diff options
Diffstat (limited to 'drivers/mtd/chips/cfi_cmdset_0001.c')
-rw-r--r-- | drivers/mtd/chips/cfi_cmdset_0001.c | 2160 |
1 files changed, 2160 insertions, 0 deletions
diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c new file mode 100644 index 0000000..c268bcd --- /dev/null +++ b/drivers/mtd/chips/cfi_cmdset_0001.c @@ -0,0 +1,2160 @@ +/* + * Common Flash Interface support: + * Intel Extended Vendor Command Set (ID 0x0001) + * + * (C) 2000 Red Hat. GPL'd + * + * $Id: cfi_cmdset_0001.c,v 1.164 2004/11/16 18:29:00 dwmw2 Exp $ + * + * + * 10/10/2000 Nicolas Pitre <nico@cam.org> + * - completely revamped method functions so they are aware and + * independent of the flash geometry (buswidth, interleave, etc.) + * - scalability vs code size is completely set at compile-time + * (see include/linux/mtd/cfi.h for selection) + * - optimized write buffer method + * 02/05/2002 Christopher Hoover <ch@hpl.hp.com>/<ch@murgatroid.com> + * - reworked lock/unlock/erase support for var size flash + */ + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/init.h> +#include <asm/io.h> +#include <asm/byteorder.h> + +#include <linux/errno.h> +#include <linux/slab.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/mtd/xip.h> +#include <linux/mtd/map.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/compatmac.h> +#include <linux/mtd/cfi.h> + +/* #define CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE */ +/* #define CMDSET0001_DISABLE_WRITE_SUSPEND */ + +// debugging, turns off buffer write mode if set to 1 +#define FORCE_WORD_WRITE 0 + +#define MANUFACTURER_INTEL 0x0089 +#define I82802AB 0x00ad +#define I82802AC 0x00ac +#define MANUFACTURER_ST 0x0020 +#define M50LPW080 0x002F + +static int cfi_intelext_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +//static int cfi_intelext_read_user_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +//static int cfi_intelext_read_fact_prot_reg (struct mtd_info *, loff_t, size_t, size_t *, u_char *); +static int cfi_intelext_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int cfi_intelext_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); +static int cfi_intelext_erase_varsize(struct mtd_info *, struct erase_info *); +static void cfi_intelext_sync (struct mtd_info *); +static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len); +static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len); +static int cfi_intelext_suspend (struct mtd_info *); +static void cfi_intelext_resume (struct mtd_info *); + +static void cfi_intelext_destroy(struct mtd_info *); + +struct mtd_info *cfi_cmdset_0001(struct map_info *, int); + +static struct mtd_info *cfi_intelext_setup (struct mtd_info *); +static int cfi_intelext_partition_fixup(struct mtd_info *, struct cfi_private **); + +static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char **mtdbuf); +static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, + size_t len); + +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); +#include "fwh_lock.h" + + + +/* + * *********** SETUP AND PROBE BITS *********** + */ + +static struct mtd_chip_driver cfi_intelext_chipdrv = { + .probe = NULL, /* Not usable directly */ + .destroy = cfi_intelext_destroy, + .name = "cfi_cmdset_0001", + .module = THIS_MODULE +}; + +/* #define DEBUG_LOCK_BITS */ +/* #define DEBUG_CFI_FEATURES */ + +#ifdef DEBUG_CFI_FEATURES +static void cfi_tell_features(struct cfi_pri_intelext *extp) +{ + int i; + printk(" Feature/Command Support: %4.4X\n", extp->FeatureSupport); + printk(" - Chip Erase: %s\n", extp->FeatureSupport&1?"supported":"unsupported"); + printk(" - Suspend Erase: %s\n", extp->FeatureSupport&2?"supported":"unsupported"); + printk(" - Suspend Program: %s\n", extp->FeatureSupport&4?"supported":"unsupported"); + printk(" - Legacy Lock/Unlock: %s\n", extp->FeatureSupport&8?"supported":"unsupported"); + printk(" - Queued Erase: %s\n", extp->FeatureSupport&16?"supported":"unsupported"); + printk(" - Instant block lock: %s\n", extp->FeatureSupport&32?"supported":"unsupported"); + printk(" - Protection Bits: %s\n", extp->FeatureSupport&64?"supported":"unsupported"); + printk(" - Page-mode read: %s\n", extp->FeatureSupport&128?"supported":"unsupported"); + printk(" - Synchronous read: %s\n", extp->FeatureSupport&256?"supported":"unsupported"); + printk(" - Simultaneous operations: %s\n", extp->FeatureSupport&512?"supported":"unsupported"); + for (i=10; i<32; i++) { + if (extp->FeatureSupport & (1<<i)) + printk(" - Unknown Bit %X: supported\n", i); + } + + printk(" Supported functions after Suspend: %2.2X\n", extp->SuspendCmdSupport); + printk(" - Program after Erase Suspend: %s\n", extp->SuspendCmdSupport&1?"supported":"unsupported"); + for (i=1; i<8; i++) { + if (extp->SuspendCmdSupport & (1<<i)) + printk(" - Unknown Bit %X: supported\n", i); + } + + printk(" Block Status Register Mask: %4.4X\n", extp->BlkStatusRegMask); + printk(" - Lock Bit Active: %s\n", extp->BlkStatusRegMask&1?"yes":"no"); + printk(" - Valid Bit Active: %s\n", extp->BlkStatusRegMask&2?"yes":"no"); + for (i=2; i<16; i++) { + if (extp->BlkStatusRegMask & (1<<i)) + printk(" - Unknown Bit %X Active: yes\n",i); + } + + printk(" Vcc Logic Supply Optimum Program/Erase Voltage: %d.%d V\n", + extp->VccOptimal >> 4, extp->VccOptimal & 0xf); + if (extp->VppOptimal) + printk(" Vpp Programming Supply Optimum Program/Erase Voltage: %d.%d V\n", + extp->VppOptimal >> 4, extp->VppOptimal & 0xf); +} +#endif + +#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE +/* Some Intel Strata Flash prior to FPO revision C has bugs in this area */ +static void fixup_intel_strataflash(struct mtd_info *mtd, void* param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_amdstd *extp = cfi->cmdset_priv; + + printk(KERN_WARNING "cfi_cmdset_0001: Suspend " + "erase on write disabled.\n"); + extp->SuspendCmdSupport &= ~1; +} +#endif + +#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND +static void fixup_no_write_suspend(struct mtd_info *mtd, void* param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *cfip = cfi->cmdset_priv; + + if (cfip && (cfip->FeatureSupport&4)) { + cfip->FeatureSupport &= ~4; + printk(KERN_WARNING "cfi_cmdset_0001: write suspend disabled\n"); + } +} +#endif + +static void fixup_st_m28w320ct(struct mtd_info *mtd, void* param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + cfi->cfiq->BufWriteTimeoutTyp = 0; /* Not supported */ + cfi->cfiq->BufWriteTimeoutMax = 0; /* Not supported */ +} + +static void fixup_st_m28w320cb(struct mtd_info *mtd, void* param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + + /* Note this is done after the region info is endian swapped */ + cfi->cfiq->EraseRegionInfo[1] = + (cfi->cfiq->EraseRegionInfo[1] & 0xffff0000) | 0x3e; +}; + +static void fixup_use_point(struct mtd_info *mtd, void *param) +{ + struct map_info *map = mtd->priv; + if (!mtd->point && map_is_linear(map)) { + mtd->point = cfi_intelext_point; + mtd->unpoint = cfi_intelext_unpoint; + } +} + +static void fixup_use_write_buffers(struct mtd_info *mtd, void *param) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + if (cfi->cfiq->BufWriteTimeoutTyp) { + printk(KERN_INFO "Using buffer write method\n" ); + mtd->write = cfi_intelext_write_buffers; + } +} + +static struct cfi_fixup cfi_fixup_table[] = { +#ifdef CMDSET0001_DISABLE_ERASE_SUSPEND_ON_WRITE + { CFI_MFR_ANY, CFI_ID_ANY, fixup_intel_strataflash, NULL }, +#endif +#ifdef CMDSET0001_DISABLE_WRITE_SUSPEND + { CFI_MFR_ANY, CFI_ID_ANY, fixup_no_write_suspend, NULL }, +#endif +#if !FORCE_WORD_WRITE + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL }, +#endif + { CFI_MFR_ST, 0x00ba, /* M28W320CT */ fixup_st_m28w320ct, NULL }, + { CFI_MFR_ST, 0x00bb, /* M28W320CB */ fixup_st_m28w320cb, NULL }, + { 0, 0, NULL, NULL } +}; + +static struct cfi_fixup jedec_fixup_table[] = { + { MANUFACTURER_INTEL, I82802AB, fixup_use_fwh_lock, NULL, }, + { MANUFACTURER_INTEL, I82802AC, fixup_use_fwh_lock, NULL, }, + { MANUFACTURER_ST, M50LPW080, fixup_use_fwh_lock, NULL, }, + { 0, 0, NULL, NULL } +}; +static struct cfi_fixup fixup_table[] = { + /* The CFI vendor ids and the JEDEC vendor IDs appear + * to be common. It is like the devices id's are as + * well. This table is to pick all cases where + * we know that is the case. + */ + { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_point, NULL }, + { 0, 0, NULL, NULL } +}; + +static inline struct cfi_pri_intelext * +read_pri_intelext(struct map_info *map, __u16 adr) +{ + struct cfi_pri_intelext *extp; + unsigned int extp_size = sizeof(*extp); + + again: + extp = (struct cfi_pri_intelext *)cfi_read_pri(map, adr, extp_size, "Intel/Sharp"); + if (!extp) + return NULL; + + /* Do some byteswapping if necessary */ + extp->FeatureSupport = le32_to_cpu(extp->FeatureSupport); + extp->BlkStatusRegMask = le16_to_cpu(extp->BlkStatusRegMask); + extp->ProtRegAddr = le16_to_cpu(extp->ProtRegAddr); + + if (extp->MajorVersion == '1' && extp->MinorVersion == '3') { + unsigned int extra_size = 0; + int nb_parts, i; + + /* Protection Register info */ + extra_size += (extp->NumProtectionFields - 1) * (4 + 6); + + /* Burst Read info */ + extra_size += 6; + + /* Number of hardware-partitions */ + extra_size += 1; + if (extp_size < sizeof(*extp) + extra_size) + goto need_more; + nb_parts = extp->extra[extra_size - 1]; + + for (i = 0; i < nb_parts; i++) { + struct cfi_intelext_regioninfo *rinfo; + rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[extra_size]; + extra_size += sizeof(*rinfo); + if (extp_size < sizeof(*extp) + extra_size) + goto need_more; + rinfo->NumIdentPartitions=le16_to_cpu(rinfo->NumIdentPartitions); + extra_size += (rinfo->NumBlockTypes - 1) + * sizeof(struct cfi_intelext_blockinfo); + } + + if (extp_size < sizeof(*extp) + extra_size) { + need_more: + extp_size = sizeof(*extp) + extra_size; + kfree(extp); + if (extp_size > 4096) { + printk(KERN_ERR + "%s: cfi_pri_intelext is too fat\n", + __FUNCTION__); + return NULL; + } + goto again; + } + } + + return extp; +} + +/* This routine is made available to other mtd code via + * inter_module_register. It must only be accessed through + * inter_module_get which will bump the use count of this module. The + * addresses passed back in cfi are valid as long as the use count of + * this module is non-zero, i.e. between inter_module_get and + * inter_module_put. Keith Owens <kaos@ocs.com.au> 29 Oct 2000. + */ +struct mtd_info *cfi_cmdset_0001(struct map_info *map, int primary) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct mtd_info *mtd; + int i; + + mtd = kmalloc(sizeof(*mtd), GFP_KERNEL); + if (!mtd) { + printk(KERN_ERR "Failed to allocate memory for MTD device\n"); + return NULL; + } + memset(mtd, 0, sizeof(*mtd)); + mtd->priv = map; + mtd->type = MTD_NORFLASH; + + /* Fill in the default mtd operations */ + mtd->erase = cfi_intelext_erase_varsize; + mtd->read = cfi_intelext_read; + mtd->write = cfi_intelext_write_words; + mtd->sync = cfi_intelext_sync; + mtd->lock = cfi_intelext_lock; + mtd->unlock = cfi_intelext_unlock; + mtd->suspend = cfi_intelext_suspend; + mtd->resume = cfi_intelext_resume; + mtd->flags = MTD_CAP_NORFLASH; + mtd->name = map->name; + + if (cfi->cfi_mode == CFI_MODE_CFI) { + /* + * It's a real CFI chip, not one for which the probe + * routine faked a CFI structure. So we read the feature + * table from it. + */ + __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; + struct cfi_pri_intelext *extp; + + extp = read_pri_intelext(map, adr); + if (!extp) { + kfree(mtd); + return NULL; + } + + /* Install our own private info structure */ + cfi->cmdset_priv = extp; + + cfi_fixup(mtd, cfi_fixup_table); + +#ifdef DEBUG_CFI_FEATURES + /* Tell the user about it in lots of lovely detail */ + cfi_tell_features(extp); +#endif + + if(extp->SuspendCmdSupport & 1) { + printk(KERN_NOTICE "cfi_cmdset_0001: Erase suspend on write enabled\n"); + } + } + else if (cfi->cfi_mode == CFI_MODE_JEDEC) { + /* Apply jedec specific fixups */ + cfi_fixup(mtd, jedec_fixup_table); + } + /* Apply generic fixups */ + cfi_fixup(mtd, fixup_table); + + for (i=0; i< cfi->numchips; i++) { + cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; + cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; + cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; + cfi->chips[i].ref_point_counter = 0; + } + + map->fldrv = &cfi_intelext_chipdrv; + + return cfi_intelext_setup(mtd); +} + +static struct mtd_info *cfi_intelext_setup(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long offset = 0; + int i,j; + unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; + + //printk(KERN_DEBUG "number of CFI chips: %d\n", cfi->numchips); + + mtd->size = devsize * cfi->numchips; + + mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; + mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info) + * mtd->numeraseregions, GFP_KERNEL); + if (!mtd->eraseregions) { + printk(KERN_ERR "Failed to allocate memory for MTD erase region info\n"); + goto setup_err; + } + + for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { + unsigned long ernum, ersize; + ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; + ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; + + if (mtd->erasesize < ersize) { + mtd->erasesize = ersize; + } + for (j=0; j<cfi->numchips; j++) { + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; + mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; + } + offset += (ersize * ernum); + } + + if (offset != devsize) { + /* Argh */ + printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); + goto setup_err; + } + + for (i=0; i<mtd->numeraseregions;i++){ + printk(KERN_DEBUG "%d: offset=0x%x,size=0x%x,blocks=%d\n", + i,mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].numblocks); + } + +#if 0 + mtd->read_user_prot_reg = cfi_intelext_read_user_prot_reg; + mtd->read_fact_prot_reg = cfi_intelext_read_fact_prot_reg; +#endif + + /* This function has the potential to distort the reality + a bit and therefore should be called last. */ + if (cfi_intelext_partition_fixup(mtd, &cfi) != 0) + goto setup_err; + + __module_get(THIS_MODULE); + return mtd; + + setup_err: + if(mtd) { + if(mtd->eraseregions) + kfree(mtd->eraseregions); + kfree(mtd); + } + kfree(cfi->cmdset_priv); + return NULL; +} + +static int cfi_intelext_partition_fixup(struct mtd_info *mtd, + struct cfi_private **pcfi) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = *pcfi; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + + /* + * Probing of multi-partition flash ships. + * + * To support multiple partitions when available, we simply arrange + * for each of them to have their own flchip structure even if they + * are on the same physical chip. This means completely recreating + * a new cfi_private structure right here which is a blatent code + * layering violation, but this is still the least intrusive + * arrangement at this point. This can be rearranged in the future + * if someone feels motivated enough. --nico + */ + if (extp && extp->MajorVersion == '1' && extp->MinorVersion == '3' + && extp->FeatureSupport & (1 << 9)) { + struct cfi_private *newcfi; + struct flchip *chip; + struct flchip_shared *shared; + int offs, numregions, numparts, partshift, numvirtchips, i, j; + + /* Protection Register info */ + offs = (extp->NumProtectionFields - 1) * (4 + 6); + + /* Burst Read info */ + offs += 6; + + /* Number of partition regions */ + numregions = extp->extra[offs]; + offs += 1; + + /* Number of hardware partitions */ + numparts = 0; + for (i = 0; i < numregions; i++) { + struct cfi_intelext_regioninfo *rinfo; + rinfo = (struct cfi_intelext_regioninfo *)&extp->extra[offs]; + numparts += rinfo->NumIdentPartitions; + offs += sizeof(*rinfo) + + (rinfo->NumBlockTypes - 1) * + sizeof(struct cfi_intelext_blockinfo); + } + + /* + * All functions below currently rely on all chips having + * the same geometry so we'll just assume that all hardware + * partitions are of the same size too. + */ + partshift = cfi->chipshift - __ffs(numparts); + + if ((1 << partshift) < mtd->erasesize) { + printk( KERN_ERR + "%s: bad number of hw partitions (%d)\n", + __FUNCTION__, numparts); + return -EINVAL; + } + + numvirtchips = cfi->numchips * numparts; + newcfi = kmalloc(sizeof(struct cfi_private) + numvirtchips * sizeof(struct flchip), GFP_KERNEL); + if (!newcfi) + return -ENOMEM; + shared = kmalloc(sizeof(struct flchip_shared) * cfi->numchips, GFP_KERNEL); + if (!shared) { + kfree(newcfi); + return -ENOMEM; + } + memcpy(newcfi, cfi, sizeof(struct cfi_private)); + newcfi->numchips = numvirtchips; + newcfi->chipshift = partshift; + + chip = &newcfi->chips[0]; + for (i = 0; i < cfi->numchips; i++) { + shared[i].writing = shared[i].erasing = NULL; + spin_lock_init(&shared[i].lock); + for (j = 0; j < numparts; j++) { + *chip = cfi->chips[i]; + chip->start += j << partshift; + chip->priv = &shared[i]; + /* those should be reset too since + they create memory references. */ + init_waitqueue_head(&chip->wq); + spin_lock_init(&chip->_spinlock); + chip->mutex = &chip->_spinlock; + chip++; + } + } + + printk(KERN_DEBUG "%s: %d set(s) of %d interleaved chips " + "--> %d partitions of %d KiB\n", + map->name, cfi->numchips, cfi->interleave, + newcfi->numchips, 1<<(newcfi->chipshift-10)); + + map->fldrv_priv = newcfi; + *pcfi = newcfi; + kfree(cfi); + } + + return 0; +} + +/* + * *********** CHIP ACCESS FUNCTIONS *********** + */ + +static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) +{ + DECLARE_WAITQUEUE(wait, current); + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01); + unsigned long timeo; + struct cfi_pri_intelext *cfip = cfi->cmdset_priv; + + resettime: + timeo = jiffies + HZ; + retry: + if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING)) { + /* + * OK. We have possibility for contension on the write/erase + * operations which are global to the real chip and not per + * partition. So let's fight it over in the partition which + * currently has authority on the operation. + * + * The rules are as follows: + * + * - any write operation must own shared->writing. + * + * - any erase operation must own _both_ shared->writing and + * shared->erasing. + * + * - contension arbitration is handled in the owner's context. + * + * The 'shared' struct can be read when its lock is taken. + * However any writes to it can only be made when the current + * owner's lock is also held. + */ + struct flchip_shared *shared = chip->priv; + struct flchip *contender; + spin_lock(&shared->lock); + contender = shared->writing; + if (contender && contender != chip) { + /* + * The engine to perform desired operation on this + * partition is already in use by someone else. + * Let's fight over it in the context of the chip + * currently using it. If it is possible to suspend, + * that other partition will do just that, otherwise + * it'll happily send us to sleep. In any case, when + * get_chip returns success we're clear to go ahead. + */ + int ret = spin_trylock(contender->mutex); + spin_unlock(&shared->lock); + if (!ret) + goto retry; + spin_unlock(chip->mutex); + ret = get_chip(map, contender, contender->start, mode); + spin_lock(chip->mutex); + if (ret) { + spin_unlock(contender->mutex); + return ret; + } + timeo = jiffies + HZ; + spin_lock(&shared->lock); + } + + /* We now own it */ + shared->writing = chip; + if (mode == FL_ERASING) + shared->erasing = chip; + if (contender && contender != chip) + spin_unlock(contender->mutex); + spin_unlock(&shared->lock); + } + + switch (chip->state) { + + case FL_STATUS: + for (;;) { + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* At this point we're fine with write operations + in other partitions as they don't conflict. */ + if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS)) + break; + + if (time_after(jiffies, timeo)) { + printk(KERN_ERR "Waiting for chip to be ready timed out. Status %lx\n", + status.x[0]); + return -EIO; + } + spin_unlock(chip->mutex); + cfi_udelay(1); + spin_lock(chip->mutex); + /* Someone else might have been playing with it. */ + goto retry; + } + + case FL_READY: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + return 0; + + case FL_ERASING: + if (!cfip || + !(cfip->FeatureSupport & 2) || + !(mode == FL_READY || mode == FL_POINT || + (mode == FL_WRITING && (cfip->SuspendCmdSupport & 1)))) + goto sleep; + + + /* Erase suspend */ + map_write(map, CMD(0xB0), adr); + + /* If the flash has finished erasing, then 'erase suspend' + * appears to make some (28F320) flash devices switch to + * 'read' mode. Make sure that we switch to 'read status' + * mode so we get the right data. --rmk + */ + map_write(map, CMD(0x70), adr); + chip->oldstate = FL_ERASING; + chip->state = FL_ERASE_SUSPENDING; + chip->erase_suspended = 1; + for (;;) { + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + if (time_after(jiffies, timeo)) { + /* Urgh. Resume and pretend we weren't here. */ + map_write(map, CMD(0xd0), adr); + /* Make sure we're in 'read status' mode if it had finished */ + map_write(map, CMD(0x70), adr); + chip->state = FL_ERASING; + chip->oldstate = FL_READY; + printk(KERN_ERR "Chip not ready after erase " + "suspended: status = 0x%lx\n", status.x[0]); + return -EIO; + } + + spin_unlock(chip->mutex); + cfi_udelay(1); + spin_lock(chip->mutex); + /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. + So we can just loop here. */ + } + chip->state = FL_STATUS; + return 0; + + case FL_XIP_WHILE_ERASING: + if (mode != FL_READY && mode != FL_POINT && + (mode != FL_WRITING || !cfip || !(cfip->SuspendCmdSupport&1))) + goto sleep; + chip->oldstate = chip->state; + chip->state = FL_READY; + return 0; + + case FL_POINT: + /* Only if there's no operation suspended... */ + if (mode == FL_READY && chip->oldstate == FL_READY) + return 0; + + default: + sleep: + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + spin_lock(chip->mutex); + goto resettime; + } +} + +static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + + if (chip->priv) { + struct flchip_shared *shared = chip->priv; + spin_lock(&shared->lock); + if (shared->writing == chip && chip->oldstate == FL_READY) { + /* We own the ability to write, but we're done */ + shared->writing = shared->erasing; + if (shared->writing && shared->writing != chip) { + /* give back ownership to who we loaned it from */ + struct flchip *loaner = shared->writing; + spin_lock(loaner->mutex); + spin_unlock(&shared->lock); + spin_unlock(chip->mutex); + put_chip(map, loaner, loaner->start); + spin_lock(chip->mutex); + spin_unlock(loaner->mutex); + wake_up(&chip->wq); + return; + } + shared->erasing = NULL; + shared->writing = NULL; + } else if (shared->erasing == chip && shared->writing != chip) { + /* + * We own the ability to erase without the ability + * to write, which means the erase was suspended + * and some other partition is currently writing. + * Don't let the switch below mess things up since + * we don't have ownership to resume anything. + */ + spin_unlock(&shared->lock); + wake_up(&chip->wq); + return; + } + spin_unlock(&shared->lock); + } + + switch(chip->oldstate) { + case FL_ERASING: + chip->state = chip->oldstate; + /* What if one interleaved chip has finished and the + other hasn't? The old code would leave the finished + one in READY mode. That's bad, and caused -EROFS + errors to be returned from do_erase_oneblock because + that's the only bit it checked for at the time. + As the state machine appears to explicitly allow + sending the 0x70 (Read Status) command to an erasing + chip and expecting it to be ignored, that's what we + do. */ + map_write(map, CMD(0xd0), adr); + map_write(map, CMD(0x70), adr); + chip->oldstate = FL_READY; + chip->state = FL_ERASING; + break; + + case FL_XIP_WHILE_ERASING: + chip->state = chip->oldstate; + chip->oldstate = FL_READY; + break; + + case FL_READY: + case FL_STATUS: + case FL_JEDEC_QUERY: + /* We should really make set_vpp() count, rather than doing this */ + DISABLE_VPP(map); + break; + default: + printk(KERN_ERR "put_chip() called with oldstate %d!!\n", chip->oldstate); + } + wake_up(&chip->wq); +} + +#ifdef CONFIG_MTD_XIP + +/* + * No interrupt what so ever can be serviced while the flash isn't in array + * mode. This is ensured by the xip_disable() and xip_enable() functions + * enclosing any code path where the flash is known not to be in array mode. + * And within a XIP disabled code path, only functions marked with __xipram + * may be called and nothing else (it's a good thing to inspect generated + * assembly to make sure inline functions were actually inlined and that gcc + * didn't emit calls to its own support functions). Also configuring MTD CFI + * support to a single buswidth and a single interleave is also recommended. + * Note that not only IRQs are disabled but the preemption count is also + * increased to prevent other locking primitives (namely spin_unlock) from + * decrementing the preempt count to zero and scheduling the CPU away while + * not in array mode. + */ + +static void xip_disable(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + /* TODO: chips with no XIP use should ignore and return */ + (void) map_read(map, adr); /* ensure mmu mapping is up to date */ + preempt_disable(); + local_irq_disable(); +} + +static void __xipram xip_enable(struct map_info *map, struct flchip *chip, + unsigned long adr) +{ + struct cfi_private *cfi = map->fldrv_priv; + if (chip->state != FL_POINT && chip->state != FL_READY) { + map_write(map, CMD(0xff), adr); + chip->state = FL_READY; + } + (void) map_read(map, adr); + asm volatile (".rep 8; nop; .endr"); /* fill instruction prefetch */ + local_irq_enable(); + preempt_enable(); +} + +/* + * When a delay is required for the flash operation to complete, the + * xip_udelay() function is polling for both the given timeout and pending + * (but still masked) hardware interrupts. Whenever there is an interrupt + * pending then the flash erase or write operation is suspended, array mode + * restored and interrupts unmasked. Task scheduling might also happen at that + * point. The CPU eventually returns from the interrupt or the call to + * schedule() and the suspended flash operation is resumed for the remaining + * of the delay period. + * + * Warning: this function _will_ fool interrupt latency tracing tools. + */ + +static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, + unsigned long adr, int usec) +{ + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *cfip = cfi->cmdset_priv; + map_word status, OK = CMD(0x80); + unsigned long suspended, start = xip_currtime(); + flstate_t oldstate, newstate; + + do { + cpu_relax(); + if (xip_irqpending() && cfip && + ((chip->state == FL_ERASING && (cfip->FeatureSupport&2)) || + (chip->state == FL_WRITING && (cfip->FeatureSupport&4))) && + (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { + /* + * Let's suspend the erase or write operation when + * supported. Note that we currently don't try to + * suspend interleaved chips if there is already + * another operation suspended (imagine what happens + * when one chip was already done with the current + * operation while another chip suspended it, then + * we resume the whole thing at once). Yes, it + * can happen! + */ + map_write(map, CMD(0xb0), adr); + map_write(map, CMD(0x70), adr); + usec -= xip_elapsed_since(start); + suspended = xip_currtime(); + do { + if (xip_elapsed_since(suspended) > 100000) { + /* + * The chip doesn't want to suspend + * after waiting for 100 msecs. + * This is a critical error but there + * is not much we can do here. + */ + return; + } + status = map_read(map, adr); + } while (!map_word_andequal(map, status, OK, OK)); + + /* Suspend succeeded */ + oldstate = chip->state; + if (oldstate == FL_ERASING) { + if (!map_word_bitsset(map, status, CMD(0x40))) + break; + newstate = FL_XIP_WHILE_ERASING; + chip->erase_suspended = 1; + } else { + if (!map_word_bitsset(map, status, CMD(0x04))) + break; + newstate = FL_XIP_WHILE_WRITING; + chip->write_suspended = 1; + } + chip->state = newstate; + map_write(map, CMD(0xff), adr); + (void) map_read(map, adr); + asm volatile (".rep 8; nop; .endr"); + local_irq_enable(); + preempt_enable(); + asm volatile (".rep 8; nop; .endr"); + cond_resched(); + + /* + * We're back. However someone else might have + * decided to go write to the chip if we are in + * a suspended erase state. If so let's wait + * until it's done. + */ + preempt_disable(); + while (chip->state != newstate) { + DECLARE_WAITQUEUE(wait, current); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + preempt_enable(); + schedule(); + remove_wait_queue(&chip->wq, &wait); + preempt_disable(); + } + /* Disallow XIP again */ + local_irq_disable(); + + /* Resume the write or erase operation */ + map_write(map, CMD(0xd0), adr); + map_write(map, CMD(0x70), adr); + chip->state = oldstate; + start = xip_currtime(); + } else if (usec >= 1000000/HZ) { + /* + * Try to save on CPU power when waiting delay + * is at least a system timer tick period. + * No need to be extremely accurate here. + */ + xip_cpu_idle(); + } + status = map_read(map, adr); + } while (!map_word_andequal(map, status, OK, OK) + && xip_elapsed_since(start) < usec); +} + +#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec) + +/* + * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while + * the flash is actively programming or erasing since we have to poll for + * the operation to complete anyway. We can't do that in a generic way with + * a XIP setup so do it before the actual flash operation in this case. + */ +#undef INVALIDATE_CACHED_RANGE +#define INVALIDATE_CACHED_RANGE(x...) +#define XIP_INVAL_CACHED_RANGE(map, from, size) \ + do { if(map->inval_cache) map->inval_cache(map, from, size); } while(0) + +/* + * Extra notes: + * + * Activating this XIP support changes the way the code works a bit. For + * example the code to suspend the current process when concurrent access + * happens is never executed because xip_udelay() will always return with the + * same chip state as it was entered with. This is why there is no care for + * the presence of add_wait_queue() or schedule() calls from within a couple + * xip_disable()'d areas of code, like in do_erase_oneblock for example. + * The queueing and scheduling are always happening within xip_udelay(). + * + * Similarly, get_chip() and put_chip() just happen to always be executed + * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state + * is in array mode, therefore never executing many cases therein and not + * causing any problem with XIP. + */ + +#else + +#define xip_disable(map, chip, adr) +#define xip_enable(map, chip, adr) + +#define UDELAY(map, chip, adr, usec) cfi_udelay(usec) + +#define XIP_INVAL_CACHED_RANGE(x...) + +#endif + +static int do_point_onechip (struct map_info *map, struct flchip *chip, loff_t adr, size_t len) +{ + unsigned long cmd_addr; + struct cfi_private *cfi = map->fldrv_priv; + int ret = 0; + + adr += chip->start; + + /* Ensure cmd read/writes are aligned. */ + cmd_addr = adr & ~(map_bankwidth(map)-1); + + spin_lock(chip->mutex); + + ret = get_chip(map, chip, cmd_addr, FL_POINT); + + if (!ret) { + if (chip->state != FL_POINT && chip->state != FL_READY) + map_write(map, CMD(0xff), cmd_addr); + + chip->state = FL_POINT; + chip->ref_point_counter++; + } + spin_unlock(chip->mutex); + + return ret; +} + +static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + if (!map->virt || (from + len > mtd->size)) + return -EINVAL; + + *mtdbuf = (void *)map->virt + from; + *retlen = 0; + + /* Now lock the chip(s) to POINT state */ + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + ret = do_point_onechip(map, &cfi->chips[chipnum], ofs, thislen); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + + ofs = 0; + chipnum++; + } + return 0; +} + +static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from, size_t len) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + + /* Now unlock the chip(s) POINT state */ + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + while (len) { + unsigned long thislen; + struct flchip *chip; + + chip = &cfi->chips[chipnum]; + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + spin_lock(chip->mutex); + if (chip->state == FL_POINT) { + chip->ref_point_counter--; + if(chip->ref_point_counter == 0) + chip->state = FL_READY; + } else + printk(KERN_ERR "Warning: unpoint called on non pointed region\n"); /* Should this give an error? */ + + put_chip(map, chip, chip->start); + spin_unlock(chip->mutex); + + len -= thislen; + ofs = 0; + chipnum++; + } +} + +static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) +{ + unsigned long cmd_addr; + struct cfi_private *cfi = map->fldrv_priv; + int ret; + + adr += chip->start; + + /* Ensure cmd read/writes are aligned. */ + cmd_addr = adr & ~(map_bankwidth(map)-1); + + spin_lock(chip->mutex); + ret = get_chip(map, chip, cmd_addr, FL_READY); + if (ret) { + spin_unlock(chip->mutex); + return ret; + } + + if (chip->state != FL_POINT && chip->state != FL_READY) { + map_write(map, CMD(0xff), cmd_addr); + + chip->state = FL_READY; + } + + map_copy_from(map, buf, adr, len); + + put_chip(map, chip, cmd_addr); + + spin_unlock(chip->mutex); + return 0; +} + +static int cfi_intelext_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + unsigned long ofs; + int chipnum; + int ret = 0; + + /* ofs: offset within the first chip that the first read should start */ + chipnum = (from >> cfi->chipshift); + ofs = from - (chipnum << cfi->chipshift); + + *retlen = 0; + + while (len) { + unsigned long thislen; + + if (chipnum >= cfi->numchips) + break; + + if ((len + ofs -1) >> cfi->chipshift) + thislen = (1<<cfi->chipshift) - ofs; + else + thislen = len; + + ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); + if (ret) + break; + + *retlen += thislen; + len -= thislen; + buf += thislen; + + ofs = 0; + chipnum++; + } + return ret; +} + +#if 0 +static int __xipram cfi_intelext_read_prot_reg (struct mtd_info *mtd, + loff_t from, size_t len, + size_t *retlen, + u_char *buf, + int base_offst, int reg_sz) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp = cfi->cmdset_priv; + struct flchip *chip; + int ofs_factor = cfi->interleave * cfi->device_type; + int count = len; + int chip_num, offst; + int ret; + + chip_num = ((unsigned int)from/reg_sz); + offst = from - (reg_sz*chip_num)+base_offst; + + while (count) { + /* Calculate which chip & protection register offset we need */ + + if (chip_num >= cfi->numchips) + goto out; + + chip = &cfi->chips[chip_num]; + + spin_lock(chip->mutex); + ret = get_chip(map, chip, chip->start, FL_JEDEC_QUERY); + if (ret) { + spin_unlock(chip->mutex); + return (len-count)?:ret; + } + + xip_disable(map, chip, chip->start); + + if (chip->state != FL_JEDEC_QUERY) { + map_write(map, CMD(0x90), chip->start); + chip->state = FL_JEDEC_QUERY; + } + + while (count && ((offst-base_offst) < reg_sz)) { + *buf = map_read8(map,(chip->start+((extp->ProtRegAddr+1)*ofs_factor)+offst)); + buf++; + offst++; + count--; + } + + xip_enable(map, chip, chip->start); + put_chip(map, chip, chip->start); + spin_unlock(chip->mutex); + + /* Move on to the next chip */ + chip_num++; + offst = base_offst; + } + + out: + return len-count; +} + +static int cfi_intelext_read_user_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp=cfi->cmdset_priv; + int base_offst,reg_sz; + + /* Check that we actually have some protection registers */ + if(!extp || !(extp->FeatureSupport&64)){ + printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); + return 0; + } + + base_offst=(1<<extp->FactProtRegSize); + reg_sz=(1<<extp->UserProtRegSize); + + return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); +} + +static int cfi_intelext_read_fact_prot_reg (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + struct cfi_pri_intelext *extp=cfi->cmdset_priv; + int base_offst,reg_sz; + + /* Check that we actually have some protection registers */ + if(!extp || !(extp->FeatureSupport&64)){ + printk(KERN_WARNING "%s: This flash device has no protection data to read!\n",map->name); + return 0; + } + + base_offst=0; + reg_sz=(1<<extp->FactProtRegSize); + + return cfi_intelext_read_prot_reg(mtd, from, len, retlen, buf, base_offst, reg_sz); +} +#endif + +static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, + unsigned long adr, map_word datum) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo; + int z, ret=0; + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + spin_lock(chip->mutex); + ret = get_chip(map, chip, adr, FL_WRITING); + if (ret) { + spin_unlock(chip->mutex); + return ret; + } + + XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + map_write(map, CMD(0x40), adr); + map_write(map, datum, adr); + chip->state = FL_WRITING; + + spin_unlock(chip->mutex); + INVALIDATE_CACHED_RANGE(map, adr, map_bankwidth(map)); + UDELAY(map, chip, adr, chip->word_write_time); + spin_lock(chip->mutex); + + timeo = jiffies + (HZ/2); + z = 0; + for (;;) { + if (chip->state != FL_WRITING) { + /* Someone's suspended the write. Sleep */ + DECLARE_WAITQUEUE(wait, current); + + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + spin_lock(chip->mutex); + continue; + } + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + chip->state = FL_STATUS; + xip_enable(map, chip, adr); + printk(KERN_ERR "waiting for chip to be ready timed out in word write\n"); + ret = -EIO; + goto out; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock(chip->mutex); + z++; + UDELAY(map, chip, adr, 1); + spin_lock(chip->mutex); + } + if (!z) { + chip->word_write_time--; + if (!chip->word_write_time) + chip->word_write_time++; + } + if (z > 1) + chip->word_write_time++; + + /* Done and happy. */ + chip->state = FL_STATUS; + + /* check for lock bit */ + if (map_word_bitsset(map, status, CMD(0x02))) { + /* clear status */ + map_write(map, CMD(0x50), adr); + /* put back into read status register mode */ + map_write(map, CMD(0x70), adr); + ret = -EROFS; + } + + xip_enable(map, chip, adr); + out: put_chip(map, chip, adr); + spin_unlock(chip->mutex); + + return ret; +} + + +static int cfi_intelext_write_words (struct mtd_info *mtd, loff_t to , size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int ret = 0; + int chipnum; + unsigned long ofs; + + *retlen = 0; + if (!len) + return 0; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + + /* If it's not bus-aligned, do the first byte write */ + if (ofs & (map_bankwidth(map)-1)) { + unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); + int gap = ofs - bus_ofs; + int n; + map_word datum; + + n = min_t(int, len, map_bankwidth(map)-gap); + datum = map_word_ff(map); + datum = map_word_load_partial(map, datum, buf, gap, n); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + bus_ofs, datum); + if (ret) + return ret; + + len -= n; + ofs += n; + buf += n; + (*retlen) += n; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + while(len >= map_bankwidth(map)) { + map_word datum = map_word_load(map, buf); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, datum); + if (ret) + return ret; + + ofs += map_bankwidth(map); + buf += map_bankwidth(map); + (*retlen) += map_bankwidth(map); + len -= map_bankwidth(map); + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + if (len & (map_bankwidth(map)-1)) { + map_word datum; + + datum = map_word_ff(map); + datum = map_word_load_partial(map, datum, buf, 0, len); + + ret = do_write_oneword(map, &cfi->chips[chipnum], + ofs, datum); + if (ret) + return ret; + + (*retlen) += len; + } + + return 0; +} + + +static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, + unsigned long adr, const u_char *buf, int len) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long cmd_adr, timeo; + int wbufsize, z, ret=0, bytes, words; + + wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + adr += chip->start; + cmd_adr = adr & ~(wbufsize-1); + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + spin_lock(chip->mutex); + ret = get_chip(map, chip, cmd_adr, FL_WRITING); + if (ret) { + spin_unlock(chip->mutex); + return ret; + } + + XIP_INVAL_CACHED_RANGE(map, adr, len); + ENABLE_VPP(map); + xip_disable(map, chip, cmd_adr); + + /* §4.8 of the 28FxxxJ3A datasheet says "Any time SR.4 and/or SR.5 is set + [...], the device will not accept any more Write to Buffer commands". + So we must check here and reset those bits if they're set. Otherwise + we're just pissing in the wind */ + if (chip->state != FL_STATUS) + map_write(map, CMD(0x70), cmd_adr); + status = map_read(map, cmd_adr); + if (map_word_bitsset(map, status, CMD(0x30))) { + xip_enable(map, chip, cmd_adr); + printk(KERN_WARNING "SR.4 or SR.5 bits set in buffer write (status %lx). Clearing.\n", status.x[0]); + xip_disable(map, chip, cmd_adr); + map_write(map, CMD(0x50), cmd_adr); + map_write(map, CMD(0x70), cmd_adr); + } + + chip->state = FL_WRITING_TO_BUFFER; + + z = 0; + for (;;) { + map_write(map, CMD(0xe8), cmd_adr); + + status = map_read(map, cmd_adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + spin_unlock(chip->mutex); + UDELAY(map, chip, cmd_adr, 1); + spin_lock(chip->mutex); + + if (++z > 20) { + /* Argh. Not ready for write to buffer */ + map_word Xstatus; + map_write(map, CMD(0x70), cmd_adr); + chip->state = FL_STATUS; + Xstatus = map_read(map, cmd_adr); + /* Odd. Clear status bits */ + map_write(map, CMD(0x50), cmd_adr); + map_write(map, CMD(0x70), cmd_adr); + xip_enable(map, chip, cmd_adr); + printk(KERN_ERR "Chip not ready for buffer write. status = %lx, Xstatus = %lx\n", + status.x[0], Xstatus.x[0]); + ret = -EIO; + goto out; + } + } + + /* Write length of data to come */ + bytes = len & (map_bankwidth(map)-1); + words = len / map_bankwidth(map); + map_write(map, CMD(words - !bytes), cmd_adr ); + + /* Write data */ + z = 0; + while(z < words * map_bankwidth(map)) { + map_word datum = map_word_load(map, buf); + map_write(map, datum, adr+z); + + z += map_bankwidth(map); + buf += map_bankwidth(map); + } + + if (bytes) { + map_word datum; + + datum = map_word_ff(map); + datum = map_word_load_partial(map, datum, buf, 0, bytes); + map_write(map, datum, adr+z); + } + + /* GO GO GO */ + map_write(map, CMD(0xd0), cmd_adr); + chip->state = FL_WRITING; + + spin_unlock(chip->mutex); + INVALIDATE_CACHED_RANGE(map, adr, len); + UDELAY(map, chip, cmd_adr, chip->buffer_write_time); + spin_lock(chip->mutex); + + timeo = jiffies + (HZ/2); + z = 0; + for (;;) { + if (chip->state != FL_WRITING) { + /* Someone's suspended the write. Sleep */ + DECLARE_WAITQUEUE(wait, current); + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + timeo = jiffies + (HZ / 2); /* FIXME */ + spin_lock(chip->mutex); + continue; + } + + status = map_read(map, cmd_adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + chip->state = FL_STATUS; + xip_enable(map, chip, cmd_adr); + printk(KERN_ERR "waiting for chip to be ready timed out in bufwrite\n"); + ret = -EIO; + goto out; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock(chip->mutex); + UDELAY(map, chip, cmd_adr, 1); + z++; + spin_lock(chip->mutex); + } + if (!z) { + chip->buffer_write_time--; + if (!chip->buffer_write_time) + chip->buffer_write_time++; + } + if (z > 1) + chip->buffer_write_time++; + + /* Done and happy. */ + chip->state = FL_STATUS; + + /* check for lock bit */ + if (map_word_bitsset(map, status, CMD(0x02))) { + /* clear status */ + map_write(map, CMD(0x50), cmd_adr); + /* put back into read status register mode */ + map_write(map, CMD(0x70), adr); + ret = -EROFS; + } + + xip_enable(map, chip, cmd_adr); + out: put_chip(map, chip, cmd_adr); + spin_unlock(chip->mutex); + return ret; +} + +static int cfi_intelext_write_buffers (struct mtd_info *mtd, loff_t to, + size_t len, size_t *retlen, const u_char *buf) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; + int ret = 0; + int chipnum; + unsigned long ofs; + + *retlen = 0; + if (!len) + return 0; + + chipnum = to >> cfi->chipshift; + ofs = to - (chipnum << cfi->chipshift); + + /* If it's not bus-aligned, do the first word write */ + if (ofs & (map_bankwidth(map)-1)) { + size_t local_len = (-ofs)&(map_bankwidth(map)-1); + if (local_len > len) + local_len = len; + ret = cfi_intelext_write_words(mtd, to, local_len, + retlen, buf); + if (ret) + return ret; + ofs += local_len; + buf += local_len; + len -= local_len; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + + while(len) { + /* We must not cross write block boundaries */ + int size = wbufsize - (ofs & (wbufsize-1)); + + if (size > len) + size = len; + ret = do_write_buffer(map, &cfi->chips[chipnum], + ofs, buf, size); + if (ret) + return ret; + + ofs += size; + buf += size; + (*retlen) += size; + len -= size; + + if (ofs >> cfi->chipshift) { + chipnum ++; + ofs = 0; + if (chipnum == cfi->numchips) + return 0; + } + } + return 0; +} + +static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo; + int retries = 3; + DECLARE_WAITQUEUE(wait, current); + int ret = 0; + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + retry: + spin_lock(chip->mutex); + ret = get_chip(map, chip, adr, FL_ERASING); + if (ret) { + spin_unlock(chip->mutex); + return ret; + } + + XIP_INVAL_CACHED_RANGE(map, adr, len); + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + /* Clear the status register first */ + map_write(map, CMD(0x50), adr); + + /* Now erase */ + map_write(map, CMD(0x20), adr); + map_write(map, CMD(0xD0), adr); + chip->state = FL_ERASING; + chip->erase_suspended = 0; + + spin_unlock(chip->mutex); + INVALIDATE_CACHED_RANGE(map, adr, len); + UDELAY(map, chip, adr, chip->erase_time*1000/2); + spin_lock(chip->mutex); + + /* FIXME. Use a timer to check this, and return immediately. */ + /* Once the state machine's known to be working I'll do that */ + + timeo = jiffies + (HZ*20); + for (;;) { + if (chip->state != FL_ERASING) { + /* Someone's suspended the erase. Sleep */ + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&chip->wq, &wait); + spin_unlock(chip->mutex); + schedule(); + remove_wait_queue(&chip->wq, &wait); + spin_lock(chip->mutex); + continue; + } + if (chip->erase_suspended) { + /* This erase was suspended and resumed. + Adjust the timeout */ + timeo = jiffies + (HZ*20); /* FIXME */ + chip->erase_suspended = 0; + } + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + map_word Xstatus; + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + Xstatus = map_read(map, adr); + /* Clear status bits */ + map_write(map, CMD(0x50), adr); + map_write(map, CMD(0x70), adr); + xip_enable(map, chip, adr); + printk(KERN_ERR "waiting for erase at %08lx to complete timed out. status = %lx, Xstatus = %lx.\n", + adr, status.x[0], Xstatus.x[0]); + ret = -EIO; + goto out; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock(chip->mutex); + UDELAY(map, chip, adr, 1000000/HZ); + spin_lock(chip->mutex); + } + + /* We've broken this before. It doesn't hurt to be safe */ + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + status = map_read(map, adr); + + /* check for lock bit */ + if (map_word_bitsset(map, status, CMD(0x3a))) { + unsigned char chipstatus; + + /* Reset the error bits */ + map_write(map, CMD(0x50), adr); + map_write(map, CMD(0x70), adr); + xip_enable(map, chip, adr); + + chipstatus = status.x[0]; + if (!map_word_equal(map, status, CMD(chipstatus))) { + int i, w; + for (w=0; w<map_words(map); w++) { + for (i = 0; i<cfi_interleave(cfi); i++) { + chipstatus |= status.x[w] >> (cfi->device_type * 8); + } + } + printk(KERN_WARNING "Status is not identical for all chips: 0x%lx. Merging to give 0x%02x\n", + status.x[0], chipstatus); + } + + if ((chipstatus & 0x30) == 0x30) { + printk(KERN_NOTICE "Chip reports improper command sequence: status 0x%x\n", chipstatus); + ret = -EIO; + } else if (chipstatus & 0x02) { + /* Protection bit set */ + ret = -EROFS; + } else if (chipstatus & 0x8) { + /* Voltage */ + printk(KERN_WARNING "Chip reports voltage low on erase: status 0x%x\n", chipstatus); + ret = -EIO; + } else if (chipstatus & 0x20) { + if (retries--) { + printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x. Retrying...\n", adr, chipstatus); + timeo = jiffies + HZ; + put_chip(map, chip, adr); + spin_unlock(chip->mutex); + goto retry; + } + printk(KERN_DEBUG "Chip erase failed at 0x%08lx: status 0x%x\n", adr, chipstatus); + ret = -EIO; + } + } else { + xip_enable(map, chip, adr); + ret = 0; + } + + out: put_chip(map, chip, adr); + spin_unlock(chip->mutex); + return ret; +} + +int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) +{ + unsigned long ofs, len; + int ret; + + ofs = instr->addr; + len = instr->len; + + ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); + if (ret) + return ret; + + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + + return 0; +} + +static void cfi_intelext_sync (struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + spin_lock(chip->mutex); + ret = get_chip(map, chip, chip->start, FL_SYNCING); + + if (!ret) { + chip->oldstate = chip->state; + chip->state = FL_SYNCING; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + } + spin_unlock(chip->mutex); + } + + /* Unlock the chips again */ + + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + spin_lock(chip->mutex); + + if (chip->state == FL_SYNCING) { + chip->state = chip->oldstate; + wake_up(&chip->wq); + } + spin_unlock(chip->mutex); + } +} + +#ifdef DEBUG_LOCK_BITS +static int __xipram do_printlockstatus_oneblock(struct map_info *map, + struct flchip *chip, + unsigned long adr, + int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + int status, ofs_factor = cfi->interleave * cfi->device_type; + + xip_disable(map, chip, adr+(2*ofs_factor)); + cfi_send_gen_cmd(0x90, 0x55, 0, map, cfi, cfi->device_type, NULL); + chip->state = FL_JEDEC_QUERY; + status = cfi_read_query(map, adr+(2*ofs_factor)); + xip_enable(map, chip, 0); + printk(KERN_DEBUG "block status register for 0x%08lx is %x\n", + adr, status); + return 0; +} +#endif + +#define DO_XXLOCK_ONEBLOCK_LOCK ((void *) 1) +#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *) 2) + +static int __xipram do_xxlock_oneblock(struct map_info *map, struct flchip *chip, + unsigned long adr, int len, void *thunk) +{ + struct cfi_private *cfi = map->fldrv_priv; + map_word status, status_OK; + unsigned long timeo = jiffies + HZ; + int ret; + + adr += chip->start; + + /* Let's determine this according to the interleave only once */ + status_OK = CMD(0x80); + + spin_lock(chip->mutex); + ret = get_chip(map, chip, adr, FL_LOCKING); + if (ret) { + spin_unlock(chip->mutex); + return ret; + } + + ENABLE_VPP(map); + xip_disable(map, chip, adr); + + map_write(map, CMD(0x60), adr); + if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { + map_write(map, CMD(0x01), adr); + chip->state = FL_LOCKING; + } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { + map_write(map, CMD(0xD0), adr); + chip->state = FL_UNLOCKING; + } else + BUG(); + + spin_unlock(chip->mutex); + UDELAY(map, chip, adr, 1000000/HZ); + spin_lock(chip->mutex); + + /* FIXME. Use a timer to check this, and return immediately. */ + /* Once the state machine's known to be working I'll do that */ + + timeo = jiffies + (HZ*20); + for (;;) { + + status = map_read(map, adr); + if (map_word_andequal(map, status, status_OK, status_OK)) + break; + + /* OK Still waiting */ + if (time_after(jiffies, timeo)) { + map_word Xstatus; + map_write(map, CMD(0x70), adr); + chip->state = FL_STATUS; + Xstatus = map_read(map, adr); + xip_enable(map, chip, adr); + printk(KERN_ERR "waiting for unlock to complete timed out. status = %lx, Xstatus = %lx.\n", + status.x[0], Xstatus.x[0]); + put_chip(map, chip, adr); + spin_unlock(chip->mutex); + return -EIO; + } + + /* Latency issues. Drop the lock, wait a while and retry */ + spin_unlock(chip->mutex); + UDELAY(map, chip, adr, 1); + spin_lock(chip->mutex); + } + + /* Done and happy. */ + chip->state = FL_STATUS; + xip_enable(map, chip, adr); + put_chip(map, chip, adr); + spin_unlock(chip->mutex); + return 0; +} + +static int cfi_intelext_lock(struct mtd_info *mtd, loff_t ofs, size_t len) +{ + int ret; + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", + __FUNCTION__, ofs, len); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, 0); +#endif + + ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, + ofs, len, DO_XXLOCK_ONEBLOCK_LOCK); + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status after, ret=%d\n", + __FUNCTION__, ret); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, 0); +#endif + + return ret; +} + +static int cfi_intelext_unlock(struct mtd_info *mtd, loff_t ofs, size_t len) +{ + int ret; + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status before, ofs=0x%08llx, len=0x%08X\n", + __FUNCTION__, ofs, len); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, 0); +#endif + + ret = cfi_varsize_frob(mtd, do_xxlock_oneblock, + ofs, len, DO_XXLOCK_ONEBLOCK_UNLOCK); + +#ifdef DEBUG_LOCK_BITS + printk(KERN_DEBUG "%s: lock status after, ret=%d\n", + __FUNCTION__, ret); + cfi_varsize_frob(mtd, do_printlockstatus_oneblock, + ofs, len, 0); +#endif + + return ret; +} + +static int cfi_intelext_suspend(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + int ret = 0; + + for (i=0; !ret && i<cfi->numchips; i++) { + chip = &cfi->chips[i]; + + spin_lock(chip->mutex); + + switch (chip->state) { + case FL_READY: + case FL_STATUS: + case FL_CFI_QUERY: + case FL_JEDEC_QUERY: + if (chip->oldstate == FL_READY) { + chip->oldstate = chip->state; + chip->state = FL_PM_SUSPENDED; + /* No need to wake_up() on this state change - + * as the whole point is that nobody can do anything + * with the chip now anyway. + */ + } else { + /* There seems to be an operation pending. We must wait for it. */ + printk(KERN_NOTICE "Flash device refused suspend due to pending operation (oldstate %d)\n", chip->oldstate); + ret = -EAGAIN; + } + break; + default: + /* Should we actually wait? Once upon a time these routines weren't + allowed to. Or should we return -EAGAIN, because the upper layers + ought to have already shut down anything which was using the device + anyway? The latter for now. */ + printk(KERN_NOTICE "Flash device refused suspend due to active operation (state %d)\n", chip->oldstate); + ret = -EAGAIN; + case FL_PM_SUSPENDED: + break; + } + spin_unlock(chip->mutex); + } + + /* Unlock the chips again */ + + if (ret) { + for (i--; i >=0; i--) { + chip = &cfi->chips[i]; + + spin_lock(chip->mutex); + + if (chip->state == FL_PM_SUSPENDED) { + /* No need to force it into a known state here, + because we're returning failure, and it didn't + get power cycled */ + chip->state = chip->oldstate; + chip->oldstate = FL_READY; + wake_up(&chip->wq); + } + spin_unlock(chip->mutex); + } + } + + return ret; +} + +static void cfi_intelext_resume(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + int i; + struct flchip *chip; + + for (i=0; i<cfi->numchips; i++) { + + chip = &cfi->chips[i]; + + spin_lock(chip->mutex); + + /* Go to known state. Chip may have been power cycled */ + if (chip->state == FL_PM_SUSPENDED) { + map_write(map, CMD(0xFF), cfi->chips[i].start); + chip->oldstate = chip->state = FL_READY; + wake_up(&chip->wq); + } + + spin_unlock(chip->mutex); + } +} + +static void cfi_intelext_destroy(struct mtd_info *mtd) +{ + struct map_info *map = mtd->priv; + struct cfi_private *cfi = map->fldrv_priv; + kfree(cfi->cmdset_priv); + kfree(cfi->cfiq); + kfree(cfi->chips[0].priv); + kfree(cfi); + kfree(mtd->eraseregions); +} + +static char im_name_1[]="cfi_cmdset_0001"; +static char im_name_3[]="cfi_cmdset_0003"; + +static int __init cfi_intelext_init(void) +{ + inter_module_register(im_name_1, THIS_MODULE, &cfi_cmdset_0001); + inter_module_register(im_name_3, THIS_MODULE, &cfi_cmdset_0001); + return 0; +} + +static void __exit cfi_intelext_exit(void) +{ + inter_module_unregister(im_name_1); + inter_module_unregister(im_name_3); +} + +module_init(cfi_intelext_init); +module_exit(cfi_intelext_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); +MODULE_DESCRIPTION("MTD chip driver for Intel/Sharp flash chips"); |