diff options
Diffstat (limited to 'drivers/memory/emif.c')
-rw-r--r-- | drivers/memory/emif.c | 1670 |
1 files changed, 1670 insertions, 0 deletions
diff --git a/drivers/memory/emif.c b/drivers/memory/emif.c new file mode 100644 index 0000000..33a4396 --- /dev/null +++ b/drivers/memory/emif.c @@ -0,0 +1,1670 @@ +/* + * EMIF driver + * + * Copyright (C) 2012 Texas Instruments, Inc. + * + * Aneesh V <aneesh@ti.com> + * Santosh Shilimkar <santosh.shilimkar@ti.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ +#include <linux/kernel.h> +#include <linux/reboot.h> +#include <linux/platform_data/emif_plat.h> +#include <linux/io.h> +#include <linux/device.h> +#include <linux/platform_device.h> +#include <linux/interrupt.h> +#include <linux/slab.h> +#include <linux/debugfs.h> +#include <linux/seq_file.h> +#include <linux/module.h> +#include <linux/list.h> +#include <linux/spinlock.h> +#include <memory/jedec_ddr.h> +#include "emif.h" + +/** + * struct emif_data - Per device static data for driver's use + * @duplicate: Whether the DDR devices attached to this EMIF + * instance are exactly same as that on EMIF1. In + * this case we can save some memory and processing + * @temperature_level: Maximum temperature of LPDDR2 devices attached + * to this EMIF - read from MR4 register. If there + * are two devices attached to this EMIF, this + * value is the maximum of the two temperature + * levels. + * @node: node in the device list + * @base: base address of memory-mapped IO registers. + * @dev: device pointer. + * @addressing table with addressing information from the spec + * @regs_cache: An array of 'struct emif_regs' that stores + * calculated register values for different + * frequencies, to avoid re-calculating them on + * each DVFS transition. + * @curr_regs: The set of register values used in the last + * frequency change (i.e. corresponding to the + * frequency in effect at the moment) + * @plat_data: Pointer to saved platform data. + * @debugfs_root: dentry to the root folder for EMIF in debugfs + */ +struct emif_data { + u8 duplicate; + u8 temperature_level; + u8 lpmode; + struct list_head node; + unsigned long irq_state; + void __iomem *base; + struct device *dev; + const struct lpddr2_addressing *addressing; + struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES]; + struct emif_regs *curr_regs; + struct emif_platform_data *plat_data; + struct dentry *debugfs_root; +}; + +static struct emif_data *emif1; +static spinlock_t emif_lock; +static unsigned long irq_state; +static u32 t_ck; /* DDR clock period in ps */ +static LIST_HEAD(device_list); + +static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif, + struct emif_regs *regs) +{ + u32 type = emif->plat_data->device_info->type; + u32 ip_rev = emif->plat_data->ip_rev; + + seq_printf(s, "EMIF register cache dump for %dMHz\n", + regs->freq/1000000); + + seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw); + seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw); + seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw); + seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw); + + if (ip_rev == EMIF_4D) { + seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n", + regs->read_idle_ctrl_shdw_normal); + seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n", + regs->read_idle_ctrl_shdw_volt_ramp); + } else if (ip_rev == EMIF_4D5) { + seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n", + regs->dll_calib_ctrl_shdw_normal); + seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n", + regs->dll_calib_ctrl_shdw_volt_ramp); + } + + if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { + seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n", + regs->ref_ctrl_shdw_derated); + seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n", + regs->sdram_tim1_shdw_derated); + seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n", + regs->sdram_tim3_shdw_derated); + } +} + +static int emif_regdump_show(struct seq_file *s, void *unused) +{ + struct emif_data *emif = s->private; + struct emif_regs **regs_cache; + int i; + + if (emif->duplicate) + regs_cache = emif1->regs_cache; + else + regs_cache = emif->regs_cache; + + for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { + do_emif_regdump_show(s, emif, regs_cache[i]); + seq_printf(s, "\n"); + } + + return 0; +} + +static int emif_regdump_open(struct inode *inode, struct file *file) +{ + return single_open(file, emif_regdump_show, inode->i_private); +} + +static const struct file_operations emif_regdump_fops = { + .open = emif_regdump_open, + .read = seq_read, + .release = single_release, +}; + +static int emif_mr4_show(struct seq_file *s, void *unused) +{ + struct emif_data *emif = s->private; + + seq_printf(s, "MR4=%d\n", emif->temperature_level); + return 0; +} + +static int emif_mr4_open(struct inode *inode, struct file *file) +{ + return single_open(file, emif_mr4_show, inode->i_private); +} + +static const struct file_operations emif_mr4_fops = { + .open = emif_mr4_open, + .read = seq_read, + .release = single_release, +}; + +static int __init_or_module emif_debugfs_init(struct emif_data *emif) +{ + struct dentry *dentry; + int ret; + + dentry = debugfs_create_dir(dev_name(emif->dev), NULL); + if (IS_ERR(dentry)) { + ret = PTR_ERR(dentry); + goto err0; + } + emif->debugfs_root = dentry; + + dentry = debugfs_create_file("regcache_dump", S_IRUGO, + emif->debugfs_root, emif, &emif_regdump_fops); + if (IS_ERR(dentry)) { + ret = PTR_ERR(dentry); + goto err1; + } + + dentry = debugfs_create_file("mr4", S_IRUGO, + emif->debugfs_root, emif, &emif_mr4_fops); + if (IS_ERR(dentry)) { + ret = PTR_ERR(dentry); + goto err1; + } + + return 0; +err1: + debugfs_remove_recursive(emif->debugfs_root); +err0: + return ret; +} + +static void __exit emif_debugfs_exit(struct emif_data *emif) +{ + debugfs_remove_recursive(emif->debugfs_root); + emif->debugfs_root = NULL; +} + +/* + * Calculate the period of DDR clock from frequency value + */ +static void set_ddr_clk_period(u32 freq) +{ + /* Divide 10^12 by frequency to get period in ps */ + t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq); +} + +/* + * Get bus width used by EMIF. Note that this may be different from the + * bus width of the DDR devices used. For instance two 16-bit DDR devices + * may be connected to a given CS of EMIF. In this case bus width as far + * as EMIF is concerned is 32, where as the DDR bus width is 16 bits. + */ +static u32 get_emif_bus_width(struct emif_data *emif) +{ + u32 width; + void __iomem *base = emif->base; + + width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK) + >> NARROW_MODE_SHIFT; + width = width == 0 ? 32 : 16; + + return width; +} + +/* + * Get the CL from SDRAM_CONFIG register + */ +static u32 get_cl(struct emif_data *emif) +{ + u32 cl; + void __iomem *base = emif->base; + + cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT; + + return cl; +} + +static void set_lpmode(struct emif_data *emif, u8 lpmode) +{ + u32 temp; + void __iomem *base = emif->base; + + temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL); + temp &= ~LP_MODE_MASK; + temp |= (lpmode << LP_MODE_SHIFT); + writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL); +} + +static void do_freq_update(void) +{ + struct emif_data *emif; + + /* + * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE + * + * i728 DESCRIPTION: + * The EMIF automatically puts the SDRAM into self-refresh mode + * after the EMIF has not performed accesses during + * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles + * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set + * to 0x2. If during a small window the following three events + * occur: + * - The SR_TIMING counter expires + * - And frequency change is requested + * - And OCP access is requested + * Then it causes instable clock on the DDR interface. + * + * WORKAROUND + * To avoid the occurrence of the three events, the workaround + * is to disable the self-refresh when requesting a frequency + * change. Before requesting a frequency change the software must + * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the + * frequency change has been done, the software can reprogram + * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2 + */ + list_for_each_entry(emif, &device_list, node) { + if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) + set_lpmode(emif, EMIF_LP_MODE_DISABLE); + } + + /* + * TODO: Do FREQ_UPDATE here when an API + * is available for this as part of the new + * clock framework + */ + + list_for_each_entry(emif, &device_list, node) { + if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) + set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); + } +} + +/* Find addressing table entry based on the device's type and density */ +static const struct lpddr2_addressing *get_addressing_table( + const struct ddr_device_info *device_info) +{ + u32 index, type, density; + + type = device_info->type; + density = device_info->density; + + switch (type) { + case DDR_TYPE_LPDDR2_S4: + index = density - 1; + break; + case DDR_TYPE_LPDDR2_S2: + switch (density) { + case DDR_DENSITY_1Gb: + case DDR_DENSITY_2Gb: + index = density + 3; + break; + default: + index = density - 1; + } + break; + default: + return NULL; + } + + return &lpddr2_jedec_addressing_table[index]; +} + +/* + * Find the the right timing table from the array of timing + * tables of the device using DDR clock frequency + */ +static const struct lpddr2_timings *get_timings_table(struct emif_data *emif, + u32 freq) +{ + u32 i, min, max, freq_nearest; + const struct lpddr2_timings *timings = NULL; + const struct lpddr2_timings *timings_arr = emif->plat_data->timings; + struct device *dev = emif->dev; + + /* Start with a very high frequency - 1GHz */ + freq_nearest = 1000000000; + + /* + * Find the timings table such that: + * 1. the frequency range covers the required frequency(safe) AND + * 2. the max_freq is closest to the required frequency(optimal) + */ + for (i = 0; i < emif->plat_data->timings_arr_size; i++) { + max = timings_arr[i].max_freq; + min = timings_arr[i].min_freq; + if ((freq >= min) && (freq <= max) && (max < freq_nearest)) { + freq_nearest = max; + timings = &timings_arr[i]; + } + } + + if (!timings) + dev_err(dev, "%s: couldn't find timings for - %dHz\n", + __func__, freq); + + dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n", + __func__, freq, freq_nearest); + + return timings; +} + +static u32 get_sdram_ref_ctrl_shdw(u32 freq, + const struct lpddr2_addressing *addressing) +{ + u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi; + + /* Scale down frequency and t_refi to avoid overflow */ + freq_khz = freq / 1000; + t_refi = addressing->tREFI_ns / 100; + + /* + * refresh rate to be set is 'tREFI(in us) * freq in MHz + * division by 10000 to account for change in units + */ + val = t_refi * freq_khz / 10000; + ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT; + + return ref_ctrl_shdw; +} + +static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings, + const struct lpddr2_min_tck *min_tck, + const struct lpddr2_addressing *addressing) +{ + u32 tim1 = 0, val = 0; + + val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; + tim1 |= val << T_WTR_SHIFT; + + if (addressing->num_banks == B8) + val = DIV_ROUND_UP(timings->tFAW, t_ck*4); + else + val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck)); + tim1 |= (val - 1) << T_RRD_SHIFT; + + val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1; + tim1 |= val << T_RC_SHIFT; + + val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck)); + tim1 |= (val - 1) << T_RAS_SHIFT; + + val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; + tim1 |= val << T_WR_SHIFT; + + val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1; + tim1 |= val << T_RCD_SHIFT; + + val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1; + tim1 |= val << T_RP_SHIFT; + + return tim1; +} + +static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings, + const struct lpddr2_min_tck *min_tck, + const struct lpddr2_addressing *addressing) +{ + u32 tim1 = 0, val = 0; + + val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1; + tim1 = val << T_WTR_SHIFT; + + /* + * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps + * to tFAW for de-rating + */ + if (addressing->num_banks == B8) { + val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1; + } else { + val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck); + val = max(min_tck->tRRD, val) - 1; + } + tim1 |= val << T_RRD_SHIFT; + + val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck); + tim1 |= (val - 1) << T_RC_SHIFT; + + val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck); + val = max(min_tck->tRASmin, val) - 1; + tim1 |= val << T_RAS_SHIFT; + + val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1; + tim1 |= val << T_WR_SHIFT; + + val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck)); + tim1 |= (val - 1) << T_RCD_SHIFT; + + val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck)); + tim1 |= (val - 1) << T_RP_SHIFT; + + return tim1; +} + +static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings, + const struct lpddr2_min_tck *min_tck, + const struct lpddr2_addressing *addressing, + u32 type) +{ + u32 tim2 = 0, val = 0; + + val = min_tck->tCKE - 1; + tim2 |= val << T_CKE_SHIFT; + + val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1; + tim2 |= val << T_RTP_SHIFT; + + /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */ + val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1; + tim2 |= val << T_XSNR_SHIFT; + + /* XSRD same as XSNR for LPDDR2 */ + tim2 |= val << T_XSRD_SHIFT; + + val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1; + tim2 |= val << T_XP_SHIFT; + + return tim2; +} + +static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings, + const struct lpddr2_min_tck *min_tck, + const struct lpddr2_addressing *addressing, + u32 type, u32 ip_rev, u32 derated) +{ + u32 tim3 = 0, val = 0, t_dqsck; + + val = timings->tRAS_max_ns / addressing->tREFI_ns - 1; + val = val > 0xF ? 0xF : val; + tim3 |= val << T_RAS_MAX_SHIFT; + + val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1; + tim3 |= val << T_RFC_SHIFT; + + t_dqsck = (derated == EMIF_DERATED_TIMINGS) ? + timings->tDQSCK_max_derated : timings->tDQSCK_max; + if (ip_rev == EMIF_4D5) + val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1; + else + val = DIV_ROUND_UP(t_dqsck, t_ck) - 1; + + tim3 |= val << T_TDQSCKMAX_SHIFT; + + val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1; + tim3 |= val << ZQ_ZQCS_SHIFT; + + val = DIV_ROUND_UP(timings->tCKESR, t_ck); + val = max(min_tck->tCKESR, val) - 1; + tim3 |= val << T_CKESR_SHIFT; + + if (ip_rev == EMIF_4D5) { + tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT; + + val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1; + tim3 |= val << T_PDLL_UL_SHIFT; + } + + return tim3; +} + +static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing, + bool cs1_used, bool cal_resistors_per_cs) +{ + u32 zq = 0, val = 0; + + val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns; + zq |= val << ZQ_REFINTERVAL_SHIFT; + + val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1; + zq |= val << ZQ_ZQCL_MULT_SHIFT; + + val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1; + zq |= val << ZQ_ZQINIT_MULT_SHIFT; + + zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT; + + if (cal_resistors_per_cs) + zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT; + else + zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT; + + zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */ + + val = cs1_used ? 1 : 0; + zq |= val << ZQ_CS1EN_SHIFT; + + return zq; +} + +static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing, + const struct emif_custom_configs *custom_configs, bool cs1_used, + u32 sdram_io_width, u32 emif_bus_width) +{ + u32 alert = 0, interval, devcnt; + + if (custom_configs && (custom_configs->mask & + EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)) + interval = custom_configs->temp_alert_poll_interval_ms; + else + interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS; + + interval *= 1000000; /* Convert to ns */ + interval /= addressing->tREFI_ns; /* Convert to refresh cycles */ + alert |= (interval << TA_REFINTERVAL_SHIFT); + + /* + * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width + * also to this form and subtract to get TA_DEVCNT, which is + * in log2(x) form. + */ + emif_bus_width = __fls(emif_bus_width) - 1; + devcnt = emif_bus_width - sdram_io_width; + alert |= devcnt << TA_DEVCNT_SHIFT; + + /* DEVWDT is in 'log2(x) - 3' form */ + alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT; + + alert |= 1 << TA_SFEXITEN_SHIFT; + alert |= 1 << TA_CS0EN_SHIFT; + alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT; + + return alert; +} + +static u32 get_read_idle_ctrl_shdw(u8 volt_ramp) +{ + u32 idle = 0, val = 0; + + /* + * Maximum value in normal conditions and increased frequency + * when voltage is ramping + */ + if (volt_ramp) + val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1; + else + val = 0x1FF; + + /* + * READ_IDLE_CTRL register in EMIF4D has same offset and fields + * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts + */ + idle |= val << DLL_CALIB_INTERVAL_SHIFT; + idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT; + + return idle; +} + +static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp) +{ + u32 calib = 0, val = 0; + + if (volt_ramp == DDR_VOLTAGE_RAMPING) + val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1; + else + val = 0; /* Disabled when voltage is stable */ + + calib |= val << DLL_CALIB_INTERVAL_SHIFT; + calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT; + + return calib; +} + +static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings, + u32 freq, u8 RL) +{ + u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0; + + val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1; + phy |= val << READ_LATENCY_SHIFT_4D; + + if (freq <= 100000000) + val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY; + else if (freq <= 200000000) + val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY; + else + val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY; + + phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D; + + return phy; +} + +static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl) +{ + u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay; + + /* + * DLL operates at 266 MHz. If DDR frequency is near 266 MHz, + * half-delay is not needed else set half-delay + */ + if (freq >= 265000000 && freq < 267000000) + half_delay = 0; + else + half_delay = 1; + + phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5; + phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS, + t_ck) - 1) << READ_LATENCY_SHIFT_4D5); + + return phy; +} + +static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void) +{ + u32 fifo_we_slave_ratio; + + fifo_we_slave_ratio = DIV_ROUND_CLOSEST( + EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); + + return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 | + fifo_we_slave_ratio << 22; +} + +static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void) +{ + u32 fifo_we_slave_ratio; + + fifo_we_slave_ratio = DIV_ROUND_CLOSEST( + EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); + + return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 | + fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23; +} + +static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void) +{ + u32 fifo_we_slave_ratio; + + fifo_we_slave_ratio = DIV_ROUND_CLOSEST( + EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck); + + return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 | + fifo_we_slave_ratio << 13; +} + +static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev) +{ + u32 pwr_mgmt_ctrl = 0, timeout; + u32 lpmode = EMIF_LP_MODE_SELF_REFRESH; + u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE; + u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER; + u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD; + + struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs; + + if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) { + lpmode = cust_cfgs->lpmode; + timeout_perf = cust_cfgs->lpmode_timeout_performance; + timeout_pwr = cust_cfgs->lpmode_timeout_power; + freq_threshold = cust_cfgs->lpmode_freq_threshold; + } + + /* Timeout based on DDR frequency */ + timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr; + + /* The value to be set in register is "log2(timeout) - 3" */ + if (timeout < 16) { + timeout = 0; + } else { + timeout = __fls(timeout) - 3; + if (timeout & (timeout - 1)) + timeout++; + } + + switch (lpmode) { + case EMIF_LP_MODE_CLOCK_STOP: + pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) | + SR_TIM_MASK | PD_TIM_MASK; + break; + case EMIF_LP_MODE_SELF_REFRESH: + /* Workaround for errata i735 */ + if (timeout < 6) + timeout = 6; + + pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) | + CS_TIM_MASK | PD_TIM_MASK; + break; + case EMIF_LP_MODE_PWR_DN: + pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) | + CS_TIM_MASK | SR_TIM_MASK; + break; + case EMIF_LP_MODE_DISABLE: + default: + pwr_mgmt_ctrl = CS_TIM_MASK | + PD_TIM_MASK | SR_TIM_MASK; + } + + /* No CS_TIM in EMIF_4D5 */ + if (ip_rev == EMIF_4D5) + pwr_mgmt_ctrl &= ~CS_TIM_MASK; + + pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT; + + return pwr_mgmt_ctrl; +} + +/* + * Get the temperature level of the EMIF instance: + * Reads the MR4 register of attached SDRAM parts to find out the temperature + * level. If there are two parts attached(one on each CS), then the temperature + * level for the EMIF instance is the higher of the two temperatures. + */ +static void get_temperature_level(struct emif_data *emif) +{ + u32 temp, temperature_level; + void __iomem *base; + + base = emif->base; + + /* Read mode register 4 */ + writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG); + temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA); + temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >> + MR4_SDRAM_REF_RATE_SHIFT; + + if (emif->plat_data->device_info->cs1_used) { + writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG); + temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA); + temp = (temp & MR4_SDRAM_REF_RATE_MASK) + >> MR4_SDRAM_REF_RATE_SHIFT; + temperature_level = max(temp, temperature_level); + } + + /* treat everything less than nominal(3) in MR4 as nominal */ + if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL)) + temperature_level = SDRAM_TEMP_NOMINAL; + + /* if we get reserved value in MR4 persist with the existing value */ + if (likely(temperature_level != SDRAM_TEMP_RESERVED_4)) + emif->temperature_level = temperature_level; +} + +/* + * Program EMIF shadow registers that are not dependent on temperature + * or voltage + */ +static void setup_registers(struct emif_data *emif, struct emif_regs *regs) +{ + void __iomem *base = emif->base; + + writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW); + writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW); + + /* Settings specific for EMIF4D5 */ + if (emif->plat_data->ip_rev != EMIF_4D5) + return; + writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW); + writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW); + writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW); +} + +/* + * When voltage ramps dll calibration and forced read idle should + * happen more often + */ +static void setup_volt_sensitive_regs(struct emif_data *emif, + struct emif_regs *regs, u32 volt_state) +{ + u32 calib_ctrl; + void __iomem *base = emif->base; + + /* + * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as + * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_* + * is an alias of the respective read_idle_ctrl_shdw_* (members of + * a union). So, the below code takes care of both cases + */ + if (volt_state == DDR_VOLTAGE_RAMPING) + calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp; + else + calib_ctrl = regs->dll_calib_ctrl_shdw_normal; + + writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW); +} + +/* + * setup_temperature_sensitive_regs() - set the timings for temperature + * sensitive registers. This happens once at initialisation time based + * on the temperature at boot time and subsequently based on the temperature + * alert interrupt. Temperature alert can happen when the temperature + * increases or drops. So this function can have the effect of either + * derating the timings or going back to nominal values. + */ +static void setup_temperature_sensitive_regs(struct emif_data *emif, + struct emif_regs *regs) +{ + u32 tim1, tim3, ref_ctrl, type; + void __iomem *base = emif->base; + u32 temperature; + + type = emif->plat_data->device_info->type; + + tim1 = regs->sdram_tim1_shdw; + tim3 = regs->sdram_tim3_shdw; + ref_ctrl = regs->ref_ctrl_shdw; + + /* No de-rating for non-lpddr2 devices */ + if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4) + goto out; + + temperature = emif->temperature_level; + if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) { + ref_ctrl = regs->ref_ctrl_shdw_derated; + } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) { + tim1 = regs->sdram_tim1_shdw_derated; + tim3 = regs->sdram_tim3_shdw_derated; + ref_ctrl = regs->ref_ctrl_shdw_derated; + } + +out: + writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW); + writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW); + writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW); +} + +static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif) +{ + u32 old_temp_level; + irqreturn_t ret = IRQ_HANDLED; + + spin_lock_irqsave(&emif_lock, irq_state); + old_temp_level = emif->temperature_level; + get_temperature_level(emif); + + if (unlikely(emif->temperature_level == old_temp_level)) { + goto out; + } else if (!emif->curr_regs) { + dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); + goto out; + } + + if (emif->temperature_level < old_temp_level || + emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { + /* + * Temperature coming down - defer handling to thread OR + * Temperature far too high - do kernel_power_off() from + * thread context + */ + ret = IRQ_WAKE_THREAD; + } else { + /* Temperature is going up - handle immediately */ + setup_temperature_sensitive_regs(emif, emif->curr_regs); + do_freq_update(); + } + +out: + spin_unlock_irqrestore(&emif_lock, irq_state); + return ret; +} + +static irqreturn_t emif_interrupt_handler(int irq, void *dev_id) +{ + u32 interrupts; + struct emif_data *emif = dev_id; + void __iomem *base = emif->base; + struct device *dev = emif->dev; + irqreturn_t ret = IRQ_HANDLED; + + /* Save the status and clear it */ + interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); + writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); + + /* + * Handle temperature alert + * Temperature alert should be same for all ports + * So, it's enough to process it only for one of the ports + */ + if (interrupts & TA_SYS_MASK) + ret = handle_temp_alert(base, emif); + + if (interrupts & ERR_SYS_MASK) + dev_err(dev, "Access error from SYS port - %x\n", interrupts); + + if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { + /* Save the status and clear it */ + interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS); + writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS); + + if (interrupts & ERR_LL_MASK) + dev_err(dev, "Access error from LL port - %x\n", + interrupts); + } + + return ret; +} + +static irqreturn_t emif_threaded_isr(int irq, void *dev_id) +{ + struct emif_data *emif = dev_id; + + if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) { + dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); + kernel_power_off(); + return IRQ_HANDLED; + } + + spin_lock_irqsave(&emif_lock, irq_state); + + if (emif->curr_regs) { + setup_temperature_sensitive_regs(emif, emif->curr_regs); + do_freq_update(); + } else { + dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n"); + } + + spin_unlock_irqrestore(&emif_lock, irq_state); + + return IRQ_HANDLED; +} + +static void clear_all_interrupts(struct emif_data *emif) +{ + void __iomem *base = emif->base; + + writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS), + base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS); + if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) + writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS), + base + EMIF_LL_OCP_INTERRUPT_STATUS); +} + +static void disable_and_clear_all_interrupts(struct emif_data *emif) +{ + void __iomem *base = emif->base; + + /* Disable all interrupts */ + writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET), + base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR); + if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) + writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET), + base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR); + + /* Clear all interrupts */ + clear_all_interrupts(emif); +} + +static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq) +{ + u32 interrupts, type; + void __iomem *base = emif->base; + + type = emif->plat_data->device_info->type; + + clear_all_interrupts(emif); + + /* Enable interrupts for SYS interface */ + interrupts = EN_ERR_SYS_MASK; + if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) + interrupts |= EN_TA_SYS_MASK; + writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET); + + /* Enable interrupts for LL interface */ + if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) { + /* TA need not be enabled for LL */ + interrupts = EN_ERR_LL_MASK; + writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET); + } + + /* setup IRQ handlers */ + return devm_request_threaded_irq(emif->dev, irq, + emif_interrupt_handler, + emif_threaded_isr, + 0, dev_name(emif->dev), + emif); + +} + +static void __init_or_module emif_onetime_settings(struct emif_data *emif) +{ + u32 pwr_mgmt_ctrl, zq, temp_alert_cfg; + void __iomem *base = emif->base; + const struct lpddr2_addressing *addressing; + const struct ddr_device_info *device_info; + + device_info = emif->plat_data->device_info; + addressing = get_addressing_table(device_info); + + /* + * Init power management settings + * We don't know the frequency yet. Use a high frequency + * value for a conservative timeout setting + */ + pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif, + emif->plat_data->ip_rev); + emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT; + writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL); + + /* Init ZQ calibration settings */ + zq = get_zq_config_reg(addressing, device_info->cs1_used, + device_info->cal_resistors_per_cs); + writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG); + + /* Check temperature level temperature level*/ + get_temperature_level(emif); + if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) + dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n"); + + /* Init temperature polling */ + temp_alert_cfg = get_temp_alert_config(addressing, + emif->plat_data->custom_configs, device_info->cs1_used, + device_info->io_width, get_emif_bus_width(emif)); + writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG); + + /* + * Program external PHY control registers that are not frequency + * dependent + */ + if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY) + return; + writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW); + writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW); + writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW); + writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW); + writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW); + writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW); + writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW); + writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW); + writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW); + writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW); + writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW); + writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW); + writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW); + writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW); + writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW); + writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW); + writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW); + writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW); + writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW); + writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW); + writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW); +} + +static void get_default_timings(struct emif_data *emif) +{ + struct emif_platform_data *pd = emif->plat_data; + + pd->timings = lpddr2_jedec_timings; + pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings); + + dev_warn(emif->dev, "%s: using default timings\n", __func__); +} + +static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type, + u32 ip_rev, struct device *dev) +{ + int valid; + + valid = (type == DDR_TYPE_LPDDR2_S4 || + type == DDR_TYPE_LPDDR2_S2) + && (density >= DDR_DENSITY_64Mb + && density <= DDR_DENSITY_8Gb) + && (io_width >= DDR_IO_WIDTH_8 + && io_width <= DDR_IO_WIDTH_32); + + /* Combinations of EMIF and PHY revisions that we support today */ + switch (ip_rev) { + case EMIF_4D: + valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY); + break; + case EMIF_4D5: + valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY); + break; + default: + valid = 0; + } + + if (!valid) + dev_err(dev, "%s: invalid DDR details\n", __func__); + return valid; +} + +static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs, + struct device *dev) +{ + int valid = 1; + + if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) && + (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE)) + valid = cust_cfgs->lpmode_freq_threshold && + cust_cfgs->lpmode_timeout_performance && + cust_cfgs->lpmode_timeout_power; + + if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL) + valid = valid && cust_cfgs->temp_alert_poll_interval_ms; + + if (!valid) + dev_warn(dev, "%s: invalid custom configs\n", __func__); + + return valid; +} + +static struct emif_data *__init_or_module get_device_details( + struct platform_device *pdev) +{ + u32 size; + struct emif_data *emif = NULL; + struct ddr_device_info *dev_info; + struct emif_custom_configs *cust_cfgs; + struct emif_platform_data *pd; + struct device *dev; + void *temp; + + pd = pdev->dev.platform_data; + dev = &pdev->dev; + + if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type, + pd->device_info->density, pd->device_info->io_width, + pd->phy_type, pd->ip_rev, dev))) { + dev_err(dev, "%s: invalid device data\n", __func__); + goto error; + } + + emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL); + temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL); + dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL); + + if (!emif || !pd || !dev_info) { + dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__); + goto error; + } + + memcpy(temp, pd, sizeof(*pd)); + pd = temp; + memcpy(dev_info, pd->device_info, sizeof(*dev_info)); + + pd->device_info = dev_info; + emif->plat_data = pd; + emif->dev = dev; + emif->temperature_level = SDRAM_TEMP_NOMINAL; + + /* + * For EMIF instances other than EMIF1 see if the devices connected + * are exactly same as on EMIF1(which is typically the case). If so, + * mark it as a duplicate of EMIF1 and skip copying timings data. + * This will save some memory and some computation later. + */ + emif->duplicate = emif1 && (memcmp(dev_info, + emif1->plat_data->device_info, + sizeof(struct ddr_device_info)) == 0); + + if (emif->duplicate) { + pd->timings = NULL; + pd->min_tck = NULL; + goto out; + } else if (emif1) { + dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n", + __func__); + } + + /* + * Copy custom configs - ignore allocation error, if any, as + * custom_configs is not very critical + */ + cust_cfgs = pd->custom_configs; + if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) { + temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL); + if (temp) + memcpy(temp, cust_cfgs, sizeof(*cust_cfgs)); + else + dev_warn(dev, "%s:%d: allocation error\n", __func__, + __LINE__); + pd->custom_configs = temp; + } + + /* + * Copy timings and min-tck values from platform data. If it is not + * available or if memory allocation fails, use JEDEC defaults + */ + size = sizeof(struct lpddr2_timings) * pd->timings_arr_size; + if (pd->timings) { + temp = devm_kzalloc(dev, size, GFP_KERNEL); + if (temp) { + memcpy(temp, pd->timings, sizeof(*pd->timings)); + pd->timings = temp; + } else { + dev_warn(dev, "%s:%d: allocation error\n", __func__, + __LINE__); + get_default_timings(emif); + } + } else { + get_default_timings(emif); + } + + if (pd->min_tck) { + temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL); + if (temp) { + memcpy(temp, pd->min_tck, sizeof(*pd->min_tck)); + pd->min_tck = temp; + } else { + dev_warn(dev, "%s:%d: allocation error\n", __func__, + __LINE__); + pd->min_tck = &lpddr2_jedec_min_tck; + } + } else { + pd->min_tck = &lpddr2_jedec_min_tck; + } + +out: + return emif; + +error: + return NULL; +} + +static int __init_or_module emif_probe(struct platform_device *pdev) +{ + struct emif_data *emif; + struct resource *res; + int irq; + + emif = get_device_details(pdev); + if (!emif) { + pr_err("%s: error getting device data\n", __func__); + goto error; + } + + list_add(&emif->node, &device_list); + emif->addressing = get_addressing_table(emif->plat_data->device_info); + + /* Save pointers to each other in emif and device structures */ + emif->dev = &pdev->dev; + platform_set_drvdata(pdev, emif); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res) { + dev_err(emif->dev, "%s: error getting memory resource\n", + __func__); + goto error; + } + + emif->base = devm_request_and_ioremap(emif->dev, res); + if (!emif->base) { + dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n", + __func__); + goto error; + } + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(emif->dev, "%s: error getting IRQ resource - %d\n", + __func__, irq); + goto error; + } + + emif_onetime_settings(emif); + emif_debugfs_init(emif); + disable_and_clear_all_interrupts(emif); + setup_interrupts(emif, irq); + + /* One-time actions taken on probing the first device */ + if (!emif1) { + emif1 = emif; + spin_lock_init(&emif_lock); + + /* + * TODO: register notifiers for frequency and voltage + * change here once the respective frameworks are + * available + */ + } + + dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n", + __func__, emif->base, irq); + + return 0; +error: + return -ENODEV; +} + +static int __exit emif_remove(struct platform_device *pdev) +{ + struct emif_data *emif = platform_get_drvdata(pdev); + + emif_debugfs_exit(emif); + + return 0; +} + +static void emif_shutdown(struct platform_device *pdev) +{ + struct emif_data *emif = platform_get_drvdata(pdev); + + disable_and_clear_all_interrupts(emif); +} + +static int get_emif_reg_values(struct emif_data *emif, u32 freq, + struct emif_regs *regs) +{ + u32 cs1_used, ip_rev, phy_type; + u32 cl, type; + const struct lpddr2_timings *timings; + const struct lpddr2_min_tck *min_tck; + const struct ddr_device_info *device_info; + const struct lpddr2_addressing *addressing; + struct emif_data *emif_for_calc; + struct device *dev; + const struct emif_custom_configs *custom_configs; + + dev = emif->dev; + /* + * If the devices on this EMIF instance is duplicate of EMIF1, + * use EMIF1 details for the calculation + */ + emif_for_calc = emif->duplicate ? emif1 : emif; + timings = get_timings_table(emif_for_calc, freq); + addressing = emif_for_calc->addressing; + if (!timings || !addressing) { + dev_err(dev, "%s: not enough data available for %dHz", + __func__, freq); + return -1; + } + + device_info = emif_for_calc->plat_data->device_info; + type = device_info->type; + cs1_used = device_info->cs1_used; + ip_rev = emif_for_calc->plat_data->ip_rev; + phy_type = emif_for_calc->plat_data->phy_type; + + min_tck = emif_for_calc->plat_data->min_tck; + custom_configs = emif_for_calc->plat_data->custom_configs; + + set_ddr_clk_period(freq); + + regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing); + regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck, + addressing); + regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck, + addressing, type); + regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck, + addressing, type, ip_rev, EMIF_NORMAL_TIMINGS); + + cl = get_cl(emif); + + if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) { + regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d( + timings, freq, cl); + } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) { + regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl); + regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5(); + regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5(); + regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5(); + } else { + return -1; + } + + /* Only timeout values in pwr_mgmt_ctrl_shdw register */ + regs->pwr_mgmt_ctrl_shdw = + get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) & + (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK); + + if (ip_rev & EMIF_4D) { + regs->read_idle_ctrl_shdw_normal = + get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE); + + regs->read_idle_ctrl_shdw_volt_ramp = + get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING); + } else if (ip_rev & EMIF_4D5) { + regs->dll_calib_ctrl_shdw_normal = + get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE); + + regs->dll_calib_ctrl_shdw_volt_ramp = + get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING); + } + + if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) { + regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4, + addressing); + + regs->sdram_tim1_shdw_derated = + get_sdram_tim_1_shdw_derated(timings, min_tck, + addressing); + + regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings, + min_tck, addressing, type, ip_rev, + EMIF_DERATED_TIMINGS); + } + + regs->freq = freq; + + return 0; +} + +/* + * get_regs() - gets the cached emif_regs structure for a given EMIF instance + * given frequency(freq): + * + * As an optimisation, every EMIF instance other than EMIF1 shares the + * register cache with EMIF1 if the devices connected on this instance + * are same as that on EMIF1(indicated by the duplicate flag) + * + * If we do not have an entry corresponding to the frequency given, we + * allocate a new entry and calculate the values + * + * Upon finding the right reg dump, save it in curr_regs. It can be + * directly used for thermal de-rating and voltage ramping changes. + */ +static struct emif_regs *get_regs(struct emif_data *emif, u32 freq) +{ + int i; + struct emif_regs **regs_cache; + struct emif_regs *regs = NULL; + struct device *dev; + + dev = emif->dev; + if (emif->curr_regs && emif->curr_regs->freq == freq) { + dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq); + return emif->curr_regs; + } + + if (emif->duplicate) + regs_cache = emif1->regs_cache; + else + regs_cache = emif->regs_cache; + + for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) { + if (regs_cache[i]->freq == freq) { + regs = regs_cache[i]; + dev_dbg(dev, + "%s: reg dump found in reg cache for %u Hz\n", + __func__, freq); + break; + } + } + + /* + * If we don't have an entry for this frequency in the cache create one + * and calculate the values + */ + if (!regs) { + regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC); + if (!regs) + return NULL; + + if (get_emif_reg_values(emif, freq, regs)) { + devm_kfree(emif->dev, regs); + return NULL; + } + + /* + * Now look for an un-used entry in the cache and save the + * newly created struct. If there are no free entries + * over-write the last entry + */ + for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) + ; + + if (i >= EMIF_MAX_NUM_FREQUENCIES) { + dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n", + __func__); + i = EMIF_MAX_NUM_FREQUENCIES - 1; + devm_kfree(emif->dev, regs_cache[i]); + } + regs_cache[i] = regs; + } + + return regs; +} + +static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state) +{ + dev_dbg(emif->dev, "%s: voltage notification : %d", __func__, + volt_state); + + if (!emif->curr_regs) { + dev_err(emif->dev, + "%s: volt-notify before registers are ready: %d\n", + __func__, volt_state); + return; + } + + setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state); +} + +/* + * TODO: voltage notify handling should be hooked up to + * regulator framework as soon as the necessary support + * is available in mainline kernel. This function is un-used + * right now. + */ +static void __attribute__((unused)) volt_notify_handling(u32 volt_state) +{ + struct emif_data *emif; + + spin_lock_irqsave(&emif_lock, irq_state); + + list_for_each_entry(emif, &device_list, node) + do_volt_notify_handling(emif, volt_state); + do_freq_update(); + + spin_unlock_irqrestore(&emif_lock, irq_state); +} + +static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq) +{ + struct emif_regs *regs; + + regs = get_regs(emif, new_freq); + if (!regs) + return; + + emif->curr_regs = regs; + + /* + * Update the shadow registers: + * Temperature and voltage-ramp sensitive settings are also configured + * in terms of DDR cycles. So, we need to update them too when there + * is a freq change + */ + dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz", + __func__, new_freq); + setup_registers(emif, regs); + setup_temperature_sensitive_regs(emif, regs); + setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE); + + /* + * Part of workaround for errata i728. See do_freq_update() + * for more details + */ + if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) + set_lpmode(emif, EMIF_LP_MODE_DISABLE); +} + +/* + * TODO: frequency notify handling should be hooked up to + * clock framework as soon as the necessary support is + * available in mainline kernel. This function is un-used + * right now. + */ +static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq) +{ + struct emif_data *emif; + + /* + * NOTE: we are taking the spin-lock here and releases it + * only in post-notifier. This doesn't look good and + * Sparse complains about it, but this seems to be + * un-avoidable. We need to lock a sequence of events + * that is split between EMIF and clock framework. + * + * 1. EMIF driver updates EMIF timings in shadow registers in the + * frequency pre-notify callback from clock framework + * 2. clock framework sets up the registers for the new frequency + * 3. clock framework initiates a hw-sequence that updates + * the frequency EMIF timings synchronously. + * + * All these 3 steps should be performed as an atomic operation + * vis-a-vis similar sequence in the EMIF interrupt handler + * for temperature events. Otherwise, there could be race + * conditions that could result in incorrect EMIF timings for + * a given frequency + */ + spin_lock_irqsave(&emif_lock, irq_state); + + list_for_each_entry(emif, &device_list, node) + do_freq_pre_notify_handling(emif, new_freq); +} + +static void do_freq_post_notify_handling(struct emif_data *emif) +{ + /* + * Part of workaround for errata i728. See do_freq_update() + * for more details + */ + if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH) + set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH); +} + +/* + * TODO: frequency notify handling should be hooked up to + * clock framework as soon as the necessary support is + * available in mainline kernel. This function is un-used + * right now. + */ +static void __attribute__((unused)) freq_post_notify_handling(void) +{ + struct emif_data *emif; + + list_for_each_entry(emif, &device_list, node) + do_freq_post_notify_handling(emif); + + /* + * Lock is done in pre-notify handler. See freq_pre_notify_handling() + * for more details + */ + spin_unlock_irqrestore(&emif_lock, irq_state); +} + +static struct platform_driver emif_driver = { + .remove = __exit_p(emif_remove), + .shutdown = emif_shutdown, + .driver = { + .name = "emif", + }, +}; + +static int __init_or_module emif_register(void) +{ + return platform_driver_probe(&emif_driver, emif_probe); +} + +static void __exit emif_unregister(void) +{ + platform_driver_unregister(&emif_driver); +} + +module_init(emif_register); +module_exit(emif_unregister); +MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver"); +MODULE_LICENSE("GPL"); +MODULE_ALIAS("platform:emif"); +MODULE_AUTHOR("Texas Instruments Inc"); |