summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/ubi/eba.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/ubi/eba.c')
-rw-r--r--drivers/mtd/ubi/eba.c321
1 files changed, 173 insertions, 148 deletions
diff --git a/drivers/mtd/ubi/eba.c b/drivers/mtd/ubi/eba.c
index 880fa36..7ce91ca 100644
--- a/drivers/mtd/ubi/eba.c
+++ b/drivers/mtd/ubi/eba.c
@@ -31,7 +31,7 @@
* logical eraseblock it is locked for reading or writing. The per-logical
* eraseblock locking is implemented by means of the lock tree. The lock tree
* is an RB-tree which refers all the currently locked logical eraseblocks. The
- * lock tree elements are &struct ltree_entry objects. They are indexed by
+ * lock tree elements are &struct ubi_ltree_entry objects. They are indexed by
* (@vol_id, @lnum) pairs.
*
* EBA also maintains the global sequence counter which is incremented each
@@ -50,29 +50,6 @@
#define EBA_RESERVED_PEBS 1
/**
- * struct ltree_entry - an entry in the lock tree.
- * @rb: links RB-tree nodes
- * @vol_id: volume ID of the locked logical eraseblock
- * @lnum: locked logical eraseblock number
- * @users: how many tasks are using this logical eraseblock or wait for it
- * @mutex: read/write mutex to implement read/write access serialization to
- * the (@vol_id, @lnum) logical eraseblock
- *
- * When a logical eraseblock is being locked - corresponding &struct ltree_entry
- * object is inserted to the lock tree (@ubi->ltree).
- */
-struct ltree_entry {
- struct rb_node rb;
- int vol_id;
- int lnum;
- int users;
- struct rw_semaphore mutex;
-};
-
-/* Slab cache for lock-tree entries */
-static struct kmem_cache *ltree_slab;
-
-/**
* next_sqnum - get next sequence number.
* @ubi: UBI device description object
*
@@ -101,7 +78,7 @@ static unsigned long long next_sqnum(struct ubi_device *ubi)
*/
static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
{
- if (vol_id == UBI_LAYOUT_VOL_ID)
+ if (vol_id == UBI_LAYOUT_VOLUME_ID)
return UBI_LAYOUT_VOLUME_COMPAT;
return 0;
}
@@ -112,20 +89,20 @@ static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
* @vol_id: volume ID
* @lnum: logical eraseblock number
*
- * This function returns a pointer to the corresponding &struct ltree_entry
+ * This function returns a pointer to the corresponding &struct ubi_ltree_entry
* object if the logical eraseblock is locked and %NULL if it is not.
* @ubi->ltree_lock has to be locked.
*/
-static struct ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
- int lnum)
+static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
+ int lnum)
{
struct rb_node *p;
p = ubi->ltree.rb_node;
while (p) {
- struct ltree_entry *le;
+ struct ubi_ltree_entry *le;
- le = rb_entry(p, struct ltree_entry, rb);
+ le = rb_entry(p, struct ubi_ltree_entry, rb);
if (vol_id < le->vol_id)
p = p->rb_left;
@@ -155,15 +132,17 @@ static struct ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
* Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
* failed.
*/
-static struct ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id,
- int lnum)
+static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
+ int vol_id, int lnum)
{
- struct ltree_entry *le, *le1, *le_free;
+ struct ubi_ltree_entry *le, *le1, *le_free;
- le = kmem_cache_alloc(ltree_slab, GFP_NOFS);
+ le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
if (!le)
return ERR_PTR(-ENOMEM);
+ le->users = 0;
+ init_rwsem(&le->mutex);
le->vol_id = vol_id;
le->lnum = lnum;
@@ -189,7 +168,7 @@ static struct ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id,
p = &ubi->ltree.rb_node;
while (*p) {
parent = *p;
- le1 = rb_entry(parent, struct ltree_entry, rb);
+ le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
if (vol_id < le1->vol_id)
p = &(*p)->rb_left;
@@ -211,7 +190,7 @@ static struct ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id,
spin_unlock(&ubi->ltree_lock);
if (le_free)
- kmem_cache_free(ltree_slab, le_free);
+ kfree(le_free);
return le;
}
@@ -227,7 +206,7 @@ static struct ltree_entry *ltree_add_entry(struct ubi_device *ubi, int vol_id,
*/
static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
{
- struct ltree_entry *le;
+ struct ubi_ltree_entry *le;
le = ltree_add_entry(ubi, vol_id, lnum);
if (IS_ERR(le))
@@ -245,7 +224,7 @@ static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
{
int free = 0;
- struct ltree_entry *le;
+ struct ubi_ltree_entry *le;
spin_lock(&ubi->ltree_lock);
le = ltree_lookup(ubi, vol_id, lnum);
@@ -259,7 +238,7 @@ static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
up_read(&le->mutex);
if (free)
- kmem_cache_free(ltree_slab, le);
+ kfree(le);
}
/**
@@ -273,7 +252,7 @@ static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
*/
static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
{
- struct ltree_entry *le;
+ struct ubi_ltree_entry *le;
le = ltree_add_entry(ubi, vol_id, lnum);
if (IS_ERR(le))
@@ -283,6 +262,44 @@ static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
}
/**
+ * leb_write_lock - lock logical eraseblock for writing.
+ * @ubi: UBI device description object
+ * @vol_id: volume ID
+ * @lnum: logical eraseblock number
+ *
+ * This function locks a logical eraseblock for writing if there is no
+ * contention and does nothing if there is contention. Returns %0 in case of
+ * success, %1 in case of contention, and and a negative error code in case of
+ * failure.
+ */
+static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
+{
+ int free;
+ struct ubi_ltree_entry *le;
+
+ le = ltree_add_entry(ubi, vol_id, lnum);
+ if (IS_ERR(le))
+ return PTR_ERR(le);
+ if (down_write_trylock(&le->mutex))
+ return 0;
+
+ /* Contention, cancel */
+ spin_lock(&ubi->ltree_lock);
+ le->users -= 1;
+ ubi_assert(le->users >= 0);
+ if (le->users == 0) {
+ rb_erase(&le->rb, &ubi->ltree);
+ free = 1;
+ } else
+ free = 0;
+ spin_unlock(&ubi->ltree_lock);
+ if (free)
+ kfree(le);
+
+ return 1;
+}
+
+/**
* leb_write_unlock - unlock logical eraseblock.
* @ubi: UBI device description object
* @vol_id: volume ID
@@ -291,7 +308,7 @@ static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
{
int free;
- struct ltree_entry *le;
+ struct ubi_ltree_entry *le;
spin_lock(&ubi->ltree_lock);
le = ltree_lookup(ubi, vol_id, lnum);
@@ -306,23 +323,23 @@ static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
up_write(&le->mutex);
if (free)
- kmem_cache_free(ltree_slab, le);
+ kfree(le);
}
/**
* ubi_eba_unmap_leb - un-map logical eraseblock.
* @ubi: UBI device description object
- * @vol_id: volume ID
+ * @vol: volume description object
* @lnum: logical eraseblock number
*
* This function un-maps logical eraseblock @lnum and schedules corresponding
* physical eraseblock for erasure. Returns zero in case of success and a
* negative error code in case of failure.
*/
-int ubi_eba_unmap_leb(struct ubi_device *ubi, int vol_id, int lnum)
+int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
+ int lnum)
{
- int idx = vol_id2idx(ubi, vol_id), err, pnum;
- struct ubi_volume *vol = ubi->volumes[idx];
+ int err, pnum, vol_id = vol->vol_id;
if (ubi->ro_mode)
return -EROFS;
@@ -349,7 +366,7 @@ out_unlock:
/**
* ubi_eba_read_leb - read data.
* @ubi: UBI device description object
- * @vol_id: volume ID
+ * @vol: volume description object
* @lnum: logical eraseblock number
* @buf: buffer to store the read data
* @offset: offset from where to read
@@ -365,12 +382,11 @@ out_unlock:
* returned for any volume type if an ECC error was detected by the MTD device
* driver. Other negative error cored may be returned in case of other errors.
*/
-int ubi_eba_read_leb(struct ubi_device *ubi, int vol_id, int lnum, void *buf,
- int offset, int len, int check)
+int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
+ void *buf, int offset, int len, int check)
{
- int err, pnum, scrub = 0, idx = vol_id2idx(ubi, vol_id);
+ int err, pnum, scrub = 0, vol_id = vol->vol_id;
struct ubi_vid_hdr *vid_hdr;
- struct ubi_volume *vol = ubi->volumes[idx];
uint32_t uninitialized_var(crc);
err = leb_read_lock(ubi, vol_id, lnum);
@@ -578,7 +594,7 @@ write_error:
/**
* ubi_eba_write_leb - write data to dynamic volume.
* @ubi: UBI device description object
- * @vol_id: volume ID
+ * @vol: volume description object
* @lnum: logical eraseblock number
* @buf: the data to write
* @offset: offset within the logical eraseblock where to write
@@ -586,15 +602,14 @@ write_error:
* @dtype: data type
*
* This function writes data to logical eraseblock @lnum of a dynamic volume
- * @vol_id. Returns zero in case of success and a negative error code in case
+ * @vol. Returns zero in case of success and a negative error code in case
* of failure. In case of error, it is possible that something was still
* written to the flash media, but may be some garbage.
*/
-int ubi_eba_write_leb(struct ubi_device *ubi, int vol_id, int lnum,
+int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
const void *buf, int offset, int len, int dtype)
{
- int idx = vol_id2idx(ubi, vol_id), err, pnum, tries = 0;
- struct ubi_volume *vol = ubi->volumes[idx];
+ int err, pnum, tries = 0, vol_id = vol->vol_id;
struct ubi_vid_hdr *vid_hdr;
if (ubi->ro_mode)
@@ -613,7 +628,8 @@ int ubi_eba_write_leb(struct ubi_device *ubi, int vol_id, int lnum,
if (err) {
ubi_warn("failed to write data to PEB %d", pnum);
if (err == -EIO && ubi->bad_allowed)
- err = recover_peb(ubi, pnum, vol_id, lnum, buf, offset, len);
+ err = recover_peb(ubi, pnum, vol_id, lnum, buf,
+ offset, len);
if (err)
ubi_ro_mode(ubi);
}
@@ -656,11 +672,14 @@ retry:
goto write_error;
}
- err = ubi_io_write_data(ubi, buf, pnum, offset, len);
- if (err) {
- ubi_warn("failed to write %d bytes at offset %d of LEB %d:%d, "
- "PEB %d", len, offset, vol_id, lnum, pnum);
- goto write_error;
+ if (len) {
+ err = ubi_io_write_data(ubi, buf, pnum, offset, len);
+ if (err) {
+ ubi_warn("failed to write %d bytes at offset %d of "
+ "LEB %d:%d, PEB %d", len, offset, vol_id,
+ lnum, pnum);
+ goto write_error;
+ }
}
vol->eba_tbl[lnum] = pnum;
@@ -698,7 +717,7 @@ write_error:
/**
* ubi_eba_write_leb_st - write data to static volume.
* @ubi: UBI device description object
- * @vol_id: volume ID
+ * @vol: volume description object
* @lnum: logical eraseblock number
* @buf: data to write
* @len: how many bytes to write
@@ -706,7 +725,7 @@ write_error:
* @used_ebs: how many logical eraseblocks will this volume contain
*
* This function writes data to logical eraseblock @lnum of static volume
- * @vol_id. The @used_ebs argument should contain total number of logical
+ * @vol. The @used_ebs argument should contain total number of logical
* eraseblock in this static volume.
*
* When writing to the last logical eraseblock, the @len argument doesn't have
@@ -718,12 +737,11 @@ write_error:
* volumes. This function returns zero in case of success and a negative error
* code in case of failure.
*/
-int ubi_eba_write_leb_st(struct ubi_device *ubi, int vol_id, int lnum,
- const void *buf, int len, int dtype, int used_ebs)
+int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
+ int lnum, const void *buf, int len, int dtype,
+ int used_ebs)
{
- int err, pnum, tries = 0, data_size = len;
- int idx = vol_id2idx(ubi, vol_id);
- struct ubi_volume *vol = ubi->volumes[idx];
+ int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
struct ubi_vid_hdr *vid_hdr;
uint32_t crc;
@@ -819,7 +837,7 @@ write_error:
/*
* ubi_eba_atomic_leb_change - change logical eraseblock atomically.
* @ubi: UBI device description object
- * @vol_id: volume ID
+ * @vol: volume description object
* @lnum: logical eraseblock number
* @buf: data to write
* @len: how many bytes to write
@@ -834,17 +852,27 @@ write_error:
* UBI reserves one LEB for the "atomic LEB change" operation, so only one
* LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
*/
-int ubi_eba_atomic_leb_change(struct ubi_device *ubi, int vol_id, int lnum,
- const void *buf, int len, int dtype)
+int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
+ int lnum, const void *buf, int len, int dtype)
{
- int err, pnum, tries = 0, idx = vol_id2idx(ubi, vol_id);
- struct ubi_volume *vol = ubi->volumes[idx];
+ int err, pnum, tries = 0, vol_id = vol->vol_id;
struct ubi_vid_hdr *vid_hdr;
uint32_t crc;
if (ubi->ro_mode)
return -EROFS;
+ if (len == 0) {
+ /*
+ * Special case when data length is zero. In this case the LEB
+ * has to be unmapped and mapped somewhere else.
+ */
+ err = ubi_eba_unmap_leb(ubi, vol, lnum);
+ if (err)
+ return err;
+ return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0, dtype);
+ }
+
vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
if (!vid_hdr)
return -ENOMEM;
@@ -928,20 +956,6 @@ write_error:
}
/**
- * ltree_entry_ctor - lock tree entries slab cache constructor.
- * @obj: the lock-tree entry to construct
- * @cache: the lock tree entry slab cache
- * @flags: constructor flags
- */
-static void ltree_entry_ctor(struct kmem_cache *cache, void *obj)
-{
- struct ltree_entry *le = obj;
-
- le->users = 0;
- init_rwsem(&le->mutex);
-}
-
-/**
* ubi_eba_copy_leb - copy logical eraseblock.
* @ubi: UBI device description object
* @from: physical eraseblock number from where to copy
@@ -950,14 +964,16 @@ static void ltree_entry_ctor(struct kmem_cache *cache, void *obj)
*
* This function copies logical eraseblock from physical eraseblock @from to
* physical eraseblock @to. The @vid_hdr buffer may be changed by this
- * function. Returns zero in case of success, %UBI_IO_BITFLIPS if the operation
- * was canceled because bit-flips were detected at the target PEB, and a
- * negative error code in case of failure.
+ * function. Returns:
+ * o %0 in case of success;
+ * o %1 if the operation was canceled and should be tried later (e.g.,
+ * because a bit-flip was detected at the target PEB);
+ * o %2 if the volume is being deleted and this LEB should not be moved.
*/
int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
struct ubi_vid_hdr *vid_hdr)
{
- int err, vol_id, lnum, data_size, aldata_size, pnum, idx;
+ int err, vol_id, lnum, data_size, aldata_size, idx;
struct ubi_volume *vol;
uint32_t crc;
@@ -973,51 +989,67 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
data_size = aldata_size =
ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
- /*
- * We do not want anybody to write to this logical eraseblock while we
- * are moving it, so we lock it.
- */
- err = leb_write_lock(ubi, vol_id, lnum);
- if (err)
- return err;
-
- mutex_lock(&ubi->buf_mutex);
-
- /*
- * But the logical eraseblock might have been put by this time.
- * Cancel if it is true.
- */
idx = vol_id2idx(ubi, vol_id);
-
+ spin_lock(&ubi->volumes_lock);
/*
- * We may race with volume deletion/re-size, so we have to hold
- * @ubi->volumes_lock.
+ * Note, we may race with volume deletion, which means that the volume
+ * this logical eraseblock belongs to might be being deleted. Since the
+ * volume deletion unmaps all the volume's logical eraseblocks, it will
+ * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
*/
- spin_lock(&ubi->volumes_lock);
vol = ubi->volumes[idx];
if (!vol) {
- dbg_eba("volume %d was removed meanwhile", vol_id);
+ /* No need to do further work, cancel */
+ dbg_eba("volume %d is being removed, cancel", vol_id);
spin_unlock(&ubi->volumes_lock);
- goto out_unlock;
+ return 2;
}
+ spin_unlock(&ubi->volumes_lock);
- pnum = vol->eba_tbl[lnum];
- if (pnum != from) {
- dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
- "PEB %d, cancel", vol_id, lnum, from, pnum);
- spin_unlock(&ubi->volumes_lock);
- goto out_unlock;
+ /*
+ * We do not want anybody to write to this logical eraseblock while we
+ * are moving it, so lock it.
+ *
+ * Note, we are using non-waiting locking here, because we cannot sleep
+ * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
+ * unmapping the LEB which is mapped to the PEB we are going to move
+ * (@from). This task locks the LEB and goes sleep in the
+ * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
+ * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
+ * LEB is already locked, we just do not move it and return %1.
+ */
+ err = leb_write_trylock(ubi, vol_id, lnum);
+ if (err) {
+ dbg_eba("contention on LEB %d:%d, cancel", vol_id, lnum);
+ return err;
}
- spin_unlock(&ubi->volumes_lock);
- /* OK, now the LEB is locked and we can safely start moving it */
+ /*
+ * The LEB might have been put meanwhile, and the task which put it is
+ * probably waiting on @ubi->move_mutex. No need to continue the work,
+ * cancel it.
+ */
+ if (vol->eba_tbl[lnum] != from) {
+ dbg_eba("LEB %d:%d is no longer mapped to PEB %d, mapped to "
+ "PEB %d, cancel", vol_id, lnum, from,
+ vol->eba_tbl[lnum]);
+ err = 1;
+ goto out_unlock_leb;
+ }
+ /*
+ * OK, now the LEB is locked and we can safely start moving iy. Since
+ * this function utilizes thie @ubi->peb1_buf buffer which is shared
+ * with some other functions, so lock the buffer by taking the
+ * @ubi->buf_mutex.
+ */
+ mutex_lock(&ubi->buf_mutex);
dbg_eba("read %d bytes of data", aldata_size);
err = ubi_io_read_data(ubi, ubi->peb_buf1, from, 0, aldata_size);
if (err && err != UBI_IO_BITFLIPS) {
ubi_warn("error %d while reading data from PEB %d",
err, from);
- goto out_unlock;
+ goto out_unlock_buf;
}
/*
@@ -1053,7 +1085,7 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
if (err)
- goto out_unlock;
+ goto out_unlock_buf;
cond_resched();
@@ -1062,13 +1094,15 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
if (err) {
if (err != UBI_IO_BITFLIPS)
ubi_warn("cannot read VID header back from PEB %d", to);
- goto out_unlock;
+ else
+ err = 1;
+ goto out_unlock_buf;
}
if (data_size > 0) {
err = ubi_io_write_data(ubi, ubi->peb_buf1, to, 0, aldata_size);
if (err)
- goto out_unlock;
+ goto out_unlock_buf;
cond_resched();
@@ -1082,7 +1116,9 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
if (err != UBI_IO_BITFLIPS)
ubi_warn("cannot read data back from PEB %d",
to);
- goto out_unlock;
+ else
+ err = 1;
+ goto out_unlock_buf;
}
cond_resched();
@@ -1090,15 +1126,16 @@ int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
if (memcmp(ubi->peb_buf1, ubi->peb_buf2, aldata_size)) {
ubi_warn("read data back from PEB %d - it is different",
to);
- goto out_unlock;
+ goto out_unlock_buf;
}
}
ubi_assert(vol->eba_tbl[lnum] == from);
vol->eba_tbl[lnum] = to;
-out_unlock:
+out_unlock_buf:
mutex_unlock(&ubi->buf_mutex);
+out_unlock_leb:
leb_write_unlock(ubi, vol_id, lnum);
return err;
}
@@ -1125,14 +1162,6 @@ int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
mutex_init(&ubi->alc_mutex);
ubi->ltree = RB_ROOT;
- if (ubi_devices_cnt == 0) {
- ltree_slab = kmem_cache_create("ubi_ltree_slab",
- sizeof(struct ltree_entry), 0,
- 0, &ltree_entry_ctor);
- if (!ltree_slab)
- return -ENOMEM;
- }
-
ubi->global_sqnum = si->max_sqnum + 1;
num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
@@ -1168,6 +1197,15 @@ int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
}
}
+ if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
+ ubi_err("no enough physical eraseblocks (%d, need %d)",
+ ubi->avail_pebs, EBA_RESERVED_PEBS);
+ err = -ENOSPC;
+ goto out_free;
+ }
+ ubi->avail_pebs -= EBA_RESERVED_PEBS;
+ ubi->rsvd_pebs += EBA_RESERVED_PEBS;
+
if (ubi->bad_allowed) {
ubi_calculate_reserved(ubi);
@@ -1184,15 +1222,6 @@ int ubi_eba_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
}
- if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
- ubi_err("no enough physical eraseblocks (%d, need %d)",
- ubi->avail_pebs, EBA_RESERVED_PEBS);
- err = -ENOSPC;
- goto out_free;
- }
- ubi->avail_pebs -= EBA_RESERVED_PEBS;
- ubi->rsvd_pebs += EBA_RESERVED_PEBS;
-
dbg_eba("EBA unit is initialized");
return 0;
@@ -1202,8 +1231,6 @@ out_free:
continue;
kfree(ubi->volumes[i]->eba_tbl);
}
- if (ubi_devices_cnt == 0)
- kmem_cache_destroy(ltree_slab);
return err;
}
@@ -1222,6 +1249,4 @@ void ubi_eba_close(const struct ubi_device *ubi)
continue;
kfree(ubi->volumes[i]->eba_tbl);
}
- if (ubi_devices_cnt == 1)
- kmem_cache_destroy(ltree_slab);
}
OpenPOWER on IntegriCloud