diff options
Diffstat (limited to 'drivers/mtd')
-rw-r--r-- | drivers/mtd/Kconfig | 2 | ||||
-rw-r--r-- | drivers/mtd/chips/cfi_cmdset_0001.c | 6 | ||||
-rw-r--r-- | drivers/mtd/chips/chipreg.c | 5 | ||||
-rw-r--r-- | drivers/mtd/devices/Kconfig | 1 | ||||
-rw-r--r-- | drivers/mtd/maps/Kconfig | 1 | ||||
-rw-r--r-- | drivers/mtd/maps/sa1100-flash.c | 112 | ||||
-rw-r--r-- | drivers/mtd/mtdchar.c | 2 | ||||
-rw-r--r-- | drivers/mtd/nand/Kconfig | 14 | ||||
-rw-r--r-- | drivers/mtd/nand/Makefile | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/fsl_ifc_nand.c | 1072 | ||||
-rw-r--r-- | drivers/mtd/onenand/Kconfig | 1 | ||||
-rw-r--r-- | drivers/mtd/ubi/build.c | 14 | ||||
-rw-r--r-- | drivers/mtd/ubi/eba.c | 30 | ||||
-rw-r--r-- | drivers/mtd/ubi/io.c | 14 | ||||
-rw-r--r-- | drivers/mtd/ubi/scan.c | 16 | ||||
-rw-r--r-- | drivers/mtd/ubi/ubi.h | 12 | ||||
-rw-r--r-- | drivers/mtd/ubi/wl.c | 21 |
17 files changed, 1143 insertions, 181 deletions
diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig index 1be6218..284cf34 100644 --- a/drivers/mtd/Kconfig +++ b/drivers/mtd/Kconfig @@ -1,6 +1,6 @@ menuconfig MTD tristate "Memory Technology Device (MTD) support" - depends on HAS_IOMEM + depends on GENERIC_IO help Memory Technology Devices are flash, RAM and similar chips, often used for solid state file systems on embedded devices. This option diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c index e1e122f..9bcd1f4 100644 --- a/drivers/mtd/chips/cfi_cmdset_0001.c +++ b/drivers/mtd/chips/cfi_cmdset_0001.c @@ -2526,12 +2526,10 @@ static void cfi_intelext_restore_locks(struct mtd_info *mtd) if (!region->lockmap) continue; - for (block = 0; block < region->numblocks; block++) { + for_each_clear_bit(block, region->lockmap, region->numblocks) { len = region->erasesize; adr = region->offset + block * len; - - if (!test_bit(block, region->lockmap)) - cfi_intelext_unlock(mtd, adr, len); + cfi_intelext_unlock(mtd, adr, len); } } } diff --git a/drivers/mtd/chips/chipreg.c b/drivers/mtd/chips/chipreg.c index da1f96f..0bbc61b 100644 --- a/drivers/mtd/chips/chipreg.c +++ b/drivers/mtd/chips/chipreg.c @@ -76,10 +76,7 @@ struct mtd_info *do_map_probe(const char *name, struct map_info *map) */ module_put(drv->module); - if (ret) - return ret; - - return NULL; + return ret; } /* * Destroy an MTD device which was created for a map device. diff --git a/drivers/mtd/devices/Kconfig b/drivers/mtd/devices/Kconfig index 37b05c3..8d3dac4 100644 --- a/drivers/mtd/devices/Kconfig +++ b/drivers/mtd/devices/Kconfig @@ -1,5 +1,6 @@ menu "Self-contained MTD device drivers" depends on MTD!=n + depends on HAS_IOMEM config MTD_PMC551 tristate "Ramix PMC551 PCI Mezzanine RAM card support" diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig index 6c5c431..8af67cf 100644 --- a/drivers/mtd/maps/Kconfig +++ b/drivers/mtd/maps/Kconfig @@ -1,5 +1,6 @@ menu "Mapping drivers for chip access" depends on MTD!=n + depends on HAS_IOMEM config MTD_COMPLEX_MAPPINGS bool "Support non-linear mappings of flash chips" diff --git a/drivers/mtd/maps/sa1100-flash.c b/drivers/mtd/maps/sa1100-flash.c index 5028219..cbc3b78 100644 --- a/drivers/mtd/maps/sa1100-flash.c +++ b/drivers/mtd/maps/sa1100-flash.c @@ -23,106 +23,6 @@ #include <asm/sizes.h> #include <asm/mach/flash.h> -#if 0 -/* - * This is here for documentation purposes only - until these people - * submit their machine types. It will be gone January 2005. - */ -static struct mtd_partition consus_partitions[] = { - { - .name = "Consus boot firmware", - .offset = 0, - .size = 0x00040000, - .mask_flags = MTD_WRITABLE, /* force read-only */ - }, { - .name = "Consus kernel", - .offset = 0x00040000, - .size = 0x00100000, - .mask_flags = 0, - }, { - .name = "Consus disk", - .offset = 0x00140000, - /* The rest (up to 16M) for jffs. We could put 0 and - make it find the size automatically, but right now - i have 32 megs. jffs will use all 32 megs if given - the chance, and this leads to horrible problems - when you try to re-flash the image because blob - won't erase the whole partition. */ - .size = 0x01000000 - 0x00140000, - .mask_flags = 0, - }, { - /* this disk is a secondary disk, which can be used as - needed, for simplicity, make it the size of the other - consus partition, although realistically it could be - the remainder of the disk (depending on the file - system used) */ - .name = "Consus disk2", - .offset = 0x01000000, - .size = 0x01000000 - 0x00140000, - .mask_flags = 0, - } -}; - -/* Frodo has 2 x 16M 28F128J3A flash chips in bank 0: */ -static struct mtd_partition frodo_partitions[] = -{ - { - .name = "bootloader", - .size = 0x00040000, - .offset = 0x00000000, - .mask_flags = MTD_WRITEABLE - }, { - .name = "bootloader params", - .size = 0x00040000, - .offset = MTDPART_OFS_APPEND, - .mask_flags = MTD_WRITEABLE - }, { - .name = "kernel", - .size = 0x00100000, - .offset = MTDPART_OFS_APPEND, - .mask_flags = MTD_WRITEABLE - }, { - .name = "ramdisk", - .size = 0x00400000, - .offset = MTDPART_OFS_APPEND, - .mask_flags = MTD_WRITEABLE - }, { - .name = "file system", - .size = MTDPART_SIZ_FULL, - .offset = MTDPART_OFS_APPEND - } -}; - -static struct mtd_partition jornada56x_partitions[] = { - { - .name = "bootldr", - .size = 0x00040000, - .offset = 0, - .mask_flags = MTD_WRITEABLE, - }, { - .name = "rootfs", - .size = MTDPART_SIZ_FULL, - .offset = MTDPART_OFS_APPEND, - } -}; - -static void jornada56x_set_vpp(int vpp) -{ - if (vpp) - GPSR = GPIO_GPIO26; - else - GPCR = GPIO_GPIO26; - GPDR |= GPIO_GPIO26; -} - -/* - * Machine Phys Size set_vpp - * Consus : SA1100_CS0_PHYS SZ_32M - * Frodo : SA1100_CS0_PHYS SZ_32M - * Jornada56x: SA1100_CS0_PHYS SZ_32M jornada56x_set_vpp - */ -#endif - struct sa_subdev_info { char name[16]; struct map_info map; @@ -373,21 +273,9 @@ static int __exit sa1100_mtd_remove(struct platform_device *pdev) return 0; } -#ifdef CONFIG_PM -static void sa1100_mtd_shutdown(struct platform_device *dev) -{ - struct sa_info *info = platform_get_drvdata(dev); - if (info && mtd_suspend(info->mtd) == 0) - mtd_resume(info->mtd); -} -#else -#define sa1100_mtd_shutdown NULL -#endif - static struct platform_driver sa1100_mtd_driver = { .probe = sa1100_mtd_probe, .remove = __exit_p(sa1100_mtd_remove), - .shutdown = sa1100_mtd_shutdown, .driver = { .name = "sa1100-mtd", .owner = THIS_MODULE, diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c index 50c6a1e..c57ae92 100644 --- a/drivers/mtd/mtdchar.c +++ b/drivers/mtd/mtdchar.c @@ -31,13 +31,13 @@ #include <linux/compat.h> #include <linux/mount.h> #include <linux/blkpg.h> +#include <linux/magic.h> #include <linux/mtd/mtd.h> #include <linux/mtd/partitions.h> #include <linux/mtd/map.h> #include <asm/uaccess.h> -#define MTD_INODE_FS_MAGIC 0x11307854 static DEFINE_MUTEX(mtd_mutex); static struct vfsmount *mtd_inode_mnt __read_mostly; diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 31b034b..a3c4de5 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -187,7 +187,7 @@ config MTD_NAND_PPCHAMELEONEVB config MTD_NAND_S3C2410 tristate "NAND Flash support for Samsung S3C SoCs" - depends on ARCH_S3C2410 || ARCH_S3C64XX + depends on ARCH_S3C24XX || ARCH_S3C64XX help This enables the NAND flash controller on the S3C24xx and S3C64xx SoCs @@ -246,6 +246,7 @@ config MTD_NAND_BCM_UMI_HWCS config MTD_NAND_DISKONCHIP tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)" depends on EXPERIMENTAL + depends on HAS_IOMEM select REED_SOLOMON select REED_SOLOMON_DEC16 help @@ -431,6 +432,7 @@ config MTD_NAND_GPMI_NAND config MTD_NAND_PLATFORM tristate "Support for generic platform NAND driver" + depends on HAS_IOMEM help This implements a generic NAND driver for on-SOC platform devices. You will need to provide platform-specific functions @@ -462,6 +464,16 @@ config MTD_NAND_FSL_ELBC Enabling this option will enable you to use this to control external NAND devices. +config MTD_NAND_FSL_IFC + tristate "NAND support for Freescale IFC controller" + depends on MTD_NAND && FSL_SOC + select FSL_IFC + help + Various Freescale chips e.g P1010, include a NAND Flash machine + with built-in hardware ECC capabilities. + Enabling this option will enable you to use this to control + external NAND devices. + config MTD_NAND_FSL_UPM tristate "Support for NAND on Freescale UPM" depends on PPC_83xx || PPC_85xx diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 618f4ba..19bc8cb 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -37,6 +37,7 @@ obj-$(CONFIG_MTD_ALAUDA) += alauda.o obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o +obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c new file mode 100644 index 0000000..c30ac7b --- /dev/null +++ b/drivers/mtd/nand/fsl_ifc_nand.c @@ -0,0 +1,1072 @@ +/* + * Freescale Integrated Flash Controller NAND driver + * + * Copyright 2011-2012 Freescale Semiconductor, Inc + * + * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/nand_ecc.h> +#include <asm/fsl_ifc.h> + +#define ERR_BYTE 0xFF /* Value returned for read + bytes when read failed */ +#define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait + for IFC NAND Machine */ + +struct fsl_ifc_ctrl; + +/* mtd information per set */ +struct fsl_ifc_mtd { + struct mtd_info mtd; + struct nand_chip chip; + struct fsl_ifc_ctrl *ctrl; + + struct device *dev; + int bank; /* Chip select bank number */ + unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ + u8 __iomem *vbase; /* Chip select base virtual address */ +}; + +/* overview of the fsl ifc controller */ +struct fsl_ifc_nand_ctrl { + struct nand_hw_control controller; + struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; + + u8 __iomem *addr; /* Address of assigned IFC buffer */ + unsigned int page; /* Last page written to / read from */ + unsigned int read_bytes;/* Number of bytes read during command */ + unsigned int column; /* Saved column from SEQIN */ + unsigned int index; /* Pointer to next byte to 'read' */ + unsigned int oob; /* Non zero if operating on OOB data */ + unsigned int eccread; /* Non zero for a full-page ECC read */ + unsigned int counter; /* counter for the initializations */ +}; + +static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; + +/* 512-byte page with 4-bit ECC, 8-bit */ +static struct nand_ecclayout oob_512_8bit_ecc4 = { + .eccbytes = 8, + .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, + .oobfree = { {0, 5}, {6, 2} }, +}; + +/* 512-byte page with 4-bit ECC, 16-bit */ +static struct nand_ecclayout oob_512_16bit_ecc4 = { + .eccbytes = 8, + .eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, + .oobfree = { {2, 6}, }, +}; + +/* 2048-byte page size with 4-bit ECC */ +static struct nand_ecclayout oob_2048_ecc4 = { + .eccbytes = 32, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + }, + .oobfree = { {2, 6}, {40, 24} }, +}; + +/* 4096-byte page size with 4-bit ECC */ +static struct nand_ecclayout oob_4096_ecc4 = { + .eccbytes = 64, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + }, + .oobfree = { {2, 6}, {72, 56} }, +}; + +/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */ +static struct nand_ecclayout oob_4096_ecc8 = { + .eccbytes = 128, + .eccpos = { + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31, + 32, 33, 34, 35, 36, 37, 38, 39, + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 66, 67, 68, 69, 70, 71, + 72, 73, 74, 75, 76, 77, 78, 79, + 80, 81, 82, 83, 84, 85, 86, 87, + 88, 89, 90, 91, 92, 93, 94, 95, + 96, 97, 98, 99, 100, 101, 102, 103, + 104, 105, 106, 107, 108, 109, 110, 111, + 112, 113, 114, 115, 116, 117, 118, 119, + 120, 121, 122, 123, 124, 125, 126, 127, + 128, 129, 130, 131, 132, 133, 134, 135, + }, + .oobfree = { {2, 6}, {136, 82} }, +}; + + +/* + * Generic flash bbt descriptors + */ +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +/* + * Set up the IFC hardware block and page address fields, and the ifc nand + * structure addr field to point to the correct IFC buffer in memory + */ +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + int buf_num; + + ifc_nand_ctrl->page = page_addr; + /* Program ROW0/COL0 */ + out_be32(&ifc->ifc_nand.row0, page_addr); + out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column); + + buf_num = page_addr & priv->bufnum_mask; + + ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); + ifc_nand_ctrl->index = column; + + /* for OOB data point to the second half of the buffer */ + if (oob) + ifc_nand_ctrl->index += mtd->writesize; +} + +static int is_blank(struct mtd_info *mtd, unsigned int bufnum) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); + u32 __iomem *mainarea = (u32 *)addr; + u8 __iomem *oob = addr + mtd->writesize; + int i; + + for (i = 0; i < mtd->writesize / 4; i++) { + if (__raw_readl(&mainarea[i]) != 0xffffffff) + return 0; + } + + for (i = 0; i < chip->ecc.layout->eccbytes; i++) { + int pos = chip->ecc.layout->eccpos[i]; + + if (__raw_readb(&oob[pos]) != 0xff) + return 0; + } + + return 1; +} + +/* returns nonzero if entire page is blank */ +static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, + u32 *eccstat, unsigned int bufnum) +{ + u32 reg = eccstat[bufnum / 4]; + int errors; + + errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; + + return errors; +} + +/* + * execute IFC NAND command and wait for it to complete + */ +static void fsl_ifc_run_command(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + u32 eccstat[4]; + int i; + + /* set the chip select for NAND Transaction */ + out_be32(&ifc->ifc_nand.nand_csel, priv->bank << IFC_NAND_CSEL_SHIFT); + + dev_vdbg(priv->dev, + "%s: fir0=%08x fcr0=%08x\n", + __func__, + in_be32(&ifc->ifc_nand.nand_fir0), + in_be32(&ifc->ifc_nand.nand_fcr0)); + + ctrl->nand_stat = 0; + + /* start read/write seq */ + out_be32(&ifc->ifc_nand.nandseq_strt, IFC_NAND_SEQ_STRT_FIR_STRT); + + /* wait for command complete flag or timeout */ + wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, + IFC_TIMEOUT_MSECS * HZ/1000); + + /* ctrl->nand_stat will be updated from IRQ context */ + if (!ctrl->nand_stat) + dev_err(priv->dev, "Controller is not responding\n"); + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) + dev_err(priv->dev, "NAND Flash Timeout Error\n"); + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) + dev_err(priv->dev, "NAND Flash Write Protect Error\n"); + + if (nctrl->eccread) { + int errors; + int bufnum = nctrl->page & priv->bufnum_mask; + int sector = bufnum * chip->ecc.steps; + int sector_end = sector + chip->ecc.steps - 1; + + for (i = sector / 4; i <= sector_end / 4; i++) + eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]); + + for (i = sector; i <= sector_end; i++) { + errors = check_read_ecc(mtd, ctrl, eccstat, i); + + if (errors == 15) { + /* + * Uncorrectable error. + * OK only if the whole page is blank. + * + * We disable ECCER reporting due to... + * erratum IFC-A002770 -- so report it now if we + * see an uncorrectable error in ECCSTAT. + */ + if (!is_blank(mtd, bufnum)) + ctrl->nand_stat |= + IFC_NAND_EVTER_STAT_ECCER; + break; + } + + mtd->ecc_stats.corrected += errors; + } + + nctrl->eccread = 0; + } +} + +static void fsl_ifc_do_read(struct nand_chip *chip, + int oob, + struct mtd_info *mtd) +{ + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + + /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ + if (mtd->writesize > 512) { + out_be32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT)); + out_be32(&ifc->ifc_nand.nand_fir1, 0x0); + + out_be32(&ifc->ifc_nand.nand_fcr0, + (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); + } else { + out_be32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT)); + out_be32(&ifc->ifc_nand.nand_fir1, 0x0); + + if (oob) + out_be32(&ifc->ifc_nand.nand_fcr0, + NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT); + else + out_be32(&ifc->ifc_nand.nand_fcr0, + NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); + } +} + +/* cmdfunc send commands to the IFC NAND Machine */ +static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) { + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + + /* clear the read buffer */ + ifc_nand_ctrl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + ifc_nand_ctrl->index = 0; + + switch (command) { + /* READ0 read the entire buffer to use hardware ECC. */ + case NAND_CMD_READ0: + out_be32(&ifc->ifc_nand.nand_fbcr, 0); + set_addr(mtd, 0, page_addr, 0); + + ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + ifc_nand_ctrl->index += column; + + if (chip->ecc.mode == NAND_ECC_HW) + ifc_nand_ctrl->eccread = 1; + + fsl_ifc_do_read(chip, 0, mtd); + fsl_ifc_run_command(mtd); + return; + + /* READOOB reads only the OOB because no ECC is performed. */ + case NAND_CMD_READOOB: + out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column); + set_addr(mtd, column, page_addr, 1); + + ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + + fsl_ifc_do_read(chip, 1, mtd); + fsl_ifc_run_command(mtd); + + return; + + /* READID must read all 8 possible bytes */ + case NAND_CMD_READID: + out_be32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT)); + out_be32(&ifc->ifc_nand.nand_fcr0, + NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT); + /* 8 bytes for manuf, device and exts */ + out_be32(&ifc->ifc_nand.nand_fbcr, 8); + ifc_nand_ctrl->read_bytes = 8; + + set_addr(mtd, 0, 0, 0); + fsl_ifc_run_command(mtd); + return; + + /* ERASE1 stores the block and page address */ + case NAND_CMD_ERASE1: + set_addr(mtd, 0, page_addr, 0); + return; + + /* ERASE2 uses the block and page address from ERASE1 */ + case NAND_CMD_ERASE2: + out_be32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT)); + + out_be32(&ifc->ifc_nand.nand_fcr0, + (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT)); + + out_be32(&ifc->ifc_nand.nand_fbcr, 0); + ifc_nand_ctrl->read_bytes = 0; + fsl_ifc_run_command(mtd); + return; + + /* SEQIN sets up the addr buffer and all registers except the length */ + case NAND_CMD_SEQIN: { + u32 nand_fcr0; + ifc_nand_ctrl->column = column; + ifc_nand_ctrl->oob = 0; + + if (mtd->writesize > 512) { + nand_fcr0 = + (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT); + + out_be32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT)); + } else { + nand_fcr0 = ((NAND_CMD_PAGEPROG << + IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_SEQIN << + IFC_NAND_FCR0_CMD2_SHIFT)); + + out_be32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT)); + out_be32(&ifc->ifc_nand.nand_fir1, + (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT)); + + if (column >= mtd->writesize) + nand_fcr0 |= + NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; + else + nand_fcr0 |= + NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; + } + + if (column >= mtd->writesize) { + /* OOB area --> READOOB */ + column -= mtd->writesize; + ifc_nand_ctrl->oob = 1; + } + out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0); + set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); + return; + } + + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ + case NAND_CMD_PAGEPROG: { + if (ifc_nand_ctrl->oob) { + out_be32(&ifc->ifc_nand.nand_fbcr, + ifc_nand_ctrl->index - ifc_nand_ctrl->column); + } else { + out_be32(&ifc->ifc_nand.nand_fbcr, 0); + } + + fsl_ifc_run_command(mtd); + return; + } + + case NAND_CMD_STATUS: + out_be32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT)); + out_be32(&ifc->ifc_nand.nand_fcr0, + NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT); + out_be32(&ifc->ifc_nand.nand_fbcr, 1); + set_addr(mtd, 0, 0, 0); + ifc_nand_ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + /* + * The chip always seems to report that it is + * write-protected, even when it is not. + */ + setbits8(ifc_nand_ctrl->addr, NAND_STATUS_WP); + return; + + case NAND_CMD_RESET: + out_be32(&ifc->ifc_nand.nand_fir0, + IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT); + out_be32(&ifc->ifc_nand.nand_fcr0, + NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT); + fsl_ifc_run_command(mtd); + return; + + default: + dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", + __func__, command); + } +} + +static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) +{ + /* The hardware does not seem to support multiple + * chips per bank. + */ +} + +/* + * Write buf to the IFC NAND Controller Data Buffer + */ +static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + unsigned int bufsize = mtd->writesize + mtd->oobsize; + + if (len <= 0) { + dev_err(priv->dev, "%s: len %d bytes", __func__, len); + return; + } + + if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { + dev_err(priv->dev, + "%s: beyond end of buffer (%d requested, %u available)\n", + __func__, len, bufsize - ifc_nand_ctrl->index); + len = bufsize - ifc_nand_ctrl->index; + } + + memcpy_toio(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index], buf, len); + ifc_nand_ctrl->index += len; +} + +/* + * Read a byte from either the IFC hardware buffer + * read function for 8-bit buswidth + */ +static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + + /* + * If there are still bytes in the IFC buffer, then use the + * next byte. + */ + if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) + return in_8(&ifc_nand_ctrl->addr[ifc_nand_ctrl->index++]); + + dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); + return ERR_BYTE; +} + +/* + * Read two bytes from the IFC hardware buffer + * read function for 16-bit buswith + */ +static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + uint16_t data; + + /* + * If there are still bytes in the IFC buffer, then use the + * next byte. + */ + if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { + data = in_be16((uint16_t *)&ifc_nand_ctrl-> + addr[ifc_nand_ctrl->index]); + ifc_nand_ctrl->index += 2; + return (uint8_t) data; + } + + dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); + return ERR_BYTE; +} + +/* + * Read from the IFC Controller Data Buffer + */ +static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + int avail; + + if (len < 0) { + dev_err(priv->dev, "%s: len %d bytes", __func__, len); + return; + } + + avail = min((unsigned int)len, + ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); + memcpy_fromio(buf, &ifc_nand_ctrl->addr[ifc_nand_ctrl->index], avail); + ifc_nand_ctrl->index += avail; + + if (len > avail) + dev_err(priv->dev, + "%s: beyond end of buffer (%d requested, %d available)\n", + __func__, len, avail); +} + +/* + * Verify buffer against the IFC Controller Data Buffer + */ +static int fsl_ifc_verify_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; + int i; + + if (len < 0) { + dev_err(priv->dev, "%s: write_buf of %d bytes", __func__, len); + return -EINVAL; + } + + if ((unsigned int)len > nctrl->read_bytes - nctrl->index) { + dev_err(priv->dev, + "%s: beyond end of buffer (%d requested, %u available)\n", + __func__, len, nctrl->read_bytes - nctrl->index); + + nctrl->index = nctrl->read_bytes; + return -EINVAL; + } + + for (i = 0; i < len; i++) + if (in_8(&nctrl->addr[nctrl->index + i]) != buf[i]) + break; + + nctrl->index += len; + + if (i != len) + return -EIO; + if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) + return -EIO; + + return 0; +} + +/* + * This function is called after Program and Erase Operations to + * check for success or failure. + */ +static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + u32 nand_fsr; + + /* Use READ_STATUS command, but wait for the device to be ready */ + out_be32(&ifc->ifc_nand.nand_fir0, + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT)); + out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS << + IFC_NAND_FCR0_CMD0_SHIFT); + out_be32(&ifc->ifc_nand.nand_fbcr, 1); + set_addr(mtd, 0, 0, 0); + ifc_nand_ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr); + + /* + * The chip always seems to report that it is + * write-protected, even when it is not. + */ + return nand_fsr | NAND_STATUS_WP; +} + +static int fsl_ifc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, + uint8_t *buf, int page) +{ + struct fsl_ifc_mtd *priv = chip->priv; + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + + fsl_ifc_read_buf(mtd, buf, mtd->writesize); + fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) + dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n"); + + if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) + mtd->ecc_stats.failed++; + + return 0; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static void fsl_ifc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf) +{ + fsl_ifc_write_buf(mtd, buf, mtd->writesize); + fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); +} + +static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd->priv; + struct fsl_ifc_mtd *priv = chip->priv; + + dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, + chip->numchips); + dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, + chip->chipsize); + dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, + chip->pagemask); + dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__, + chip->chip_delay); + dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, + chip->badblockpos); + dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, + chip->chip_shift); + dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, + chip->page_shift); + dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, + chip->phys_erase_shift); + dev_dbg(priv->dev, "%s: nand->ecclayout = %p\n", __func__, + chip->ecclayout); + dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__, + chip->ecc.mode); + dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, + chip->ecc.steps); + dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, + chip->ecc.bytes); + dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, + chip->ecc.total); + dev_dbg(priv->dev, "%s: nand->ecc.layout = %p\n", __func__, + chip->ecc.layout); + dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); + dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); + dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, + mtd->erasesize); + dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, + mtd->writesize); + dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, + mtd->oobsize); + + return 0; +} + +static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) +{ + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_regs __iomem *ifc = ctrl->regs; + struct nand_chip *chip = &priv->chip; + struct nand_ecclayout *layout; + u32 csor; + + /* Fill in fsl_ifc_mtd structure */ + priv->mtd.priv = chip; + priv->mtd.owner = THIS_MODULE; + + /* fill in nand_chip structure */ + /* set up function call table */ + if ((in_be32(&ifc->cspr_cs[priv->bank].cspr)) & CSPR_PORT_SIZE_16) + chip->read_byte = fsl_ifc_read_byte16; + else + chip->read_byte = fsl_ifc_read_byte; + + chip->write_buf = fsl_ifc_write_buf; + chip->read_buf = fsl_ifc_read_buf; + chip->verify_buf = fsl_ifc_verify_buf; + chip->select_chip = fsl_ifc_select_chip; + chip->cmdfunc = fsl_ifc_cmdfunc; + chip->waitfunc = fsl_ifc_wait; + + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + + out_be32(&ifc->ifc_nand.ncfgr, 0x0); + + /* set up nand options */ + chip->options = NAND_NO_READRDY | NAND_NO_AUTOINCR; + chip->bbt_options = NAND_BBT_USE_FLASH; + + + if (in_be32(&ifc->cspr_cs[priv->bank].cspr) & CSPR_PORT_SIZE_16) { + chip->read_byte = fsl_ifc_read_byte16; + chip->options |= NAND_BUSWIDTH_16; + } else { + chip->read_byte = fsl_ifc_read_byte; + } + + chip->controller = &ifc_nand_ctrl->controller; + chip->priv = priv; + + chip->ecc.read_page = fsl_ifc_read_page; + chip->ecc.write_page = fsl_ifc_write_page; + + csor = in_be32(&ifc->csor_cs[priv->bank].csor); + + /* Hardware generates ECC per 512 Bytes */ + chip->ecc.size = 512; + chip->ecc.bytes = 8; + + switch (csor & CSOR_NAND_PGS_MASK) { + case CSOR_NAND_PGS_512: + if (chip->options & NAND_BUSWIDTH_16) { + layout = &oob_512_16bit_ecc4; + } else { + layout = &oob_512_8bit_ecc4; + + /* Avoid conflict with bad block marker */ + bbt_main_descr.offs = 0; + bbt_mirror_descr.offs = 0; + } + + priv->bufnum_mask = 15; + break; + + case CSOR_NAND_PGS_2K: + layout = &oob_2048_ecc4; + priv->bufnum_mask = 3; + break; + + case CSOR_NAND_PGS_4K: + if ((csor & CSOR_NAND_ECC_MODE_MASK) == + CSOR_NAND_ECC_MODE_4) { + layout = &oob_4096_ecc4; + } else { + layout = &oob_4096_ecc8; + chip->ecc.bytes = 16; + } + + priv->bufnum_mask = 1; + break; + + default: + dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); + return -ENODEV; + } + + /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ + if (csor & CSOR_NAND_ECC_DEC_EN) { + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.layout = layout; + } else { + chip->ecc.mode = NAND_ECC_SOFT; + } + + return 0; +} + +static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) +{ + nand_release(&priv->mtd); + + kfree(priv->mtd.name); + + if (priv->vbase) + iounmap(priv->vbase); + + ifc_nand_ctrl->chips[priv->bank] = NULL; + dev_set_drvdata(priv->dev, NULL); + kfree(priv); + + return 0; +} + +static int match_bank(struct fsl_ifc_regs __iomem *ifc, int bank, + phys_addr_t addr) +{ + u32 cspr = in_be32(&ifc->cspr_cs[bank].cspr); + + if (!(cspr & CSPR_V)) + return 0; + if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) + return 0; + + return (cspr & CSPR_BA) == convert_ifc_address(addr); +} + +static DEFINE_MUTEX(fsl_ifc_nand_mutex); + +static int __devinit fsl_ifc_nand_probe(struct platform_device *dev) +{ + struct fsl_ifc_regs __iomem *ifc; + struct fsl_ifc_mtd *priv; + struct resource res; + static const char *part_probe_types[] + = { "cmdlinepart", "RedBoot", "ofpart", NULL }; + int ret; + int bank; + struct device_node *node = dev->dev.of_node; + struct mtd_part_parser_data ppdata; + + ppdata.of_node = dev->dev.of_node; + if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->regs) + return -ENODEV; + ifc = fsl_ifc_ctrl_dev->regs; + + /* get, allocate and map the memory resource */ + ret = of_address_to_resource(node, 0, &res); + if (ret) { + dev_err(&dev->dev, "%s: failed to get resource\n", __func__); + return ret; + } + + /* find which chip select it is connected to */ + for (bank = 0; bank < FSL_IFC_BANK_COUNT; bank++) { + if (match_bank(ifc, bank, res.start)) + break; + } + + if (bank >= FSL_IFC_BANK_COUNT) { + dev_err(&dev->dev, "%s: address did not match any chip selects\n", + __func__); + return -ENODEV; + } + + priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + mutex_lock(&fsl_ifc_nand_mutex); + if (!fsl_ifc_ctrl_dev->nand) { + ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); + if (!ifc_nand_ctrl) { + dev_err(&dev->dev, "failed to allocate memory\n"); + mutex_unlock(&fsl_ifc_nand_mutex); + return -ENOMEM; + } + + ifc_nand_ctrl->read_bytes = 0; + ifc_nand_ctrl->index = 0; + ifc_nand_ctrl->addr = NULL; + fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; + + spin_lock_init(&ifc_nand_ctrl->controller.lock); + init_waitqueue_head(&ifc_nand_ctrl->controller.wq); + } else { + ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; + } + mutex_unlock(&fsl_ifc_nand_mutex); + + ifc_nand_ctrl->chips[bank] = priv; + priv->bank = bank; + priv->ctrl = fsl_ifc_ctrl_dev; + priv->dev = &dev->dev; + + priv->vbase = ioremap(res.start, resource_size(&res)); + if (!priv->vbase) { + dev_err(priv->dev, "%s: failed to map chip region\n", __func__); + ret = -ENOMEM; + goto err; + } + + dev_set_drvdata(priv->dev, priv); + + out_be32(&ifc->ifc_nand.nand_evter_en, + IFC_NAND_EVTER_EN_OPC_EN | + IFC_NAND_EVTER_EN_FTOER_EN | + IFC_NAND_EVTER_EN_WPER_EN); + + /* enable NAND Machine Interrupts */ + out_be32(&ifc->ifc_nand.nand_evter_intr_en, + IFC_NAND_EVTER_INTR_OPCIR_EN | + IFC_NAND_EVTER_INTR_FTOERIR_EN | + IFC_NAND_EVTER_INTR_WPERIR_EN); + + priv->mtd.name = kasprintf(GFP_KERNEL, "%x.flash", (unsigned)res.start); + if (!priv->mtd.name) { + ret = -ENOMEM; + goto err; + } + + ret = fsl_ifc_chip_init(priv); + if (ret) + goto err; + + ret = nand_scan_ident(&priv->mtd, 1, NULL); + if (ret) + goto err; + + ret = fsl_ifc_chip_init_tail(&priv->mtd); + if (ret) + goto err; + + ret = nand_scan_tail(&priv->mtd); + if (ret) + goto err; + + /* First look for RedBoot table or partitions on the command + * line, these take precedence over device tree information */ + mtd_device_parse_register(&priv->mtd, part_probe_types, &ppdata, + NULL, 0); + + dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", + (unsigned long long)res.start, priv->bank); + return 0; + +err: + fsl_ifc_chip_remove(priv); + return ret; +} + +static int fsl_ifc_nand_remove(struct platform_device *dev) +{ + struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); + + fsl_ifc_chip_remove(priv); + + mutex_lock(&fsl_ifc_nand_mutex); + ifc_nand_ctrl->counter--; + if (!ifc_nand_ctrl->counter) { + fsl_ifc_ctrl_dev->nand = NULL; + kfree(ifc_nand_ctrl); + } + mutex_unlock(&fsl_ifc_nand_mutex); + + return 0; +} + +static const struct of_device_id fsl_ifc_nand_match[] = { + { + .compatible = "fsl,ifc-nand", + }, + {} +}; + +static struct platform_driver fsl_ifc_nand_driver = { + .driver = { + .name = "fsl,ifc-nand", + .owner = THIS_MODULE, + .of_match_table = fsl_ifc_nand_match, + }, + .probe = fsl_ifc_nand_probe, + .remove = fsl_ifc_nand_remove, +}; + +static int __init fsl_ifc_nand_init(void) +{ + int ret; + + ret = platform_driver_register(&fsl_ifc_nand_driver); + if (ret) + printk(KERN_ERR "fsl-ifc: Failed to register platform" + "driver\n"); + + return ret; +} + +static void __exit fsl_ifc_nand_exit(void) +{ + platform_driver_unregister(&fsl_ifc_nand_driver); +} + +module_init(fsl_ifc_nand_init); +module_exit(fsl_ifc_nand_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Freescale"); +MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver"); diff --git a/drivers/mtd/onenand/Kconfig b/drivers/mtd/onenand/Kconfig index 772ad29..91467bb 100644 --- a/drivers/mtd/onenand/Kconfig +++ b/drivers/mtd/onenand/Kconfig @@ -1,6 +1,7 @@ menuconfig MTD_ONENAND tristate "OneNAND Device Support" depends on MTD + depends on HAS_IOMEM help This enables support for accessing all type of OneNAND flash devices. For further information see diff --git a/drivers/mtd/ubi/build.c b/drivers/mtd/ubi/build.c index 115749f..0fde9fc 100644 --- a/drivers/mtd/ubi/build.c +++ b/drivers/mtd/ubi/build.c @@ -945,12 +945,8 @@ int ubi_attach_mtd_dev(struct mtd_info *mtd, int ubi_num, int vid_hdr_offset) goto out_free; err = -ENOMEM; - ubi->peb_buf1 = vmalloc(ubi->peb_size); - if (!ubi->peb_buf1) - goto out_free; - - ubi->peb_buf2 = vmalloc(ubi->peb_size); - if (!ubi->peb_buf2) + ubi->peb_buf = vmalloc(ubi->peb_size); + if (!ubi->peb_buf) goto out_free; err = ubi_debugging_init_dev(ubi); @@ -1029,8 +1025,7 @@ out_detach: out_debugging: ubi_debugging_exit_dev(ubi); out_free: - vfree(ubi->peb_buf1); - vfree(ubi->peb_buf2); + vfree(ubi->peb_buf); if (ref) put_device(&ubi->dev); else @@ -1101,8 +1096,7 @@ int ubi_detach_mtd_dev(int ubi_num, int anyway) vfree(ubi->vtbl); put_mtd_device(ubi->mtd); ubi_debugging_exit_dev(ubi); - vfree(ubi->peb_buf1); - vfree(ubi->peb_buf2); + vfree(ubi->peb_buf); ubi_msg("mtd%d is detached from ubi%d", ubi->mtd->index, ubi->ubi_num); put_device(&ubi->dev); return 0; diff --git a/drivers/mtd/ubi/eba.c b/drivers/mtd/ubi/eba.c index cd26da8..2455d62 100644 --- a/drivers/mtd/ubi/eba.c +++ b/drivers/mtd/ubi/eba.c @@ -529,18 +529,18 @@ retry: data_size = offset + len; mutex_lock(&ubi->buf_mutex); - memset(ubi->peb_buf1 + offset, 0xFF, len); + memset(ubi->peb_buf + offset, 0xFF, len); /* Read everything before the area where the write failure happened */ if (offset > 0) { - err = ubi_io_read_data(ubi, ubi->peb_buf1, pnum, 0, offset); + err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); if (err && err != UBI_IO_BITFLIPS) goto out_unlock; } - memcpy(ubi->peb_buf1 + offset, buf, len); + memcpy(ubi->peb_buf + offset, buf, len); - err = ubi_io_write_data(ubi, ubi->peb_buf1, new_pnum, 0, data_size); + err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); if (err) { mutex_unlock(&ubi->buf_mutex); goto write_error; @@ -979,7 +979,7 @@ static int is_error_sane(int err) * physical eraseblock @to. The @vid_hdr buffer may be changed by this * function. Returns: * o %0 in case of success; - * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_CANCEL_BITFLIPS, etc; + * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; * o a negative error code in case of failure. */ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, @@ -1053,13 +1053,13 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, /* * OK, now the LEB is locked and we can safely start moving it. Since - * this function utilizes the @ubi->peb_buf1 buffer which is shared + * this function utilizes the @ubi->peb_buf buffer which is shared * with some other functions - we lock the buffer by taking the * @ubi->buf_mutex. */ mutex_lock(&ubi->buf_mutex); dbg_wl("read %d bytes of data", aldata_size); - err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size); + err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); if (err && err != UBI_IO_BITFLIPS) { ubi_warn("error %d while reading data from PEB %d", err, from); @@ -1079,10 +1079,10 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, */ if (vid_hdr->vol_type == UBI_VID_DYNAMIC) aldata_size = data_size = - ubi_calc_data_len(ubi, ubi->peb_buf1, data_size); + ubi_calc_data_len(ubi, ubi->peb_buf, data_size); cond_resched(); - crc = crc32(UBI_CRC32_INIT, ubi->peb_buf1, data_size); + crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); cond_resched(); /* @@ -1116,12 +1116,12 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, if (is_error_sane(err)) err = MOVE_TARGET_RD_ERR; } else - err = MOVE_CANCEL_BITFLIPS; + err = MOVE_TARGET_BITFLIPS; goto out_unlock_buf; } if (data_size > 0) { - err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size); + err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); if (err) { if (err == -EIO) err = MOVE_TARGET_WR_ERR; @@ -1134,8 +1134,8 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, * We've written the data and are going to read it back to make * sure it was written correctly. */ - - err = ubi_io_read_data(ubi, ubi->peb_buf2, to, 0, aldata_size); + memset(ubi->peb_buf, 0xFF, aldata_size); + err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size); if (err) { if (err != UBI_IO_BITFLIPS) { ubi_warn("error %d while reading data back " @@ -1143,13 +1143,13 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, if (is_error_sane(err)) err = MOVE_TARGET_RD_ERR; } else - err = MOVE_CANCEL_BITFLIPS; + err = MOVE_TARGET_BITFLIPS; goto out_unlock_buf; } cond_resched(); - if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) { + if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) { ubi_warn("read data back from PEB %d and it is " "different", to); err = -EINVAL; diff --git a/drivers/mtd/ubi/io.c b/drivers/mtd/ubi/io.c index 5cde4e5..43f1a00 100644 --- a/drivers/mtd/ubi/io.c +++ b/drivers/mtd/ubi/io.c @@ -431,11 +431,11 @@ static int torture_peb(struct ubi_device *ubi, int pnum) goto out; /* Make sure the PEB contains only 0xFF bytes */ - err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); + err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); if (err) goto out; - err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size); + err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size); if (err == 0) { ubi_err("erased PEB %d, but a non-0xFF byte found", pnum); @@ -444,17 +444,17 @@ static int torture_peb(struct ubi_device *ubi, int pnum) } /* Write a pattern and check it */ - memset(ubi->peb_buf1, patterns[i], ubi->peb_size); - err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); + memset(ubi->peb_buf, patterns[i], ubi->peb_size); + err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); if (err) goto out; - memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size); - err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size); + memset(ubi->peb_buf, ~patterns[i], ubi->peb_size); + err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); if (err) goto out; - err = ubi_check_pattern(ubi->peb_buf1, patterns[i], + err = ubi_check_pattern(ubi->peb_buf, patterns[i], ubi->peb_size); if (err == 0) { ubi_err("pattern %x checking failed for PEB %d", diff --git a/drivers/mtd/ubi/scan.c b/drivers/mtd/ubi/scan.c index 0cb17d9..12c43b4 100644 --- a/drivers/mtd/ubi/scan.c +++ b/drivers/mtd/ubi/scan.c @@ -789,9 +789,9 @@ static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, int err; mutex_lock(&ubi->buf_mutex); - memset(ubi->peb_buf1, 0x00, ubi->leb_size); + memset(ubi->peb_buf, 0x00, ubi->leb_size); - err = ubi_io_read(ubi, ubi->peb_buf1, pnum, ubi->leb_start, + err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start, ubi->leb_size); if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) { /* @@ -808,7 +808,7 @@ static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, if (err) goto out_unlock; - if (ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->leb_size)) + if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size)) goto out_unlock; ubi_err("PEB %d contains corrupted VID header, and the data does not " @@ -818,7 +818,7 @@ static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr, dbg_msg("hexdump of PEB %d offset %d, length %d", pnum, ubi->leb_start, ubi->leb_size); ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, - ubi->peb_buf1, ubi->leb_size, 1); + ubi->peb_buf, ubi->leb_size, 1); err = 1; out_unlock: @@ -1174,7 +1174,7 @@ struct ubi_scan_info *ubi_scan(struct ubi_device *ubi) ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL); if (!ech) - goto out_slab; + goto out_si; vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL); if (!vidh) @@ -1235,8 +1235,6 @@ out_vidh: ubi_free_vid_hdr(ubi, vidh); out_ech: kfree(ech); -out_slab: - kmem_cache_destroy(si->scan_leb_slab); out_si: ubi_scan_destroy_si(si); return ERR_PTR(err); @@ -1325,7 +1323,9 @@ void ubi_scan_destroy_si(struct ubi_scan_info *si) } } - kmem_cache_destroy(si->scan_leb_slab); + if (si->scan_leb_slab) + kmem_cache_destroy(si->scan_leb_slab); + kfree(si); } diff --git a/drivers/mtd/ubi/ubi.h b/drivers/mtd/ubi/ubi.h index d51d75d..b162790 100644 --- a/drivers/mtd/ubi/ubi.h +++ b/drivers/mtd/ubi/ubi.h @@ -118,7 +118,7 @@ enum { * PEB * MOVE_TARGET_WR_ERR: canceled because there was a write error to the target * PEB - * MOVE_CANCEL_BITFLIPS: canceled because a bit-flip was detected in the + * MOVE_TARGET_BITFLIPS: canceled because a bit-flip was detected in the * target PEB * MOVE_RETRY: retry scrubbing the PEB */ @@ -127,7 +127,7 @@ enum { MOVE_SOURCE_RD_ERR, MOVE_TARGET_RD_ERR, MOVE_TARGET_WR_ERR, - MOVE_CANCEL_BITFLIPS, + MOVE_TARGET_BITFLIPS, MOVE_RETRY, }; @@ -387,9 +387,8 @@ struct ubi_wl_entry; * time (MTD write buffer size) * @mtd: MTD device descriptor * - * @peb_buf1: a buffer of PEB size used for different purposes - * @peb_buf2: another buffer of PEB size used for different purposes - * @buf_mutex: protects @peb_buf1 and @peb_buf2 + * @peb_buf: a buffer of PEB size used for different purposes + * @buf_mutex: protects @peb_buf * @ckvol_mutex: serializes static volume checking when opening * * @dbg: debugging information for this UBI device @@ -471,8 +470,7 @@ struct ubi_device { int max_write_size; struct mtd_info *mtd; - void *peb_buf1; - void *peb_buf2; + void *peb_buf; struct mutex buf_mutex; struct mutex ckvol_mutex; diff --git a/drivers/mtd/ubi/wl.c b/drivers/mtd/ubi/wl.c index 0696e36..7c1a9bf 100644 --- a/drivers/mtd/ubi/wl.c +++ b/drivers/mtd/ubi/wl.c @@ -350,18 +350,19 @@ static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) /** * find_wl_entry - find wear-leveling entry closest to certain erase counter. * @root: the RB-tree where to look for - * @max: highest possible erase counter + * @diff: maximum possible difference from the smallest erase counter * * This function looks for a wear leveling entry with erase counter closest to - * @max and less than @max. + * min + @diff, where min is the smallest erase counter. */ -static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) +static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int diff) { struct rb_node *p; struct ubi_wl_entry *e; + int max; e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); - max += e->ec; + max = e->ec + diff; p = root->rb_node; while (p) { @@ -389,7 +390,7 @@ static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) */ int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) { - int err, medium_ec; + int err; struct ubi_wl_entry *e, *first, *last; ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || @@ -427,7 +428,7 @@ retry: * For unknown data we pick a physical eraseblock with medium * erase counter. But we by no means can pick a physical * eraseblock with erase counter greater or equivalent than the - * lowest erase counter plus %WL_FREE_MAX_DIFF. + * lowest erase counter plus %WL_FREE_MAX_DIFF/2. */ first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb); @@ -436,10 +437,8 @@ retry: if (last->ec - first->ec < WL_FREE_MAX_DIFF) e = rb_entry(ubi->free.rb_node, struct ubi_wl_entry, u.rb); - else { - medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; - e = find_wl_entry(&ubi->free, medium_ec); - } + else + e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF/2); break; case UBI_SHORTTERM: /* @@ -799,7 +798,7 @@ static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, scrubbing = 1; goto out_not_moved; } - if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR || + if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || err == MOVE_TARGET_RD_ERR) { /* * Target PEB had bit-flips or write error - torture it. |