diff options
Diffstat (limited to 'drivers/media/common/tuners/mt2063.c')
-rw-r--r-- | drivers/media/common/tuners/mt2063.c | 2307 |
1 files changed, 2307 insertions, 0 deletions
diff --git a/drivers/media/common/tuners/mt2063.c b/drivers/media/common/tuners/mt2063.c new file mode 100644 index 0000000..c89af3c --- /dev/null +++ b/drivers/media/common/tuners/mt2063.c @@ -0,0 +1,2307 @@ +/* + * Driver for mt2063 Micronas tuner + * + * Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com> + * + * This driver came from a driver originally written by: + * Henry Wang <Henry.wang@AzureWave.com> + * Made publicly available by Terratec, at: + * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz + * The original driver's license is GPL, as declared with MODULE_LICENSE() + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation under version 2 of the License. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/string.h> +#include <linux/videodev2.h> + +#include "mt2063.h" + +static unsigned int debug; +module_param(debug, int, 0644); +MODULE_PARM_DESC(debug, "Set Verbosity level"); + +#define dprintk(level, fmt, arg...) do { \ +if (debug >= level) \ + printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \ +} while (0) + + +/* positive error codes used internally */ + +/* Info: Unavoidable LO-related spur may be present in the output */ +#define MT2063_SPUR_PRESENT_ERR (0x00800000) + +/* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */ +#define MT2063_SPUR_CNT_MASK (0x001f0000) +#define MT2063_SPUR_SHIFT (16) + +/* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */ +#define MT2063_UPC_RANGE (0x04000000) + +/* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */ +#define MT2063_DNC_RANGE (0x08000000) + +/* + * Constant defining the version of the following structure + * and therefore the API for this code. + * + * When compiling the tuner driver, the preprocessor will + * check against this version number to make sure that + * it matches the version that the tuner driver knows about. + */ + +/* DECT Frequency Avoidance */ +#define MT2063_DECT_AVOID_US_FREQS 0x00000001 + +#define MT2063_DECT_AVOID_EURO_FREQS 0x00000002 + +#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0) + +#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0) + +enum MT2063_DECT_Avoid_Type { + MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */ + MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */ + MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */ + MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */ +}; + +#define MT2063_MAX_ZONES 48 + +struct MT2063_ExclZone_t { + u32 min_; + u32 max_; + struct MT2063_ExclZone_t *next_; +}; + +/* + * Structure of data needed for Spur Avoidance + */ +struct MT2063_AvoidSpursData_t { + u32 f_ref; + u32 f_in; + u32 f_LO1; + u32 f_if1_Center; + u32 f_if1_Request; + u32 f_if1_bw; + u32 f_LO2; + u32 f_out; + u32 f_out_bw; + u32 f_LO1_Step; + u32 f_LO2_Step; + u32 f_LO1_FracN_Avoid; + u32 f_LO2_FracN_Avoid; + u32 f_zif_bw; + u32 f_min_LO_Separation; + u32 maxH1; + u32 maxH2; + enum MT2063_DECT_Avoid_Type avoidDECT; + u32 bSpurPresent; + u32 bSpurAvoided; + u32 nSpursFound; + u32 nZones; + struct MT2063_ExclZone_t *freeZones; + struct MT2063_ExclZone_t *usedZones; + struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES]; +}; + +/* + * Parameter for function MT2063_SetPowerMask that specifies the power down + * of various sections of the MT2063. + */ +enum MT2063_Mask_Bits { + MT2063_REG_SD = 0x0040, /* Shutdown regulator */ + MT2063_SRO_SD = 0x0020, /* Shutdown SRO */ + MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */ + MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */ + MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */ + MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */ + MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */ + MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */ + MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */ + MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */ + MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */ + MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */ + MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */ + MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */ + MT2063_NONE_SD = 0x0000 /* No shutdown bits */ +}; + +/* + * Possible values for MT2063_DNC_OUTPUT + */ +enum MT2063_DNC_Output_Enable { + MT2063_DNC_NONE = 0, + MT2063_DNC_1, + MT2063_DNC_2, + MT2063_DNC_BOTH +}; + +/* + * Two-wire serial bus subaddresses of the tuner registers. + * Also known as the tuner's register addresses. + */ +enum MT2063_Register_Offsets { + MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */ + MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */ + MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */ + MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */ + MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */ + MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */ + MT2063_REG_RSVD_06, /* 0x06: Reserved */ + MT2063_REG_LO_STATUS, /* 0x07: LO Status */ + MT2063_REG_FIFFC, /* 0x08: FIFF Center */ + MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */ + MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */ + MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */ + MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */ + MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */ + MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */ + MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */ + MT2063_REG_RSVD_10, /* 0x10: Reserved */ + MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */ + MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */ + MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */ + MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */ + MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */ + MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */ + MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */ + MT2063_REG_RF_OV, /* 0x18: RF Attn Override */ + MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */ + MT2063_REG_LNA_TGT, /* 0x1A: Reserved */ + MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */ + MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */ + MT2063_REG_RSVD_1D, /* 0x1D: Reserved */ + MT2063_REG_RSVD_1E, /* 0x1E: Reserved */ + MT2063_REG_RSVD_1F, /* 0x1F: Reserved */ + MT2063_REG_RSVD_20, /* 0x20: Reserved */ + MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */ + MT2063_REG_RSVD_22, /* 0x22: Reserved */ + MT2063_REG_RSVD_23, /* 0x23: Reserved */ + MT2063_REG_RSVD_24, /* 0x24: Reserved */ + MT2063_REG_RSVD_25, /* 0x25: Reserved */ + MT2063_REG_RSVD_26, /* 0x26: Reserved */ + MT2063_REG_RSVD_27, /* 0x27: Reserved */ + MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */ + MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */ + MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */ + MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */ + MT2063_REG_CTRL_2C, /* 0x2C: Reserved */ + MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */ + MT2063_REG_RSVD_2E, /* 0x2E: Reserved */ + MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */ + MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */ + MT2063_REG_RSVD_31, /* 0x31: Reserved */ + MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */ + MT2063_REG_RSVD_33, /* 0x33: Reserved */ + MT2063_REG_RSVD_34, /* 0x34: Reserved */ + MT2063_REG_RSVD_35, /* 0x35: Reserved */ + MT2063_REG_RSVD_36, /* 0x36: Reserved */ + MT2063_REG_RSVD_37, /* 0x37: Reserved */ + MT2063_REG_RSVD_38, /* 0x38: Reserved */ + MT2063_REG_RSVD_39, /* 0x39: Reserved */ + MT2063_REG_RSVD_3A, /* 0x3A: Reserved */ + MT2063_REG_RSVD_3B, /* 0x3B: Reserved */ + MT2063_REG_RSVD_3C, /* 0x3C: Reserved */ + MT2063_REG_END_REGS +}; + +struct mt2063_state { + struct i2c_adapter *i2c; + + bool init; + + const struct mt2063_config *config; + struct dvb_tuner_ops ops; + struct dvb_frontend *frontend; + struct tuner_state status; + + u32 frequency; + u32 srate; + u32 bandwidth; + u32 reference; + + u32 tuner_id; + struct MT2063_AvoidSpursData_t AS_Data; + u32 f_IF1_actual; + u32 rcvr_mode; + u32 ctfilt_sw; + u32 CTFiltMax[31]; + u32 num_regs; + u8 reg[MT2063_REG_END_REGS]; +}; + +/* + * mt2063_write - Write data into the I2C bus + */ +static u32 mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len) +{ + struct dvb_frontend *fe = state->frontend; + int ret; + u8 buf[60]; + struct i2c_msg msg = { + .addr = state->config->tuner_address, + .flags = 0, + .buf = buf, + .len = len + 1 + }; + + dprintk(2, "\n"); + + msg.buf[0] = reg; + memcpy(msg.buf + 1, data, len); + + if (fe->ops.i2c_gate_ctrl) + fe->ops.i2c_gate_ctrl(fe, 1); + ret = i2c_transfer(state->i2c, &msg, 1); + if (fe->ops.i2c_gate_ctrl) + fe->ops.i2c_gate_ctrl(fe, 0); + + if (ret < 0) + printk(KERN_ERR "%s error ret=%d\n", __func__, ret); + + return ret; +} + +/* + * mt2063_write - Write register data into the I2C bus, caching the value + */ +static u32 mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val) +{ + u32 status; + + dprintk(2, "\n"); + + if (reg >= MT2063_REG_END_REGS) + return -ERANGE; + + status = mt2063_write(state, reg, &val, 1); + if (status < 0) + return status; + + state->reg[reg] = val; + + return 0; +} + +/* + * mt2063_read - Read data from the I2C bus + */ +static u32 mt2063_read(struct mt2063_state *state, + u8 subAddress, u8 *pData, u32 cnt) +{ + u32 status = 0; /* Status to be returned */ + struct dvb_frontend *fe = state->frontend; + u32 i = 0; + + dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt); + + if (fe->ops.i2c_gate_ctrl) + fe->ops.i2c_gate_ctrl(fe, 1); + + for (i = 0; i < cnt; i++) { + u8 b0[] = { subAddress + i }; + struct i2c_msg msg[] = { + { + .addr = state->config->tuner_address, + .flags = 0, + .buf = b0, + .len = 1 + }, { + .addr = state->config->tuner_address, + .flags = I2C_M_RD, + .buf = pData + i, + .len = 1 + } + }; + + status = i2c_transfer(state->i2c, msg, 2); + dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n", + subAddress + i, status, *(pData + i)); + if (status < 0) + break; + } + if (fe->ops.i2c_gate_ctrl) + fe->ops.i2c_gate_ctrl(fe, 0); + + if (status < 0) + printk(KERN_ERR "Can't read from address 0x%02x,\n", + subAddress + i); + + return status; +} + +/* + * FIXME: Is this really needed? + */ +static int MT2063_Sleep(struct dvb_frontend *fe) +{ + /* + * ToDo: Add code here to implement a OS blocking + */ + msleep(10); + + return 0; +} + +/* + * Microtune spur avoidance + */ + +/* Implement ceiling, floor functions. */ +#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0)) +#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d)) + +struct MT2063_FIFZone_t { + s32 min_; + s32 max_; +}; + +static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t + *pAS_Info, + struct MT2063_ExclZone_t *pPrevNode) +{ + struct MT2063_ExclZone_t *pNode; + + dprintk(2, "\n"); + + /* Check for a node in the free list */ + if (pAS_Info->freeZones != NULL) { + /* Use one from the free list */ + pNode = pAS_Info->freeZones; + pAS_Info->freeZones = pNode->next_; + } else { + /* Grab a node from the array */ + pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones]; + } + + if (pPrevNode != NULL) { + pNode->next_ = pPrevNode->next_; + pPrevNode->next_ = pNode; + } else { /* insert at the beginning of the list */ + + pNode->next_ = pAS_Info->usedZones; + pAS_Info->usedZones = pNode; + } + + pAS_Info->nZones++; + return pNode; +} + +static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t + *pAS_Info, + struct MT2063_ExclZone_t *pPrevNode, + struct MT2063_ExclZone_t + *pNodeToRemove) +{ + struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_; + + dprintk(2, "\n"); + + /* Make previous node point to the subsequent node */ + if (pPrevNode != NULL) + pPrevNode->next_ = pNext; + + /* Add pNodeToRemove to the beginning of the freeZones */ + pNodeToRemove->next_ = pAS_Info->freeZones; + pAS_Info->freeZones = pNodeToRemove; + + /* Decrement node count */ + pAS_Info->nZones--; + + return pNext; +} + +/* + * MT_AddExclZone() + * + * Add (and merge) an exclusion zone into the list. + * If the range (f_min, f_max) is totally outside the + * 1st IF BW, ignore the entry. + * If the range (f_min, f_max) is negative, ignore the entry. + */ +static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info, + u32 f_min, u32 f_max) +{ + struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; + struct MT2063_ExclZone_t *pPrev = NULL; + struct MT2063_ExclZone_t *pNext = NULL; + + dprintk(2, "\n"); + + /* Check to see if this overlaps the 1st IF filter */ + if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2))) + && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2))) + && (f_min < f_max)) { + /* + * 1 2 3 4 5 6 + * + * New entry: |---| |--| |--| |-| |---| |--| + * or or or or or + * Existing: |--| |--| |--| |---| |-| |--| + */ + + /* Check for our place in the list */ + while ((pNode != NULL) && (pNode->max_ < f_min)) { + pPrev = pNode; + pNode = pNode->next_; + } + + if ((pNode != NULL) && (pNode->min_ < f_max)) { + /* Combine me with pNode */ + if (f_min < pNode->min_) + pNode->min_ = f_min; + if (f_max > pNode->max_) + pNode->max_ = f_max; + } else { + pNode = InsertNode(pAS_Info, pPrev); + pNode->min_ = f_min; + pNode->max_ = f_max; + } + + /* Look for merging possibilities */ + pNext = pNode->next_; + while ((pNext != NULL) && (pNext->min_ < pNode->max_)) { + if (pNext->max_ > pNode->max_) + pNode->max_ = pNext->max_; + /* Remove pNext, return ptr to pNext->next */ + pNext = RemoveNode(pAS_Info, pNode, pNext); + } + } +} + +/* + * Reset all exclusion zones. + * Add zones to protect the PLL FracN regions near zero + */ +static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info) +{ + u32 center; + + dprintk(2, "\n"); + + pAS_Info->nZones = 0; /* this clears the used list */ + pAS_Info->usedZones = NULL; /* reset ptr */ + pAS_Info->freeZones = NULL; /* reset ptr */ + + center = + pAS_Info->f_ref * + ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 + + pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in; + while (center < + pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + + pAS_Info->f_LO1_FracN_Avoid) { + /* Exclude LO1 FracN */ + MT2063_AddExclZone(pAS_Info, + center - pAS_Info->f_LO1_FracN_Avoid, + center - 1); + MT2063_AddExclZone(pAS_Info, center + 1, + center + pAS_Info->f_LO1_FracN_Avoid); + center += pAS_Info->f_ref; + } + + center = + pAS_Info->f_ref * + ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 - + pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out; + while (center < + pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + + pAS_Info->f_LO2_FracN_Avoid) { + /* Exclude LO2 FracN */ + MT2063_AddExclZone(pAS_Info, + center - pAS_Info->f_LO2_FracN_Avoid, + center - 1); + MT2063_AddExclZone(pAS_Info, center + 1, + center + pAS_Info->f_LO2_FracN_Avoid); + center += pAS_Info->f_ref; + } + + if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { + /* Exclude LO1 values that conflict with DECT channels */ + MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */ + MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */ + MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */ + MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */ + MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */ + } + + if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { + MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */ + MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */ + MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */ + MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */ + MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */ + MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */ + MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */ + MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */ + MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */ + MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */ + } +} + +/* + * MT_ChooseFirstIF - Choose the best available 1st IF + * If f_Desired is not excluded, choose that first. + * Otherwise, return the value closest to f_Center that is + * not excluded + */ +static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info) +{ + /* + * Update "f_Desired" to be the nearest "combinational-multiple" of + * "f_LO1_Step". + * The resulting number, F_LO1 must be a multiple of f_LO1_Step. + * And F_LO1 is the arithmetic sum of f_in + f_Center. + * Neither f_in, nor f_Center must be a multiple of f_LO1_Step. + * However, the sum must be. + */ + const u32 f_Desired = + pAS_Info->f_LO1_Step * + ((pAS_Info->f_if1_Request + pAS_Info->f_in + + pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) - + pAS_Info->f_in; + const u32 f_Step = + (pAS_Info->f_LO1_Step > + pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info-> + f_LO2_Step; + u32 f_Center; + s32 i; + s32 j = 0; + u32 bDesiredExcluded = 0; + u32 bZeroExcluded = 0; + s32 tmpMin, tmpMax; + s32 bestDiff; + struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; + struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES]; + + dprintk(2, "\n"); + + if (pAS_Info->nZones == 0) + return f_Desired; + + /* + * f_Center needs to be an integer multiple of f_Step away + * from f_Desired + */ + if (pAS_Info->f_if1_Center > f_Desired) + f_Center = + f_Desired + + f_Step * + ((pAS_Info->f_if1_Center - f_Desired + + f_Step / 2) / f_Step); + else + f_Center = + f_Desired - + f_Step * + ((f_Desired - pAS_Info->f_if1_Center + + f_Step / 2) / f_Step); + + /* + * Take MT_ExclZones, center around f_Center and change the + * resolution to f_Step + */ + while (pNode != NULL) { + /* floor function */ + tmpMin = + floor((s32) (pNode->min_ - f_Center), (s32) f_Step); + + /* ceil function */ + tmpMax = + ceil((s32) (pNode->max_ - f_Center), (s32) f_Step); + + if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired)) + bDesiredExcluded = 1; + + if ((tmpMin < 0) && (tmpMax > 0)) + bZeroExcluded = 1; + + /* See if this zone overlaps the previous */ + if ((j > 0) && (tmpMin < zones[j - 1].max_)) + zones[j - 1].max_ = tmpMax; + else { + /* Add new zone */ + zones[j].min_ = tmpMin; + zones[j].max_ = tmpMax; + j++; + } + pNode = pNode->next_; + } + + /* + * If the desired is okay, return with it + */ + if (bDesiredExcluded == 0) + return f_Desired; + + /* + * If the desired is excluded and the center is okay, return with it + */ + if (bZeroExcluded == 0) + return f_Center; + + /* Find the value closest to 0 (f_Center) */ + bestDiff = zones[0].min_; + for (i = 0; i < j; i++) { + if (abs(zones[i].min_) < abs(bestDiff)) + bestDiff = zones[i].min_; + if (abs(zones[i].max_) < abs(bestDiff)) + bestDiff = zones[i].max_; + } + + if (bestDiff < 0) + return f_Center - ((u32) (-bestDiff) * f_Step); + + return f_Center + (bestDiff * f_Step); +} + +/** + * gcd() - Uses Euclid's algorithm + * + * @u, @v: Unsigned values whose GCD is desired. + * + * Returns THE greatest common divisor of u and v, if either value is 0, + * the other value is returned as the result. + */ +static u32 MT2063_gcd(u32 u, u32 v) +{ + u32 r; + + while (v != 0) { + r = u % v; + u = v; + v = r; + } + + return u; +} + +/** + * IsSpurInBand() - Checks to see if a spur will be present within the IF's + * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW) + * + * ma mb mc md + * <--+-+-+-------------------+-------------------+-+-+--> + * | ^ 0 ^ | + * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^ + * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2 + * + * Note that some equations are doubled to prevent round-off + * problems when calculating fIFBW/2 + * + * @pAS_Info: Avoid Spurs information block + * @fm: If spur, amount f_IF1 has to move negative + * @fp: If spur, amount f_IF1 has to move positive + * + * Returns 1 if an LO spur would be present, otherwise 0. + */ +static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info, + u32 *fm, u32 * fp) +{ + /* + ** Calculate LO frequency settings. + */ + u32 n, n0; + const u32 f_LO1 = pAS_Info->f_LO1; + const u32 f_LO2 = pAS_Info->f_LO2; + const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2; + const u32 c = d - pAS_Info->f_out_bw; + const u32 f = pAS_Info->f_zif_bw / 2; + const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1; + s32 f_nsLO1, f_nsLO2; + s32 f_Spur; + u32 ma, mb, mc, md, me, mf; + u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs; + + dprintk(2, "\n"); + + *fm = 0; + + /* + ** For each edge (d, c & f), calculate a scale, based on the gcd + ** of f_LO1, f_LO2 and the edge value. Use the larger of this + ** gcd-based scale factor or f_Scale. + */ + lo_gcd = MT2063_gcd(f_LO1, f_LO2); + gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale); + hgds = gd_Scale / 2; + gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale); + hgcs = gc_Scale / 2; + gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale); + hgfs = gf_Scale / 2; + + n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2); + + /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */ + for (n = n0; n <= pAS_Info->maxH1; ++n) { + md = (n * ((f_LO1 + hgds) / gd_Scale) - + ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); + + /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */ + if (md >= pAS_Info->maxH1) + break; + + ma = (n * ((f_LO1 + hgds) / gd_Scale) + + ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); + + /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */ + if (md == ma) + continue; + + mc = (n * ((f_LO1 + hgcs) / gc_Scale) - + ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); + if (mc != md) { + f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale)); + f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale)); + f_Spur = + (gc_Scale * (f_nsLO1 - f_nsLO2)) + + n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale); + + *fp = ((f_Spur - (s32) c) / (mc - n)) + 1; + *fm = (((s32) d - f_Spur) / (mc - n)) + 1; + return 1; + } + + /* Location of Zero-IF-spur to be checked */ + me = (n * ((f_LO1 + hgfs) / gf_Scale) + + ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); + mf = (n * ((f_LO1 + hgfs) / gf_Scale) - + ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); + if (me != mf) { + f_nsLO1 = n * (f_LO1 / gf_Scale); + f_nsLO2 = me * (f_LO2 / gf_Scale); + f_Spur = + (gf_Scale * (f_nsLO1 - f_nsLO2)) + + n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale); + + *fp = ((f_Spur + (s32) f) / (me - n)) + 1; + *fm = (((s32) f - f_Spur) / (me - n)) + 1; + return 1; + } + + mb = (n * ((f_LO1 + hgcs) / gc_Scale) + + ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); + if (ma != mb) { + f_nsLO1 = n * (f_LO1 / gc_Scale); + f_nsLO2 = ma * (f_LO2 / gc_Scale); + f_Spur = + (gc_Scale * (f_nsLO1 - f_nsLO2)) + + n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale); + + *fp = (((s32) d + f_Spur) / (ma - n)) + 1; + *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1; + return 1; + } + } + + /* No spurs found */ + return 0; +} + +/* + * MT_AvoidSpurs() - Main entry point to avoid spurs. + * Checks for existing spurs in present LO1, LO2 freqs + * and if present, chooses spur-free LO1, LO2 combination + * that tunes the same input/output frequencies. + */ +static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info) +{ + u32 status = 0; + u32 fm, fp; /* restricted range on LO's */ + pAS_Info->bSpurAvoided = 0; + pAS_Info->nSpursFound = 0; + + dprintk(2, "\n"); + + if (pAS_Info->maxH1 == 0) + return 0; + + /* + * Avoid LO Generated Spurs + * + * Make sure that have no LO-related spurs within the IF output + * bandwidth. + * + * If there is an LO spur in this band, start at the current IF1 frequency + * and work out until we find a spur-free frequency or run up against the + * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they + * will be unchanged if a spur-free setting is not found. + */ + pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); + if (pAS_Info->bSpurPresent) { + u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */ + u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */ + u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */ + u32 delta_IF1; + u32 new_IF1; + + /* + ** Spur was found, attempt to find a spur-free 1st IF + */ + do { + pAS_Info->nSpursFound++; + + /* Raise f_IF1_upper, if needed */ + MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp); + + /* Choose next IF1 that is closest to f_IF1_CENTER */ + new_IF1 = MT2063_ChooseFirstIF(pAS_Info); + + if (new_IF1 > zfIF1) { + pAS_Info->f_LO1 += (new_IF1 - zfIF1); + pAS_Info->f_LO2 += (new_IF1 - zfIF1); + } else { + pAS_Info->f_LO1 -= (zfIF1 - new_IF1); + pAS_Info->f_LO2 -= (zfIF1 - new_IF1); + } + zfIF1 = new_IF1; + + if (zfIF1 > pAS_Info->f_if1_Center) + delta_IF1 = zfIF1 - pAS_Info->f_if1_Center; + else + delta_IF1 = pAS_Info->f_if1_Center - zfIF1; + + pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); + /* + * Continue while the new 1st IF is still within the 1st IF bandwidth + * and there is a spur in the band (again) + */ + } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent); + + /* + * Use the LO-spur free values found. If the search went all + * the way to the 1st IF band edge and always found spurs, just + * leave the original choice. It's as "good" as any other. + */ + if (pAS_Info->bSpurPresent == 1) { + status |= MT2063_SPUR_PRESENT_ERR; + pAS_Info->f_LO1 = zfLO1; + pAS_Info->f_LO2 = zfLO2; + } else + pAS_Info->bSpurAvoided = 1; + } + + status |= + ((pAS_Info-> + nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK); + + return status; +} + +/* + * Constants used by the tuning algorithm + */ +#define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */ +#define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */ +#define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */ +#define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */ +#define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */ +#define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */ +#define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */ +#define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */ +#define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */ +#define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */ +#define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */ +#define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */ +#define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */ +#define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */ +#define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */ +#define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */ +#define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */ +#define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */ + +/* + * Define the supported Part/Rev codes for the MT2063 + */ +#define MT2063_B0 (0x9B) +#define MT2063_B1 (0x9C) +#define MT2063_B2 (0x9D) +#define MT2063_B3 (0x9E) + +/** + * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked + * + * @state: struct mt2063_state pointer + * + * This function returns 0, if no lock, 1 if locked and a value < 1 if error + */ +static unsigned int mt2063_lockStatus(struct mt2063_state *state) +{ + const u32 nMaxWait = 100; /* wait a maximum of 100 msec */ + const u32 nPollRate = 2; /* poll status bits every 2 ms */ + const u32 nMaxLoops = nMaxWait / nPollRate; + const u8 LO1LK = 0x80; + u8 LO2LK = 0x08; + u32 status; + u32 nDelays = 0; + + dprintk(2, "\n"); + + /* LO2 Lock bit was in a different place for B0 version */ + if (state->tuner_id == MT2063_B0) + LO2LK = 0x40; + + do { + status = mt2063_read(state, MT2063_REG_LO_STATUS, + &state->reg[MT2063_REG_LO_STATUS], 1); + + if (status < 0) + return status; + + if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) == + (LO1LK | LO2LK)) { + return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO; + } + msleep(nPollRate); /* Wait between retries */ + } while (++nDelays < nMaxLoops); + + /* + * Got no lock or partial lock + */ + return 0; +} + +/* + * Constants for setting receiver modes. + * (6 modes defined at this time, enumerated by mt2063_delivery_sys) + * (DNC1GC & DNC2GC are the values, which are used, when the specific + * DNC Output is selected, the other is always off) + * + * enum mt2063_delivery_sys + * -------------+---------------------------------------------- + * Mode 0 : | MT2063_CABLE_QAM + * Mode 1 : | MT2063_CABLE_ANALOG + * Mode 2 : | MT2063_OFFAIR_COFDM + * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS + * Mode 4 : | MT2063_OFFAIR_ANALOG + * Mode 5 : | MT2063_OFFAIR_8VSB + * --------------+---------------------------------------------- + * + * |<---------- Mode -------------->| + * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 | + * ------------+-----+-----+-----+-----+-----+-----+ + * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF + * LNARin | 0 | 0 | 3 | 3 | 3 | 3 + * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1 + * FIFFq | 0 | 0 | 0 | 0 | 0 | 0 + * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0 + * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0 + * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1 + * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31 + * LNA Target | 44 | 43 | 43 | 43 | 43 | 43 + * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0 + * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31 + * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38 + * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0 + * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5 + * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42 + */ + +enum mt2063_delivery_sys { + MT2063_CABLE_QAM = 0, + MT2063_CABLE_ANALOG, + MT2063_OFFAIR_COFDM, + MT2063_OFFAIR_COFDM_SAWLESS, + MT2063_OFFAIR_ANALOG, + MT2063_OFFAIR_8VSB, + MT2063_NUM_RCVR_MODES +}; + +static const char *mt2063_mode_name[] = { + [MT2063_CABLE_QAM] = "digital cable", + [MT2063_CABLE_ANALOG] = "analog cable", + [MT2063_OFFAIR_COFDM] = "digital offair", + [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW", + [MT2063_OFFAIR_ANALOG] = "analog offair", + [MT2063_OFFAIR_8VSB] = "analog offair 8vsb", +}; + +static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 }; +static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 }; +static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 }; +static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 }; +static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 }; +static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 }; +static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 }; +static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 }; +static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; +static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 }; +static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 }; +static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; +static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 }; +static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 }; + +/* + * mt2063_set_dnc_output_enable() + */ +static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state, + enum MT2063_DNC_Output_Enable *pValue) +{ + dprintk(2, "\n"); + + if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */ + if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ + *pValue = MT2063_DNC_NONE; + else + *pValue = MT2063_DNC_2; + } else { /* DNC1 is on */ + if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ + *pValue = MT2063_DNC_1; + else + *pValue = MT2063_DNC_BOTH; + } + return 0; +} + +/* + * mt2063_set_dnc_output_enable() + */ +static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state, + enum MT2063_DNC_Output_Enable nValue) +{ + u32 status = 0; /* Status to be returned */ + u8 val = 0; + + dprintk(2, "\n"); + + /* selects, which DNC output is used */ + switch (nValue) { + case MT2063_DNC_NONE: + val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ + if (state->reg[MT2063_REG_DNC_GAIN] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_DNC_GAIN, + val); + + val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ + if (state->reg[MT2063_REG_VGA_GAIN] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_VGA_GAIN, + val); + + val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ + if (state->reg[MT2063_REG_RSVD_20] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_RSVD_20, + val); + + break; + case MT2063_DNC_1: + val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ + if (state->reg[MT2063_REG_DNC_GAIN] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_DNC_GAIN, + val); + + val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ + if (state->reg[MT2063_REG_VGA_GAIN] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_VGA_GAIN, + val); + + val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ + if (state->reg[MT2063_REG_RSVD_20] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_RSVD_20, + val); + + break; + case MT2063_DNC_2: + val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ + if (state->reg[MT2063_REG_DNC_GAIN] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_DNC_GAIN, + val); + + val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ + if (state->reg[MT2063_REG_VGA_GAIN] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_VGA_GAIN, + val); + + val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ + if (state->reg[MT2063_REG_RSVD_20] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_RSVD_20, + val); + + break; + case MT2063_DNC_BOTH: + val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ + if (state->reg[MT2063_REG_DNC_GAIN] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_DNC_GAIN, + val); + + val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ + if (state->reg[MT2063_REG_VGA_GAIN] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_VGA_GAIN, + val); + + val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ + if (state->reg[MT2063_REG_RSVD_20] != + val) + status |= + mt2063_setreg(state, + MT2063_REG_RSVD_20, + val); + + break; + default: + break; + } + + return status; +} + +/* + * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with + * the selected enum mt2063_delivery_sys type. + * + * (DNC1GC & DNC2GC are the values, which are used, when the specific + * DNC Output is selected, the other is always off) + * + * @state: ptr to mt2063_state structure + * @Mode: desired reciever delivery system + * + * Note: Register cache must be valid for it to work + */ + +static u32 MT2063_SetReceiverMode(struct mt2063_state *state, + enum mt2063_delivery_sys Mode) +{ + u32 status = 0; /* Status to be returned */ + u8 val; + u32 longval; + + dprintk(2, "\n"); + + if (Mode >= MT2063_NUM_RCVR_MODES) + status = -ERANGE; + + /* RFAGCen */ + if (status >= 0) { + val = + (state-> + reg[MT2063_REG_PD1_TGT] & (u8) ~0x40) | (RFAGCEN[Mode] + ? 0x40 : + 0x00); + if (state->reg[MT2063_REG_PD1_TGT] != val) + status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); + } + + /* LNARin */ + if (status >= 0) { + u8 val = (state->reg[MT2063_REG_CTRL_2C] & (u8) ~0x03) | + (LNARIN[Mode] & 0x03); + if (state->reg[MT2063_REG_CTRL_2C] != val) + status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val); + } + + /* FIFFQEN and FIFFQ */ + if (status >= 0) { + val = + (state-> + reg[MT2063_REG_FIFF_CTRL2] & (u8) ~0xF0) | + (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4); + if (state->reg[MT2063_REG_FIFF_CTRL2] != val) { + status |= + mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val); + /* trigger FIFF calibration, needed after changing FIFFQ */ + val = + (state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01); + status |= + mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); + val = + (state-> + reg[MT2063_REG_FIFF_CTRL] & (u8) ~0x01); + status |= + mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); + } + } + + /* DNC1GC & DNC2GC */ + status |= mt2063_get_dnc_output_enable(state, &longval); + status |= mt2063_set_dnc_output_enable(state, longval); + + /* acLNAmax */ + if (status >= 0) { + u8 val = (state->reg[MT2063_REG_LNA_OV] & (u8) ~0x1F) | + (ACLNAMAX[Mode] & 0x1F); + if (state->reg[MT2063_REG_LNA_OV] != val) + status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val); + } + + /* LNATGT */ + if (status >= 0) { + u8 val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x3F) | + (LNATGT[Mode] & 0x3F); + if (state->reg[MT2063_REG_LNA_TGT] != val) + status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); + } + + /* ACRF */ + if (status >= 0) { + u8 val = (state->reg[MT2063_REG_RF_OV] & (u8) ~0x1F) | + (ACRFMAX[Mode] & 0x1F); + if (state->reg[MT2063_REG_RF_OV] != val) + status |= mt2063_setreg(state, MT2063_REG_RF_OV, val); + } + + /* PD1TGT */ + if (status >= 0) { + u8 val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x3F) | + (PD1TGT[Mode] & 0x3F); + if (state->reg[MT2063_REG_PD1_TGT] != val) + status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); + } + + /* FIFATN */ + if (status >= 0) { + u8 val = ACFIFMAX[Mode]; + if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5) + val = 5; + val = (state->reg[MT2063_REG_FIF_OV] & (u8) ~0x1F) | + (val & 0x1F); + if (state->reg[MT2063_REG_FIF_OV] != val) + status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val); + } + + /* PD2TGT */ + if (status >= 0) { + u8 val = (state->reg[MT2063_REG_PD2_TGT] & (u8) ~0x3F) | + (PD2TGT[Mode] & 0x3F); + if (state->reg[MT2063_REG_PD2_TGT] != val) + status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val); + } + + /* Ignore ATN Overload */ + if (status >= 0) { + val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x80) | + (RFOVDIS[Mode] ? 0x80 : 0x00); + if (state->reg[MT2063_REG_LNA_TGT] != val) + status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); + } + + /* Ignore FIF Overload */ + if (status >= 0) { + val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x80) | + (FIFOVDIS[Mode] ? 0x80 : 0x00); + if (state->reg[MT2063_REG_PD1_TGT] != val) + status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); + } + + if (status >= 0) { + state->rcvr_mode = Mode; + dprintk(1, "mt2063 mode changed to %s\n", + mt2063_mode_name[state->rcvr_mode]); + } + + return status; +} + +/* + * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various + * sections of the MT2063 + * + * @Bits: Mask bits to be cleared. + * + * See definition of MT2063_Mask_Bits type for description + * of each of the power bits. + */ +static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state, + enum MT2063_Mask_Bits Bits) +{ + u32 status = 0; + + dprintk(2, "\n"); + Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */ + if ((Bits & 0xFF00) != 0) { + state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8); + status |= + mt2063_write(state, + MT2063_REG_PWR_2, + &state->reg[MT2063_REG_PWR_2], 1); + } + if ((Bits & 0xFF) != 0) { + state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF); + status |= + mt2063_write(state, + MT2063_REG_PWR_1, + &state->reg[MT2063_REG_PWR_1], 1); + } + + return status; +} + +/* + * MT2063_SoftwareShutdown() - Enables or disables software shutdown function. + * When Shutdown is 1, any section whose power + * mask is set will be shutdown. + */ +static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown) +{ + u32 status; + + dprintk(2, "\n"); + if (Shutdown == 1) + state->reg[MT2063_REG_PWR_1] |= 0x04; + else + state->reg[MT2063_REG_PWR_1] &= ~0x04; + + status = mt2063_write(state, + MT2063_REG_PWR_1, + &state->reg[MT2063_REG_PWR_1], 1); + + if (Shutdown != 1) { + state->reg[MT2063_REG_BYP_CTRL] = + (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40; + status |= + mt2063_write(state, + MT2063_REG_BYP_CTRL, + &state->reg[MT2063_REG_BYP_CTRL], + 1); + state->reg[MT2063_REG_BYP_CTRL] = + (state->reg[MT2063_REG_BYP_CTRL] & 0x9F); + status |= + mt2063_write(state, + MT2063_REG_BYP_CTRL, + &state->reg[MT2063_REG_BYP_CTRL], + 1); + } + + return status; +} + +static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref) +{ + return f_ref * (f_LO / f_ref) + + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step); +} + +/** + * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom. + * This function preserves maximum precision without + * risk of overflow. It accurately calculates + * f_ref * num / denom to within 1 HZ with fixed math. + * + * @num : Fractional portion of the multiplier + * @denom: denominator portion of the ratio + * @f_Ref: SRO frequency. + * + * This calculation handles f_ref as two separate 14-bit fields. + * Therefore, a maximum value of 2^28-1 may safely be used for f_ref. + * This is the genesis of the magic number "14" and the magic mask value of + * 0x03FFF. + * + * This routine successfully handles denom values up to and including 2^18. + * Returns: f_ref * num / denom + */ +static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom) +{ + u32 t1 = (f_ref >> 14) * num; + u32 term1 = t1 / denom; + u32 loss = t1 % denom; + u32 term2 = + (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom; + return (term1 << 14) + term2; +} + +/* + * CalcLO1Mult()- Calculates Integer divider value and the numerator + * value for a FracN PLL. + * + * This function assumes that the f_LO and f_Ref are + * evenly divisible by f_LO_Step. + * + * @Div: OUTPUT: Whole number portion of the multiplier + * @FracN: OUTPUT: Fractional portion of the multiplier + * @f_LO: desired LO frequency. + * @f_LO_Step: Minimum step size for the LO (in Hz). + * @f_Ref: SRO frequency. + * @f_Avoid: Range of PLL frequencies to avoid near integer multiples + * of f_Ref (in Hz). + * + * Returns: Recalculated LO frequency. + */ +static u32 MT2063_CalcLO1Mult(u32 *Div, + u32 *FracN, + u32 f_LO, + u32 f_LO_Step, u32 f_Ref) +{ + /* Calculate the whole number portion of the divider */ + *Div = f_LO / f_Ref; + + /* Calculate the numerator value (round to nearest f_LO_Step) */ + *FracN = + (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + + (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); + + return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64); +} + +/** + * CalcLO2Mult() - Calculates Integer divider value and the numerator + * value for a FracN PLL. + * + * This function assumes that the f_LO and f_Ref are + * evenly divisible by f_LO_Step. + * + * @Div: OUTPUT: Whole number portion of the multiplier + * @FracN: OUTPUT: Fractional portion of the multiplier + * @f_LO: desired LO frequency. + * @f_LO_Step: Minimum step size for the LO (in Hz). + * @f_Ref: SRO frequency. + * @f_Avoid: Range of PLL frequencies to avoid near + * integer multiples of f_Ref (in Hz). + * + * Returns: Recalculated LO frequency. + */ +static u32 MT2063_CalcLO2Mult(u32 *Div, + u32 *FracN, + u32 f_LO, + u32 f_LO_Step, u32 f_Ref) +{ + /* Calculate the whole number portion of the divider */ + *Div = f_LO / f_Ref; + + /* Calculate the numerator value (round to nearest f_LO_Step) */ + *FracN = + (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + + (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); + + return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, + 8191); +} + +/* + * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be + * used for a given input frequency. + * + * @state: ptr to tuner data structure + * @f_in: RF input center frequency (in Hz). + * + * Returns: ClearTune filter number (0-31) + */ +static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in) +{ + u32 RFBand; + u32 idx; /* index loop */ + + /* + ** Find RF Band setting + */ + RFBand = 31; /* def when f_in > all */ + for (idx = 0; idx < 31; ++idx) { + if (state->CTFiltMax[idx] >= f_in) { + RFBand = idx; + break; + } + } + return RFBand; +} + +/* + * MT2063_Tune() - Change the tuner's tuned frequency to RFin. + */ +static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in) +{ /* RF input center frequency */ + + u32 status = 0; + u32 LO1; /* 1st LO register value */ + u32 Num1; /* Numerator for LO1 reg. value */ + u32 f_IF1; /* 1st IF requested */ + u32 LO2; /* 2nd LO register value */ + u32 Num2; /* Numerator for LO2 reg. value */ + u32 ofLO1, ofLO2; /* last time's LO frequencies */ + u8 fiffc = 0x80; /* FIFF center freq from tuner */ + u32 fiffof; /* Offset from FIFF center freq */ + const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */ + u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */ + u8 val; + u32 RFBand; + + dprintk(2, "\n"); + /* Check the input and output frequency ranges */ + if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ)) + return -EINVAL; + + if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ) + || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ)) + return -EINVAL; + + /* + * Save original LO1 and LO2 register values + */ + ofLO1 = state->AS_Data.f_LO1; + ofLO2 = state->AS_Data.f_LO2; + + /* + * Find and set RF Band setting + */ + if (state->ctfilt_sw == 1) { + val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08); + if (state->reg[MT2063_REG_CTUNE_CTRL] != val) { + status |= + mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val); + } + val = state->reg[MT2063_REG_CTUNE_OV]; + RFBand = FindClearTuneFilter(state, f_in); + state->reg[MT2063_REG_CTUNE_OV] = + (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F) + | RFBand); + if (state->reg[MT2063_REG_CTUNE_OV] != val) { + status |= + mt2063_setreg(state, MT2063_REG_CTUNE_OV, val); + } + } + + /* + * Read the FIFF Center Frequency from the tuner + */ + if (status >= 0) { + status |= + mt2063_read(state, + MT2063_REG_FIFFC, + &state->reg[MT2063_REG_FIFFC], 1); + fiffc = state->reg[MT2063_REG_FIFFC]; + } + /* + * Assign in the requested values + */ + state->AS_Data.f_in = f_in; + /* Request a 1st IF such that LO1 is on a step size */ + state->AS_Data.f_if1_Request = + MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in, + state->AS_Data.f_LO1_Step, + state->AS_Data.f_ref) - f_in; + + /* + * Calculate frequency settings. f_IF1_FREQ + f_in is the + * desired LO1 frequency + */ + MT2063_ResetExclZones(&state->AS_Data); + + f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data); + + state->AS_Data.f_LO1 = + MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step, + state->AS_Data.f_ref); + + state->AS_Data.f_LO2 = + MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, + state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); + + /* + * Check for any LO spurs in the output bandwidth and adjust + * the LO settings to avoid them if needed + */ + status |= MT2063_AvoidSpurs(&state->AS_Data); + /* + * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values. + * Recalculate the LO frequencies and the values to be placed + * in the tuning registers. + */ + state->AS_Data.f_LO1 = + MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1, + state->AS_Data.f_LO1_Step, state->AS_Data.f_ref); + state->AS_Data.f_LO2 = + MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, + state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); + state->AS_Data.f_LO2 = + MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2, + state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); + + /* + * Check the upconverter and downconverter frequency ranges + */ + if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ) + || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ)) + status |= MT2063_UPC_RANGE; + if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ) + || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ)) + status |= MT2063_DNC_RANGE; + /* LO2 Lock bit was in a different place for B0 version */ + if (state->tuner_id == MT2063_B0) + LO2LK = 0x40; + + /* + * If we have the same LO frequencies and we're already locked, + * then skip re-programming the LO registers. + */ + if ((ofLO1 != state->AS_Data.f_LO1) + || (ofLO2 != state->AS_Data.f_LO2) + || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) != + (LO1LK | LO2LK))) { + /* + * Calculate the FIFFOF register value + * + * IF1_Actual + * FIFFOF = ------------ - 8 * FIFFC - 4992 + * f_ref/64 + */ + fiffof = + (state->AS_Data.f_LO1 - + f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc - + 4992; + if (fiffof > 0xFF) + fiffof = 0xFF; + + /* + * Place all of the calculated values into the local tuner + * register fields. + */ + if (status >= 0) { + state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */ + state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */ + state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */ + |(Num2 >> 12)); /* NUM2q (hi) */ + state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */ + state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */ + + /* + * Now write out the computed register values + * IMPORTANT: There is a required order for writing + * (0x05 must follow all the others). + */ + status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */ + if (state->tuner_id == MT2063_B0) { + /* Re-write the one-shot bits to trigger the tune operation */ + status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */ + } + /* Write out the FIFF offset only if it's changing */ + if (state->reg[MT2063_REG_FIFF_OFFSET] != + (u8) fiffof) { + state->reg[MT2063_REG_FIFF_OFFSET] = + (u8) fiffof; + status |= + mt2063_write(state, + MT2063_REG_FIFF_OFFSET, + &state-> + reg[MT2063_REG_FIFF_OFFSET], + 1); + } + } + + /* + * Check for LO's locking + */ + + if (status < 0) + return status; + + status = mt2063_lockStatus(state); + if (status < 0) + return status; + if (!status) + return -EINVAL; /* Couldn't lock */ + + /* + * If we locked OK, assign calculated data to mt2063_state structure + */ + state->f_IF1_actual = state->AS_Data.f_LO1 - f_in; + } + + return status; +} + +static const u8 MT2063B0_defaults[] = { + /* Reg, Value */ + 0x19, 0x05, + 0x1B, 0x1D, + 0x1C, 0x1F, + 0x1D, 0x0F, + 0x1E, 0x3F, + 0x1F, 0x0F, + 0x20, 0x3F, + 0x22, 0x21, + 0x23, 0x3F, + 0x24, 0x20, + 0x25, 0x3F, + 0x27, 0xEE, + 0x2C, 0x27, /* bit at 0x20 is cleared below */ + 0x30, 0x03, + 0x2C, 0x07, /* bit at 0x20 is cleared here */ + 0x2D, 0x87, + 0x2E, 0xAA, + 0x28, 0xE1, /* Set the FIFCrst bit here */ + 0x28, 0xE0, /* Clear the FIFCrst bit here */ + 0x00 +}; + +/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ +static const u8 MT2063B1_defaults[] = { + /* Reg, Value */ + 0x05, 0xF0, + 0x11, 0x10, /* New Enable AFCsd */ + 0x19, 0x05, + 0x1A, 0x6C, + 0x1B, 0x24, + 0x1C, 0x28, + 0x1D, 0x8F, + 0x1E, 0x14, + 0x1F, 0x8F, + 0x20, 0x57, + 0x22, 0x21, /* New - ver 1.03 */ + 0x23, 0x3C, /* New - ver 1.10 */ + 0x24, 0x20, /* New - ver 1.03 */ + 0x2C, 0x24, /* bit at 0x20 is cleared below */ + 0x2D, 0x87, /* FIFFQ=0 */ + 0x2F, 0xF3, + 0x30, 0x0C, /* New - ver 1.11 */ + 0x31, 0x1B, /* New - ver 1.11 */ + 0x2C, 0x04, /* bit at 0x20 is cleared here */ + 0x28, 0xE1, /* Set the FIFCrst bit here */ + 0x28, 0xE0, /* Clear the FIFCrst bit here */ + 0x00 +}; + +/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ +static const u8 MT2063B3_defaults[] = { + /* Reg, Value */ + 0x05, 0xF0, + 0x19, 0x3D, + 0x2C, 0x24, /* bit at 0x20 is cleared below */ + 0x2C, 0x04, /* bit at 0x20 is cleared here */ + 0x28, 0xE1, /* Set the FIFCrst bit here */ + 0x28, 0xE0, /* Clear the FIFCrst bit here */ + 0x00 +}; + +static int mt2063_init(struct dvb_frontend *fe) +{ + u32 status; + struct mt2063_state *state = fe->tuner_priv; + u8 all_resets = 0xF0; /* reset/load bits */ + const u8 *def = NULL; + char *step; + u32 FCRUN; + s32 maxReads; + u32 fcu_osc; + u32 i; + + dprintk(2, "\n"); + + state->rcvr_mode = MT2063_CABLE_QAM; + + /* Read the Part/Rev code from the tuner */ + status = mt2063_read(state, MT2063_REG_PART_REV, + &state->reg[MT2063_REG_PART_REV], 1); + if (status < 0) { + printk(KERN_ERR "Can't read mt2063 part ID\n"); + return status; + } + + /* Check the part/rev code */ + switch (state->reg[MT2063_REG_PART_REV]) { + case MT2063_B0: + step = "B0"; + break; + case MT2063_B1: + step = "B1"; + break; + case MT2063_B2: + step = "B2"; + break; + case MT2063_B3: + step = "B3"; + break; + default: + printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n", + state->reg[MT2063_REG_PART_REV]); + return -ENODEV; /* Wrong tuner Part/Rev code */ + } + + /* Check the 2nd byte of the Part/Rev code from the tuner */ + status = mt2063_read(state, MT2063_REG_RSVD_3B, + &state->reg[MT2063_REG_RSVD_3B], 1); + + /* b7 != 0 ==> NOT MT2063 */ + if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) { + printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n", + state->reg[MT2063_REG_PART_REV], + state->reg[MT2063_REG_RSVD_3B]); + return -ENODEV; /* Wrong tuner Part/Rev code */ + } + + printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step); + + /* Reset the tuner */ + status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1); + if (status < 0) + return status; + + /* change all of the default values that vary from the HW reset values */ + /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */ + switch (state->reg[MT2063_REG_PART_REV]) { + case MT2063_B3: + def = MT2063B3_defaults; + break; + + case MT2063_B1: + def = MT2063B1_defaults; + break; + + case MT2063_B0: + def = MT2063B0_defaults; + break; + + default: + return -ENODEV; + break; + } + + while (status >= 0 && *def) { + u8 reg = *def++; + u8 val = *def++; + status = mt2063_write(state, reg, &val, 1); + } + if (status < 0) + return status; + + /* Wait for FIFF location to complete. */ + FCRUN = 1; + maxReads = 10; + while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) { + msleep(2); + status = mt2063_read(state, + MT2063_REG_XO_STATUS, + &state-> + reg[MT2063_REG_XO_STATUS], 1); + FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6; + } + + if (FCRUN != 0 || status < 0) + return -ENODEV; + + status = mt2063_read(state, + MT2063_REG_FIFFC, + &state->reg[MT2063_REG_FIFFC], 1); + if (status < 0) + return status; + + /* Read back all the registers from the tuner */ + status = mt2063_read(state, + MT2063_REG_PART_REV, + state->reg, MT2063_REG_END_REGS); + if (status < 0) + return status; + + /* Initialize the tuner state. */ + state->tuner_id = state->reg[MT2063_REG_PART_REV]; + state->AS_Data.f_ref = MT2063_REF_FREQ; + state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) * + ((u32) state->reg[MT2063_REG_FIFFC] + 640); + state->AS_Data.f_if1_bw = MT2063_IF1_BW; + state->AS_Data.f_out = 43750000UL; + state->AS_Data.f_out_bw = 6750000UL; + state->AS_Data.f_zif_bw = MT2063_ZIF_BW; + state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64; + state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE; + state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1; + state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2; + state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP; + state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center; + state->AS_Data.f_LO1 = 2181000000UL; + state->AS_Data.f_LO2 = 1486249786UL; + state->f_IF1_actual = state->AS_Data.f_if1_Center; + state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual; + state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID; + state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID; + state->num_regs = MT2063_REG_END_REGS; + state->AS_Data.avoidDECT = MT2063_AVOID_BOTH; + state->ctfilt_sw = 0; + + state->CTFiltMax[0] = 69230000; + state->CTFiltMax[1] = 105770000; + state->CTFiltMax[2] = 140350000; + state->CTFiltMax[3] = 177110000; + state->CTFiltMax[4] = 212860000; + state->CTFiltMax[5] = 241130000; + state->CTFiltMax[6] = 274370000; + state->CTFiltMax[7] = 309820000; + state->CTFiltMax[8] = 342450000; + state->CTFiltMax[9] = 378870000; + state->CTFiltMax[10] = 416210000; + state->CTFiltMax[11] = 456500000; + state->CTFiltMax[12] = 495790000; + state->CTFiltMax[13] = 534530000; + state->CTFiltMax[14] = 572610000; + state->CTFiltMax[15] = 598970000; + state->CTFiltMax[16] = 635910000; + state->CTFiltMax[17] = 672130000; + state->CTFiltMax[18] = 714840000; + state->CTFiltMax[19] = 739660000; + state->CTFiltMax[20] = 770410000; + state->CTFiltMax[21] = 814660000; + state->CTFiltMax[22] = 846950000; + state->CTFiltMax[23] = 867820000; + state->CTFiltMax[24] = 915980000; + state->CTFiltMax[25] = 947450000; + state->CTFiltMax[26] = 983110000; + state->CTFiltMax[27] = 1021630000; + state->CTFiltMax[28] = 1061870000; + state->CTFiltMax[29] = 1098330000; + state->CTFiltMax[30] = 1138990000; + + /* + ** Fetch the FCU osc value and use it and the fRef value to + ** scale all of the Band Max values + */ + + state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A; + status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, + &state->reg[MT2063_REG_CTUNE_CTRL], 1); + if (status < 0) + return status; + + /* Read the ClearTune filter calibration value */ + status = mt2063_read(state, MT2063_REG_FIFFC, + &state->reg[MT2063_REG_FIFFC], 1); + if (status < 0) + return status; + + fcu_osc = state->reg[MT2063_REG_FIFFC]; + + state->reg[MT2063_REG_CTUNE_CTRL] = 0x00; + status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, + &state->reg[MT2063_REG_CTUNE_CTRL], 1); + if (status < 0) + return status; + + /* Adjust each of the values in the ClearTune filter cross-over table */ + for (i = 0; i < 31; i++) + state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640); + + status = MT2063_SoftwareShutdown(state, 1); + if (status < 0) + return status; + status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); + if (status < 0) + return status; + + state->init = true; + + return 0; +} + +static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status) +{ + struct mt2063_state *state = fe->tuner_priv; + int status; + + dprintk(2, "\n"); + + if (!state->init) + return -ENODEV; + + *tuner_status = 0; + status = mt2063_lockStatus(state); + if (status < 0) + return status; + if (status) + *tuner_status = TUNER_STATUS_LOCKED; + + dprintk(1, "Tuner status: %d", *tuner_status); + + return 0; +} + +static int mt2063_release(struct dvb_frontend *fe) +{ + struct mt2063_state *state = fe->tuner_priv; + + dprintk(2, "\n"); + + fe->tuner_priv = NULL; + kfree(state); + + return 0; +} + +static int mt2063_set_analog_params(struct dvb_frontend *fe, + struct analog_parameters *params) +{ + struct mt2063_state *state = fe->tuner_priv; + s32 pict_car; + s32 pict2chanb_vsb; + s32 ch_bw; + s32 if_mid; + s32 rcvr_mode; + int status; + + dprintk(2, "\n"); + + if (!state->init) { + status = mt2063_init(fe); + if (status < 0) + return status; + } + + switch (params->mode) { + case V4L2_TUNER_RADIO: + pict_car = 38900000; + ch_bw = 8000000; + pict2chanb_vsb = -(ch_bw / 2); + rcvr_mode = MT2063_OFFAIR_ANALOG; + break; + case V4L2_TUNER_ANALOG_TV: + rcvr_mode = MT2063_CABLE_ANALOG; + if (params->std & ~V4L2_STD_MN) { + pict_car = 38900000; + ch_bw = 6000000; + pict2chanb_vsb = -1250000; + } else if (params->std & V4L2_STD_PAL_G) { + pict_car = 38900000; + ch_bw = 7000000; + pict2chanb_vsb = -1250000; + } else { /* PAL/SECAM standards */ + pict_car = 38900000; + ch_bw = 8000000; + pict2chanb_vsb = -1250000; + } + break; + default: + return -EINVAL; + } + if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); + + state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ + state->AS_Data.f_out = if_mid; + state->AS_Data.f_out_bw = ch_bw + 750000; + status = MT2063_SetReceiverMode(state, rcvr_mode); + if (status < 0) + return status; + + dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", + params->frequency, ch_bw, pict2chanb_vsb); + + status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2)))); + if (status < 0) + return status; + + state->frequency = params->frequency; + return 0; +} + +/* + * As defined on EN 300 429, the DVB-C roll-off factor is 0.15. + * So, the amount of the needed bandwith is given by: + * Bw = Symbol_rate * (1 + 0.15) + * As such, the maximum symbol rate supported by 6 MHz is given by: + * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds + */ +#define MAX_SYMBOL_RATE_6MHz 5217391 + +static int mt2063_set_params(struct dvb_frontend *fe) +{ + struct dtv_frontend_properties *c = &fe->dtv_property_cache; + struct mt2063_state *state = fe->tuner_priv; + int status; + s32 pict_car; + s32 pict2chanb_vsb; + s32 ch_bw; + s32 if_mid; + s32 rcvr_mode; + + if (!state->init) { + status = mt2063_init(fe); + if (status < 0) + return status; + } + + dprintk(2, "\n"); + + if (c->bandwidth_hz == 0) + return -EINVAL; + if (c->bandwidth_hz <= 6000000) + ch_bw = 6000000; + else if (c->bandwidth_hz <= 7000000) + ch_bw = 7000000; + else + ch_bw = 8000000; + + switch (c->delivery_system) { + case SYS_DVBT: + rcvr_mode = MT2063_OFFAIR_COFDM; + pict_car = 36125000; + pict2chanb_vsb = -(ch_bw / 2); + break; + case SYS_DVBC_ANNEX_A: + case SYS_DVBC_ANNEX_C: + rcvr_mode = MT2063_CABLE_QAM; + pict_car = 36125000; + pict2chanb_vsb = -(ch_bw / 2); + break; + default: + return -EINVAL; + } + if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); + + state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ + state->AS_Data.f_out = if_mid; + state->AS_Data.f_out_bw = ch_bw + 750000; + status = MT2063_SetReceiverMode(state, rcvr_mode); + if (status < 0) + return status; + + dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", + c->frequency, ch_bw, pict2chanb_vsb); + + status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2)))); + + if (status < 0) + return status; + + state->frequency = c->frequency; + return 0; +} + +static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq) +{ + struct mt2063_state *state = fe->tuner_priv; + + dprintk(2, "\n"); + + if (!state->init) + return -ENODEV; + + *freq = state->AS_Data.f_out; + + dprintk(1, "IF frequency: %d\n", *freq); + + return 0; +} + +static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw) +{ + struct mt2063_state *state = fe->tuner_priv; + + dprintk(2, "\n"); + + if (!state->init) + return -ENODEV; + + *bw = state->AS_Data.f_out_bw - 750000; + + dprintk(1, "bandwidth: %d\n", *bw); + + return 0; +} + +static struct dvb_tuner_ops mt2063_ops = { + .info = { + .name = "MT2063 Silicon Tuner", + .frequency_min = 45000000, + .frequency_max = 850000000, + .frequency_step = 0, + }, + + .init = mt2063_init, + .sleep = MT2063_Sleep, + .get_status = mt2063_get_status, + .set_analog_params = mt2063_set_analog_params, + .set_params = mt2063_set_params, + .get_if_frequency = mt2063_get_if_frequency, + .get_bandwidth = mt2063_get_bandwidth, + .release = mt2063_release, +}; + +struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe, + struct mt2063_config *config, + struct i2c_adapter *i2c) +{ + struct mt2063_state *state = NULL; + + dprintk(2, "\n"); + + state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL); + if (state == NULL) + goto error; + + state->config = config; + state->i2c = i2c; + state->frontend = fe; + state->reference = config->refclock / 1000; /* kHz */ + fe->tuner_priv = state; + fe->ops.tuner_ops = mt2063_ops; + + printk(KERN_INFO "%s: Attaching MT2063\n", __func__); + return fe; + +error: + kfree(state); + return NULL; +} +EXPORT_SYMBOL_GPL(mt2063_attach); + +/* + * Ancillary routines visible outside mt2063 + * FIXME: Remove them in favor of using standard tuner callbacks + */ +unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe) +{ + struct mt2063_state *state = fe->tuner_priv; + int err = 0; + + dprintk(2, "\n"); + + err = MT2063_SoftwareShutdown(state, 1); + if (err < 0) + printk(KERN_ERR "%s: Couldn't shutdown\n", __func__); + + return err; +} +EXPORT_SYMBOL_GPL(tuner_MT2063_SoftwareShutdown); + +unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe) +{ + struct mt2063_state *state = fe->tuner_priv; + int err = 0; + + dprintk(2, "\n"); + + err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); + if (err < 0) + printk(KERN_ERR "%s: Invalid parameter\n", __func__); + + return err; +} +EXPORT_SYMBOL_GPL(tuner_MT2063_ClearPowerMaskBits); + +MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); +MODULE_DESCRIPTION("MT2063 Silicon tuner"); +MODULE_LICENSE("GPL"); |