diff options
Diffstat (limited to 'drivers/net/e1000e/lib.c')
-rw-r--r-- | drivers/net/e1000e/lib.c | 2493 |
1 files changed, 2493 insertions, 0 deletions
diff --git a/drivers/net/e1000e/lib.c b/drivers/net/e1000e/lib.c new file mode 100644 index 0000000..0bdeca3 --- /dev/null +++ b/drivers/net/e1000e/lib.c @@ -0,0 +1,2493 @@ +/******************************************************************************* + + Intel PRO/1000 Linux driver + Copyright(c) 1999 - 2007 Intel Corporation. + + This program is free software; you can redistribute it and/or modify it + under the terms and conditions of the GNU General Public License, + version 2, as published by the Free Software Foundation. + + This program is distributed in the hope it will be useful, but WITHOUT + ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + more details. + + You should have received a copy of the GNU General Public License along with + this program; if not, write to the Free Software Foundation, Inc., + 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + + The full GNU General Public License is included in this distribution in + the file called "COPYING". + + Contact Information: + Linux NICS <linux.nics@intel.com> + e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> + Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include <linux/netdevice.h> +#include <linux/ethtool.h> +#include <linux/delay.h> +#include <linux/pci.h> + +#include "e1000.h" + +enum e1000_mng_mode { + e1000_mng_mode_none = 0, + e1000_mng_mode_asf, + e1000_mng_mode_pt, + e1000_mng_mode_ipmi, + e1000_mng_mode_host_if_only +}; + +#define E1000_FACTPS_MNGCG 0x20000000 + +#define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management + * Technology signature */ + +/** + * e1000e_get_bus_info_pcie - Get PCIe bus information + * @hw: pointer to the HW structure + * + * Determines and stores the system bus information for a particular + * network interface. The following bus information is determined and stored: + * bus speed, bus width, type (PCIe), and PCIe function. + **/ +s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) +{ + struct e1000_bus_info *bus = &hw->bus; + struct e1000_adapter *adapter = hw->adapter; + u32 status; + u16 pcie_link_status, pci_header_type, cap_offset; + + cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP); + if (!cap_offset) { + bus->width = e1000_bus_width_unknown; + } else { + pci_read_config_word(adapter->pdev, + cap_offset + PCIE_LINK_STATUS, + &pcie_link_status); + bus->width = (enum e1000_bus_width)((pcie_link_status & + PCIE_LINK_WIDTH_MASK) >> + PCIE_LINK_WIDTH_SHIFT); + } + + pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER, + &pci_header_type); + if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) { + status = er32(STATUS); + bus->func = (status & E1000_STATUS_FUNC_MASK) + >> E1000_STATUS_FUNC_SHIFT; + } else { + bus->func = 0; + } + + return 0; +} + +/** + * e1000e_write_vfta - Write value to VLAN filter table + * @hw: pointer to the HW structure + * @offset: register offset in VLAN filter table + * @value: register value written to VLAN filter table + * + * Writes value at the given offset in the register array which stores + * the VLAN filter table. + **/ +void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) +{ + E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); + e1e_flush(); +} + +/** + * e1000e_init_rx_addrs - Initialize receive address's + * @hw: pointer to the HW structure + * @rar_count: receive address registers + * + * Setups the receive address registers by setting the base receive address + * register to the devices MAC address and clearing all the other receive + * address registers to 0. + **/ +void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) +{ + u32 i; + + /* Setup the receive address */ + hw_dbg(hw, "Programming MAC Address into RAR[0]\n"); + + e1000e_rar_set(hw, hw->mac.addr, 0); + + /* Zero out the other (rar_entry_count - 1) receive addresses */ + hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1); + for (i = 1; i < rar_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0); + e1e_flush(); + E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0); + e1e_flush(); + } +} + +/** + * e1000e_rar_set - Set receive address register + * @hw: pointer to the HW structure + * @addr: pointer to the receive address + * @index: receive address array register + * + * Sets the receive address array register at index to the address passed + * in by addr. + **/ +void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) +{ + u32 rar_low, rar_high; + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | + ((u32) addr[1] << 8) | + ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); + + rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); + + rar_high |= E1000_RAH_AV; + + E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low); + E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high); +} + +/** + * e1000_mta_set - Set multicast filter table address + * @hw: pointer to the HW structure + * @hash_value: determines the MTA register and bit to set + * + * The multicast table address is a register array of 32-bit registers. + * The hash_value is used to determine what register the bit is in, the + * current value is read, the new bit is OR'd in and the new value is + * written back into the register. + **/ +static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value) +{ + u32 hash_bit, hash_reg, mta; + + /* The MTA is a register array of 32-bit registers. It is + * treated like an array of (32*mta_reg_count) bits. We want to + * set bit BitArray[hash_value]. So we figure out what register + * the bit is in, read it, OR in the new bit, then write + * back the new value. The (hw->mac.mta_reg_count - 1) serves as a + * mask to bits 31:5 of the hash value which gives us the + * register we're modifying. The hash bit within that register + * is determined by the lower 5 bits of the hash value. + */ + hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); + hash_bit = hash_value & 0x1F; + + mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg); + + mta |= (1 << hash_bit); + + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta); + e1e_flush(); +} + +/** + * e1000_hash_mc_addr - Generate a multicast hash value + * @hw: pointer to the HW structure + * @mc_addr: pointer to a multicast address + * + * Generates a multicast address hash value which is used to determine + * the multicast filter table array address and new table value. See + * e1000_mta_set_generic() + **/ +static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) +{ + u32 hash_value, hash_mask; + u8 bit_shift = 0; + + /* Register count multiplied by bits per register */ + hash_mask = (hw->mac.mta_reg_count * 32) - 1; + + /* For a mc_filter_type of 0, bit_shift is the number of left-shifts + * where 0xFF would still fall within the hash mask. */ + while (hash_mask >> bit_shift != 0xFF) + bit_shift++; + + /* The portion of the address that is used for the hash table + * is determined by the mc_filter_type setting. + * The algorithm is such that there is a total of 8 bits of shifting. + * The bit_shift for a mc_filter_type of 0 represents the number of + * left-shifts where the MSB of mc_addr[5] would still fall within + * the hash_mask. Case 0 does this exactly. Since there are a total + * of 8 bits of shifting, then mc_addr[4] will shift right the + * remaining number of bits. Thus 8 - bit_shift. The rest of the + * cases are a variation of this algorithm...essentially raising the + * number of bits to shift mc_addr[5] left, while still keeping the + * 8-bit shifting total. + */ + /* For example, given the following Destination MAC Address and an + * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), + * we can see that the bit_shift for case 0 is 4. These are the hash + * values resulting from each mc_filter_type... + * [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB + * + * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 + * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 + * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 + * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 + */ + switch (hw->mac.mc_filter_type) { + default: + case 0: + break; + case 1: + bit_shift += 1; + break; + case 2: + bit_shift += 2; + break; + case 3: + bit_shift += 4; + break; + } + + hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | + (((u16) mc_addr[5]) << bit_shift))); + + return hash_value; +} + +/** + * e1000e_mc_addr_list_update_generic - Update Multicast addresses + * @hw: pointer to the HW structure + * @mc_addr_list: array of multicast addresses to program + * @mc_addr_count: number of multicast addresses to program + * @rar_used_count: the first RAR register free to program + * @rar_count: total number of supported Receive Address Registers + * + * Updates the Receive Address Registers and Multicast Table Array. + * The caller must have a packed mc_addr_list of multicast addresses. + * The parameter rar_count will usually be hw->mac.rar_entry_count + * unless there are workarounds that change this. + **/ +void e1000e_mc_addr_list_update_generic(struct e1000_hw *hw, + u8 *mc_addr_list, u32 mc_addr_count, + u32 rar_used_count, u32 rar_count) +{ + u32 hash_value; + u32 i; + + /* Load the first set of multicast addresses into the exact + * filters (RAR). If there are not enough to fill the RAR + * array, clear the filters. + */ + for (i = rar_used_count; i < rar_count; i++) { + if (mc_addr_count) { + e1000e_rar_set(hw, mc_addr_list, i); + mc_addr_count--; + mc_addr_list += ETH_ALEN; + } else { + E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0); + e1e_flush(); + E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0); + e1e_flush(); + } + } + + /* Clear the old settings from the MTA */ + hw_dbg(hw, "Clearing MTA\n"); + for (i = 0; i < hw->mac.mta_reg_count; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); + e1e_flush(); + } + + /* Load any remaining multicast addresses into the hash table. */ + for (; mc_addr_count > 0; mc_addr_count--) { + hash_value = e1000_hash_mc_addr(hw, mc_addr_list); + hw_dbg(hw, "Hash value = 0x%03X\n", hash_value); + e1000_mta_set(hw, hash_value); + mc_addr_list += ETH_ALEN; + } +} + +/** + * e1000e_clear_hw_cntrs_base - Clear base hardware counters + * @hw: pointer to the HW structure + * + * Clears the base hardware counters by reading the counter registers. + **/ +void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) +{ + u32 temp; + + temp = er32(CRCERRS); + temp = er32(SYMERRS); + temp = er32(MPC); + temp = er32(SCC); + temp = er32(ECOL); + temp = er32(MCC); + temp = er32(LATECOL); + temp = er32(COLC); + temp = er32(DC); + temp = er32(SEC); + temp = er32(RLEC); + temp = er32(XONRXC); + temp = er32(XONTXC); + temp = er32(XOFFRXC); + temp = er32(XOFFTXC); + temp = er32(FCRUC); + temp = er32(GPRC); + temp = er32(BPRC); + temp = er32(MPRC); + temp = er32(GPTC); + temp = er32(GORCL); + temp = er32(GORCH); + temp = er32(GOTCL); + temp = er32(GOTCH); + temp = er32(RNBC); + temp = er32(RUC); + temp = er32(RFC); + temp = er32(ROC); + temp = er32(RJC); + temp = er32(TORL); + temp = er32(TORH); + temp = er32(TOTL); + temp = er32(TOTH); + temp = er32(TPR); + temp = er32(TPT); + temp = er32(MPTC); + temp = er32(BPTC); +} + +/** + * e1000e_check_for_copper_link - Check for link (Copper) + * @hw: pointer to the HW structure + * + * Checks to see of the link status of the hardware has changed. If a + * change in link status has been detected, then we read the PHY registers + * to get the current speed/duplex if link exists. + **/ +s32 e1000e_check_for_copper_link(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + bool link; + + /* We only want to go out to the PHY registers to see if Auto-Neg + * has completed and/or if our link status has changed. The + * get_link_status flag is set upon receiving a Link Status + * Change or Rx Sequence Error interrupt. + */ + if (!mac->get_link_status) + return 0; + + /* First we want to see if the MII Status Register reports + * link. If so, then we want to get the current speed/duplex + * of the PHY. + */ + ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); + if (ret_val) + return ret_val; + + if (!link) + return ret_val; /* No link detected */ + + mac->get_link_status = 0; + + /* Check if there was DownShift, must be checked + * immediately after link-up */ + e1000e_check_downshift(hw); + + /* If we are forcing speed/duplex, then we simply return since + * we have already determined whether we have link or not. + */ + if (!mac->autoneg) { + ret_val = -E1000_ERR_CONFIG; + return ret_val; + } + + /* Auto-Neg is enabled. Auto Speed Detection takes care + * of MAC speed/duplex configuration. So we only need to + * configure Collision Distance in the MAC. + */ + e1000e_config_collision_dist(hw); + + /* Configure Flow Control now that Auto-Neg has completed. + * First, we need to restore the desired flow control + * settings because we may have had to re-autoneg with a + * different link partner. + */ + ret_val = e1000e_config_fc_after_link_up(hw); + if (ret_val) { + hw_dbg(hw, "Error configuring flow control\n"); + } + + return ret_val; +} + +/** + * e1000e_check_for_fiber_link - Check for link (Fiber) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + ctrl = er32(CTRL); + status = er32(STATUS); + rxcw = er32(RXCW); + + /* If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), the cable is plugged in (we have signal), + * and our link partner is not trying to auto-negotiate with us (we + * are receiving idles or data), we need to force link up. We also + * need to give auto-negotiation time to complete, in case the cable + * was just plugged in. The autoneg_failed flag does this. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) && + (!(rxcw & E1000_RXCW_C))) { + if (mac->autoneg_failed == 0) { + mac->autoneg_failed = 1; + return 0; + } + hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = er32(CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + ew32(CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000e_config_fc_after_link_up(hw); + if (ret_val) { + hw_dbg(hw, "Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); + ew32(TXCW, mac->txcw); + ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = 1; + } + + return 0; +} + +/** + * e1000e_check_for_serdes_link - Check for link (Serdes) + * @hw: pointer to the HW structure + * + * Checks for link up on the hardware. If link is not up and we have + * a signal, then we need to force link up. + **/ +s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 rxcw; + u32 ctrl; + u32 status; + s32 ret_val; + + ctrl = er32(CTRL); + status = er32(STATUS); + rxcw = er32(RXCW); + + /* If we don't have link (auto-negotiation failed or link partner + * cannot auto-negotiate), and our link partner is not trying to + * auto-negotiate with us (we are receiving idles or data), + * we need to force link up. We also need to give auto-negotiation + * time to complete. + */ + /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ + if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) { + if (mac->autoneg_failed == 0) { + mac->autoneg_failed = 1; + return 0; + } + hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n"); + + /* Disable auto-negotiation in the TXCW register */ + ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); + + /* Force link-up and also force full-duplex. */ + ctrl = er32(CTRL); + ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); + ew32(CTRL, ctrl); + + /* Configure Flow Control after forcing link up. */ + ret_val = e1000e_config_fc_after_link_up(hw); + if (ret_val) { + hw_dbg(hw, "Error configuring flow control\n"); + return ret_val; + } + } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { + /* If we are forcing link and we are receiving /C/ ordered + * sets, re-enable auto-negotiation in the TXCW register + * and disable forced link in the Device Control register + * in an attempt to auto-negotiate with our link partner. + */ + hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n"); + ew32(TXCW, mac->txcw); + ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); + + mac->serdes_has_link = 1; + } else if (!(E1000_TXCW_ANE & er32(TXCW))) { + /* If we force link for non-auto-negotiation switch, check + * link status based on MAC synchronization for internal + * serdes media type. + */ + /* SYNCH bit and IV bit are sticky. */ + udelay(10); + if (E1000_RXCW_SYNCH & er32(RXCW)) { + if (!(rxcw & E1000_RXCW_IV)) { + mac->serdes_has_link = 1; + hw_dbg(hw, "SERDES: Link is up.\n"); + } + } else { + mac->serdes_has_link = 0; + hw_dbg(hw, "SERDES: Link is down.\n"); + } + } + + if (E1000_TXCW_ANE & er32(TXCW)) { + status = er32(STATUS); + mac->serdes_has_link = (status & E1000_STATUS_LU); + } + + return 0; +} + +/** + * e1000_set_default_fc_generic - Set flow control default values + * @hw: pointer to the HW structure + * + * Read the EEPROM for the default values for flow control and store the + * values. + **/ +static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + u16 nvm_data; + + if (mac->fc != e1000_fc_default) + return 0; + + /* Read and store word 0x0F of the EEPROM. This word contains bits + * that determine the hardware's default PAUSE (flow control) mode, + * a bit that determines whether the HW defaults to enabling or + * disabling auto-negotiation, and the direction of the + * SW defined pins. If there is no SW over-ride of the flow + * control setting, then the variable hw->fc will + * be initialized based on a value in the EEPROM. + */ + ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); + + if (ret_val) { + hw_dbg(hw, "NVM Read Error\n"); + return ret_val; + } + + if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) + mac->fc = e1000_fc_none; + else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == + NVM_WORD0F_ASM_DIR) + mac->fc = e1000_fc_tx_pause; + else + mac->fc = e1000_fc_full; + + return 0; +} + +/** + * e1000e_setup_link - Setup flow control and link settings + * @hw: pointer to the HW structure + * + * Determines which flow control settings to use, then configures flow + * control. Calls the appropriate media-specific link configuration + * function. Assuming the adapter has a valid link partner, a valid link + * should be established. Assumes the hardware has previously been reset + * and the transmitter and receiver are not enabled. + **/ +s32 e1000e_setup_link(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + + /* In the case of the phy reset being blocked, we already have a link. + * We do not need to set it up again. + */ + if (e1000_check_reset_block(hw)) + return 0; + + /* + * If flow control is set to default, set flow control based on + * the EEPROM flow control settings. + */ + if (mac->fc == e1000_fc_default) { + ret_val = e1000_set_default_fc_generic(hw); + if (ret_val) + return ret_val; + } + + /* We want to save off the original Flow Control configuration just + * in case we get disconnected and then reconnected into a different + * hub or switch with different Flow Control capabilities. + */ + mac->original_fc = mac->fc; + + hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", mac->fc); + + /* Call the necessary media_type subroutine to configure the link. */ + ret_val = mac->ops.setup_physical_interface(hw); + if (ret_val) + return ret_val; + + /* Initialize the flow control address, type, and PAUSE timer + * registers to their default values. This is done even if flow + * control is disabled, because it does not hurt anything to + * initialize these registers. + */ + hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n"); + ew32(FCT, FLOW_CONTROL_TYPE); + ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); + ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); + + ew32(FCTTV, mac->fc_pause_time); + + return e1000e_set_fc_watermarks(hw); +} + +/** + * e1000_commit_fc_settings_generic - Configure flow control + * @hw: pointer to the HW structure + * + * Write the flow control settings to the Transmit Config Word Register (TXCW) + * base on the flow control settings in e1000_mac_info. + **/ +static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 txcw; + + /* Check for a software override of the flow control settings, and + * setup the device accordingly. If auto-negotiation is enabled, then + * software will have to set the "PAUSE" bits to the correct value in + * the Transmit Config Word Register (TXCW) and re-start auto- + * negotiation. However, if auto-negotiation is disabled, then + * software will have to manually configure the two flow control enable + * bits in the CTRL register. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames, + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames but we + * do not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + */ + switch (mac->fc) { + case e1000_fc_none: + /* Flow control completely disabled by a software over-ride. */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); + break; + case e1000_fc_rx_pause: + /* RX Flow control is enabled and TX Flow control is disabled + * by a software over-ride. Since there really isn't a way to + * advertise that we are capable of RX Pause ONLY, we will + * advertise that we support both symmetric and asymmetric RX + * PAUSE. Later, we will disable the adapter's ability to send + * PAUSE frames. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + case e1000_fc_tx_pause: + /* TX Flow control is enabled, and RX Flow control is disabled, + * by a software over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); + break; + case e1000_fc_full: + /* Flow control (both RX and TX) is enabled by a software + * over-ride. + */ + txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); + break; + default: + hw_dbg(hw, "Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + break; + } + + ew32(TXCW, txcw); + mac->txcw = txcw; + + return 0; +} + +/** + * e1000_poll_fiber_serdes_link_generic - Poll for link up + * @hw: pointer to the HW structure + * + * Polls for link up by reading the status register, if link fails to come + * up with auto-negotiation, then the link is forced if a signal is detected. + **/ +static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 i, status; + s32 ret_val; + + /* If we have a signal (the cable is plugged in, or assumed true for + * serdes media) then poll for a "Link-Up" indication in the Device + * Status Register. Time-out if a link isn't seen in 500 milliseconds + * seconds (Auto-negotiation should complete in less than 500 + * milliseconds even if the other end is doing it in SW). + */ + for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { + msleep(10); + status = er32(STATUS); + if (status & E1000_STATUS_LU) + break; + } + if (i == FIBER_LINK_UP_LIMIT) { + hw_dbg(hw, "Never got a valid link from auto-neg!!!\n"); + mac->autoneg_failed = 1; + /* AutoNeg failed to achieve a link, so we'll call + * mac->check_for_link. This routine will force the + * link up if we detect a signal. This will allow us to + * communicate with non-autonegotiating link partners. + */ + ret_val = mac->ops.check_for_link(hw); + if (ret_val) { + hw_dbg(hw, "Error while checking for link\n"); + return ret_val; + } + mac->autoneg_failed = 0; + } else { + mac->autoneg_failed = 0; + hw_dbg(hw, "Valid Link Found\n"); + } + + return 0; +} + +/** + * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes + * @hw: pointer to the HW structure + * + * Configures collision distance and flow control for fiber and serdes + * links. Upon successful setup, poll for link. + **/ +s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) +{ + u32 ctrl; + s32 ret_val; + + ctrl = er32(CTRL); + + /* Take the link out of reset */ + ctrl &= ~E1000_CTRL_LRST; + + e1000e_config_collision_dist(hw); + + ret_val = e1000_commit_fc_settings_generic(hw); + if (ret_val) + return ret_val; + + /* Since auto-negotiation is enabled, take the link out of reset (the + * link will be in reset, because we previously reset the chip). This + * will restart auto-negotiation. If auto-negotiation is successful + * then the link-up status bit will be set and the flow control enable + * bits (RFCE and TFCE) will be set according to their negotiated value. + */ + hw_dbg(hw, "Auto-negotiation enabled\n"); + + ew32(CTRL, ctrl); + e1e_flush(); + msleep(1); + + /* For these adapters, the SW defineable pin 1 is set when the optics + * detect a signal. If we have a signal, then poll for a "Link-Up" + * indication. + */ + if (hw->media_type == e1000_media_type_internal_serdes || + (er32(CTRL) & E1000_CTRL_SWDPIN1)) { + ret_val = e1000_poll_fiber_serdes_link_generic(hw); + } else { + hw_dbg(hw, "No signal detected\n"); + } + + return 0; +} + +/** + * e1000e_config_collision_dist - Configure collision distance + * @hw: pointer to the HW structure + * + * Configures the collision distance to the default value and is used + * during link setup. Currently no func pointer exists and all + * implementations are handled in the generic version of this function. + **/ +void e1000e_config_collision_dist(struct e1000_hw *hw) +{ + u32 tctl; + + tctl = er32(TCTL); + + tctl &= ~E1000_TCTL_COLD; + tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + + ew32(TCTL, tctl); + e1e_flush(); +} + +/** + * e1000e_set_fc_watermarks - Set flow control high/low watermarks + * @hw: pointer to the HW structure + * + * Sets the flow control high/low threshold (watermark) registers. If + * flow control XON frame transmission is enabled, then set XON frame + * tansmission as well. + **/ +s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 fcrtl = 0, fcrth = 0; + + /* Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames is not enabled, then these + * registers will be set to 0. + */ + if (mac->fc & e1000_fc_tx_pause) { + /* We need to set up the Receive Threshold high and low water + * marks as well as (optionally) enabling the transmission of + * XON frames. + */ + fcrtl = mac->fc_low_water; + fcrtl |= E1000_FCRTL_XONE; + fcrth = mac->fc_high_water; + } + ew32(FCRTL, fcrtl); + ew32(FCRTH, fcrth); + + return 0; +} + +/** + * e1000e_force_mac_fc - Force the MAC's flow control settings + * @hw: pointer to the HW structure + * + * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the + * device control register to reflect the adapter settings. TFCE and RFCE + * need to be explicitly set by software when a copper PHY is used because + * autonegotiation is managed by the PHY rather than the MAC. Software must + * also configure these bits when link is forced on a fiber connection. + **/ +s32 e1000e_force_mac_fc(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + u32 ctrl; + + ctrl = er32(CTRL); + + /* Because we didn't get link via the internal auto-negotiation + * mechanism (we either forced link or we got link via PHY + * auto-neg), we have to manually enable/disable transmit an + * receive flow control. + * + * The "Case" statement below enables/disable flow control + * according to the "mac->fc" parameter. + * + * The possible values of the "fc" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause + * frames but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * frames but we do not receive pause frames). + * 3: Both Rx and TX flow control (symmetric) is enabled. + * other: No other values should be possible at this point. + */ + hw_dbg(hw, "mac->fc = %u\n", mac->fc); + + switch (mac->fc) { + case e1000_fc_none: + ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); + break; + case e1000_fc_rx_pause: + ctrl &= (~E1000_CTRL_TFCE); + ctrl |= E1000_CTRL_RFCE; + break; + case e1000_fc_tx_pause: + ctrl &= (~E1000_CTRL_RFCE); + ctrl |= E1000_CTRL_TFCE; + break; + case e1000_fc_full: + ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); + break; + default: + hw_dbg(hw, "Flow control param set incorrectly\n"); + return -E1000_ERR_CONFIG; + } + + ew32(CTRL, ctrl); + + return 0; +} + +/** + * e1000e_config_fc_after_link_up - Configures flow control after link + * @hw: pointer to the HW structure + * + * Checks the status of auto-negotiation after link up to ensure that the + * speed and duplex were not forced. If the link needed to be forced, then + * flow control needs to be forced also. If auto-negotiation is enabled + * and did not fail, then we configure flow control based on our link + * partner. + **/ +s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val = 0; + u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; + u16 speed, duplex; + + /* Check for the case where we have fiber media and auto-neg failed + * so we had to force link. In this case, we need to force the + * configuration of the MAC to match the "fc" parameter. + */ + if (mac->autoneg_failed) { + if (hw->media_type == e1000_media_type_fiber || + hw->media_type == e1000_media_type_internal_serdes) + ret_val = e1000e_force_mac_fc(hw); + } else { + if (hw->media_type == e1000_media_type_copper) + ret_val = e1000e_force_mac_fc(hw); + } + + if (ret_val) { + hw_dbg(hw, "Error forcing flow control settings\n"); + return ret_val; + } + + /* Check for the case where we have copper media and auto-neg is + * enabled. In this case, we need to check and see if Auto-Neg + * has completed, and if so, how the PHY and link partner has + * flow control configured. + */ + if ((hw->media_type == e1000_media_type_copper) && mac->autoneg) { + /* Read the MII Status Register and check to see if AutoNeg + * has completed. We read this twice because this reg has + * some "sticky" (latched) bits. + */ + ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); + if (ret_val) + return ret_val; + + if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { + hw_dbg(hw, "Copper PHY and Auto Neg " + "has not completed.\n"); + return ret_val; + } + + /* The AutoNeg process has completed, so we now need to + * read both the Auto Negotiation Advertisement + * Register (Address 4) and the Auto_Negotiation Base + * Page Ability Register (Address 5) to determine how + * flow control was negotiated. + */ + ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); + if (ret_val) + return ret_val; + ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); + if (ret_val) + return ret_val; + + /* Two bits in the Auto Negotiation Advertisement Register + * (Address 4) and two bits in the Auto Negotiation Base + * Page Ability Register (Address 5) determine flow control + * for both the PHY and the link partner. The following + * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, + * 1999, describes these PAUSE resolution bits and how flow + * control is determined based upon these settings. + * NOTE: DC = Don't Care + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution + *-------|---------|-------|---------|-------------------- + * 0 | 0 | DC | DC | e1000_fc_none + * 0 | 1 | 0 | DC | e1000_fc_none + * 0 | 1 | 1 | 0 | e1000_fc_none + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * 1 | 0 | 0 | DC | e1000_fc_none + * 1 | DC | 1 | DC | e1000_fc_full + * 1 | 1 | 0 | 0 | e1000_fc_none + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + */ + /* Are both PAUSE bits set to 1? If so, this implies + * Symmetric Flow Control is enabled at both ends. The + * ASM_DIR bits are irrelevant per the spec. + * + * For Symmetric Flow Control: + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | DC | 1 | DC | E1000_fc_full + * + */ + if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { + /* Now we need to check if the user selected RX ONLY + * of pause frames. In this case, we had to advertise + * FULL flow control because we could not advertise RX + * ONLY. Hence, we must now check to see if we need to + * turn OFF the TRANSMISSION of PAUSE frames. + */ + if (mac->original_fc == e1000_fc_full) { + mac->fc = e1000_fc_full; + hw_dbg(hw, "Flow Control = FULL.\r\n"); + } else { + mac->fc = e1000_fc_rx_pause; + hw_dbg(hw, "Flow Control = " + "RX PAUSE frames only.\r\n"); + } + } + /* For receiving PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 0 | 1 | 1 | 1 | e1000_fc_tx_pause + * + */ + else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + mac->fc = e1000_fc_tx_pause; + hw_dbg(hw, "Flow Control = TX PAUSE frames only.\r\n"); + } + /* For transmitting PAUSE frames ONLY. + * + * LOCAL DEVICE | LINK PARTNER + * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result + *-------|---------|-------|---------|-------------------- + * 1 | 1 | 0 | 1 | e1000_fc_rx_pause + * + */ + else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && + (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && + !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && + (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { + mac->fc = e1000_fc_rx_pause; + hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); + } + /* Per the IEEE spec, at this point flow control should be + * disabled. However, we want to consider that we could + * be connected to a legacy switch that doesn't advertise + * desired flow control, but can be forced on the link + * partner. So if we advertised no flow control, that is + * what we will resolve to. If we advertised some kind of + * receive capability (Rx Pause Only or Full Flow Control) + * and the link partner advertised none, we will configure + * ourselves to enable Rx Flow Control only. We can do + * this safely for two reasons: If the link partner really + * didn't want flow control enabled, and we enable Rx, no + * harm done since we won't be receiving any PAUSE frames + * anyway. If the intent on the link partner was to have + * flow control enabled, then by us enabling RX only, we + * can at least receive pause frames and process them. + * This is a good idea because in most cases, since we are + * predominantly a server NIC, more times than not we will + * be asked to delay transmission of packets than asking + * our link partner to pause transmission of frames. + */ + else if ((mac->original_fc == e1000_fc_none) || + (mac->original_fc == e1000_fc_tx_pause)) { + mac->fc = e1000_fc_none; + hw_dbg(hw, "Flow Control = NONE.\r\n"); + } else { + mac->fc = e1000_fc_rx_pause; + hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n"); + } + + /* Now we need to do one last check... If we auto- + * negotiated to HALF DUPLEX, flow control should not be + * enabled per IEEE 802.3 spec. + */ + ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); + if (ret_val) { + hw_dbg(hw, "Error getting link speed and duplex\n"); + return ret_val; + } + + if (duplex == HALF_DUPLEX) + mac->fc = e1000_fc_none; + + /* Now we call a subroutine to actually force the MAC + * controller to use the correct flow control settings. + */ + ret_val = e1000e_force_mac_fc(hw); + if (ret_val) { + hw_dbg(hw, "Error forcing flow control settings\n"); + return ret_val; + } + } + + return 0; +} + +/** + * e1000e_get_speed_and_duplex_copper - Retreive current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Read the status register for the current speed/duplex and store the current + * speed and duplex for copper connections. + **/ +s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex) +{ + u32 status; + + status = er32(STATUS); + if (status & E1000_STATUS_SPEED_1000) { + *speed = SPEED_1000; + hw_dbg(hw, "1000 Mbs, "); + } else if (status & E1000_STATUS_SPEED_100) { + *speed = SPEED_100; + hw_dbg(hw, "100 Mbs, "); + } else { + *speed = SPEED_10; + hw_dbg(hw, "10 Mbs, "); + } + + if (status & E1000_STATUS_FD) { + *duplex = FULL_DUPLEX; + hw_dbg(hw, "Full Duplex\n"); + } else { + *duplex = HALF_DUPLEX; + hw_dbg(hw, "Half Duplex\n"); + } + + return 0; +} + +/** + * e1000e_get_speed_and_duplex_fiber_serdes - Retreive current speed/duplex + * @hw: pointer to the HW structure + * @speed: stores the current speed + * @duplex: stores the current duplex + * + * Sets the speed and duplex to gigabit full duplex (the only possible option) + * for fiber/serdes links. + **/ +s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex) +{ + *speed = SPEED_1000; + *duplex = FULL_DUPLEX; + + return 0; +} + +/** + * e1000e_get_hw_semaphore - Acquire hardware semaphore + * @hw: pointer to the HW structure + * + * Acquire the HW semaphore to access the PHY or NVM + **/ +s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) +{ + u32 swsm; + s32 timeout = hw->nvm.word_size + 1; + s32 i = 0; + + /* Get the SW semaphore */ + while (i < timeout) { + swsm = er32(SWSM); + if (!(swsm & E1000_SWSM_SMBI)) + break; + + udelay(50); + i++; + } + + if (i == timeout) { + hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n"); + return -E1000_ERR_NVM; + } + + /* Get the FW semaphore. */ + for (i = 0; i < timeout; i++) { + swsm = er32(SWSM); + ew32(SWSM, swsm | E1000_SWSM_SWESMBI); + + /* Semaphore acquired if bit latched */ + if (er32(SWSM) & E1000_SWSM_SWESMBI) + break; + + udelay(50); + } + + if (i == timeout) { + /* Release semaphores */ + e1000e_put_hw_semaphore(hw); + hw_dbg(hw, "Driver can't access the NVM\n"); + return -E1000_ERR_NVM; + } + + return 0; +} + +/** + * e1000e_put_hw_semaphore - Release hardware semaphore + * @hw: pointer to the HW structure + * + * Release hardware semaphore used to access the PHY or NVM + **/ +void e1000e_put_hw_semaphore(struct e1000_hw *hw) +{ + u32 swsm; + + swsm = er32(SWSM); + swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); + ew32(SWSM, swsm); +} + +/** + * e1000e_get_auto_rd_done - Check for auto read completion + * @hw: pointer to the HW structure + * + * Check EEPROM for Auto Read done bit. + **/ +s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) +{ + s32 i = 0; + + while (i < AUTO_READ_DONE_TIMEOUT) { + if (er32(EECD) & E1000_EECD_AUTO_RD) + break; + msleep(1); + i++; + } + + if (i == AUTO_READ_DONE_TIMEOUT) { + hw_dbg(hw, "Auto read by HW from NVM has not completed.\n"); + return -E1000_ERR_RESET; + } + + return 0; +} + +/** + * e1000e_valid_led_default - Verify a valid default LED config + * @hw: pointer to the HW structure + * @data: pointer to the NVM (EEPROM) + * + * Read the EEPROM for the current default LED configuration. If the + * LED configuration is not valid, set to a valid LED configuration. + **/ +s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) +{ + s32 ret_val; + + ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); + if (ret_val) { + hw_dbg(hw, "NVM Read Error\n"); + return ret_val; + } + + if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) + *data = ID_LED_DEFAULT; + + return 0; +} + +/** + * e1000e_id_led_init - + * @hw: pointer to the HW structure + * + **/ +s32 e1000e_id_led_init(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + s32 ret_val; + const u32 ledctl_mask = 0x000000FF; + const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; + const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; + u16 data, i, temp; + const u16 led_mask = 0x0F; + + ret_val = hw->nvm.ops.valid_led_default(hw, &data); + if (ret_val) + return ret_val; + + mac->ledctl_default = er32(LEDCTL); + mac->ledctl_mode1 = mac->ledctl_default; + mac->ledctl_mode2 = mac->ledctl_default; + + for (i = 0; i < 4; i++) { + temp = (data >> (i << 2)) & led_mask; + switch (temp) { + case ID_LED_ON1_DEF2: + case ID_LED_ON1_ON2: + case ID_LED_ON1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_on << (i << 3); + break; + case ID_LED_OFF1_DEF2: + case ID_LED_OFF1_ON2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode1 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + switch (temp) { + case ID_LED_DEF1_ON2: + case ID_LED_ON1_ON2: + case ID_LED_OFF1_ON2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_on << (i << 3); + break; + case ID_LED_DEF1_OFF2: + case ID_LED_ON1_OFF2: + case ID_LED_OFF1_OFF2: + mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); + mac->ledctl_mode2 |= ledctl_off << (i << 3); + break; + default: + /* Do nothing */ + break; + } + } + + return 0; +} + +/** + * e1000e_cleanup_led_generic - Set LED config to default operation + * @hw: pointer to the HW structure + * + * Remove the current LED configuration and set the LED configuration + * to the default value, saved from the EEPROM. + **/ +s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) +{ + ew32(LEDCTL, hw->mac.ledctl_default); + return 0; +} + +/** + * e1000e_blink_led - Blink LED + * @hw: pointer to the HW structure + * + * Blink the led's which are set to be on. + **/ +s32 e1000e_blink_led(struct e1000_hw *hw) +{ + u32 ledctl_blink = 0; + u32 i; + + if (hw->media_type == e1000_media_type_fiber) { + /* always blink LED0 for PCI-E fiber */ + ledctl_blink = E1000_LEDCTL_LED0_BLINK | + (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); + } else { + /* set the blink bit for each LED that's "on" (0x0E) + * in ledctl_mode2 */ + ledctl_blink = hw->mac.ledctl_mode2; + for (i = 0; i < 4; i++) + if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == + E1000_LEDCTL_MODE_LED_ON) + ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << + (i * 8)); + } + + ew32(LEDCTL, ledctl_blink); + + return 0; +} + +/** + * e1000e_led_on_generic - Turn LED on + * @hw: pointer to the HW structure + * + * Turn LED on. + **/ +s32 e1000e_led_on_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + switch (hw->media_type) { + case e1000_media_type_fiber: + ctrl = er32(CTRL); + ctrl &= ~E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + ew32(CTRL, ctrl); + break; + case e1000_media_type_copper: + ew32(LEDCTL, hw->mac.ledctl_mode2); + break; + default: + break; + } + + return 0; +} + +/** + * e1000e_led_off_generic - Turn LED off + * @hw: pointer to the HW structure + * + * Turn LED off. + **/ +s32 e1000e_led_off_generic(struct e1000_hw *hw) +{ + u32 ctrl; + + switch (hw->media_type) { + case e1000_media_type_fiber: + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_SWDPIN0; + ctrl |= E1000_CTRL_SWDPIO0; + ew32(CTRL, ctrl); + break; + case e1000_media_type_copper: + ew32(LEDCTL, hw->mac.ledctl_mode1); + break; + default: + break; + } + + return 0; +} + +/** + * e1000e_set_pcie_no_snoop - Set PCI-express capabilities + * @hw: pointer to the HW structure + * @no_snoop: bitmap of snoop events + * + * Set the PCI-express register to snoop for events enabled in 'no_snoop'. + **/ +void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) +{ + u32 gcr; + + if (no_snoop) { + gcr = er32(GCR); + gcr &= ~(PCIE_NO_SNOOP_ALL); + gcr |= no_snoop; + ew32(GCR, gcr); + } +} + +/** + * e1000e_disable_pcie_master - Disables PCI-express master access + * @hw: pointer to the HW structure + * + * Returns 0 if successful, else returns -10 + * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued + * the master requests to be disabled. + * + * Disables PCI-Express master access and verifies there are no pending + * requests. + **/ +s32 e1000e_disable_pcie_master(struct e1000_hw *hw) +{ + u32 ctrl; + s32 timeout = MASTER_DISABLE_TIMEOUT; + + ctrl = er32(CTRL); + ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; + ew32(CTRL, ctrl); + + while (timeout) { + if (!(er32(STATUS) & + E1000_STATUS_GIO_MASTER_ENABLE)) + break; + udelay(100); + timeout--; + } + + if (!timeout) { + hw_dbg(hw, "Master requests are pending.\n"); + return -E1000_ERR_MASTER_REQUESTS_PENDING; + } + + return 0; +} + +/** + * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Reset the Adaptive Interframe Spacing throttle to default values. + **/ +void e1000e_reset_adaptive(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + mac->current_ifs_val = 0; + mac->ifs_min_val = IFS_MIN; + mac->ifs_max_val = IFS_MAX; + mac->ifs_step_size = IFS_STEP; + mac->ifs_ratio = IFS_RATIO; + + mac->in_ifs_mode = 0; + ew32(AIT, 0); +} + +/** + * e1000e_update_adaptive - Update Adaptive Interframe Spacing + * @hw: pointer to the HW structure + * + * Update the Adaptive Interframe Spacing Throttle value based on the + * time between transmitted packets and time between collisions. + **/ +void e1000e_update_adaptive(struct e1000_hw *hw) +{ + struct e1000_mac_info *mac = &hw->mac; + + if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { + if (mac->tx_packet_delta > MIN_NUM_XMITS) { + mac->in_ifs_mode = 1; + if (mac->current_ifs_val < mac->ifs_max_val) { + if (!mac->current_ifs_val) + mac->current_ifs_val = mac->ifs_min_val; + else + mac->current_ifs_val += + mac->ifs_step_size; + ew32(AIT, + mac->current_ifs_val); + } + } + } else { + if (mac->in_ifs_mode && + (mac->tx_packet_delta <= MIN_NUM_XMITS)) { + mac->current_ifs_val = 0; + mac->in_ifs_mode = 0; + ew32(AIT, 0); + } + } +} + +/** + * e1000_raise_eec_clk - Raise EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Enable/Raise the EEPROM clock bit. + **/ +static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd | E1000_EECD_SK; + ew32(EECD, *eecd); + e1e_flush(); + udelay(hw->nvm.delay_usec); +} + +/** + * e1000_lower_eec_clk - Lower EEPROM clock + * @hw: pointer to the HW structure + * @eecd: pointer to the EEPROM + * + * Clear/Lower the EEPROM clock bit. + **/ +static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ + *eecd = *eecd & ~E1000_EECD_SK; + ew32(EECD, *eecd); + e1e_flush(); + udelay(hw->nvm.delay_usec); +} + +/** + * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM + * @hw: pointer to the HW structure + * @data: data to send to the EEPROM + * @count: number of bits to shift out + * + * We need to shift 'count' bits out to the EEPROM. So, the value in the + * "data" parameter will be shifted out to the EEPROM one bit at a time. + * In order to do this, "data" must be broken down into bits. + **/ +static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = er32(EECD); + u32 mask; + + mask = 0x01 << (count - 1); + if (nvm->type == e1000_nvm_eeprom_spi) + eecd |= E1000_EECD_DO; + + do { + eecd &= ~E1000_EECD_DI; + + if (data & mask) + eecd |= E1000_EECD_DI; + + ew32(EECD, eecd); + e1e_flush(); + + udelay(nvm->delay_usec); + + e1000_raise_eec_clk(hw, &eecd); + e1000_lower_eec_clk(hw, &eecd); + + mask >>= 1; + } while (mask); + + eecd &= ~E1000_EECD_DI; + ew32(EECD, eecd); +} + +/** + * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM + * @hw: pointer to the HW structure + * @count: number of bits to shift in + * + * In order to read a register from the EEPROM, we need to shift 'count' bits + * in from the EEPROM. Bits are "shifted in" by raising the clock input to + * the EEPROM (setting the SK bit), and then reading the value of the data out + * "DO" bit. During this "shifting in" process the data in "DI" bit should + * always be clear. + **/ +static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) +{ + u32 eecd; + u32 i; + u16 data; + + eecd = er32(EECD); + + eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); + data = 0; + + for (i = 0; i < count; i++) { + data <<= 1; + e1000_raise_eec_clk(hw, &eecd); + + eecd = er32(EECD); + + eecd &= ~E1000_EECD_DI; + if (eecd & E1000_EECD_DO) + data |= 1; + + e1000_lower_eec_clk(hw, &eecd); + } + + return data; +} + +/** + * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion + * @hw: pointer to the HW structure + * @ee_reg: EEPROM flag for polling + * + * Polls the EEPROM status bit for either read or write completion based + * upon the value of 'ee_reg'. + **/ +s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) +{ + u32 attempts = 100000; + u32 i, reg = 0; + + for (i = 0; i < attempts; i++) { + if (ee_reg == E1000_NVM_POLL_READ) + reg = er32(EERD); + else + reg = er32(EEWR); + + if (reg & E1000_NVM_RW_REG_DONE) + return 0; + + udelay(5); + } + + return -E1000_ERR_NVM; +} + +/** + * e1000e_acquire_nvm - Generic request for access to EEPROM + * @hw: pointer to the HW structure + * + * Set the EEPROM access request bit and wait for EEPROM access grant bit. + * Return successful if access grant bit set, else clear the request for + * EEPROM access and return -E1000_ERR_NVM (-1). + **/ +s32 e1000e_acquire_nvm(struct e1000_hw *hw) +{ + u32 eecd = er32(EECD); + s32 timeout = E1000_NVM_GRANT_ATTEMPTS; + + ew32(EECD, eecd | E1000_EECD_REQ); + eecd = er32(EECD); + + while (timeout) { + if (eecd & E1000_EECD_GNT) + break; + udelay(5); + eecd = er32(EECD); + timeout--; + } + + if (!timeout) { + eecd &= ~E1000_EECD_REQ; + ew32(EECD, eecd); + hw_dbg(hw, "Could not acquire NVM grant\n"); + return -E1000_ERR_NVM; + } + + return 0; +} + +/** + * e1000_standby_nvm - Return EEPROM to standby state + * @hw: pointer to the HW structure + * + * Return the EEPROM to a standby state. + **/ +static void e1000_standby_nvm(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = er32(EECD); + + if (nvm->type == e1000_nvm_eeprom_spi) { + /* Toggle CS to flush commands */ + eecd |= E1000_EECD_CS; + ew32(EECD, eecd); + e1e_flush(); + udelay(nvm->delay_usec); + eecd &= ~E1000_EECD_CS; + ew32(EECD, eecd); + e1e_flush(); + udelay(nvm->delay_usec); + } +} + +/** + * e1000_stop_nvm - Terminate EEPROM command + * @hw: pointer to the HW structure + * + * Terminates the current command by inverting the EEPROM's chip select pin. + **/ +static void e1000_stop_nvm(struct e1000_hw *hw) +{ + u32 eecd; + + eecd = er32(EECD); + if (hw->nvm.type == e1000_nvm_eeprom_spi) { + /* Pull CS high */ + eecd |= E1000_EECD_CS; + e1000_lower_eec_clk(hw, &eecd); + } +} + +/** + * e1000e_release_nvm - Release exclusive access to EEPROM + * @hw: pointer to the HW structure + * + * Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +void e1000e_release_nvm(struct e1000_hw *hw) +{ + u32 eecd; + + e1000_stop_nvm(hw); + + eecd = er32(EECD); + eecd &= ~E1000_EECD_REQ; + ew32(EECD, eecd); +} + +/** + * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write + * @hw: pointer to the HW structure + * + * Setups the EEPROM for reading and writing. + **/ +static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 eecd = er32(EECD); + u16 timeout = 0; + u8 spi_stat_reg; + + if (nvm->type == e1000_nvm_eeprom_spi) { + /* Clear SK and CS */ + eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); + ew32(EECD, eecd); + udelay(1); + timeout = NVM_MAX_RETRY_SPI; + + /* Read "Status Register" repeatedly until the LSB is cleared. + * The EEPROM will signal that the command has been completed + * by clearing bit 0 of the internal status register. If it's + * not cleared within 'timeout', then error out. */ + while (timeout) { + e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, + hw->nvm.opcode_bits); + spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); + if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) + break; + + udelay(5); + e1000_standby_nvm(hw); + timeout--; + } + + if (!timeout) { + hw_dbg(hw, "SPI NVM Status error\n"); + return -E1000_ERR_NVM; + } + } + + return 0; +} + +/** + * e1000e_read_nvm_spi - Read EEPROM's using SPI + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM. + **/ +s32 e1000e_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i = 0; + s32 ret_val; + u16 word_in; + u8 read_opcode = NVM_READ_OPCODE_SPI; + + /* A check for invalid values: offset too large, too many words, + * and not enough words. */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + hw_dbg(hw, "nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + ret_val = nvm->ops.acquire_nvm(hw); + if (ret_val) + return ret_val; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) { + nvm->ops.release_nvm(hw); + return ret_val; + } + + e1000_standby_nvm(hw); + + if ((nvm->address_bits == 8) && (offset >= 128)) + read_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the READ command (opcode + addr) */ + e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); + + /* Read the data. SPI NVMs increment the address with each byte + * read and will roll over if reading beyond the end. This allows + * us to read the whole NVM from any offset */ + for (i = 0; i < words; i++) { + word_in = e1000_shift_in_eec_bits(hw, 16); + data[i] = (word_in >> 8) | (word_in << 8); + } + + nvm->ops.release_nvm(hw); + return 0; +} + +/** + * e1000e_read_nvm_eerd - Reads EEPROM using EERD register + * @hw: pointer to the HW structure + * @offset: offset of word in the EEPROM to read + * @words: number of words to read + * @data: word read from the EEPROM + * + * Reads a 16 bit word from the EEPROM using the EERD register. + **/ +s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + u32 i, eerd = 0; + s32 ret_val = 0; + + /* A check for invalid values: offset too large, too many words, + * and not enough words. */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + hw_dbg(hw, "nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + for (i = 0; i < words; i++) { + eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + + E1000_NVM_RW_REG_START; + + ew32(EERD, eerd); + ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); + if (ret_val) + break; + + data[i] = (er32(EERD) >> + E1000_NVM_RW_REG_DATA); + } + + return ret_val; +} + +/** + * e1000e_write_nvm_spi - Write to EEPROM using SPI + * @hw: pointer to the HW structure + * @offset: offset within the EEPROM to be written to + * @words: number of words to write + * @data: 16 bit word(s) to be written to the EEPROM + * + * Writes data to EEPROM at offset using SPI interface. + * + * If e1000e_update_nvm_checksum is not called after this function , the + * EEPROM will most likley contain an invalid checksum. + **/ +s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ + struct e1000_nvm_info *nvm = &hw->nvm; + s32 ret_val; + u16 widx = 0; + + /* A check for invalid values: offset too large, too many words, + * and not enough words. */ + if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || + (words == 0)) { + hw_dbg(hw, "nvm parameter(s) out of bounds\n"); + return -E1000_ERR_NVM; + } + + ret_val = nvm->ops.acquire_nvm(hw); + if (ret_val) + return ret_val; + + msleep(10); + + while (widx < words) { + u8 write_opcode = NVM_WRITE_OPCODE_SPI; + + ret_val = e1000_ready_nvm_eeprom(hw); + if (ret_val) { + nvm->ops.release_nvm(hw); + return ret_val; + } + + e1000_standby_nvm(hw); + + /* Send the WRITE ENABLE command (8 bit opcode) */ + e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, + nvm->opcode_bits); + + e1000_standby_nvm(hw); + + /* Some SPI eeproms use the 8th address bit embedded in the + * opcode */ + if ((nvm->address_bits == 8) && (offset >= 128)) + write_opcode |= NVM_A8_OPCODE_SPI; + + /* Send the Write command (8-bit opcode + addr) */ + e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); + e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), + nvm->address_bits); + + /* Loop to allow for up to whole page write of eeprom */ + while (widx < words) { + u16 word_out = data[widx]; + word_out = (word_out >> 8) | (word_out << 8); + e1000_shift_out_eec_bits(hw, word_out, 16); + widx++; + + if ((((offset + widx) * 2) % nvm->page_size) == 0) { + e1000_standby_nvm(hw); + break; + } + } + } + + msleep(10); + return 0; +} + +/** + * e1000e_read_mac_addr - Read device MAC address + * @hw: pointer to the HW structure + * + * Reads the device MAC address from the EEPROM and stores the value. + * Since devices with two ports use the same EEPROM, we increment the + * last bit in the MAC address for the second port. + **/ +s32 e1000e_read_mac_addr(struct e1000_hw *hw) +{ + s32 ret_val; + u16 offset, nvm_data, i; + + for (i = 0; i < ETH_ALEN; i += 2) { + offset = i >> 1; + ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); + if (ret_val) { + hw_dbg(hw, "NVM Read Error\n"); + return ret_val; + } + hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF); + hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8); + } + + /* Flip last bit of mac address if we're on second port */ + if (hw->bus.func == E1000_FUNC_1) + hw->mac.perm_addr[5] ^= 1; + + for (i = 0; i < ETH_ALEN; i++) + hw->mac.addr[i] = hw->mac.perm_addr[i]; + + return 0; +} + +/** + * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum + * @hw: pointer to the HW structure + * + * Calculates the EEPROM checksum by reading/adding each word of the EEPROM + * and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { + ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); + if (ret_val) { + hw_dbg(hw, "NVM Read Error\n"); + return ret_val; + } + checksum += nvm_data; + } + + if (checksum != (u16) NVM_SUM) { + hw_dbg(hw, "NVM Checksum Invalid\n"); + return -E1000_ERR_NVM; + } + + return 0; +} + +/** + * e1000e_update_nvm_checksum_generic - Update EEPROM checksum + * @hw: pointer to the HW structure + * + * Updates the EEPROM checksum by reading/adding each word of the EEPROM + * up to the checksum. Then calculates the EEPROM checksum and writes the + * value to the EEPROM. + **/ +s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) +{ + s32 ret_val; + u16 checksum = 0; + u16 i, nvm_data; + + for (i = 0; i < NVM_CHECKSUM_REG; i++) { + ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); + if (ret_val) { + hw_dbg(hw, "NVM Read Error while updating checksum.\n"); + return ret_val; + } + checksum += nvm_data; + } + checksum = (u16) NVM_SUM - checksum; + ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); + if (ret_val) + hw_dbg(hw, "NVM Write Error while updating checksum.\n"); + + return ret_val; +} + +/** + * e1000e_reload_nvm - Reloads EEPROM + * @hw: pointer to the HW structure + * + * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + * extended control register. + **/ +void e1000e_reload_nvm(struct e1000_hw *hw) +{ + u32 ctrl_ext; + + udelay(10); + ctrl_ext = er32(CTRL_EXT); + ctrl_ext |= E1000_CTRL_EXT_EE_RST; + ew32(CTRL_EXT, ctrl_ext); + e1e_flush(); +} + +/** + * e1000_calculate_checksum - Calculate checksum for buffer + * @buffer: pointer to EEPROM + * @length: size of EEPROM to calculate a checksum for + * + * Calculates the checksum for some buffer on a specified length. The + * checksum calculated is returned. + **/ +static u8 e1000_calculate_checksum(u8 *buffer, u32 length) +{ + u32 i; + u8 sum = 0; + + if (!buffer) + return 0; + + for (i = 0; i < length; i++) + sum += buffer[i]; + + return (u8) (0 - sum); +} + +/** + * e1000_mng_enable_host_if - Checks host interface is enabled + * @hw: pointer to the HW structure + * + * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND + * + * This function checks whether the HOST IF is enabled for command operaton + * and also checks whether the previous command is completed. It busy waits + * in case of previous command is not completed. + **/ +static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) +{ + u32 hicr; + u8 i; + + /* Check that the host interface is enabled. */ + hicr = er32(HICR); + if ((hicr & E1000_HICR_EN) == 0) { + hw_dbg(hw, "E1000_HOST_EN bit disabled.\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + /* check the previous command is completed */ + for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { + hicr = er32(HICR); + if (!(hicr & E1000_HICR_C)) + break; + mdelay(1); + } + + if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { + hw_dbg(hw, "Previous command timeout failed .\n"); + return -E1000_ERR_HOST_INTERFACE_COMMAND; + } + + return 0; +} + +/** + * e1000e_check_mng_mode - check managament mode + * @hw: pointer to the HW structure + * + * Reads the firmware semaphore register and returns true (>0) if + * manageability is enabled, else false (0). + **/ +bool e1000e_check_mng_mode(struct e1000_hw *hw) +{ + u32 fwsm = er32(FWSM); + + return (fwsm & E1000_FWSM_MODE_MASK) == hw->mac.ops.mng_mode_enab; +} + +/** + * e1000e_enable_tx_pkt_filtering - Enable packet filtering on TX + * @hw: pointer to the HW structure + * + * Enables packet filtering on transmit packets if manageability is enabled + * and host interface is enabled. + **/ +bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw) +{ + struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie; + u32 *buffer = (u32 *)&hw->mng_cookie; + u32 offset; + s32 ret_val, hdr_csum, csum; + u8 i, len; + + /* No manageability, no filtering */ + if (!e1000e_check_mng_mode(hw)) { + hw->mac.tx_pkt_filtering = 0; + return 0; + } + + /* If we can't read from the host interface for whatever + * reason, disable filtering. + */ + ret_val = e1000_mng_enable_host_if(hw); + if (ret_val != 0) { + hw->mac.tx_pkt_filtering = 0; + return ret_val; + } + + /* Read in the header. Length and offset are in dwords. */ + len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2; + offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2; + for (i = 0; i < len; i++) + *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i); + hdr_csum = hdr->checksum; + hdr->checksum = 0; + csum = e1000_calculate_checksum((u8 *)hdr, + E1000_MNG_DHCP_COOKIE_LENGTH); + /* If either the checksums or signature don't match, then + * the cookie area isn't considered valid, in which case we + * take the safe route of assuming Tx filtering is enabled. + */ + if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) { + hw->mac.tx_pkt_filtering = 1; + return 1; + } + + /* Cookie area is valid, make the final check for filtering. */ + if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) { + hw->mac.tx_pkt_filtering = 0; + return 0; + } + + hw->mac.tx_pkt_filtering = 1; + return 1; +} + +/** + * e1000_mng_write_cmd_header - Writes manageability command header + * @hw: pointer to the HW structure + * @hdr: pointer to the host interface command header + * + * Writes the command header after does the checksum calculation. + **/ +static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, + struct e1000_host_mng_command_header *hdr) +{ + u16 i, length = sizeof(struct e1000_host_mng_command_header); + + /* Write the whole command header structure with new checksum. */ + + hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length); + + length >>= 2; + /* Write the relevant command block into the ram area. */ + for (i = 0; i < length; i++) { + E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i, + *((u32 *) hdr + i)); + e1e_flush(); + } + + return 0; +} + +/** + * e1000_mng_host_if_write - Writes to the manageability host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface buffer + * @length: size of the buffer + * @offset: location in the buffer to write to + * @sum: sum of the data (not checksum) + * + * This function writes the buffer content at the offset given on the host if. + * It also does alignment considerations to do the writes in most efficient + * way. Also fills up the sum of the buffer in *buffer parameter. + **/ +static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, + u16 length, u16 offset, u8 *sum) +{ + u8 *tmp; + u8 *bufptr = buffer; + u32 data = 0; + u16 remaining, i, j, prev_bytes; + + /* sum = only sum of the data and it is not checksum */ + + if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) + return -E1000_ERR_PARAM; + + tmp = (u8 *)&data; + prev_bytes = offset & 0x3; + offset >>= 2; + + if (prev_bytes) { + data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset); + for (j = prev_bytes; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data); + length -= j - prev_bytes; + offset++; + } + + remaining = length & 0x3; + length -= remaining; + + /* Calculate length in DWORDs */ + length >>= 2; + + /* The device driver writes the relevant command block into the + * ram area. */ + for (i = 0; i < length; i++) { + for (j = 0; j < sizeof(u32); j++) { + *(tmp + j) = *bufptr++; + *sum += *(tmp + j); + } + + E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); + } + if (remaining) { + for (j = 0; j < sizeof(u32); j++) { + if (j < remaining) + *(tmp + j) = *bufptr++; + else + *(tmp + j) = 0; + + *sum += *(tmp + j); + } + E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data); + } + + return 0; +} + +/** + * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface + * @hw: pointer to the HW structure + * @buffer: pointer to the host interface + * @length: size of the buffer + * + * Writes the DHCP information to the host interface. + **/ +s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) +{ + struct e1000_host_mng_command_header hdr; + s32 ret_val; + u32 hicr; + + hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; + hdr.command_length = length; + hdr.reserved1 = 0; + hdr.reserved2 = 0; + hdr.checksum = 0; + + /* Enable the host interface */ + ret_val = e1000_mng_enable_host_if(hw); + if (ret_val) + return ret_val; + + /* Populate the host interface with the contents of "buffer". */ + ret_val = e1000_mng_host_if_write(hw, buffer, length, + sizeof(hdr), &(hdr.checksum)); + if (ret_val) + return ret_val; + + /* Write the manageability command header */ + ret_val = e1000_mng_write_cmd_header(hw, &hdr); + if (ret_val) + return ret_val; + + /* Tell the ARC a new command is pending. */ + hicr = er32(HICR); + ew32(HICR, hicr | E1000_HICR_C); + + return 0; +} + +/** + * e1000e_enable_mng_pass_thru - Enable processing of ARP's + * @hw: pointer to the HW structure + * + * Verifies the hardware needs to allow ARPs to be processed by the host. + **/ +bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw) +{ + u32 manc; + u32 fwsm, factps; + bool ret_val = 0; + + manc = er32(MANC); + + if (!(manc & E1000_MANC_RCV_TCO_EN) || + !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) + return ret_val; + + if (hw->mac.arc_subsystem_valid) { + fwsm = er32(FWSM); + factps = er32(FACTPS); + + if (!(factps & E1000_FACTPS_MNGCG) && + ((fwsm & E1000_FWSM_MODE_MASK) == + (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) { + ret_val = 1; + return ret_val; + } + } else { + if ((manc & E1000_MANC_SMBUS_EN) && + !(manc & E1000_MANC_ASF_EN)) { + ret_val = 1; + return ret_val; + } + } + + return ret_val; +} + +s32 e1000e_read_part_num(struct e1000_hw *hw, u32 *part_num) +{ + s32 ret_val; + u16 nvm_data; + + ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); + if (ret_val) { + hw_dbg(hw, "NVM Read Error\n"); + return ret_val; + } + *part_num = (u32)(nvm_data << 16); + + ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data); + if (ret_val) { + hw_dbg(hw, "NVM Read Error\n"); + return ret_val; + } + *part_num |= nvm_data; + + return 0; +} |