */ - reg = (1 << PMA_PMD_LNPGA_POWERDOWN_LBN); - efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_XCONTROL_REG, reg); - - /* Waiting here ensures that the board fini, which can turn - * off the power to the PHY, won't get run until the LNPGA - * powerdown has been given long enough to complete. */ - schedule_timeout_uninterruptible(LNPGA_PDOWN_WAIT); /* 200 ms */ -} - -static void tenxpress_phy_remove(struct efx_nic *efx) -{ - kfree(efx->phy_data); - efx->phy_data = NULL; -} - - -/* Override the RX, TX and link LEDs */ -void tenxpress_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) -{ - int reg; - - switch (mode) { - case EFX_LED_OFF: - reg = (PMA_PMD_LED_OFF << PMA_PMD_LED_TX_LBN) | - (PMA_PMD_LED_OFF << PMA_PMD_LED_RX_LBN) | - (PMA_PMD_LED_OFF << PMA_PMD_LED_LINK_LBN); - break; - case EFX_LED_ON: - reg = (PMA_PMD_LED_ON << PMA_PMD_LED_TX_LBN) | - (PMA_PMD_LED_ON << PMA_PMD_LED_RX_LBN) | - (PMA_PMD_LED_ON << PMA_PMD_LED_LINK_LBN); - break; - default: - reg = SFX7101_PMA_PMD_LED_DEFAULT; - break; - } - - efx_mdio_write(efx, MDIO_MMD_PMAPMD, PMA_PMD_LED_OVERR_REG, reg); -} - -static const char *const sfx7101_test_names[] = { - "bist" -}; - -static const char *sfx7101_test_name(struct efx_nic *efx, unsigned int index) -{ - if (index < ARRAY_SIZE(sfx7101_test_names)) - return sfx7101_test_names[index]; - return NULL; -} - -static int -sfx7101_run_tests(struct efx_nic *efx, int *results, unsigned flags) -{ - int rc; - - if (!(flags & ETH_TEST_FL_OFFLINE)) - return 0; - - /* BIST is automatically run after a special software reset */ - rc = tenxpress_special_reset(efx); - results[0] = rc ? -1 : 1; - - efx_mdio_an_reconfigure(efx); - - return rc; -} - -static void -tenxpress_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd) -{ - u32 adv = 0, lpa = 0; - int reg; - - reg = efx_mdio_read(efx, MDIO_MMD_AN, MDIO_AN_10GBT_CTRL); - if (reg & MDIO_AN_10GBT_CTRL_ADV10G) - adv |= ADVERTISED_10000baseT_Full; - reg = efx_mdio_read(efx, MDIO_MMD_AN, MDIO_AN_10GBT_STAT); - if (reg & MDIO_AN_10GBT_STAT_LP10G) - lpa |= ADVERTISED_10000baseT_Full; - - mdio45_ethtool_gset_npage(&efx->mdio, ecmd, adv, lpa); - - /* In loopback, the PHY automatically brings up the correct interface, - * but doesn't advertise the correct speed. So override it */ - if (LOOPBACK_EXTERNAL(efx)) - ethtool_cmd_speed_set(ecmd, SPEED_10000); -} - -static int tenxpress_set_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd) -{ - if (!ecmd->autoneg) - return -EINVAL; - - return efx_mdio_set_settings(efx, ecmd); -} - -static void sfx7101_set_npage_adv(struct efx_nic *efx, u32 advertising) -{ - efx_mdio_set_flag(efx, MDIO_MMD_AN, MDIO_AN_10GBT_CTRL, - MDIO_AN_10GBT_CTRL_ADV10G, - advertising & ADVERTISED_10000baseT_Full); -} - -const struct efx_phy_operations falcon_sfx7101_phy_ops = { - .probe = tenxpress_phy_probe, - .init = tenxpress_phy_init, - .reconfigure = tenxpress_phy_reconfigure, - .poll = tenxpress_phy_poll, - .fini = sfx7101_phy_fini, - .remove = tenxpress_phy_remove, - .get_settings = tenxpress_get_settings, - .set_settings = tenxpress_set_settings, - .set_npage_adv = sfx7101_set_npage_adv, - .test_alive = efx_mdio_test_alive, - .test_name = sfx7101_test_name, - .run_tests = sfx7101_run_tests, -}; diff --git a/drivers/net/sfc/tx.c b/drivers/net/sfc/tx.c deleted file mode 100644 index 84eb99e..0000000 --- a/drivers/net/sfc/tx.c +++ /dev/null @@ -1,1212 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2005-2006 Fen Systems Ltd. - * Copyright 2005-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#include <linux/pci.h> -#include <linux/tcp.h> -#include <linux/ip.h> -#include <linux/in.h> -#include <linux/ipv6.h> -#include <linux/slab.h> -#include <net/ipv6.h> -#include <linux/if_ether.h> -#include <linux/highmem.h> -#include "net_driver.h" -#include "efx.h" -#include "nic.h" -#include "workarounds.h" - -/* - * TX descriptor ring full threshold - * - * The tx_queue descriptor ring fill-level must fall below this value - * before we restart the netif queue - */ -#define EFX_TXQ_THRESHOLD(_efx) ((_efx)->txq_entries / 2u) - -static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue, - struct efx_tx_buffer *buffer) -{ - if (buffer->unmap_len) { - struct pci_dev *pci_dev = tx_queue->efx->pci_dev; - dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len - - buffer->unmap_len); - if (buffer->unmap_single) - pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len, - PCI_DMA_TODEVICE); - else - pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len, - PCI_DMA_TODEVICE); - buffer->unmap_len = 0; - buffer->unmap_single = false; - } - - if (buffer->skb) { - dev_kfree_skb_any((struct sk_buff *) buffer->skb); - buffer->skb = NULL; - netif_vdbg(tx_queue->efx, tx_done, tx_queue->efx->net_dev, - "TX queue %d transmission id %x complete\n", - tx_queue->queue, tx_queue->read_count); - } -} - -/** - * struct efx_tso_header - a DMA mapped buffer for packet headers - * @next: Linked list of free ones. - * The list is protected by the TX queue lock. - * @dma_unmap_len: Length to unmap for an oversize buffer, or 0. - * @dma_addr: The DMA address of the header below. - * - * This controls the memory used for a TSO header. Use TSOH_DATA() - * to find the packet header data. Use TSOH_SIZE() to calculate the - * total size required for a given packet header length. TSO headers - * in the free list are exactly %TSOH_STD_SIZE bytes in size. - */ -struct efx_tso_header { - union { - struct efx_tso_header *next; - size_t unmap_len; - }; - dma_addr_t dma_addr; -}; - -static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, - struct sk_buff *skb); -static void efx_fini_tso(struct efx_tx_queue *tx_queue); -static void efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, - struct efx_tso_header *tsoh); - -static void efx_tsoh_free(struct efx_tx_queue *tx_queue, - struct efx_tx_buffer *buffer) -{ - if (buffer->tsoh) { - if (likely(!buffer->tsoh->unmap_len)) { - buffer->tsoh->next = tx_queue->tso_headers_free; - tx_queue->tso_headers_free = buffer->tsoh; - } else { - efx_tsoh_heap_free(tx_queue, buffer->tsoh); - } - buffer->tsoh = NULL; - } -} - - -static inline unsigned -efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr) -{ - /* Depending on the NIC revision, we can use descriptor - * lengths up to 8K or 8K-1. However, since PCI Express - * devices must split read requests at 4K boundaries, there is - * little benefit from using descriptors that cross those - * boundaries and we keep things simple by not doing so. - */ - unsigned len = (~dma_addr & 0xfff) + 1; - - /* Work around hardware bug for unaligned buffers. */ - if (EFX_WORKAROUND_5391(efx) && (dma_addr & 0xf)) - len = min_t(unsigned, len, 512 - (dma_addr & 0xf)); - - return len; -} - -/* - * Add a socket buffer to a TX queue - * - * This maps all fragments of a socket buffer for DMA and adds them to - * the TX queue. The queue's insert pointer will be incremented by - * the number of fragments in the socket buffer. - * - * If any DMA mapping fails, any mapped fragments will be unmapped, - * the queue's insert pointer will be restored to its original value. - * - * This function is split out from efx_hard_start_xmit to allow the - * loopback test to direct packets via specific TX queues. - * - * Returns NETDEV_TX_OK or NETDEV_TX_BUSY - * You must hold netif_tx_lock() to call this function. - */ -netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb) -{ - struct efx_nic *efx = tx_queue->efx; - struct pci_dev *pci_dev = efx->pci_dev; - struct efx_tx_buffer *buffer; - skb_frag_t *fragment; - struct page *page; - int page_offset; - unsigned int len, unmap_len = 0, fill_level, insert_ptr; - dma_addr_t dma_addr, unmap_addr = 0; - unsigned int dma_len; - bool unmap_single; - int q_space, i = 0; - netdev_tx_t rc = NETDEV_TX_OK; - - EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); - - if (skb_shinfo(skb)->gso_size) - return efx_enqueue_skb_tso(tx_queue, skb); - - /* Get size of the initial fragment */ - len = skb_headlen(skb); - - /* Pad if necessary */ - if (EFX_WORKAROUND_15592(efx) && skb->len <= 32) { - EFX_BUG_ON_PARANOID(skb->data_len); - len = 32 + 1; - if (skb_pad(skb, len - skb->len)) - return NETDEV_TX_OK; - } - - fill_level = tx_queue->insert_count - tx_queue->old_read_count; - q_space = efx->txq_entries - 1 - fill_level; - - /* Map for DMA. Use pci_map_single rather than pci_map_page - * since this is more efficient on machines with sparse - * memory. - */ - unmap_single = true; - dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE); - - /* Process all fragments */ - while (1) { - if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr))) - goto pci_err; - - /* Store fields for marking in the per-fragment final - * descriptor */ - unmap_len = len; - unmap_addr = dma_addr; - - /* Add to TX queue, splitting across DMA boundaries */ - do { - if (unlikely(q_space-- <= 0)) { - /* It might be that completions have - * happened since the xmit path last - * checked. Update the xmit path's - * copy of read_count. - */ - netif_tx_stop_queue(tx_queue->core_txq); - /* This memory barrier protects the - * change of queue state from the access - * of read_count. */ - smp_mb(); - tx_queue->old_read_count = - ACCESS_ONCE(tx_queue->read_count); - fill_level = (tx_queue->insert_count - - tx_queue->old_read_count); - q_space = efx->txq_entries - 1 - fill_level; - if (unlikely(q_space-- <= 0)) { - rc = NETDEV_TX_BUSY; - goto unwind; - } - smp_mb(); - if (likely(!efx->loopback_selftest)) - netif_tx_start_queue( - tx_queue->core_txq); - } - - insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; - buffer = &tx_queue->buffer[insert_ptr]; - efx_tsoh_free(tx_queue, buffer); - EFX_BUG_ON_PARANOID(buffer->tsoh); - EFX_BUG_ON_PARANOID(buffer->skb); - EFX_BUG_ON_PARANOID(buffer->len); - EFX_BUG_ON_PARANOID(!buffer->continuation); - EFX_BUG_ON_PARANOID(buffer->unmap_len); - - dma_len = efx_max_tx_len(efx, dma_addr); - if (likely(dma_len >= len)) - dma_len = len; - - /* Fill out per descriptor fields */ - buffer->len = dma_len; - buffer->dma_addr = dma_addr; - len -= dma_len; - dma_addr += dma_len; - ++tx_queue->insert_count; - } while (len); - - /* Transfer ownership of the unmapping to the final buffer */ - buffer->unmap_single = unmap_single; - buffer->unmap_len = unmap_len; - unmap_len = 0; - - /* Get address and size of next fragment */ - if (i >= skb_shinfo(skb)->nr_frags) - break; - fragment = &skb_shinfo(skb)->frags[i]; - len = fragment->size; - page = fragment->page; - page_offset = fragment->page_offset; - i++; - /* Map for DMA */ - unmap_single = false; - dma_addr = pci_map_page(pci_dev, page, page_offset, len, - PCI_DMA_TODEVICE); - } - - /* Transfer ownership of the skb to the final buffer */ - buffer->skb = skb; - buffer->continuation = false; - - /* Pass off to hardware */ - efx_nic_push_buffers(tx_queue); - - return NETDEV_TX_OK; - - pci_err: - netif_err(efx, tx_err, efx->net_dev, - " TX queue %d could not map skb with %d bytes %d " - "fragments for DMA\n", tx_queue->queue, skb->len, - skb_shinfo(skb)->nr_frags + 1); - - /* Mark the packet as transmitted, and free the SKB ourselves */ - dev_kfree_skb_any(skb); - - unwind: - /* Work backwards until we hit the original insert pointer value */ - while (tx_queue->insert_count != tx_queue->write_count) { - --tx_queue->insert_count; - insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; - buffer = &tx_queue->buffer[insert_ptr]; - efx_dequeue_buffer(tx_queue, buffer); - buffer->len = 0; - } - - /* Free the fragment we were mid-way through pushing */ - if (unmap_len) { - if (unmap_single) - pci_unmap_single(pci_dev, unmap_addr, unmap_len, - PCI_DMA_TODEVICE); - else - pci_unmap_page(pci_dev, unmap_addr, unmap_len, - PCI_DMA_TODEVICE); - } - - return rc; -} - -/* Remove packets from the TX queue - * - * This removes packets from the TX queue, up to and including the - * specified index. - */ -static void efx_dequeue_buffers(struct efx_tx_queue *tx_queue, - unsigned int index) -{ - struct efx_nic *efx = tx_queue->efx; - unsigned int stop_index, read_ptr; - - stop_index = (index + 1) & tx_queue->ptr_mask; - read_ptr = tx_queue->read_count & tx_queue->ptr_mask; - - while (read_ptr != stop_index) { - struct efx_tx_buffer *buffer = &tx_queue->buffer[read_ptr]; - if (unlikely(buffer->len == 0)) { - netif_err(efx, tx_err, efx->net_dev, - "TX queue %d spurious TX completion id %x\n", - tx_queue->queue, read_ptr); - efx_schedule_reset(efx, RESET_TYPE_TX_SKIP); - return; - } - - efx_dequeue_buffer(tx_queue, buffer); - buffer->continuation = true; - buffer->len = 0; - - ++tx_queue->read_count; - read_ptr = tx_queue->read_count & tx_queue->ptr_mask; - } -} - -/* Initiate a packet transmission. We use one channel per CPU - * (sharing when we have more CPUs than channels). On Falcon, the TX - * completion events will be directed back to the CPU that transmitted - * the packet, which should be cache-efficient. - * - * Context: non-blocking. - * Note that returning anything other than NETDEV_TX_OK will cause the - * OS to free the skb. - */ -netdev_tx_t efx_hard_start_xmit(struct sk_buff *skb, - struct net_device *net_dev) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct efx_tx_queue *tx_queue; - unsigned index, type; - - EFX_WARN_ON_PARANOID(!netif_device_present(net_dev)); - - index = skb_get_queue_mapping(skb); - type = skb->ip_summed == CHECKSUM_PARTIAL ? EFX_TXQ_TYPE_OFFLOAD : 0; - if (index >= efx->n_tx_channels) { - index -= efx->n_tx_channels; - type |= EFX_TXQ_TYPE_HIGHPRI; - } - tx_queue = efx_get_tx_queue(efx, index, type); - - return efx_enqueue_skb(tx_queue, skb); -} - -void efx_init_tx_queue_core_txq(struct efx_tx_queue *tx_queue) -{ - struct efx_nic *efx = tx_queue->efx; - - /* Must be inverse of queue lookup in efx_hard_start_xmit() */ - tx_queue->core_txq = - netdev_get_tx_queue(efx->net_dev, - tx_queue->queue / EFX_TXQ_TYPES + - ((tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ? - efx->n_tx_channels : 0)); -} - -int efx_setup_tc(struct net_device *net_dev, u8 num_tc) -{ - struct efx_nic *efx = netdev_priv(net_dev); - struct efx_channel *channel; - struct efx_tx_queue *tx_queue; - unsigned tc; - int rc; - - if (efx_nic_rev(efx) < EFX_REV_FALCON_B0 || num_tc > EFX_MAX_TX_TC) - return -EINVAL; - - if (num_tc == net_dev->num_tc) - return 0; - - for (tc = 0; tc < num_tc; tc++) { - net_dev->tc_to_txq[tc].offset = tc * efx->n_tx_channels; - net_dev->tc_to_txq[tc].count = efx->n_tx_channels; - } - - if (num_tc > net_dev->num_tc) { - /* Initialise high-priority queues as necessary */ - efx_for_each_channel(channel, efx) { - efx_for_each_possible_channel_tx_queue(tx_queue, - channel) { - if (!(tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI)) - continue; - if (!tx_queue->buffer) { - rc = efx_probe_tx_queue(tx_queue); - if (rc) - return rc; - } - if (!tx_queue->initialised) - efx_init_tx_queue(tx_queue); - efx_init_tx_queue_core_txq(tx_queue); - } - } - } else { - /* Reduce number of classes before number of queues */ - net_dev->num_tc = num_tc; - } - - rc = netif_set_real_num_tx_queues(net_dev, - max_t(int, num_tc, 1) * - efx->n_tx_channels); - if (rc) - return rc; - - /* Do not destroy high-priority queues when they become - * unused. We would have to flush them first, and it is - * fairly difficult to flush a subset of TX queues. Leave - * it to efx_fini_channels(). - */ - - net_dev->num_tc = num_tc; - return 0; -} - -void efx_xmit_done(struct efx_tx_queue *tx_queue, unsigned int index) -{ - unsigned fill_level; - struct efx_nic *efx = tx_queue->efx; - - EFX_BUG_ON_PARANOID(index > tx_queue->ptr_mask); - - efx_dequeue_buffers(tx_queue, index); - - /* See if we need to restart the netif queue. This barrier - * separates the update of read_count from the test of the - * queue state. */ - smp_mb(); - if (unlikely(netif_tx_queue_stopped(tx_queue->core_txq)) && - likely(efx->port_enabled) && - likely(netif_device_present(efx->net_dev))) { - fill_level = tx_queue->insert_count - tx_queue->read_count; - if (fill_level < EFX_TXQ_THRESHOLD(efx)) { - EFX_BUG_ON_PARANOID(!efx_dev_registered(efx)); - netif_tx_wake_queue(tx_queue->core_txq); - } - } - - /* Check whether the hardware queue is now empty */ - if ((int)(tx_queue->read_count - tx_queue->old_write_count) >= 0) { - tx_queue->old_write_count = ACCESS_ONCE(tx_queue->write_count); - if (tx_queue->read_count == tx_queue->old_write_count) { - smp_mb(); - tx_queue->empty_read_count = - tx_queue->read_count | EFX_EMPTY_COUNT_VALID; - } - } -} - -int efx_probe_tx_queue(struct efx_tx_queue *tx_queue) -{ - struct efx_nic *efx = tx_queue->efx; - unsigned int entries; - int i, rc; - - /* Create the smallest power-of-two aligned ring */ - entries = max(roundup_pow_of_two(efx->txq_entries), EFX_MIN_DMAQ_SIZE); - EFX_BUG_ON_PARANOID(entries > EFX_MAX_DMAQ_SIZE); - tx_queue->ptr_mask = entries - 1; - - netif_dbg(efx, probe, efx->net_dev, - "creating TX queue %d size %#x mask %#x\n", - tx_queue->queue, efx->txq_entries, tx_queue->ptr_mask); - - /* Allocate software ring */ - tx_queue->buffer = kzalloc(entries * sizeof(*tx_queue->buffer), - GFP_KERNEL); - if (!tx_queue->buffer) - return -ENOMEM; - for (i = 0; i <= tx_queue->ptr_mask; ++i) - tx_queue->buffer[i].continuation = true; - - /* Allocate hardware ring */ - rc = efx_nic_probe_tx(tx_queue); - if (rc) - goto fail; - - return 0; - - fail: - kfree(tx_queue->buffer); - tx_queue->buffer = NULL; - return rc; -} - -void efx_init_tx_queue(struct efx_tx_queue *tx_queue) -{ - netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, - "initialising TX queue %d\n", tx_queue->queue); - - tx_queue->insert_count = 0; - tx_queue->write_count = 0; - tx_queue->old_write_count = 0; - tx_queue->read_count = 0; - tx_queue->old_read_count = 0; - tx_queue->empty_read_count = 0 | EFX_EMPTY_COUNT_VALID; - - /* Set up TX descriptor ring */ - efx_nic_init_tx(tx_queue); - - tx_queue->initialised = true; -} - -void efx_release_tx_buffers(struct efx_tx_queue *tx_queue) -{ - struct efx_tx_buffer *buffer; - - if (!tx_queue->buffer) - return; - - /* Free any buffers left in the ring */ - while (tx_queue->read_count != tx_queue->write_count) { - buffer = &tx_queue->buffer[tx_queue->read_count & tx_queue->ptr_mask]; - efx_dequeue_buffer(tx_queue, buffer); - buffer->continuation = true; - buffer->len = 0; - - ++tx_queue->read_count; - } -} - -void efx_fini_tx_queue(struct efx_tx_queue *tx_queue) -{ - if (!tx_queue->initialised) - return; - - netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, - "shutting down TX queue %d\n", tx_queue->queue); - - tx_queue->initialised = false; - - /* Flush TX queue, remove descriptor ring */ - efx_nic_fini_tx(tx_queue); - - efx_release_tx_buffers(tx_queue); - - /* Free up TSO header cache */ - efx_fini_tso(tx_queue); -} - -void efx_remove_tx_queue(struct efx_tx_queue *tx_queue) -{ - if (!tx_queue->buffer) - return; - - netif_dbg(tx_queue->efx, drv, tx_queue->efx->net_dev, - "destroying TX queue %d\n", tx_queue->queue); - efx_nic_remove_tx(tx_queue); - - kfree(tx_queue->buffer); - tx_queue->buffer = NULL; -} - - -/* Efx TCP segmentation acceleration. - * - * Why? Because by doing it here in the driver we can go significantly - * faster than the GSO. - * - * Requires TX checksum offload support. - */ - -/* Number of bytes inserted at the start of a TSO header buffer, - * similar to NET_IP_ALIGN. - */ -#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS -#define TSOH_OFFSET 0 -#else -#define TSOH_OFFSET NET_IP_ALIGN -#endif - -#define TSOH_BUFFER(tsoh) ((u8 *)(tsoh + 1) + TSOH_OFFSET) - -/* Total size of struct efx_tso_header, buffer and padding */ -#define TSOH_SIZE(hdr_len) \ - (sizeof(struct efx_tso_header) + TSOH_OFFSET + hdr_len) - -/* Size of blocks on free list. Larger blocks must be allocated from - * the heap. - */ -#define TSOH_STD_SIZE 128 - -#define PTR_DIFF(p1, p2) ((u8 *)(p1) - (u8 *)(p2)) -#define ETH_HDR_LEN(skb) (skb_network_header(skb) - (skb)->data) -#define SKB_TCP_OFF(skb) PTR_DIFF(tcp_hdr(skb), (skb)->data) -#define SKB_IPV4_OFF(skb) PTR_DIFF(ip_hdr(skb), (skb)->data) -#define SKB_IPV6_OFF(skb) PTR_DIFF(ipv6_hdr(skb), (skb)->data) - -/** - * struct tso_state - TSO state for an SKB - * @out_len: Remaining length in current segment - * @seqnum: Current sequence number - * @ipv4_id: Current IPv4 ID, host endian - * @packet_space: Remaining space in current packet - * @dma_addr: DMA address of current position - * @in_len: Remaining length in current SKB fragment - * @unmap_len: Length of SKB fragment - * @unmap_addr: DMA address of SKB fragment - * @unmap_single: DMA single vs page mapping flag - * @protocol: Network protocol (after any VLAN header) - * @header_len: Number of bytes of header - * @full_packet_size: Number of bytes to put in each outgoing segment - * - * The state used during segmentation. It is put into this data structure - * just to make it easy to pass into inline functions. - */ -struct tso_state { - /* Output position */ - unsigned out_len; - unsigned seqnum; - unsigned ipv4_id; - unsigned packet_space; - - /* Input position */ - dma_addr_t dma_addr; - unsigned in_len; - unsigned unmap_len; - dma_addr_t unmap_addr; - bool unmap_single; - - __be16 protocol; - unsigned header_len; - int full_packet_size; -}; - - -/* - * Verify that our various assumptions about sk_buffs and the conditions - * under which TSO will be attempted hold true. Return the protocol number. - */ -static __be16 efx_tso_check_protocol(struct sk_buff *skb) -{ - __be16 protocol = skb->protocol; - - EFX_BUG_ON_PARANOID(((struct ethhdr *)skb->data)->h_proto != - protocol); - if (protocol == htons(ETH_P_8021Q)) { - /* Find the encapsulated protocol; reset network header - * and transport header based on that. */ - struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; - protocol = veh->h_vlan_encapsulated_proto; - skb_set_network_header(skb, sizeof(*veh)); - if (protocol == htons(ETH_P_IP)) - skb_set_transport_header(skb, sizeof(*veh) + - 4 * ip_hdr(skb)->ihl); - else if (protocol == htons(ETH_P_IPV6)) - skb_set_transport_header(skb, sizeof(*veh) + - sizeof(struct ipv6hdr)); - } - - if (protocol == htons(ETH_P_IP)) { - EFX_BUG_ON_PARANOID(ip_hdr(skb)->protocol != IPPROTO_TCP); - } else { - EFX_BUG_ON_PARANOID(protocol != htons(ETH_P_IPV6)); - EFX_BUG_ON_PARANOID(ipv6_hdr(skb)->nexthdr != NEXTHDR_TCP); - } - EFX_BUG_ON_PARANOID((PTR_DIFF(tcp_hdr(skb), skb->data) - + (tcp_hdr(skb)->doff << 2u)) > - skb_headlen(skb)); - - return protocol; -} - - -/* - * Allocate a page worth of efx_tso_header structures, and string them - * into the tx_queue->tso_headers_free linked list. Return 0 or -ENOMEM. - */ -static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue) -{ - - struct pci_dev *pci_dev = tx_queue->efx->pci_dev; - struct efx_tso_header *tsoh; - dma_addr_t dma_addr; - u8 *base_kva, *kva; - - base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr); - if (base_kva == NULL) { - netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev, - "Unable to allocate page for TSO headers\n"); - return -ENOMEM; - } - - /* pci_alloc_consistent() allocates pages. */ - EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u)); - - for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) { - tsoh = (struct efx_tso_header *)kva; - tsoh->dma_addr = dma_addr + (TSOH_BUFFER(tsoh) - base_kva); - tsoh->next = tx_queue->tso_headers_free; - tx_queue->tso_headers_free = tsoh; - } - - return 0; -} - - -/* Free up a TSO header, and all others in the same page. */ -static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue, - struct efx_tso_header *tsoh, - struct pci_dev *pci_dev) -{ - struct efx_tso_header **p; - unsigned long base_kva; - dma_addr_t base_dma; - - base_kva = (unsigned long)tsoh & PAGE_MASK; - base_dma = tsoh->dma_addr & PAGE_MASK; - - p = &tx_queue->tso_headers_free; - while (*p != NULL) { - if (((unsigned long)*p & PAGE_MASK) == base_kva) - *p = (*p)->next; - else - p = &(*p)->next; - } - - pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma); -} - -static struct efx_tso_header * -efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len) -{ - struct efx_tso_header *tsoh; - - tsoh = kmalloc(TSOH_SIZE(header_len), GFP_ATOMIC | GFP_DMA); - if (unlikely(!tsoh)) - return NULL; - - tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev, - TSOH_BUFFER(tsoh), header_len, - PCI_DMA_TODEVICE); - if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev, - tsoh->dma_addr))) { - kfree(tsoh); - return NULL; - } - - tsoh->unmap_len = header_len; - return tsoh; -} - -static void -efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh) -{ - pci_unmap_single(tx_queue->efx->pci_dev, - tsoh->dma_addr, tsoh->unmap_len, - PCI_DMA_TODEVICE); - kfree(tsoh); -} - -/** - * efx_tx_queue_insert - push descriptors onto the TX queue - * @tx_queue: Efx TX queue - * @dma_addr: DMA address of fragment - * @len: Length of fragment - * @final_buffer: The final buffer inserted into the queue - * - * Push descriptors onto the TX queue. Return 0 on success or 1 if - * @tx_queue full. - */ -static int efx_tx_queue_insert(struct efx_tx_queue *tx_queue, - dma_addr_t dma_addr, unsigned len, - struct efx_tx_buffer **final_buffer) -{ - struct efx_tx_buffer *buffer; - struct efx_nic *efx = tx_queue->efx; - unsigned dma_len, fill_level, insert_ptr; - int q_space; - - EFX_BUG_ON_PARANOID(len <= 0); - - fill_level = tx_queue->insert_count - tx_queue->old_read_count; - /* -1 as there is no way to represent all descriptors used */ - q_space = efx->txq_entries - 1 - fill_level; - - while (1) { - if (unlikely(q_space-- <= 0)) { - /* It might be that completions have happened - * since the xmit path last checked. Update - * the xmit path's copy of read_count. - */ - netif_tx_stop_queue(tx_queue->core_txq); - /* This memory barrier protects the change of - * queue state from the access of read_count. */ - smp_mb(); - tx_queue->old_read_count = - ACCESS_ONCE(tx_queue->read_count); - fill_level = (tx_queue->insert_count - - tx_queue->old_read_count); - q_space = efx->txq_entries - 1 - fill_level; - if (unlikely(q_space-- <= 0)) { - *final_buffer = NULL; - return 1; - } - smp_mb(); - netif_tx_start_queue(tx_queue->core_txq); - } - - insert_ptr = tx_queue->insert_count & tx_queue->ptr_mask; - buffer = &tx_queue->buffer[insert_ptr]; - ++tx_queue->insert_count; - - EFX_BUG_ON_PARANOID(tx_queue->insert_count - - tx_queue->read_count >= - efx->txq_entries); - - efx_tsoh_free(tx_queue, buffer); - EFX_BUG_ON_PARANOID(buffer->len); - EFX_BUG_ON_PARANOID(buffer->unmap_len); - EFX_BUG_ON_PARANOID(buffer->skb); - EFX_BUG_ON_PARANOID(!buffer->continuation); - EFX_BUG_ON_PARANOID(buffer->tsoh); - - buffer->dma_addr = dma_addr; - - dma_len = efx_max_tx_len(efx, dma_addr); - - /* If there is enough space to send then do so */ - if (dma_len >= len) - break; - - buffer->len = dma_len; /* Don't set the other members */ - dma_addr += dma_len; - len -= dma_len; - } - - EFX_BUG_ON_PARANOID(!len); - buffer->len = len; - *final_buffer = buffer; - return 0; -} - - -/* - * Put a TSO header into the TX queue. - * - * This is special-cased because we know that it is small enough to fit in - * a single fragment, and we know it doesn't cross a page boundary. It - * also allows us to not worry about end-of-packet etc. - */ -static void efx_tso_put_header(struct efx_tx_queue *tx_queue, - struct efx_tso_header *tsoh, unsigned len) -{ - struct efx_tx_buffer *buffer; - - buffer = &tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask]; - efx_tsoh_free(tx_queue, buffer); - EFX_BUG_ON_PARANOID(buffer->len); - EFX_BUG_ON_PARANOID(buffer->unmap_len); - EFX_BUG_ON_PARANOID(buffer->skb); - EFX_BUG_ON_PARANOID(!buffer->continuation); - EFX_BUG_ON_PARANOID(buffer->tsoh); - buffer->len = len; - buffer->dma_addr = tsoh->dma_addr; - buffer->tsoh = tsoh; - - ++tx_queue->insert_count; -} - - -/* Remove descriptors put into a tx_queue. */ -static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue) -{ - struct efx_tx_buffer *buffer; - dma_addr_t unmap_addr; - - /* Work backwards until we hit the original insert pointer value */ - while (tx_queue->insert_count != tx_queue->write_count) { - --tx_queue->insert_count; - buffer = &tx_queue->buffer[tx_queue->insert_count & - tx_queue->ptr_mask]; - efx_tsoh_free(tx_queue, buffer); - EFX_BUG_ON_PARANOID(buffer->skb); - if (buffer->unmap_len) { - unmap_addr = (buffer->dma_addr + buffer->len - - buffer->unmap_len); - if (buffer->unmap_single) - pci_unmap_single(tx_queue->efx->pci_dev, - unmap_addr, buffer->unmap_len, - PCI_DMA_TODEVICE); - else - pci_unmap_page(tx_queue->efx->pci_dev, - unmap_addr, buffer->unmap_len, - PCI_DMA_TODEVICE); - buffer->unmap_len = 0; - } - buffer->len = 0; - buffer->continuation = true; - } -} - - -/* Parse the SKB header and initialise state. */ -static void tso_start(struct tso_state *st, const struct sk_buff *skb) -{ - /* All ethernet/IP/TCP headers combined size is TCP header size - * plus offset of TCP header relative to start of packet. - */ - st->header_len = ((tcp_hdr(skb)->doff << 2u) - + PTR_DIFF(tcp_hdr(skb), skb->data)); - st->full_packet_size = st->header_len + skb_shinfo(skb)->gso_size; - - if (st->protocol == htons(ETH_P_IP)) - st->ipv4_id = ntohs(ip_hdr(skb)->id); - else - st->ipv4_id = 0; - st->seqnum = ntohl(tcp_hdr(skb)->seq); - - EFX_BUG_ON_PARANOID(tcp_hdr(skb)->urg); - EFX_BUG_ON_PARANOID(tcp_hdr(skb)->syn); - EFX_BUG_ON_PARANOID(tcp_hdr(skb)->rst); - - st->packet_space = st->full_packet_size; - st->out_len = skb->len - st->header_len; - st->unmap_len = 0; - st->unmap_single = false; -} - -static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx, - skb_frag_t *frag) -{ - st->unmap_addr = pci_map_page(efx->pci_dev, frag->page, - frag->page_offset, frag->size, - PCI_DMA_TODEVICE); - if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { - st->unmap_single = false; - st->unmap_len = frag->size; - st->in_len = frag->size; - st->dma_addr = st->unmap_addr; - return 0; - } - return -ENOMEM; -} - -static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx, - const struct sk_buff *skb) -{ - int hl = st->header_len; - int len = skb_headlen(skb) - hl; - - st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl, - len, PCI_DMA_TODEVICE); - if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) { - st->unmap_single = true; - st->unmap_len = len; - st->in_len = len; - st->dma_addr = st->unmap_addr; - return 0; - } - return -ENOMEM; -} - - -/** - * tso_fill_packet_with_fragment - form descriptors for the current fragment - * @tx_queue: Efx TX queue - * @skb: Socket buffer - * @st: TSO state - * - * Form descriptors for the current fragment, until we reach the end - * of fragment or end-of-packet. Return 0 on success, 1 if not enough - * space in @tx_queue. - */ -static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue, - const struct sk_buff *skb, - struct tso_state *st) -{ - struct efx_tx_buffer *buffer; - int n, end_of_packet, rc; - - if (st->in_len == 0) - return 0; - if (st->packet_space == 0) - return 0; - - EFX_BUG_ON_PARANOID(st->in_len <= 0); - EFX_BUG_ON_PARANOID(st->packet_space <= 0); - - n = min(st->in_len, st->packet_space); - - st->packet_space -= n; - st->out_len -= n; - st->in_len -= n; - - rc = efx_tx_queue_insert(tx_queue, st->dma_addr, n, &buffer); - if (likely(rc == 0)) { - if (st->out_len == 0) - /* Transfer ownership of the skb */ - buffer->skb = skb; - - end_of_packet = st->out_len == 0 || st->packet_space == 0; - buffer->continuation = !end_of_packet; - - if (st->in_len == 0) { - /* Transfer ownership of the pci mapping */ - buffer->unmap_len = st->unmap_len; - buffer->unmap_single = st->unmap_single; - st->unmap_len = 0; - } - } - - st->dma_addr += n; - return rc; -} - - -/** - * tso_start_new_packet - generate a new header and prepare for the new packet - * @tx_queue: Efx TX queue - * @skb: Socket buffer - * @st: TSO state - * - * Generate a new header and prepare for the new packet. Return 0 on - * success, or -1 if failed to alloc header. - */ -static int tso_start_new_packet(struct efx_tx_queue *tx_queue, - const struct sk_buff *skb, - struct tso_state *st) -{ - struct efx_tso_header *tsoh; - struct tcphdr *tsoh_th; - unsigned ip_length; - u8 *header; - - /* Allocate a DMA-mapped header buffer. */ - if (likely(TSOH_SIZE(st->header_len) <= TSOH_STD_SIZE)) { - if (tx_queue->tso_headers_free == NULL) { - if (efx_tsoh_block_alloc(tx_queue)) - return -1; - } - EFX_BUG_ON_PARANOID(!tx_queue->tso_headers_free); - tsoh = tx_queue->tso_headers_free; - tx_queue->tso_headers_free = tsoh->next; - tsoh->unmap_len = 0; - } else { - tx_queue->tso_long_headers++; - tsoh = efx_tsoh_heap_alloc(tx_queue, st->header_len); - if (unlikely(!tsoh)) - return -1; - } - - header = TSOH_BUFFER(tsoh); - tsoh_th = (struct tcphdr *)(header + SKB_TCP_OFF(skb)); - - /* Copy and update the headers. */ - memcpy(header, skb->data, st->header_len); - - tsoh_th->seq = htonl(st->seqnum); - st->seqnum += skb_shinfo(skb)->gso_size; - if (st->out_len > skb_shinfo(skb)->gso_size) { - /* This packet will not finish the TSO burst. */ - ip_length = st->full_packet_size - ETH_HDR_LEN(skb); - tsoh_th->fin = 0; - tsoh_th->psh = 0; - } else { - /* This packet will be the last in the TSO burst. */ - ip_length = st->header_len - ETH_HDR_LEN(skb) + st->out_len; - tsoh_th->fin = tcp_hdr(skb)->fin; - tsoh_th->psh = tcp_hdr(skb)->psh; - } - - if (st->protocol == htons(ETH_P_IP)) { - struct iphdr *tsoh_iph = - (struct iphdr *)(header + SKB_IPV4_OFF(skb)); - - tsoh_iph->tot_len = htons(ip_length); - - /* Linux leaves suitable gaps in the IP ID space for us to fill. */ - tsoh_iph->id = htons(st->ipv4_id); - st->ipv4_id++; - } else { - struct ipv6hdr *tsoh_iph = - (struct ipv6hdr *)(header + SKB_IPV6_OFF(skb)); - - tsoh_iph->payload_len = htons(ip_length - sizeof(*tsoh_iph)); - } - - st->packet_space = skb_shinfo(skb)->gso_size; - ++tx_queue->tso_packets; - - /* Form a descriptor for this header. */ - efx_tso_put_header(tx_queue, tsoh, st->header_len); - - return 0; -} - - -/** - * efx_enqueue_skb_tso - segment and transmit a TSO socket buffer - * @tx_queue: Efx TX queue - * @skb: Socket buffer - * - * Context: You must hold netif_tx_lock() to call this function. - * - * Add socket buffer @skb to @tx_queue, doing TSO or return != 0 if - * @skb was not enqueued. In all cases @skb is consumed. Return - * %NETDEV_TX_OK or %NETDEV_TX_BUSY. - */ -static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, - struct sk_buff *skb) -{ - struct efx_nic *efx = tx_queue->efx; - int frag_i, rc, rc2 = NETDEV_TX_OK; - struct tso_state state; - - /* Find the packet protocol and sanity-check it */ - state.protocol = efx_tso_check_protocol(skb); - - EFX_BUG_ON_PARANOID(tx_queue->write_count != tx_queue->insert_count); - - tso_start(&state, skb); - - /* Assume that skb header area contains exactly the headers, and - * all payload is in the frag list. - */ - if (skb_headlen(skb) == state.header_len) { - /* Grab the first payload fragment. */ - EFX_BUG_ON_PARANOID(skb_shinfo(skb)->nr_frags < 1); - frag_i = 0; - rc = tso_get_fragment(&state, efx, - skb_shinfo(skb)->frags + frag_i); - if (rc) - goto mem_err; - } else { - rc = tso_get_head_fragment(&state, efx, skb); - if (rc) - goto mem_err; - frag_i = -1; - } - - if (tso_start_new_packet(tx_queue, skb, &state) < 0) - goto mem_err; - - while (1) { - rc = tso_fill_packet_with_fragment(tx_queue, skb, &state); - if (unlikely(rc)) { - rc2 = NETDEV_TX_BUSY; - goto unwind; - } - - /* Move onto the next fragment? */ - if (state.in_len == 0) { - if (++frag_i >= skb_shinfo(skb)->nr_frags) - /* End of payload reached. */ - break; - rc = tso_get_fragment(&state, efx, - skb_shinfo(skb)->frags + frag_i); - if (rc) - goto mem_err; - } - - /* Start at new packet? */ - if (state.packet_space == 0 && - tso_start_new_packet(tx_queue, skb, &state) < 0) - goto mem_err; - } - - /* Pass off to hardware */ - efx_nic_push_buffers(tx_queue); - - tx_queue->tso_bursts++; - return NETDEV_TX_OK; - - mem_err: - netif_err(efx, tx_err, efx->net_dev, - "Out of memory for TSO headers, or PCI mapping error\n"); - dev_kfree_skb_any(skb); - - unwind: - /* Free the DMA mapping we were in the process of writing out */ - if (state.unmap_len) { - if (state.unmap_single) - pci_unmap_single(efx->pci_dev, state.unmap_addr, - state.unmap_len, PCI_DMA_TODEVICE); - else - pci_unmap_page(efx->pci_dev, state.unmap_addr, - state.unmap_len, PCI_DMA_TODEVICE); - } - - efx_enqueue_unwind(tx_queue); - return rc2; -} - - -/* - * Free up all TSO datastructures associated with tx_queue. This - * routine should be called only once the tx_queue is both empty and - * will no longer be used. - */ -static void efx_fini_tso(struct efx_tx_queue *tx_queue) -{ - unsigned i; - - if (tx_queue->buffer) { - for (i = 0; i <= tx_queue->ptr_mask; ++i) - efx_tsoh_free(tx_queue, &tx_queue->buffer[i]); - } - - while (tx_queue->tso_headers_free != NULL) - efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free, - tx_queue->efx->pci_dev); -} diff --git a/drivers/net/sfc/txc43128_phy.c b/drivers/net/sfc/txc43128_phy.c deleted file mode 100644 index 7c21b33..0000000 --- a/drivers/net/sfc/txc43128_phy.c +++ /dev/null @@ -1,560 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2006-2011 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -/* - * Driver for Transwitch/Mysticom CX4 retimer - * see www.transwitch.com, part is TXC-43128 - */ - -#include <linux/delay.h> -#include <linux/slab.h> -#include "efx.h" -#include "mdio_10g.h" -#include "phy.h" -#include "nic.h" - -/* We expect these MMDs to be in the package */ -#define TXC_REQUIRED_DEVS (MDIO_DEVS_PCS | \ - MDIO_DEVS_PMAPMD | \ - MDIO_DEVS_PHYXS) - -#define TXC_LOOPBACKS ((1 << LOOPBACK_PCS) | \ - (1 << LOOPBACK_PMAPMD) | \ - (1 << LOOPBACK_PHYXS_WS)) - -/************************************************************************** - * - * Compile-time config - * - ************************************************************************** - */ -#define TXCNAME "TXC43128" -/* Total length of time we'll wait for the PHY to come out of reset (ms) */ -#define TXC_MAX_RESET_TIME 500 -/* Interval between checks (ms) */ -#define TXC_RESET_WAIT 10 -/* How long to run BIST (us) */ -#define TXC_BIST_DURATION 50 - -/************************************************************************** - * - * Register definitions - * - ************************************************************************** - */ - -/* Command register */ -#define TXC_GLRGS_GLCMD 0xc004 -/* Useful bits in command register */ -/* Lane power-down */ -#define TXC_GLCMD_L01PD_LBN 5 -#define TXC_GLCMD_L23PD_LBN 6 -/* Limited SW reset: preserves configuration but - * initiates a logic reset. Self-clearing */ -#define TXC_GLCMD_LMTSWRST_LBN 14 - -/* Signal Quality Control */ -#define TXC_GLRGS_GSGQLCTL 0xc01a -/* Enable bit */ -#define TXC_GSGQLCT_SGQLEN_LBN 15 -/* Lane selection */ -#define TXC_GSGQLCT_LNSL_LBN 13 -#define TXC_GSGQLCT_LNSL_WIDTH 2 - -/* Analog TX control */ -#define TXC_ALRGS_ATXCTL 0xc040 -/* Lane power-down */ -#define TXC_ATXCTL_TXPD3_LBN 15 -#define TXC_ATXCTL_TXPD2_LBN 14 -#define TXC_ATXCTL_TXPD1_LBN 13 -#define TXC_ATXCTL_TXPD0_LBN 12 - -/* Amplitude on lanes 0, 1 */ -#define TXC_ALRGS_ATXAMP0 0xc041 -/* Amplitude on lanes 2, 3 */ -#define TXC_ALRGS_ATXAMP1 0xc042 -/* Bit position of value for lane 0 (or 2) */ -#define TXC_ATXAMP_LANE02_LBN 3 -/* Bit position of value for lane 1 (or 3) */ -#define TXC_ATXAMP_LANE13_LBN 11 - -#define TXC_ATXAMP_1280_mV 0 -#define TXC_ATXAMP_1200_mV 8 -#define TXC_ATXAMP_1120_mV 12 -#define TXC_ATXAMP_1060_mV 14 -#define TXC_ATXAMP_0820_mV 25 -#define TXC_ATXAMP_0720_mV 26 -#define TXC_ATXAMP_0580_mV 27 -#define TXC_ATXAMP_0440_mV 28 - -#define TXC_ATXAMP_0820_BOTH \ - ((TXC_ATXAMP_0820_mV << TXC_ATXAMP_LANE02_LBN) \ - | (TXC_ATXAMP_0820_mV << TXC_ATXAMP_LANE13_LBN)) - -#define TXC_ATXAMP_DEFAULT 0x6060 /* From databook */ - -/* Preemphasis on lanes 0, 1 */ -#define TXC_ALRGS_ATXPRE0 0xc043 -/* Preemphasis on lanes 2, 3 */ -#define TXC_ALRGS_ATXPRE1 0xc044 - -#define TXC_ATXPRE_NONE 0 -#define TXC_ATXPRE_DEFAULT 0x1010 /* From databook */ - -#define TXC_ALRGS_ARXCTL 0xc045 -/* Lane power-down */ -#define TXC_ARXCTL_RXPD3_LBN 15 -#define TXC_ARXCTL_RXPD2_LBN 14 -#define TXC_ARXCTL_RXPD1_LBN 13 -#define TXC_ARXCTL_RXPD0_LBN 12 - -/* Main control */ -#define TXC_MRGS_CTL 0xc340 -/* Bits in main control */ -#define TXC_MCTL_RESET_LBN 15 /* Self clear */ -#define TXC_MCTL_TXLED_LBN 14 /* 1 to show align status */ -#define TXC_MCTL_RXLED_LBN 13 /* 1 to show align status */ - -/* GPIO output */ -#define TXC_GPIO_OUTPUT 0xc346 -#define TXC_GPIO_DIR 0xc348 - -/* Vendor-specific BIST registers */ -#define TXC_BIST_CTL 0xc280 -#define TXC_BIST_TXFRMCNT 0xc281 -#define TXC_BIST_RX0FRMCNT 0xc282 -#define TXC_BIST_RX1FRMCNT 0xc283 -#define TXC_BIST_RX2FRMCNT 0xc284 -#define TXC_BIST_RX3FRMCNT 0xc285 -#define TXC_BIST_RX0ERRCNT 0xc286 -#define TXC_BIST_RX1ERRCNT 0xc287 -#define TXC_BIST_RX2ERRCNT 0xc288 -#define TXC_BIST_RX3ERRCNT 0xc289 - -/* BIST type (controls bit patter in test) */ -#define TXC_BIST_CTRL_TYPE_LBN 10 -#define TXC_BIST_CTRL_TYPE_TSD 0 /* TranSwitch Deterministic */ -#define TXC_BIST_CTRL_TYPE_CRP 1 /* CRPAT standard */ -#define TXC_BIST_CTRL_TYPE_CJP 2 /* CJPAT standard */ -#define TXC_BIST_CTRL_TYPE_TSR 3 /* TranSwitch pseudo-random */ -/* Set this to 1 for 10 bit and 0 for 8 bit */ -#define TXC_BIST_CTRL_B10EN_LBN 12 -/* Enable BIST (write 0 to disable) */ -#define TXC_BIST_CTRL_ENAB_LBN 13 -/* Stop BIST (self-clears when stop complete) */ -#define TXC_BIST_CTRL_STOP_LBN 14 -/* Start BIST (cleared by writing 1 to STOP) */ -#define TXC_BIST_CTRL_STRT_LBN 15 - -/* Mt. Diablo test configuration */ -#define TXC_MTDIABLO_CTRL 0xc34f -#define TXC_MTDIABLO_CTRL_PMA_LOOP_LBN 10 - -struct txc43128_data { - unsigned long bug10934_timer; - enum efx_phy_mode phy_mode; - enum efx_loopback_mode loopback_mode; -}; - -/* The PHY sometimes needs a reset to bring the link back up. So long as - * it reports link down, we reset it every 5 seconds. - */ -#define BUG10934_RESET_INTERVAL (5 * HZ) - -/* Perform a reset that doesn't clear configuration changes */ -static void txc_reset_logic(struct efx_nic *efx); - -/* Set the output value of a gpio */ -void falcon_txc_set_gpio_val(struct efx_nic *efx, int pin, int on) -{ - efx_mdio_set_flag(efx, MDIO_MMD_PHYXS, TXC_GPIO_OUTPUT, 1 << pin, on); -} - -/* Set up the GPIO direction register */ -void falcon_txc_set_gpio_dir(struct efx_nic *efx, int pin, int dir) -{ - efx_mdio_set_flag(efx, MDIO_MMD_PHYXS, TXC_GPIO_DIR, 1 << pin, dir); -} - -/* Reset the PMA/PMD MMD. The documentation is explicit that this does a - * global reset (it's less clear what reset of other MMDs does).*/ -static int txc_reset_phy(struct efx_nic *efx) -{ - int rc = efx_mdio_reset_mmd(efx, MDIO_MMD_PMAPMD, - TXC_MAX_RESET_TIME / TXC_RESET_WAIT, - TXC_RESET_WAIT); - if (rc < 0) - goto fail; - - /* Check that all the MMDs we expect are present and responding. */ - rc = efx_mdio_check_mmds(efx, TXC_REQUIRED_DEVS); - if (rc < 0) - goto fail; - - return 0; - -fail: - netif_err(efx, hw, efx->net_dev, TXCNAME ": reset timed out!\n"); - return rc; -} - -/* Run a single BIST on one MMD */ -static int txc_bist_one(struct efx_nic *efx, int mmd, int test) -{ - int ctrl, bctl; - int lane; - int rc = 0; - - /* Set PMA to test into loopback using Mt Diablo reg as per app note */ - ctrl = efx_mdio_read(efx, MDIO_MMD_PCS, TXC_MTDIABLO_CTRL); - ctrl |= (1 << TXC_MTDIABLO_CTRL_PMA_LOOP_LBN); - efx_mdio_write(efx, MDIO_MMD_PCS, TXC_MTDIABLO_CTRL, ctrl); - - /* The BIST app. note lists these as 3 distinct steps. */ - /* Set the BIST type */ - bctl = (test << TXC_BIST_CTRL_TYPE_LBN); - efx_mdio_write(efx, mmd, TXC_BIST_CTL, bctl); - - /* Set the BSTEN bit in the BIST Control register to enable */ - bctl |= (1 << TXC_BIST_CTRL_ENAB_LBN); - efx_mdio_write(efx, mmd, TXC_BIST_CTL, bctl); - - /* Set the BSTRT bit in the BIST Control register */ - efx_mdio_write(efx, mmd, TXC_BIST_CTL, - bctl | (1 << TXC_BIST_CTRL_STRT_LBN)); - - /* Wait. */ - udelay(TXC_BIST_DURATION); - - /* Set the BSTOP bit in the BIST Control register */ - bctl |= (1 << TXC_BIST_CTRL_STOP_LBN); - efx_mdio_write(efx, mmd, TXC_BIST_CTL, bctl); - - /* The STOP bit should go off when things have stopped */ - while (bctl & (1 << TXC_BIST_CTRL_STOP_LBN)) - bctl = efx_mdio_read(efx, mmd, TXC_BIST_CTL); - - /* Check all the error counts are 0 and all the frame counts are - non-zero */ - for (lane = 0; lane < 4; lane++) { - int count = efx_mdio_read(efx, mmd, TXC_BIST_RX0ERRCNT + lane); - if (count != 0) { - netif_err(efx, hw, efx->net_dev, TXCNAME": BIST error. " - "Lane %d had %d errs\n", lane, count); - rc = -EIO; - } - count = efx_mdio_read(efx, mmd, TXC_BIST_RX0FRMCNT + lane); - if (count == 0) { - netif_err(efx, hw, efx->net_dev, TXCNAME": BIST error. " - "Lane %d got 0 frames\n", lane); - rc = -EIO; - } - } - - if (rc == 0) - netif_info(efx, hw, efx->net_dev, TXCNAME": BIST pass\n"); - - /* Disable BIST */ - efx_mdio_write(efx, mmd, TXC_BIST_CTL, 0); - - /* Turn off loopback */ - ctrl &= ~(1 << TXC_MTDIABLO_CTRL_PMA_LOOP_LBN); - efx_mdio_write(efx, MDIO_MMD_PCS, TXC_MTDIABLO_CTRL, ctrl); - - return rc; -} - -static int txc_bist(struct efx_nic *efx) -{ - return txc_bist_one(efx, MDIO_MMD_PCS, TXC_BIST_CTRL_TYPE_TSD); -} - -/* Push the non-configurable defaults into the PHY. This must be - * done after every full reset */ -static void txc_apply_defaults(struct efx_nic *efx) -{ - int mctrl; - - /* Turn amplitude down and preemphasis off on the host side - * (PHY<->MAC) as this is believed less likely to upset Falcon - * and no adverse effects have been noted. It probably also - * saves a picowatt or two */ - - /* Turn off preemphasis */ - efx_mdio_write(efx, MDIO_MMD_PHYXS, TXC_ALRGS_ATXPRE0, TXC_ATXPRE_NONE); - efx_mdio_write(efx, MDIO_MMD_PHYXS, TXC_ALRGS_ATXPRE1, TXC_ATXPRE_NONE); - - /* Turn down the amplitude */ - efx_mdio_write(efx, MDIO_MMD_PHYXS, - TXC_ALRGS_ATXAMP0, TXC_ATXAMP_0820_BOTH); - efx_mdio_write(efx, MDIO_MMD_PHYXS, - TXC_ALRGS_ATXAMP1, TXC_ATXAMP_0820_BOTH); - - /* Set the line side amplitude and preemphasis to the databook - * defaults as an erratum causes them to be 0 on at least some - * PHY rev.s */ - efx_mdio_write(efx, MDIO_MMD_PMAPMD, - TXC_ALRGS_ATXPRE0, TXC_ATXPRE_DEFAULT); - efx_mdio_write(efx, MDIO_MMD_PMAPMD, - TXC_ALRGS_ATXPRE1, TXC_ATXPRE_DEFAULT); - efx_mdio_write(efx, MDIO_MMD_PMAPMD, - TXC_ALRGS_ATXAMP0, TXC_ATXAMP_DEFAULT); - efx_mdio_write(efx, MDIO_MMD_PMAPMD, - TXC_ALRGS_ATXAMP1, TXC_ATXAMP_DEFAULT); - - /* Set up the LEDs */ - mctrl = efx_mdio_read(efx, MDIO_MMD_PHYXS, TXC_MRGS_CTL); - - /* Set the Green and Red LEDs to their default modes */ - mctrl &= ~((1 << TXC_MCTL_TXLED_LBN) | (1 << TXC_MCTL_RXLED_LBN)); - efx_mdio_write(efx, MDIO_MMD_PHYXS, TXC_MRGS_CTL, mctrl); - - /* Databook recommends doing this after configuration changes */ - txc_reset_logic(efx); - - falcon_board(efx)->type->init_phy(efx); -} - -static int txc43128_phy_probe(struct efx_nic *efx) -{ - struct txc43128_data *phy_data; - - /* Allocate phy private storage */ - phy_data = kzalloc(sizeof(*phy_data), GFP_KERNEL); - if (!phy_data) - return -ENOMEM; - efx->phy_data = phy_data; - phy_data->phy_mode = efx->phy_mode; - - efx->mdio.mmds = TXC_REQUIRED_DEVS; - efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22; - - efx->loopback_modes = TXC_LOOPBACKS | FALCON_XMAC_LOOPBACKS; - - return 0; -} - -/* Initialisation entry point for this PHY driver */ -static int txc43128_phy_init(struct efx_nic *efx) -{ - int rc; - - rc = txc_reset_phy(efx); - if (rc < 0) - return rc; - - rc = txc_bist(efx); - if (rc < 0) - return rc; - - txc_apply_defaults(efx); - - return 0; -} - -/* Set the lane power down state in the global registers */ -static void txc_glrgs_lane_power(struct efx_nic *efx, int mmd) -{ - int pd = (1 << TXC_GLCMD_L01PD_LBN) | (1 << TXC_GLCMD_L23PD_LBN); - int ctl = efx_mdio_read(efx, mmd, TXC_GLRGS_GLCMD); - - if (!(efx->phy_mode & PHY_MODE_LOW_POWER)) - ctl &= ~pd; - else - ctl |= pd; - - efx_mdio_write(efx, mmd, TXC_GLRGS_GLCMD, ctl); -} - -/* Set the lane power down state in the analog control registers */ -static void txc_analog_lane_power(struct efx_nic *efx, int mmd) -{ - int txpd = (1 << TXC_ATXCTL_TXPD3_LBN) | (1 << TXC_ATXCTL_TXPD2_LBN) - | (1 << TXC_ATXCTL_TXPD1_LBN) | (1 << TXC_ATXCTL_TXPD0_LBN); - int rxpd = (1 << TXC_ARXCTL_RXPD3_LBN) | (1 << TXC_ARXCTL_RXPD2_LBN) - | (1 << TXC_ARXCTL_RXPD1_LBN) | (1 << TXC_ARXCTL_RXPD0_LBN); - int txctl = efx_mdio_read(efx, mmd, TXC_ALRGS_ATXCTL); - int rxctl = efx_mdio_read(efx, mmd, TXC_ALRGS_ARXCTL); - - if (!(efx->phy_mode & PHY_MODE_LOW_POWER)) { - txctl &= ~txpd; - rxctl &= ~rxpd; - } else { - txctl |= txpd; - rxctl |= rxpd; - } - - efx_mdio_write(efx, mmd, TXC_ALRGS_ATXCTL, txctl); - efx_mdio_write(efx, mmd, TXC_ALRGS_ARXCTL, rxctl); -} - -static void txc_set_power(struct efx_nic *efx) -{ - /* According to the data book, all the MMDs can do low power */ - efx_mdio_set_mmds_lpower(efx, - !!(efx->phy_mode & PHY_MODE_LOW_POWER), - TXC_REQUIRED_DEVS); - - /* Global register bank is in PCS, PHY XS. These control the host - * side and line side settings respectively. */ - txc_glrgs_lane_power(efx, MDIO_MMD_PCS); - txc_glrgs_lane_power(efx, MDIO_MMD_PHYXS); - - /* Analog register bank in PMA/PMD, PHY XS */ - txc_analog_lane_power(efx, MDIO_MMD_PMAPMD); - txc_analog_lane_power(efx, MDIO_MMD_PHYXS); -} - -static void txc_reset_logic_mmd(struct efx_nic *efx, int mmd) -{ - int val = efx_mdio_read(efx, mmd, TXC_GLRGS_GLCMD); - int tries = 50; - - val |= (1 << TXC_GLCMD_LMTSWRST_LBN); - efx_mdio_write(efx, mmd, TXC_GLRGS_GLCMD, val); - while (tries--) { - val = efx_mdio_read(efx, mmd, TXC_GLRGS_GLCMD); - if (!(val & (1 << TXC_GLCMD_LMTSWRST_LBN))) - break; - udelay(1); - } - if (!tries) - netif_info(efx, hw, efx->net_dev, - TXCNAME " Logic reset timed out!\n"); -} - -/* Perform a logic reset. This preserves the configuration registers - * and is needed for some configuration changes to take effect */ -static void txc_reset_logic(struct efx_nic *efx) -{ - /* The data sheet claims we can do the logic reset on either the - * PCS or the PHYXS and the result is a reset of both host- and - * line-side logic. */ - txc_reset_logic_mmd(efx, MDIO_MMD_PCS); -} - -static bool txc43128_phy_read_link(struct efx_nic *efx) -{ - return efx_mdio_links_ok(efx, TXC_REQUIRED_DEVS); -} - -static int txc43128_phy_reconfigure(struct efx_nic *efx) -{ - struct txc43128_data *phy_data = efx->phy_data; - enum efx_phy_mode mode_change = efx->phy_mode ^ phy_data->phy_mode; - bool loop_change = LOOPBACK_CHANGED(phy_data, efx, TXC_LOOPBACKS); - - if (efx->phy_mode & mode_change & PHY_MODE_TX_DISABLED) { - txc_reset_phy(efx); - txc_apply_defaults(efx); - falcon_reset_xaui(efx); - mode_change &= ~PHY_MODE_TX_DISABLED; - } - - efx_mdio_transmit_disable(efx); - efx_mdio_phy_reconfigure(efx); - if (mode_change & PHY_MODE_LOW_POWER) - txc_set_power(efx); - - /* The data sheet claims this is required after every reconfiguration - * (note at end of 7.1), but we mustn't do it when nothing changes as - * it glitches the link, and reconfigure gets called on link change, - * so we get an IRQ storm on link up. */ - if (loop_change || mode_change) - txc_reset_logic(efx); - - phy_data->phy_mode = efx->phy_mode; - phy_data->loopback_mode = efx->loopback_mode; - - return 0; -} - -static void txc43128_phy_fini(struct efx_nic *efx) -{ - /* Disable link events */ - efx_mdio_write(efx, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, 0); -} - -static void txc43128_phy_remove(struct efx_nic *efx) -{ - kfree(efx->phy_data); - efx->phy_data = NULL; -} - -/* Periodic callback: this exists mainly to poll link status as we - * don't use LASI interrupts */ -static bool txc43128_phy_poll(struct efx_nic *efx) -{ - struct txc43128_data *data = efx->phy_data; - bool was_up = efx->link_state.up; - - efx->link_state.up = txc43128_phy_read_link(efx); - efx->link_state.speed = 10000; - efx->link_state.fd = true; - efx->link_state.fc = efx->wanted_fc; - - if (efx->link_state.up || (efx->loopback_mode != LOOPBACK_NONE)) { - data->bug10934_timer = jiffies; - } else { - if (time_after_eq(jiffies, (data->bug10934_timer + - BUG10934_RESET_INTERVAL))) { - data->bug10934_timer = jiffies; - txc_reset_logic(efx); - } - } - - return efx->link_state.up != was_up; -} - -static const char *txc43128_test_names[] = { - "bist" -}; - -static const char *txc43128_test_name(struct efx_nic *efx, unsigned int index) -{ - if (index < ARRAY_SIZE(txc43128_test_names)) - return txc43128_test_names[index]; - return NULL; -} - -static int txc43128_run_tests(struct efx_nic *efx, int *results, unsigned flags) -{ - int rc; - - if (!(flags & ETH_TEST_FL_OFFLINE)) - return 0; - - rc = txc_reset_phy(efx); - if (rc < 0) - return rc; - - rc = txc_bist(efx); - txc_apply_defaults(efx); - results[0] = rc ? -1 : 1; - return rc; -} - -static void txc43128_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd) -{ - mdio45_ethtool_gset(&efx->mdio, ecmd); -} - -const struct efx_phy_operations falcon_txc_phy_ops = { - .probe = txc43128_phy_probe, - .init = txc43128_phy_init, - .reconfigure = txc43128_phy_reconfigure, - .poll = txc43128_phy_poll, - .fini = txc43128_phy_fini, - .remove = txc43128_phy_remove, - .get_settings = txc43128_get_settings, - .set_settings = efx_mdio_set_settings, - .test_alive = efx_mdio_test_alive, - .run_tests = txc43128_run_tests, - .test_name = txc43128_test_name, -}; diff --git a/drivers/net/sfc/workarounds.h b/drivers/net/sfc/workarounds.h deleted file mode 100644 index 99ff114..0000000 --- a/drivers/net/sfc/workarounds.h +++ /dev/null @@ -1,61 +0,0 @@ -/**************************************************************************** - * Driver for Solarflare Solarstorm network controllers and boards - * Copyright 2006-2010 Solarflare Communications Inc. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation, incorporated herein by reference. - */ - -#ifndef EFX_WORKAROUNDS_H -#define EFX_WORKAROUNDS_H - -/* - * Hardware workarounds. - * Bug numbers are from Solarflare's Bugzilla. - */ - -#define EFX_WORKAROUND_ALWAYS(efx) 1 -#define EFX_WORKAROUND_FALCON_A(efx) (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) -#define EFX_WORKAROUND_FALCON_AB(efx) (efx_nic_rev(efx) <= EFX_REV_FALCON_B0) -#define EFX_WORKAROUND_SIENA(efx) (efx_nic_rev(efx) == EFX_REV_SIENA_A0) -#define EFX_WORKAROUND_10G(efx) 1 - -/* XAUI resets if link not detected */ -#define EFX_WORKAROUND_5147 EFX_WORKAROUND_ALWAYS -/* RX PCIe double split performance issue */ -#define EFX_WORKAROUND_7575 EFX_WORKAROUND_ALWAYS -/* Bit-bashed I2C reads cause performance drop */ -#define EFX_WORKAROUND_7884 EFX_WORKAROUND_10G -/* TX_EV_PKT_ERR can be caused by a dangling TX descriptor - * or a PCIe error (bug 11028) */ -#define EFX_WORKAROUND_10727 EFX_WORKAROUND_ALWAYS -/* Transmit flow control may get disabled */ -#define EFX_WORKAROUND_11482 EFX_WORKAROUND_FALCON_AB -/* Truncated IPv4 packets can confuse the TX packet parser */ -#define EFX_WORKAROUND_15592 EFX_WORKAROUND_FALCON_AB -/* Legacy ISR read can return zero once */ -#define EFX_WORKAROUND_15783 EFX_WORKAROUND_ALWAYS -/* Legacy interrupt storm when interrupt fifo fills */ -#define EFX_WORKAROUND_17213 EFX_WORKAROUND_SIENA -/* Write combining and sriov=enabled are incompatible */ -#define EFX_WORKAROUND_22643 EFX_WORKAROUND_SIENA - -/* Spurious parity errors in TSORT buffers */ -#define EFX_WORKAROUND_5129 EFX_WORKAROUND_FALCON_A -/* Unaligned read request >512 bytes after aligning may break TSORT */ -#define EFX_WORKAROUND_5391 EFX_WORKAROUND_FALCON_A -/* iSCSI parsing errors */ -#define EFX_WORKAROUND_5583 EFX_WORKAROUND_FALCON_A -/* RX events go missing */ -#define EFX_WORKAROUND_5676 EFX_WORKAROUND_FALCON_A -/* RX_RESET on A1 */ -#define EFX_WORKAROUND_6555 EFX_WORKAROUND_FALCON_A -/* Increase filter depth to avoid RX_RESET */ -#define EFX_WORKAROUND_7244 EFX_WORKAROUND_FALCON_A -/* Flushes may never complete */ -#define EFX_WORKAROUND_7803 EFX_WORKAROUND_FALCON_AB -/* Leak overlength packets rather than free */ -#define EFX_WORKAROUND_8071 EFX_WORKAROUND_FALCON_A - -#endif /* EFX_WORKAROUNDS_H */ |