summaryrefslogtreecommitdiffstats
path: root/drivers/ata/libata-core.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/ata/libata-core.c')
-rw-r--r--drivers/ata/libata-core.c6097
1 files changed, 6097 insertions, 0 deletions
diff --git a/drivers/ata/libata-core.c b/drivers/ata/libata-core.c
new file mode 100644
index 0000000..7d786fb
--- /dev/null
+++ b/drivers/ata/libata-core.c
@@ -0,0 +1,6097 @@
+/*
+ * libata-core.c - helper library for ATA
+ *
+ * Maintained by: Jeff Garzik <jgarzik@pobox.com>
+ * Please ALWAYS copy linux-ide@vger.kernel.org
+ * on emails.
+ *
+ * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
+ * Copyright 2003-2004 Jeff Garzik
+ *
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; see the file COPYING. If not, write to
+ * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ *
+ * libata documentation is available via 'make {ps|pdf}docs',
+ * as Documentation/DocBook/libata.*
+ *
+ * Hardware documentation available from http://www.t13.org/ and
+ * http://www.sata-io.org/
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/pci.h>
+#include <linux/init.h>
+#include <linux/list.h>
+#include <linux/mm.h>
+#include <linux/highmem.h>
+#include <linux/spinlock.h>
+#include <linux/blkdev.h>
+#include <linux/delay.h>
+#include <linux/timer.h>
+#include <linux/interrupt.h>
+#include <linux/completion.h>
+#include <linux/suspend.h>
+#include <linux/workqueue.h>
+#include <linux/jiffies.h>
+#include <linux/scatterlist.h>
+#include <scsi/scsi.h>
+#include <scsi/scsi_cmnd.h>
+#include <scsi/scsi_host.h>
+#include <linux/libata.h>
+#include <asm/io.h>
+#include <asm/semaphore.h>
+#include <asm/byteorder.h>
+
+#include "libata.h"
+
+/* debounce timing parameters in msecs { interval, duration, timeout } */
+const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
+const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
+const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
+
+static unsigned int ata_dev_init_params(struct ata_device *dev,
+ u16 heads, u16 sectors);
+static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
+static void ata_dev_xfermask(struct ata_device *dev);
+
+static unsigned int ata_unique_id = 1;
+static struct workqueue_struct *ata_wq;
+
+struct workqueue_struct *ata_aux_wq;
+
+int atapi_enabled = 1;
+module_param(atapi_enabled, int, 0444);
+MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
+
+int atapi_dmadir = 0;
+module_param(atapi_dmadir, int, 0444);
+MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
+
+int libata_fua = 0;
+module_param_named(fua, libata_fua, int, 0444);
+MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
+
+static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
+module_param(ata_probe_timeout, int, 0444);
+MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
+
+MODULE_AUTHOR("Jeff Garzik");
+MODULE_DESCRIPTION("Library module for ATA devices");
+MODULE_LICENSE("GPL");
+MODULE_VERSION(DRV_VERSION);
+
+
+/**
+ * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
+ * @tf: Taskfile to convert
+ * @fis: Buffer into which data will output
+ * @pmp: Port multiplier port
+ *
+ * Converts a standard ATA taskfile to a Serial ATA
+ * FIS structure (Register - Host to Device).
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
+{
+ fis[0] = 0x27; /* Register - Host to Device FIS */
+ fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
+ bit 7 indicates Command FIS */
+ fis[2] = tf->command;
+ fis[3] = tf->feature;
+
+ fis[4] = tf->lbal;
+ fis[5] = tf->lbam;
+ fis[6] = tf->lbah;
+ fis[7] = tf->device;
+
+ fis[8] = tf->hob_lbal;
+ fis[9] = tf->hob_lbam;
+ fis[10] = tf->hob_lbah;
+ fis[11] = tf->hob_feature;
+
+ fis[12] = tf->nsect;
+ fis[13] = tf->hob_nsect;
+ fis[14] = 0;
+ fis[15] = tf->ctl;
+
+ fis[16] = 0;
+ fis[17] = 0;
+ fis[18] = 0;
+ fis[19] = 0;
+}
+
+/**
+ * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
+ * @fis: Buffer from which data will be input
+ * @tf: Taskfile to output
+ *
+ * Converts a serial ATA FIS structure to a standard ATA taskfile.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
+{
+ tf->command = fis[2]; /* status */
+ tf->feature = fis[3]; /* error */
+
+ tf->lbal = fis[4];
+ tf->lbam = fis[5];
+ tf->lbah = fis[6];
+ tf->device = fis[7];
+
+ tf->hob_lbal = fis[8];
+ tf->hob_lbam = fis[9];
+ tf->hob_lbah = fis[10];
+
+ tf->nsect = fis[12];
+ tf->hob_nsect = fis[13];
+}
+
+static const u8 ata_rw_cmds[] = {
+ /* pio multi */
+ ATA_CMD_READ_MULTI,
+ ATA_CMD_WRITE_MULTI,
+ ATA_CMD_READ_MULTI_EXT,
+ ATA_CMD_WRITE_MULTI_EXT,
+ 0,
+ 0,
+ 0,
+ ATA_CMD_WRITE_MULTI_FUA_EXT,
+ /* pio */
+ ATA_CMD_PIO_READ,
+ ATA_CMD_PIO_WRITE,
+ ATA_CMD_PIO_READ_EXT,
+ ATA_CMD_PIO_WRITE_EXT,
+ 0,
+ 0,
+ 0,
+ 0,
+ /* dma */
+ ATA_CMD_READ,
+ ATA_CMD_WRITE,
+ ATA_CMD_READ_EXT,
+ ATA_CMD_WRITE_EXT,
+ 0,
+ 0,
+ 0,
+ ATA_CMD_WRITE_FUA_EXT
+};
+
+/**
+ * ata_rwcmd_protocol - set taskfile r/w commands and protocol
+ * @qc: command to examine and configure
+ *
+ * Examine the device configuration and tf->flags to calculate
+ * the proper read/write commands and protocol to use.
+ *
+ * LOCKING:
+ * caller.
+ */
+int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
+{
+ struct ata_taskfile *tf = &qc->tf;
+ struct ata_device *dev = qc->dev;
+ u8 cmd;
+
+ int index, fua, lba48, write;
+
+ fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
+ lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
+ write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
+
+ if (dev->flags & ATA_DFLAG_PIO) {
+ tf->protocol = ATA_PROT_PIO;
+ index = dev->multi_count ? 0 : 8;
+ } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
+ /* Unable to use DMA due to host limitation */
+ tf->protocol = ATA_PROT_PIO;
+ index = dev->multi_count ? 0 : 8;
+ } else {
+ tf->protocol = ATA_PROT_DMA;
+ index = 16;
+ }
+
+ cmd = ata_rw_cmds[index + fua + lba48 + write];
+ if (cmd) {
+ tf->command = cmd;
+ return 0;
+ }
+ return -1;
+}
+
+/**
+ * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
+ * @pio_mask: pio_mask
+ * @mwdma_mask: mwdma_mask
+ * @udma_mask: udma_mask
+ *
+ * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
+ * unsigned int xfer_mask.
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * Packed xfer_mask.
+ */
+static unsigned int ata_pack_xfermask(unsigned int pio_mask,
+ unsigned int mwdma_mask,
+ unsigned int udma_mask)
+{
+ return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
+ ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
+ ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
+}
+
+/**
+ * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
+ * @xfer_mask: xfer_mask to unpack
+ * @pio_mask: resulting pio_mask
+ * @mwdma_mask: resulting mwdma_mask
+ * @udma_mask: resulting udma_mask
+ *
+ * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
+ * Any NULL distination masks will be ignored.
+ */
+static void ata_unpack_xfermask(unsigned int xfer_mask,
+ unsigned int *pio_mask,
+ unsigned int *mwdma_mask,
+ unsigned int *udma_mask)
+{
+ if (pio_mask)
+ *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
+ if (mwdma_mask)
+ *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
+ if (udma_mask)
+ *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
+}
+
+static const struct ata_xfer_ent {
+ int shift, bits;
+ u8 base;
+} ata_xfer_tbl[] = {
+ { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
+ { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
+ { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
+ { -1, },
+};
+
+/**
+ * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
+ * @xfer_mask: xfer_mask of interest
+ *
+ * Return matching XFER_* value for @xfer_mask. Only the highest
+ * bit of @xfer_mask is considered.
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * Matching XFER_* value, 0 if no match found.
+ */
+static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
+{
+ int highbit = fls(xfer_mask) - 1;
+ const struct ata_xfer_ent *ent;
+
+ for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
+ if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
+ return ent->base + highbit - ent->shift;
+ return 0;
+}
+
+/**
+ * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
+ * @xfer_mode: XFER_* of interest
+ *
+ * Return matching xfer_mask for @xfer_mode.
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * Matching xfer_mask, 0 if no match found.
+ */
+static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
+{
+ const struct ata_xfer_ent *ent;
+
+ for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
+ if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
+ return 1 << (ent->shift + xfer_mode - ent->base);
+ return 0;
+}
+
+/**
+ * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
+ * @xfer_mode: XFER_* of interest
+ *
+ * Return matching xfer_shift for @xfer_mode.
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * Matching xfer_shift, -1 if no match found.
+ */
+static int ata_xfer_mode2shift(unsigned int xfer_mode)
+{
+ const struct ata_xfer_ent *ent;
+
+ for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
+ if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
+ return ent->shift;
+ return -1;
+}
+
+/**
+ * ata_mode_string - convert xfer_mask to string
+ * @xfer_mask: mask of bits supported; only highest bit counts.
+ *
+ * Determine string which represents the highest speed
+ * (highest bit in @modemask).
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * Constant C string representing highest speed listed in
+ * @mode_mask, or the constant C string "<n/a>".
+ */
+static const char *ata_mode_string(unsigned int xfer_mask)
+{
+ static const char * const xfer_mode_str[] = {
+ "PIO0",
+ "PIO1",
+ "PIO2",
+ "PIO3",
+ "PIO4",
+ "MWDMA0",
+ "MWDMA1",
+ "MWDMA2",
+ "UDMA/16",
+ "UDMA/25",
+ "UDMA/33",
+ "UDMA/44",
+ "UDMA/66",
+ "UDMA/100",
+ "UDMA/133",
+ "UDMA7",
+ };
+ int highbit;
+
+ highbit = fls(xfer_mask) - 1;
+ if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
+ return xfer_mode_str[highbit];
+ return "<n/a>";
+}
+
+static const char *sata_spd_string(unsigned int spd)
+{
+ static const char * const spd_str[] = {
+ "1.5 Gbps",
+ "3.0 Gbps",
+ };
+
+ if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
+ return "<unknown>";
+ return spd_str[spd - 1];
+}
+
+void ata_dev_disable(struct ata_device *dev)
+{
+ if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
+ ata_dev_printk(dev, KERN_WARNING, "disabled\n");
+ dev->class++;
+ }
+}
+
+/**
+ * ata_pio_devchk - PATA device presence detection
+ * @ap: ATA channel to examine
+ * @device: Device to examine (starting at zero)
+ *
+ * This technique was originally described in
+ * Hale Landis's ATADRVR (www.ata-atapi.com), and
+ * later found its way into the ATA/ATAPI spec.
+ *
+ * Write a pattern to the ATA shadow registers,
+ * and if a device is present, it will respond by
+ * correctly storing and echoing back the
+ * ATA shadow register contents.
+ *
+ * LOCKING:
+ * caller.
+ */
+
+static unsigned int ata_pio_devchk(struct ata_port *ap,
+ unsigned int device)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+ u8 nsect, lbal;
+
+ ap->ops->dev_select(ap, device);
+
+ outb(0x55, ioaddr->nsect_addr);
+ outb(0xaa, ioaddr->lbal_addr);
+
+ outb(0xaa, ioaddr->nsect_addr);
+ outb(0x55, ioaddr->lbal_addr);
+
+ outb(0x55, ioaddr->nsect_addr);
+ outb(0xaa, ioaddr->lbal_addr);
+
+ nsect = inb(ioaddr->nsect_addr);
+ lbal = inb(ioaddr->lbal_addr);
+
+ if ((nsect == 0x55) && (lbal == 0xaa))
+ return 1; /* we found a device */
+
+ return 0; /* nothing found */
+}
+
+/**
+ * ata_mmio_devchk - PATA device presence detection
+ * @ap: ATA channel to examine
+ * @device: Device to examine (starting at zero)
+ *
+ * This technique was originally described in
+ * Hale Landis's ATADRVR (www.ata-atapi.com), and
+ * later found its way into the ATA/ATAPI spec.
+ *
+ * Write a pattern to the ATA shadow registers,
+ * and if a device is present, it will respond by
+ * correctly storing and echoing back the
+ * ATA shadow register contents.
+ *
+ * LOCKING:
+ * caller.
+ */
+
+static unsigned int ata_mmio_devchk(struct ata_port *ap,
+ unsigned int device)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+ u8 nsect, lbal;
+
+ ap->ops->dev_select(ap, device);
+
+ writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
+ writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
+
+ writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
+ writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
+
+ writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
+ writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
+
+ nsect = readb((void __iomem *) ioaddr->nsect_addr);
+ lbal = readb((void __iomem *) ioaddr->lbal_addr);
+
+ if ((nsect == 0x55) && (lbal == 0xaa))
+ return 1; /* we found a device */
+
+ return 0; /* nothing found */
+}
+
+/**
+ * ata_devchk - PATA device presence detection
+ * @ap: ATA channel to examine
+ * @device: Device to examine (starting at zero)
+ *
+ * Dispatch ATA device presence detection, depending
+ * on whether we are using PIO or MMIO to talk to the
+ * ATA shadow registers.
+ *
+ * LOCKING:
+ * caller.
+ */
+
+static unsigned int ata_devchk(struct ata_port *ap,
+ unsigned int device)
+{
+ if (ap->flags & ATA_FLAG_MMIO)
+ return ata_mmio_devchk(ap, device);
+ return ata_pio_devchk(ap, device);
+}
+
+/**
+ * ata_dev_classify - determine device type based on ATA-spec signature
+ * @tf: ATA taskfile register set for device to be identified
+ *
+ * Determine from taskfile register contents whether a device is
+ * ATA or ATAPI, as per "Signature and persistence" section
+ * of ATA/PI spec (volume 1, sect 5.14).
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
+ * the event of failure.
+ */
+
+unsigned int ata_dev_classify(const struct ata_taskfile *tf)
+{
+ /* Apple's open source Darwin code hints that some devices only
+ * put a proper signature into the LBA mid/high registers,
+ * So, we only check those. It's sufficient for uniqueness.
+ */
+
+ if (((tf->lbam == 0) && (tf->lbah == 0)) ||
+ ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
+ DPRINTK("found ATA device by sig\n");
+ return ATA_DEV_ATA;
+ }
+
+ if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
+ ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
+ DPRINTK("found ATAPI device by sig\n");
+ return ATA_DEV_ATAPI;
+ }
+
+ DPRINTK("unknown device\n");
+ return ATA_DEV_UNKNOWN;
+}
+
+/**
+ * ata_dev_try_classify - Parse returned ATA device signature
+ * @ap: ATA channel to examine
+ * @device: Device to examine (starting at zero)
+ * @r_err: Value of error register on completion
+ *
+ * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
+ * an ATA/ATAPI-defined set of values is placed in the ATA
+ * shadow registers, indicating the results of device detection
+ * and diagnostics.
+ *
+ * Select the ATA device, and read the values from the ATA shadow
+ * registers. Then parse according to the Error register value,
+ * and the spec-defined values examined by ata_dev_classify().
+ *
+ * LOCKING:
+ * caller.
+ *
+ * RETURNS:
+ * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
+ */
+
+static unsigned int
+ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
+{
+ struct ata_taskfile tf;
+ unsigned int class;
+ u8 err;
+
+ ap->ops->dev_select(ap, device);
+
+ memset(&tf, 0, sizeof(tf));
+
+ ap->ops->tf_read(ap, &tf);
+ err = tf.feature;
+ if (r_err)
+ *r_err = err;
+
+ /* see if device passed diags */
+ if (err == 1)
+ /* do nothing */ ;
+ else if ((device == 0) && (err == 0x81))
+ /* do nothing */ ;
+ else
+ return ATA_DEV_NONE;
+
+ /* determine if device is ATA or ATAPI */
+ class = ata_dev_classify(&tf);
+
+ if (class == ATA_DEV_UNKNOWN)
+ return ATA_DEV_NONE;
+ if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
+ return ATA_DEV_NONE;
+ return class;
+}
+
+/**
+ * ata_id_string - Convert IDENTIFY DEVICE page into string
+ * @id: IDENTIFY DEVICE results we will examine
+ * @s: string into which data is output
+ * @ofs: offset into identify device page
+ * @len: length of string to return. must be an even number.
+ *
+ * The strings in the IDENTIFY DEVICE page are broken up into
+ * 16-bit chunks. Run through the string, and output each
+ * 8-bit chunk linearly, regardless of platform.
+ *
+ * LOCKING:
+ * caller.
+ */
+
+void ata_id_string(const u16 *id, unsigned char *s,
+ unsigned int ofs, unsigned int len)
+{
+ unsigned int c;
+
+ while (len > 0) {
+ c = id[ofs] >> 8;
+ *s = c;
+ s++;
+
+ c = id[ofs] & 0xff;
+ *s = c;
+ s++;
+
+ ofs++;
+ len -= 2;
+ }
+}
+
+/**
+ * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
+ * @id: IDENTIFY DEVICE results we will examine
+ * @s: string into which data is output
+ * @ofs: offset into identify device page
+ * @len: length of string to return. must be an odd number.
+ *
+ * This function is identical to ata_id_string except that it
+ * trims trailing spaces and terminates the resulting string with
+ * null. @len must be actual maximum length (even number) + 1.
+ *
+ * LOCKING:
+ * caller.
+ */
+void ata_id_c_string(const u16 *id, unsigned char *s,
+ unsigned int ofs, unsigned int len)
+{
+ unsigned char *p;
+
+ WARN_ON(!(len & 1));
+
+ ata_id_string(id, s, ofs, len - 1);
+
+ p = s + strnlen(s, len - 1);
+ while (p > s && p[-1] == ' ')
+ p--;
+ *p = '\0';
+}
+
+static u64 ata_id_n_sectors(const u16 *id)
+{
+ if (ata_id_has_lba(id)) {
+ if (ata_id_has_lba48(id))
+ return ata_id_u64(id, 100);
+ else
+ return ata_id_u32(id, 60);
+ } else {
+ if (ata_id_current_chs_valid(id))
+ return ata_id_u32(id, 57);
+ else
+ return id[1] * id[3] * id[6];
+ }
+}
+
+/**
+ * ata_noop_dev_select - Select device 0/1 on ATA bus
+ * @ap: ATA channel to manipulate
+ * @device: ATA device (numbered from zero) to select
+ *
+ * This function performs no actual function.
+ *
+ * May be used as the dev_select() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * caller.
+ */
+void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
+{
+}
+
+
+/**
+ * ata_std_dev_select - Select device 0/1 on ATA bus
+ * @ap: ATA channel to manipulate
+ * @device: ATA device (numbered from zero) to select
+ *
+ * Use the method defined in the ATA specification to
+ * make either device 0, or device 1, active on the
+ * ATA channel. Works with both PIO and MMIO.
+ *
+ * May be used as the dev_select() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * caller.
+ */
+
+void ata_std_dev_select (struct ata_port *ap, unsigned int device)
+{
+ u8 tmp;
+
+ if (device == 0)
+ tmp = ATA_DEVICE_OBS;
+ else
+ tmp = ATA_DEVICE_OBS | ATA_DEV1;
+
+ if (ap->flags & ATA_FLAG_MMIO) {
+ writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
+ } else {
+ outb(tmp, ap->ioaddr.device_addr);
+ }
+ ata_pause(ap); /* needed; also flushes, for mmio */
+}
+
+/**
+ * ata_dev_select - Select device 0/1 on ATA bus
+ * @ap: ATA channel to manipulate
+ * @device: ATA device (numbered from zero) to select
+ * @wait: non-zero to wait for Status register BSY bit to clear
+ * @can_sleep: non-zero if context allows sleeping
+ *
+ * Use the method defined in the ATA specification to
+ * make either device 0, or device 1, active on the
+ * ATA channel.
+ *
+ * This is a high-level version of ata_std_dev_select(),
+ * which additionally provides the services of inserting
+ * the proper pauses and status polling, where needed.
+ *
+ * LOCKING:
+ * caller.
+ */
+
+void ata_dev_select(struct ata_port *ap, unsigned int device,
+ unsigned int wait, unsigned int can_sleep)
+{
+ if (ata_msg_probe(ap))
+ ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
+ "device %u, wait %u\n", ap->id, device, wait);
+
+ if (wait)
+ ata_wait_idle(ap);
+
+ ap->ops->dev_select(ap, device);
+
+ if (wait) {
+ if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
+ msleep(150);
+ ata_wait_idle(ap);
+ }
+}
+
+/**
+ * ata_dump_id - IDENTIFY DEVICE info debugging output
+ * @id: IDENTIFY DEVICE page to dump
+ *
+ * Dump selected 16-bit words from the given IDENTIFY DEVICE
+ * page.
+ *
+ * LOCKING:
+ * caller.
+ */
+
+static inline void ata_dump_id(const u16 *id)
+{
+ DPRINTK("49==0x%04x "
+ "53==0x%04x "
+ "63==0x%04x "
+ "64==0x%04x "
+ "75==0x%04x \n",
+ id[49],
+ id[53],
+ id[63],
+ id[64],
+ id[75]);
+ DPRINTK("80==0x%04x "
+ "81==0x%04x "
+ "82==0x%04x "
+ "83==0x%04x "
+ "84==0x%04x \n",
+ id[80],
+ id[81],
+ id[82],
+ id[83],
+ id[84]);
+ DPRINTK("88==0x%04x "
+ "93==0x%04x\n",
+ id[88],
+ id[93]);
+}
+
+/**
+ * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
+ * @id: IDENTIFY data to compute xfer mask from
+ *
+ * Compute the xfermask for this device. This is not as trivial
+ * as it seems if we must consider early devices correctly.
+ *
+ * FIXME: pre IDE drive timing (do we care ?).
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * Computed xfermask
+ */
+static unsigned int ata_id_xfermask(const u16 *id)
+{
+ unsigned int pio_mask, mwdma_mask, udma_mask;
+
+ /* Usual case. Word 53 indicates word 64 is valid */
+ if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
+ pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
+ pio_mask <<= 3;
+ pio_mask |= 0x7;
+ } else {
+ /* If word 64 isn't valid then Word 51 high byte holds
+ * the PIO timing number for the maximum. Turn it into
+ * a mask.
+ */
+ pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
+
+ /* But wait.. there's more. Design your standards by
+ * committee and you too can get a free iordy field to
+ * process. However its the speeds not the modes that
+ * are supported... Note drivers using the timing API
+ * will get this right anyway
+ */
+ }
+
+ mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
+
+ udma_mask = 0;
+ if (id[ATA_ID_FIELD_VALID] & (1 << 2))
+ udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
+
+ return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
+}
+
+/**
+ * ata_port_queue_task - Queue port_task
+ * @ap: The ata_port to queue port_task for
+ * @fn: workqueue function to be scheduled
+ * @data: data value to pass to workqueue function
+ * @delay: delay time for workqueue function
+ *
+ * Schedule @fn(@data) for execution after @delay jiffies using
+ * port_task. There is one port_task per port and it's the
+ * user(low level driver)'s responsibility to make sure that only
+ * one task is active at any given time.
+ *
+ * libata core layer takes care of synchronization between
+ * port_task and EH. ata_port_queue_task() may be ignored for EH
+ * synchronization.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
+ unsigned long delay)
+{
+ int rc;
+
+ if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
+ return;
+
+ PREPARE_WORK(&ap->port_task, fn, data);
+
+ if (!delay)
+ rc = queue_work(ata_wq, &ap->port_task);
+ else
+ rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
+
+ /* rc == 0 means that another user is using port task */
+ WARN_ON(rc == 0);
+}
+
+/**
+ * ata_port_flush_task - Flush port_task
+ * @ap: The ata_port to flush port_task for
+ *
+ * After this function completes, port_task is guranteed not to
+ * be running or scheduled.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ */
+void ata_port_flush_task(struct ata_port *ap)
+{
+ unsigned long flags;
+
+ DPRINTK("ENTER\n");
+
+ spin_lock_irqsave(ap->lock, flags);
+ ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ DPRINTK("flush #1\n");
+ flush_workqueue(ata_wq);
+
+ /*
+ * At this point, if a task is running, it's guaranteed to see
+ * the FLUSH flag; thus, it will never queue pio tasks again.
+ * Cancel and flush.
+ */
+ if (!cancel_delayed_work(&ap->port_task)) {
+ if (ata_msg_ctl(ap))
+ ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
+ __FUNCTION__);
+ flush_workqueue(ata_wq);
+ }
+
+ spin_lock_irqsave(ap->lock, flags);
+ ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ if (ata_msg_ctl(ap))
+ ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
+}
+
+void ata_qc_complete_internal(struct ata_queued_cmd *qc)
+{
+ struct completion *waiting = qc->private_data;
+
+ complete(waiting);
+}
+
+/**
+ * ata_exec_internal - execute libata internal command
+ * @dev: Device to which the command is sent
+ * @tf: Taskfile registers for the command and the result
+ * @cdb: CDB for packet command
+ * @dma_dir: Data tranfer direction of the command
+ * @buf: Data buffer of the command
+ * @buflen: Length of data buffer
+ *
+ * Executes libata internal command with timeout. @tf contains
+ * command on entry and result on return. Timeout and error
+ * conditions are reported via return value. No recovery action
+ * is taken after a command times out. It's caller's duty to
+ * clean up after timeout.
+ *
+ * LOCKING:
+ * None. Should be called with kernel context, might sleep.
+ *
+ * RETURNS:
+ * Zero on success, AC_ERR_* mask on failure
+ */
+unsigned ata_exec_internal(struct ata_device *dev,
+ struct ata_taskfile *tf, const u8 *cdb,
+ int dma_dir, void *buf, unsigned int buflen)
+{
+ struct ata_port *ap = dev->ap;
+ u8 command = tf->command;
+ struct ata_queued_cmd *qc;
+ unsigned int tag, preempted_tag;
+ u32 preempted_sactive, preempted_qc_active;
+ DECLARE_COMPLETION_ONSTACK(wait);
+ unsigned long flags;
+ unsigned int err_mask;
+ int rc;
+
+ spin_lock_irqsave(ap->lock, flags);
+
+ /* no internal command while frozen */
+ if (ap->pflags & ATA_PFLAG_FROZEN) {
+ spin_unlock_irqrestore(ap->lock, flags);
+ return AC_ERR_SYSTEM;
+ }
+
+ /* initialize internal qc */
+
+ /* XXX: Tag 0 is used for drivers with legacy EH as some
+ * drivers choke if any other tag is given. This breaks
+ * ata_tag_internal() test for those drivers. Don't use new
+ * EH stuff without converting to it.
+ */
+ if (ap->ops->error_handler)
+ tag = ATA_TAG_INTERNAL;
+ else
+ tag = 0;
+
+ if (test_and_set_bit(tag, &ap->qc_allocated))
+ BUG();
+ qc = __ata_qc_from_tag(ap, tag);
+
+ qc->tag = tag;
+ qc->scsicmd = NULL;
+ qc->ap = ap;
+ qc->dev = dev;
+ ata_qc_reinit(qc);
+
+ preempted_tag = ap->active_tag;
+ preempted_sactive = ap->sactive;
+ preempted_qc_active = ap->qc_active;
+ ap->active_tag = ATA_TAG_POISON;
+ ap->sactive = 0;
+ ap->qc_active = 0;
+
+ /* prepare & issue qc */
+ qc->tf = *tf;
+ if (cdb)
+ memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
+ qc->flags |= ATA_QCFLAG_RESULT_TF;
+ qc->dma_dir = dma_dir;
+ if (dma_dir != DMA_NONE) {
+ ata_sg_init_one(qc, buf, buflen);
+ qc->nsect = buflen / ATA_SECT_SIZE;
+ }
+
+ qc->private_data = &wait;
+ qc->complete_fn = ata_qc_complete_internal;
+
+ ata_qc_issue(qc);
+
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
+
+ ata_port_flush_task(ap);
+
+ if (!rc) {
+ spin_lock_irqsave(ap->lock, flags);
+
+ /* We're racing with irq here. If we lose, the
+ * following test prevents us from completing the qc
+ * twice. If we win, the port is frozen and will be
+ * cleaned up by ->post_internal_cmd().
+ */
+ if (qc->flags & ATA_QCFLAG_ACTIVE) {
+ qc->err_mask |= AC_ERR_TIMEOUT;
+
+ if (ap->ops->error_handler)
+ ata_port_freeze(ap);
+ else
+ ata_qc_complete(qc);
+
+ if (ata_msg_warn(ap))
+ ata_dev_printk(dev, KERN_WARNING,
+ "qc timeout (cmd 0x%x)\n", command);
+ }
+
+ spin_unlock_irqrestore(ap->lock, flags);
+ }
+
+ /* do post_internal_cmd */
+ if (ap->ops->post_internal_cmd)
+ ap->ops->post_internal_cmd(qc);
+
+ if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
+ if (ata_msg_warn(ap))
+ ata_dev_printk(dev, KERN_WARNING,
+ "zero err_mask for failed "
+ "internal command, assuming AC_ERR_OTHER\n");
+ qc->err_mask |= AC_ERR_OTHER;
+ }
+
+ /* finish up */
+ spin_lock_irqsave(ap->lock, flags);
+
+ *tf = qc->result_tf;
+ err_mask = qc->err_mask;
+
+ ata_qc_free(qc);
+ ap->active_tag = preempted_tag;
+ ap->sactive = preempted_sactive;
+ ap->qc_active = preempted_qc_active;
+
+ /* XXX - Some LLDDs (sata_mv) disable port on command failure.
+ * Until those drivers are fixed, we detect the condition
+ * here, fail the command with AC_ERR_SYSTEM and reenable the
+ * port.
+ *
+ * Note that this doesn't change any behavior as internal
+ * command failure results in disabling the device in the
+ * higher layer for LLDDs without new reset/EH callbacks.
+ *
+ * Kill the following code as soon as those drivers are fixed.
+ */
+ if (ap->flags & ATA_FLAG_DISABLED) {
+ err_mask |= AC_ERR_SYSTEM;
+ ata_port_probe(ap);
+ }
+
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ return err_mask;
+}
+
+/**
+ * ata_do_simple_cmd - execute simple internal command
+ * @dev: Device to which the command is sent
+ * @cmd: Opcode to execute
+ *
+ * Execute a 'simple' command, that only consists of the opcode
+ * 'cmd' itself, without filling any other registers
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep).
+ *
+ * RETURNS:
+ * Zero on success, AC_ERR_* mask on failure
+ */
+unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
+{
+ struct ata_taskfile tf;
+
+ ata_tf_init(dev, &tf);
+
+ tf.command = cmd;
+ tf.flags |= ATA_TFLAG_DEVICE;
+ tf.protocol = ATA_PROT_NODATA;
+
+ return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
+}
+
+/**
+ * ata_pio_need_iordy - check if iordy needed
+ * @adev: ATA device
+ *
+ * Check if the current speed of the device requires IORDY. Used
+ * by various controllers for chip configuration.
+ */
+
+unsigned int ata_pio_need_iordy(const struct ata_device *adev)
+{
+ int pio;
+ int speed = adev->pio_mode - XFER_PIO_0;
+
+ if (speed < 2)
+ return 0;
+ if (speed > 2)
+ return 1;
+
+ /* If we have no drive specific rule, then PIO 2 is non IORDY */
+
+ if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
+ pio = adev->id[ATA_ID_EIDE_PIO];
+ /* Is the speed faster than the drive allows non IORDY ? */
+ if (pio) {
+ /* This is cycle times not frequency - watch the logic! */
+ if (pio > 240) /* PIO2 is 240nS per cycle */
+ return 1;
+ return 0;
+ }
+ }
+ return 0;
+}
+
+/**
+ * ata_dev_read_id - Read ID data from the specified device
+ * @dev: target device
+ * @p_class: pointer to class of the target device (may be changed)
+ * @post_reset: is this read ID post-reset?
+ * @id: buffer to read IDENTIFY data into
+ *
+ * Read ID data from the specified device. ATA_CMD_ID_ATA is
+ * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
+ * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
+ * for pre-ATA4 drives.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
+ int post_reset, u16 *id)
+{
+ struct ata_port *ap = dev->ap;
+ unsigned int class = *p_class;
+ struct ata_taskfile tf;
+ unsigned int err_mask = 0;
+ const char *reason;
+ int rc;
+
+ if (ata_msg_ctl(ap))
+ ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
+ __FUNCTION__, ap->id, dev->devno);
+
+ ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
+
+ retry:
+ ata_tf_init(dev, &tf);
+
+ switch (class) {
+ case ATA_DEV_ATA:
+ tf.command = ATA_CMD_ID_ATA;
+ break;
+ case ATA_DEV_ATAPI:
+ tf.command = ATA_CMD_ID_ATAPI;
+ break;
+ default:
+ rc = -ENODEV;
+ reason = "unsupported class";
+ goto err_out;
+ }
+
+ tf.protocol = ATA_PROT_PIO;
+
+ err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
+ id, sizeof(id[0]) * ATA_ID_WORDS);
+ if (err_mask) {
+ rc = -EIO;
+ reason = "I/O error";
+ goto err_out;
+ }
+
+ swap_buf_le16(id, ATA_ID_WORDS);
+
+ /* sanity check */
+ if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
+ rc = -EINVAL;
+ reason = "device reports illegal type";
+ goto err_out;
+ }
+
+ if (post_reset && class == ATA_DEV_ATA) {
+ /*
+ * The exact sequence expected by certain pre-ATA4 drives is:
+ * SRST RESET
+ * IDENTIFY
+ * INITIALIZE DEVICE PARAMETERS
+ * anything else..
+ * Some drives were very specific about that exact sequence.
+ */
+ if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
+ err_mask = ata_dev_init_params(dev, id[3], id[6]);
+ if (err_mask) {
+ rc = -EIO;
+ reason = "INIT_DEV_PARAMS failed";
+ goto err_out;
+ }
+
+ /* current CHS translation info (id[53-58]) might be
+ * changed. reread the identify device info.
+ */
+ post_reset = 0;
+ goto retry;
+ }
+ }
+
+ *p_class = class;
+
+ return 0;
+
+ err_out:
+ if (ata_msg_warn(ap))
+ ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
+ "(%s, err_mask=0x%x)\n", reason, err_mask);
+ return rc;
+}
+
+static inline u8 ata_dev_knobble(struct ata_device *dev)
+{
+ return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
+}
+
+static void ata_dev_config_ncq(struct ata_device *dev,
+ char *desc, size_t desc_sz)
+{
+ struct ata_port *ap = dev->ap;
+ int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
+
+ if (!ata_id_has_ncq(dev->id)) {
+ desc[0] = '\0';
+ return;
+ }
+
+ if (ap->flags & ATA_FLAG_NCQ) {
+ hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
+ dev->flags |= ATA_DFLAG_NCQ;
+ }
+
+ if (hdepth >= ddepth)
+ snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
+ else
+ snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
+}
+
+static void ata_set_port_max_cmd_len(struct ata_port *ap)
+{
+ int i;
+
+ if (ap->host) {
+ ap->host->max_cmd_len = 0;
+ for (i = 0; i < ATA_MAX_DEVICES; i++)
+ ap->host->max_cmd_len = max_t(unsigned int,
+ ap->host->max_cmd_len,
+ ap->device[i].cdb_len);
+ }
+}
+
+/**
+ * ata_dev_configure - Configure the specified ATA/ATAPI device
+ * @dev: Target device to configure
+ * @print_info: Enable device info printout
+ *
+ * Configure @dev according to @dev->id. Generic and low-level
+ * driver specific fixups are also applied.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise
+ */
+int ata_dev_configure(struct ata_device *dev, int print_info)
+{
+ struct ata_port *ap = dev->ap;
+ const u16 *id = dev->id;
+ unsigned int xfer_mask;
+ int rc;
+
+ if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
+ ata_dev_printk(dev, KERN_INFO,
+ "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
+ __FUNCTION__, ap->id, dev->devno);
+ return 0;
+ }
+
+ if (ata_msg_probe(ap))
+ ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
+ __FUNCTION__, ap->id, dev->devno);
+
+ /* print device capabilities */
+ if (ata_msg_probe(ap))
+ ata_dev_printk(dev, KERN_DEBUG,
+ "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
+ "85:%04x 86:%04x 87:%04x 88:%04x\n",
+ __FUNCTION__,
+ id[49], id[82], id[83], id[84],
+ id[85], id[86], id[87], id[88]);
+
+ /* initialize to-be-configured parameters */
+ dev->flags &= ~ATA_DFLAG_CFG_MASK;
+ dev->max_sectors = 0;
+ dev->cdb_len = 0;
+ dev->n_sectors = 0;
+ dev->cylinders = 0;
+ dev->heads = 0;
+ dev->sectors = 0;
+
+ /*
+ * common ATA, ATAPI feature tests
+ */
+
+ /* find max transfer mode; for printk only */
+ xfer_mask = ata_id_xfermask(id);
+
+ if (ata_msg_probe(ap))
+ ata_dump_id(id);
+
+ /* ATA-specific feature tests */
+ if (dev->class == ATA_DEV_ATA) {
+ dev->n_sectors = ata_id_n_sectors(id);
+
+ if (ata_id_has_lba(id)) {
+ const char *lba_desc;
+ char ncq_desc[20];
+
+ lba_desc = "LBA";
+ dev->flags |= ATA_DFLAG_LBA;
+ if (ata_id_has_lba48(id)) {
+ dev->flags |= ATA_DFLAG_LBA48;
+ lba_desc = "LBA48";
+ }
+
+ /* config NCQ */
+ ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
+
+ /* print device info to dmesg */
+ if (ata_msg_drv(ap) && print_info)
+ ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
+ "max %s, %Lu sectors: %s %s\n",
+ ata_id_major_version(id),
+ ata_mode_string(xfer_mask),
+ (unsigned long long)dev->n_sectors,
+ lba_desc, ncq_desc);
+ } else {
+ /* CHS */
+
+ /* Default translation */
+ dev->cylinders = id[1];
+ dev->heads = id[3];
+ dev->sectors = id[6];
+
+ if (ata_id_current_chs_valid(id)) {
+ /* Current CHS translation is valid. */
+ dev->cylinders = id[54];
+ dev->heads = id[55];
+ dev->sectors = id[56];
+ }
+
+ /* print device info to dmesg */
+ if (ata_msg_drv(ap) && print_info)
+ ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
+ "max %s, %Lu sectors: CHS %u/%u/%u\n",
+ ata_id_major_version(id),
+ ata_mode_string(xfer_mask),
+ (unsigned long long)dev->n_sectors,
+ dev->cylinders, dev->heads,
+ dev->sectors);
+ }
+
+ if (dev->id[59] & 0x100) {
+ dev->multi_count = dev->id[59] & 0xff;
+ if (ata_msg_drv(ap) && print_info)
+ ata_dev_printk(dev, KERN_INFO,
+ "ata%u: dev %u multi count %u\n",
+ ap->id, dev->devno, dev->multi_count);
+ }
+
+ dev->cdb_len = 16;
+ }
+
+ /* ATAPI-specific feature tests */
+ else if (dev->class == ATA_DEV_ATAPI) {
+ char *cdb_intr_string = "";
+
+ rc = atapi_cdb_len(id);
+ if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
+ if (ata_msg_warn(ap))
+ ata_dev_printk(dev, KERN_WARNING,
+ "unsupported CDB len\n");
+ rc = -EINVAL;
+ goto err_out_nosup;
+ }
+ dev->cdb_len = (unsigned int) rc;
+
+ if (ata_id_cdb_intr(dev->id)) {
+ dev->flags |= ATA_DFLAG_CDB_INTR;
+ cdb_intr_string = ", CDB intr";
+ }
+
+ /* print device info to dmesg */
+ if (ata_msg_drv(ap) && print_info)
+ ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
+ ata_mode_string(xfer_mask),
+ cdb_intr_string);
+ }
+
+ ata_set_port_max_cmd_len(ap);
+
+ /* limit bridge transfers to udma5, 200 sectors */
+ if (ata_dev_knobble(dev)) {
+ if (ata_msg_drv(ap) && print_info)
+ ata_dev_printk(dev, KERN_INFO,
+ "applying bridge limits\n");
+ dev->udma_mask &= ATA_UDMA5;
+ dev->max_sectors = ATA_MAX_SECTORS;
+ }
+
+ if (ap->ops->dev_config)
+ ap->ops->dev_config(ap, dev);
+
+ if (ata_msg_probe(ap))
+ ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
+ __FUNCTION__, ata_chk_status(ap));
+ return 0;
+
+err_out_nosup:
+ if (ata_msg_probe(ap))
+ ata_dev_printk(dev, KERN_DEBUG,
+ "%s: EXIT, err\n", __FUNCTION__);
+ return rc;
+}
+
+/**
+ * ata_bus_probe - Reset and probe ATA bus
+ * @ap: Bus to probe
+ *
+ * Master ATA bus probing function. Initiates a hardware-dependent
+ * bus reset, then attempts to identify any devices found on
+ * the bus.
+ *
+ * LOCKING:
+ * PCI/etc. bus probe sem.
+ *
+ * RETURNS:
+ * Zero on success, negative errno otherwise.
+ */
+
+int ata_bus_probe(struct ata_port *ap)
+{
+ unsigned int classes[ATA_MAX_DEVICES];
+ int tries[ATA_MAX_DEVICES];
+ int i, rc, down_xfermask;
+ struct ata_device *dev;
+
+ ata_port_probe(ap);
+
+ for (i = 0; i < ATA_MAX_DEVICES; i++)
+ tries[i] = ATA_PROBE_MAX_TRIES;
+
+ retry:
+ down_xfermask = 0;
+
+ /* reset and determine device classes */
+ ap->ops->phy_reset(ap);
+
+ for (i = 0; i < ATA_MAX_DEVICES; i++) {
+ dev = &ap->device[i];
+
+ if (!(ap->flags & ATA_FLAG_DISABLED) &&
+ dev->class != ATA_DEV_UNKNOWN)
+ classes[dev->devno] = dev->class;
+ else
+ classes[dev->devno] = ATA_DEV_NONE;
+
+ dev->class = ATA_DEV_UNKNOWN;
+ }
+
+ ata_port_probe(ap);
+
+ /* after the reset the device state is PIO 0 and the controller
+ state is undefined. Record the mode */
+
+ for (i = 0; i < ATA_MAX_DEVICES; i++)
+ ap->device[i].pio_mode = XFER_PIO_0;
+
+ /* read IDENTIFY page and configure devices */
+ for (i = 0; i < ATA_MAX_DEVICES; i++) {
+ dev = &ap->device[i];
+
+ if (tries[i])
+ dev->class = classes[i];
+
+ if (!ata_dev_enabled(dev))
+ continue;
+
+ rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
+ if (rc)
+ goto fail;
+
+ rc = ata_dev_configure(dev, 1);
+ if (rc)
+ goto fail;
+ }
+
+ /* configure transfer mode */
+ rc = ata_set_mode(ap, &dev);
+ if (rc) {
+ down_xfermask = 1;
+ goto fail;
+ }
+
+ for (i = 0; i < ATA_MAX_DEVICES; i++)
+ if (ata_dev_enabled(&ap->device[i]))
+ return 0;
+
+ /* no device present, disable port */
+ ata_port_disable(ap);
+ ap->ops->port_disable(ap);
+ return -ENODEV;
+
+ fail:
+ switch (rc) {
+ case -EINVAL:
+ case -ENODEV:
+ tries[dev->devno] = 0;
+ break;
+ case -EIO:
+ sata_down_spd_limit(ap);
+ /* fall through */
+ default:
+ tries[dev->devno]--;
+ if (down_xfermask &&
+ ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
+ tries[dev->devno] = 0;
+ }
+
+ if (!tries[dev->devno]) {
+ ata_down_xfermask_limit(dev, 1);
+ ata_dev_disable(dev);
+ }
+
+ goto retry;
+}
+
+/**
+ * ata_port_probe - Mark port as enabled
+ * @ap: Port for which we indicate enablement
+ *
+ * Modify @ap data structure such that the system
+ * thinks that the entire port is enabled.
+ *
+ * LOCKING: host_set lock, or some other form of
+ * serialization.
+ */
+
+void ata_port_probe(struct ata_port *ap)
+{
+ ap->flags &= ~ATA_FLAG_DISABLED;
+}
+
+/**
+ * sata_print_link_status - Print SATA link status
+ * @ap: SATA port to printk link status about
+ *
+ * This function prints link speed and status of a SATA link.
+ *
+ * LOCKING:
+ * None.
+ */
+static void sata_print_link_status(struct ata_port *ap)
+{
+ u32 sstatus, scontrol, tmp;
+
+ if (sata_scr_read(ap, SCR_STATUS, &sstatus))
+ return;
+ sata_scr_read(ap, SCR_CONTROL, &scontrol);
+
+ if (ata_port_online(ap)) {
+ tmp = (sstatus >> 4) & 0xf;
+ ata_port_printk(ap, KERN_INFO,
+ "SATA link up %s (SStatus %X SControl %X)\n",
+ sata_spd_string(tmp), sstatus, scontrol);
+ } else {
+ ata_port_printk(ap, KERN_INFO,
+ "SATA link down (SStatus %X SControl %X)\n",
+ sstatus, scontrol);
+ }
+}
+
+/**
+ * __sata_phy_reset - Wake/reset a low-level SATA PHY
+ * @ap: SATA port associated with target SATA PHY.
+ *
+ * This function issues commands to standard SATA Sxxx
+ * PHY registers, to wake up the phy (and device), and
+ * clear any reset condition.
+ *
+ * LOCKING:
+ * PCI/etc. bus probe sem.
+ *
+ */
+void __sata_phy_reset(struct ata_port *ap)
+{
+ u32 sstatus;
+ unsigned long timeout = jiffies + (HZ * 5);
+
+ if (ap->flags & ATA_FLAG_SATA_RESET) {
+ /* issue phy wake/reset */
+ sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
+ /* Couldn't find anything in SATA I/II specs, but
+ * AHCI-1.1 10.4.2 says at least 1 ms. */
+ mdelay(1);
+ }
+ /* phy wake/clear reset */
+ sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
+
+ /* wait for phy to become ready, if necessary */
+ do {
+ msleep(200);
+ sata_scr_read(ap, SCR_STATUS, &sstatus);
+ if ((sstatus & 0xf) != 1)
+ break;
+ } while (time_before(jiffies, timeout));
+
+ /* print link status */
+ sata_print_link_status(ap);
+
+ /* TODO: phy layer with polling, timeouts, etc. */
+ if (!ata_port_offline(ap))
+ ata_port_probe(ap);
+ else
+ ata_port_disable(ap);
+
+ if (ap->flags & ATA_FLAG_DISABLED)
+ return;
+
+ if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
+ ata_port_disable(ap);
+ return;
+ }
+
+ ap->cbl = ATA_CBL_SATA;
+}
+
+/**
+ * sata_phy_reset - Reset SATA bus.
+ * @ap: SATA port associated with target SATA PHY.
+ *
+ * This function resets the SATA bus, and then probes
+ * the bus for devices.
+ *
+ * LOCKING:
+ * PCI/etc. bus probe sem.
+ *
+ */
+void sata_phy_reset(struct ata_port *ap)
+{
+ __sata_phy_reset(ap);
+ if (ap->flags & ATA_FLAG_DISABLED)
+ return;
+ ata_bus_reset(ap);
+}
+
+/**
+ * ata_dev_pair - return other device on cable
+ * @adev: device
+ *
+ * Obtain the other device on the same cable, or if none is
+ * present NULL is returned
+ */
+
+struct ata_device *ata_dev_pair(struct ata_device *adev)
+{
+ struct ata_port *ap = adev->ap;
+ struct ata_device *pair = &ap->device[1 - adev->devno];
+ if (!ata_dev_enabled(pair))
+ return NULL;
+ return pair;
+}
+
+/**
+ * ata_port_disable - Disable port.
+ * @ap: Port to be disabled.
+ *
+ * Modify @ap data structure such that the system
+ * thinks that the entire port is disabled, and should
+ * never attempt to probe or communicate with devices
+ * on this port.
+ *
+ * LOCKING: host_set lock, or some other form of
+ * serialization.
+ */
+
+void ata_port_disable(struct ata_port *ap)
+{
+ ap->device[0].class = ATA_DEV_NONE;
+ ap->device[1].class = ATA_DEV_NONE;
+ ap->flags |= ATA_FLAG_DISABLED;
+}
+
+/**
+ * sata_down_spd_limit - adjust SATA spd limit downward
+ * @ap: Port to adjust SATA spd limit for
+ *
+ * Adjust SATA spd limit of @ap downward. Note that this
+ * function only adjusts the limit. The change must be applied
+ * using sata_set_spd().
+ *
+ * LOCKING:
+ * Inherited from caller.
+ *
+ * RETURNS:
+ * 0 on success, negative errno on failure
+ */
+int sata_down_spd_limit(struct ata_port *ap)
+{
+ u32 sstatus, spd, mask;
+ int rc, highbit;
+
+ rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
+ if (rc)
+ return rc;
+
+ mask = ap->sata_spd_limit;
+ if (mask <= 1)
+ return -EINVAL;
+ highbit = fls(mask) - 1;
+ mask &= ~(1 << highbit);
+
+ spd = (sstatus >> 4) & 0xf;
+ if (spd <= 1)
+ return -EINVAL;
+ spd--;
+ mask &= (1 << spd) - 1;
+ if (!mask)
+ return -EINVAL;
+
+ ap->sata_spd_limit = mask;
+
+ ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
+ sata_spd_string(fls(mask)));
+
+ return 0;
+}
+
+static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
+{
+ u32 spd, limit;
+
+ if (ap->sata_spd_limit == UINT_MAX)
+ limit = 0;
+ else
+ limit = fls(ap->sata_spd_limit);
+
+ spd = (*scontrol >> 4) & 0xf;
+ *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
+
+ return spd != limit;
+}
+
+/**
+ * sata_set_spd_needed - is SATA spd configuration needed
+ * @ap: Port in question
+ *
+ * Test whether the spd limit in SControl matches
+ * @ap->sata_spd_limit. This function is used to determine
+ * whether hardreset is necessary to apply SATA spd
+ * configuration.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ *
+ * RETURNS:
+ * 1 if SATA spd configuration is needed, 0 otherwise.
+ */
+int sata_set_spd_needed(struct ata_port *ap)
+{
+ u32 scontrol;
+
+ if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
+ return 0;
+
+ return __sata_set_spd_needed(ap, &scontrol);
+}
+
+/**
+ * sata_set_spd - set SATA spd according to spd limit
+ * @ap: Port to set SATA spd for
+ *
+ * Set SATA spd of @ap according to sata_spd_limit.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ *
+ * RETURNS:
+ * 0 if spd doesn't need to be changed, 1 if spd has been
+ * changed. Negative errno if SCR registers are inaccessible.
+ */
+int sata_set_spd(struct ata_port *ap)
+{
+ u32 scontrol;
+ int rc;
+
+ if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
+ return rc;
+
+ if (!__sata_set_spd_needed(ap, &scontrol))
+ return 0;
+
+ if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
+ return rc;
+
+ return 1;
+}
+
+/*
+ * This mode timing computation functionality is ported over from
+ * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
+ */
+/*
+ * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
+ * These were taken from ATA/ATAPI-6 standard, rev 0a, except
+ * for PIO 5, which is a nonstandard extension and UDMA6, which
+ * is currently supported only by Maxtor drives.
+ */
+
+static const struct ata_timing ata_timing[] = {
+
+ { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
+ { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
+ { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
+ { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
+
+ { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
+ { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
+ { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
+
+/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
+
+ { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
+ { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
+ { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
+
+ { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
+ { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
+ { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
+
+/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
+ { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
+ { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
+
+ { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
+ { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
+ { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
+
+/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
+
+ { 0xFF }
+};
+
+#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
+#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
+
+static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
+{
+ q->setup = EZ(t->setup * 1000, T);
+ q->act8b = EZ(t->act8b * 1000, T);
+ q->rec8b = EZ(t->rec8b * 1000, T);
+ q->cyc8b = EZ(t->cyc8b * 1000, T);
+ q->active = EZ(t->active * 1000, T);
+ q->recover = EZ(t->recover * 1000, T);
+ q->cycle = EZ(t->cycle * 1000, T);
+ q->udma = EZ(t->udma * 1000, UT);
+}
+
+void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
+ struct ata_timing *m, unsigned int what)
+{
+ if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
+ if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
+ if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
+ if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
+ if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
+ if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
+ if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
+ if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
+}
+
+static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
+{
+ const struct ata_timing *t;
+
+ for (t = ata_timing; t->mode != speed; t++)
+ if (t->mode == 0xFF)
+ return NULL;
+ return t;
+}
+
+int ata_timing_compute(struct ata_device *adev, unsigned short speed,
+ struct ata_timing *t, int T, int UT)
+{
+ const struct ata_timing *s;
+ struct ata_timing p;
+
+ /*
+ * Find the mode.
+ */
+
+ if (!(s = ata_timing_find_mode(speed)))
+ return -EINVAL;
+
+ memcpy(t, s, sizeof(*s));
+
+ /*
+ * If the drive is an EIDE drive, it can tell us it needs extended
+ * PIO/MW_DMA cycle timing.
+ */
+
+ if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
+ memset(&p, 0, sizeof(p));
+ if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
+ if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
+ else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
+ } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
+ p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
+ }
+ ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
+ }
+
+ /*
+ * Convert the timing to bus clock counts.
+ */
+
+ ata_timing_quantize(t, t, T, UT);
+
+ /*
+ * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
+ * S.M.A.R.T * and some other commands. We have to ensure that the
+ * DMA cycle timing is slower/equal than the fastest PIO timing.
+ */
+
+ if (speed > XFER_PIO_4) {
+ ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
+ ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
+ }
+
+ /*
+ * Lengthen active & recovery time so that cycle time is correct.
+ */
+
+ if (t->act8b + t->rec8b < t->cyc8b) {
+ t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
+ t->rec8b = t->cyc8b - t->act8b;
+ }
+
+ if (t->active + t->recover < t->cycle) {
+ t->active += (t->cycle - (t->active + t->recover)) / 2;
+ t->recover = t->cycle - t->active;
+ }
+
+ return 0;
+}
+
+/**
+ * ata_down_xfermask_limit - adjust dev xfer masks downward
+ * @dev: Device to adjust xfer masks
+ * @force_pio0: Force PIO0
+ *
+ * Adjust xfer masks of @dev downward. Note that this function
+ * does not apply the change. Invoking ata_set_mode() afterwards
+ * will apply the limit.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ *
+ * RETURNS:
+ * 0 on success, negative errno on failure
+ */
+int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
+{
+ unsigned long xfer_mask;
+ int highbit;
+
+ xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
+ dev->udma_mask);
+
+ if (!xfer_mask)
+ goto fail;
+ /* don't gear down to MWDMA from UDMA, go directly to PIO */
+ if (xfer_mask & ATA_MASK_UDMA)
+ xfer_mask &= ~ATA_MASK_MWDMA;
+
+ highbit = fls(xfer_mask) - 1;
+ xfer_mask &= ~(1 << highbit);
+ if (force_pio0)
+ xfer_mask &= 1 << ATA_SHIFT_PIO;
+ if (!xfer_mask)
+ goto fail;
+
+ ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
+ &dev->udma_mask);
+
+ ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
+ ata_mode_string(xfer_mask));
+
+ return 0;
+
+ fail:
+ return -EINVAL;
+}
+
+static int ata_dev_set_mode(struct ata_device *dev)
+{
+ unsigned int err_mask;
+ int rc;
+
+ dev->flags &= ~ATA_DFLAG_PIO;
+ if (dev->xfer_shift == ATA_SHIFT_PIO)
+ dev->flags |= ATA_DFLAG_PIO;
+
+ err_mask = ata_dev_set_xfermode(dev);
+ if (err_mask) {
+ ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
+ "(err_mask=0x%x)\n", err_mask);
+ return -EIO;
+ }
+
+ rc = ata_dev_revalidate(dev, 0);
+ if (rc)
+ return rc;
+
+ DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
+ dev->xfer_shift, (int)dev->xfer_mode);
+
+ ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
+ ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
+ return 0;
+}
+
+/**
+ * ata_set_mode - Program timings and issue SET FEATURES - XFER
+ * @ap: port on which timings will be programmed
+ * @r_failed_dev: out paramter for failed device
+ *
+ * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
+ * ata_set_mode() fails, pointer to the failing device is
+ * returned in @r_failed_dev.
+ *
+ * LOCKING:
+ * PCI/etc. bus probe sem.
+ *
+ * RETURNS:
+ * 0 on success, negative errno otherwise
+ */
+int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
+{
+ struct ata_device *dev;
+ int i, rc = 0, used_dma = 0, found = 0;
+
+ /* has private set_mode? */
+ if (ap->ops->set_mode) {
+ /* FIXME: make ->set_mode handle no device case and
+ * return error code and failing device on failure.
+ */
+ for (i = 0; i < ATA_MAX_DEVICES; i++) {
+ if (ata_dev_ready(&ap->device[i])) {
+ ap->ops->set_mode(ap);
+ break;
+ }
+ }
+ return 0;
+ }
+
+ /* step 1: calculate xfer_mask */
+ for (i = 0; i < ATA_MAX_DEVICES; i++) {
+ unsigned int pio_mask, dma_mask;
+
+ dev = &ap->device[i];
+
+ if (!ata_dev_enabled(dev))
+ continue;
+
+ ata_dev_xfermask(dev);
+
+ pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
+ dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
+ dev->pio_mode = ata_xfer_mask2mode(pio_mask);
+ dev->dma_mode = ata_xfer_mask2mode(dma_mask);
+
+ found = 1;
+ if (dev->dma_mode)
+ used_dma = 1;
+ }
+ if (!found)
+ goto out;
+
+ /* step 2: always set host PIO timings */
+ for (i = 0; i < ATA_MAX_DEVICES; i++) {
+ dev = &ap->device[i];
+ if (!ata_dev_enabled(dev))
+ continue;
+
+ if (!dev->pio_mode) {
+ ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
+ rc = -EINVAL;
+ goto out;
+ }
+
+ dev->xfer_mode = dev->pio_mode;
+ dev->xfer_shift = ATA_SHIFT_PIO;
+ if (ap->ops->set_piomode)
+ ap->ops->set_piomode(ap, dev);
+ }
+
+ /* step 3: set host DMA timings */
+ for (i = 0; i < ATA_MAX_DEVICES; i++) {
+ dev = &ap->device[i];
+
+ if (!ata_dev_enabled(dev) || !dev->dma_mode)
+ continue;
+
+ dev->xfer_mode = dev->dma_mode;
+ dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
+ if (ap->ops->set_dmamode)
+ ap->ops->set_dmamode(ap, dev);
+ }
+
+ /* step 4: update devices' xfer mode */
+ for (i = 0; i < ATA_MAX_DEVICES; i++) {
+ dev = &ap->device[i];
+
+ /* don't udpate suspended devices' xfer mode */
+ if (!ata_dev_ready(dev))
+ continue;
+
+ rc = ata_dev_set_mode(dev);
+ if (rc)
+ goto out;
+ }
+
+ /* Record simplex status. If we selected DMA then the other
+ * host channels are not permitted to do so.
+ */
+ if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
+ ap->host_set->simplex_claimed = 1;
+
+ /* step5: chip specific finalisation */
+ if (ap->ops->post_set_mode)
+ ap->ops->post_set_mode(ap);
+
+ out:
+ if (rc)
+ *r_failed_dev = dev;
+ return rc;
+}
+
+/**
+ * ata_tf_to_host - issue ATA taskfile to host controller
+ * @ap: port to which command is being issued
+ * @tf: ATA taskfile register set
+ *
+ * Issues ATA taskfile register set to ATA host controller,
+ * with proper synchronization with interrupt handler and
+ * other threads.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ */
+
+static inline void ata_tf_to_host(struct ata_port *ap,
+ const struct ata_taskfile *tf)
+{
+ ap->ops->tf_load(ap, tf);
+ ap->ops->exec_command(ap, tf);
+}
+
+/**
+ * ata_busy_sleep - sleep until BSY clears, or timeout
+ * @ap: port containing status register to be polled
+ * @tmout_pat: impatience timeout
+ * @tmout: overall timeout
+ *
+ * Sleep until ATA Status register bit BSY clears,
+ * or a timeout occurs.
+ *
+ * LOCKING: None.
+ */
+
+unsigned int ata_busy_sleep (struct ata_port *ap,
+ unsigned long tmout_pat, unsigned long tmout)
+{
+ unsigned long timer_start, timeout;
+ u8 status;
+
+ status = ata_busy_wait(ap, ATA_BUSY, 300);
+ timer_start = jiffies;
+ timeout = timer_start + tmout_pat;
+ while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
+ msleep(50);
+ status = ata_busy_wait(ap, ATA_BUSY, 3);
+ }
+
+ if (status & ATA_BUSY)
+ ata_port_printk(ap, KERN_WARNING,
+ "port is slow to respond, please be patient\n");
+
+ timeout = timer_start + tmout;
+ while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
+ msleep(50);
+ status = ata_chk_status(ap);
+ }
+
+ if (status & ATA_BUSY) {
+ ata_port_printk(ap, KERN_ERR, "port failed to respond "
+ "(%lu secs)\n", tmout / HZ);
+ return 1;
+ }
+
+ return 0;
+}
+
+static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+ unsigned int dev0 = devmask & (1 << 0);
+ unsigned int dev1 = devmask & (1 << 1);
+ unsigned long timeout;
+
+ /* if device 0 was found in ata_devchk, wait for its
+ * BSY bit to clear
+ */
+ if (dev0)
+ ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
+
+ /* if device 1 was found in ata_devchk, wait for
+ * register access, then wait for BSY to clear
+ */
+ timeout = jiffies + ATA_TMOUT_BOOT;
+ while (dev1) {
+ u8 nsect, lbal;
+
+ ap->ops->dev_select(ap, 1);
+ if (ap->flags & ATA_FLAG_MMIO) {
+ nsect = readb((void __iomem *) ioaddr->nsect_addr);
+ lbal = readb((void __iomem *) ioaddr->lbal_addr);
+ } else {
+ nsect = inb(ioaddr->nsect_addr);
+ lbal = inb(ioaddr->lbal_addr);
+ }
+ if ((nsect == 1) && (lbal == 1))
+ break;
+ if (time_after(jiffies, timeout)) {
+ dev1 = 0;
+ break;
+ }
+ msleep(50); /* give drive a breather */
+ }
+ if (dev1)
+ ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
+
+ /* is all this really necessary? */
+ ap->ops->dev_select(ap, 0);
+ if (dev1)
+ ap->ops->dev_select(ap, 1);
+ if (dev0)
+ ap->ops->dev_select(ap, 0);
+}
+
+static unsigned int ata_bus_softreset(struct ata_port *ap,
+ unsigned int devmask)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+
+ DPRINTK("ata%u: bus reset via SRST\n", ap->id);
+
+ /* software reset. causes dev0 to be selected */
+ if (ap->flags & ATA_FLAG_MMIO) {
+ writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
+ udelay(20); /* FIXME: flush */
+ writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
+ udelay(20); /* FIXME: flush */
+ writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
+ } else {
+ outb(ap->ctl, ioaddr->ctl_addr);
+ udelay(10);
+ outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
+ udelay(10);
+ outb(ap->ctl, ioaddr->ctl_addr);
+ }
+
+ /* spec mandates ">= 2ms" before checking status.
+ * We wait 150ms, because that was the magic delay used for
+ * ATAPI devices in Hale Landis's ATADRVR, for the period of time
+ * between when the ATA command register is written, and then
+ * status is checked. Because waiting for "a while" before
+ * checking status is fine, post SRST, we perform this magic
+ * delay here as well.
+ *
+ * Old drivers/ide uses the 2mS rule and then waits for ready
+ */
+ msleep(150);
+
+ /* Before we perform post reset processing we want to see if
+ * the bus shows 0xFF because the odd clown forgets the D7
+ * pulldown resistor.
+ */
+ if (ata_check_status(ap) == 0xFF) {
+ ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
+ return AC_ERR_OTHER;
+ }
+
+ ata_bus_post_reset(ap, devmask);
+
+ return 0;
+}
+
+/**
+ * ata_bus_reset - reset host port and associated ATA channel
+ * @ap: port to reset
+ *
+ * This is typically the first time we actually start issuing
+ * commands to the ATA channel. We wait for BSY to clear, then
+ * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
+ * result. Determine what devices, if any, are on the channel
+ * by looking at the device 0/1 error register. Look at the signature
+ * stored in each device's taskfile registers, to determine if
+ * the device is ATA or ATAPI.
+ *
+ * LOCKING:
+ * PCI/etc. bus probe sem.
+ * Obtains host_set lock.
+ *
+ * SIDE EFFECTS:
+ * Sets ATA_FLAG_DISABLED if bus reset fails.
+ */
+
+void ata_bus_reset(struct ata_port *ap)
+{
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+ unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
+ u8 err;
+ unsigned int dev0, dev1 = 0, devmask = 0;
+
+ DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
+
+ /* determine if device 0/1 are present */
+ if (ap->flags & ATA_FLAG_SATA_RESET)
+ dev0 = 1;
+ else {
+ dev0 = ata_devchk(ap, 0);
+ if (slave_possible)
+ dev1 = ata_devchk(ap, 1);
+ }
+
+ if (dev0)
+ devmask |= (1 << 0);
+ if (dev1)
+ devmask |= (1 << 1);
+
+ /* select device 0 again */
+ ap->ops->dev_select(ap, 0);
+
+ /* issue bus reset */
+ if (ap->flags & ATA_FLAG_SRST)
+ if (ata_bus_softreset(ap, devmask))
+ goto err_out;
+
+ /*
+ * determine by signature whether we have ATA or ATAPI devices
+ */
+ ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
+ if ((slave_possible) && (err != 0x81))
+ ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
+
+ /* re-enable interrupts */
+ if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
+ ata_irq_on(ap);
+
+ /* is double-select really necessary? */
+ if (ap->device[1].class != ATA_DEV_NONE)
+ ap->ops->dev_select(ap, 1);
+ if (ap->device[0].class != ATA_DEV_NONE)
+ ap->ops->dev_select(ap, 0);
+
+ /* if no devices were detected, disable this port */
+ if ((ap->device[0].class == ATA_DEV_NONE) &&
+ (ap->device[1].class == ATA_DEV_NONE))
+ goto err_out;
+
+ if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
+ /* set up device control for ATA_FLAG_SATA_RESET */
+ if (ap->flags & ATA_FLAG_MMIO)
+ writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
+ else
+ outb(ap->ctl, ioaddr->ctl_addr);
+ }
+
+ DPRINTK("EXIT\n");
+ return;
+
+err_out:
+ ata_port_printk(ap, KERN_ERR, "disabling port\n");
+ ap->ops->port_disable(ap);
+
+ DPRINTK("EXIT\n");
+}
+
+/**
+ * sata_phy_debounce - debounce SATA phy status
+ * @ap: ATA port to debounce SATA phy status for
+ * @params: timing parameters { interval, duratinon, timeout } in msec
+ *
+ * Make sure SStatus of @ap reaches stable state, determined by
+ * holding the same value where DET is not 1 for @duration polled
+ * every @interval, before @timeout. Timeout constraints the
+ * beginning of the stable state. Because, after hot unplugging,
+ * DET gets stuck at 1 on some controllers, this functions waits
+ * until timeout then returns 0 if DET is stable at 1.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
+{
+ unsigned long interval_msec = params[0];
+ unsigned long duration = params[1] * HZ / 1000;
+ unsigned long timeout = jiffies + params[2] * HZ / 1000;
+ unsigned long last_jiffies;
+ u32 last, cur;
+ int rc;
+
+ if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
+ return rc;
+ cur &= 0xf;
+
+ last = cur;
+ last_jiffies = jiffies;
+
+ while (1) {
+ msleep(interval_msec);
+ if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
+ return rc;
+ cur &= 0xf;
+
+ /* DET stable? */
+ if (cur == last) {
+ if (cur == 1 && time_before(jiffies, timeout))
+ continue;
+ if (time_after(jiffies, last_jiffies + duration))
+ return 0;
+ continue;
+ }
+
+ /* unstable, start over */
+ last = cur;
+ last_jiffies = jiffies;
+
+ /* check timeout */
+ if (time_after(jiffies, timeout))
+ return -EBUSY;
+ }
+}
+
+/**
+ * sata_phy_resume - resume SATA phy
+ * @ap: ATA port to resume SATA phy for
+ * @params: timing parameters { interval, duratinon, timeout } in msec
+ *
+ * Resume SATA phy of @ap and debounce it.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
+{
+ u32 scontrol;
+ int rc;
+
+ if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
+ return rc;
+
+ scontrol = (scontrol & 0x0f0) | 0x300;
+
+ if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
+ return rc;
+
+ /* Some PHYs react badly if SStatus is pounded immediately
+ * after resuming. Delay 200ms before debouncing.
+ */
+ msleep(200);
+
+ return sata_phy_debounce(ap, params);
+}
+
+static void ata_wait_spinup(struct ata_port *ap)
+{
+ struct ata_eh_context *ehc = &ap->eh_context;
+ unsigned long end, secs;
+ int rc;
+
+ /* first, debounce phy if SATA */
+ if (ap->cbl == ATA_CBL_SATA) {
+ rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
+
+ /* if debounced successfully and offline, no need to wait */
+ if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
+ return;
+ }
+
+ /* okay, let's give the drive time to spin up */
+ end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
+ secs = ((end - jiffies) + HZ - 1) / HZ;
+
+ if (time_after(jiffies, end))
+ return;
+
+ if (secs > 5)
+ ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
+ "(%lu secs)\n", secs);
+
+ schedule_timeout_uninterruptible(end - jiffies);
+}
+
+/**
+ * ata_std_prereset - prepare for reset
+ * @ap: ATA port to be reset
+ *
+ * @ap is about to be reset. Initialize it.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_std_prereset(struct ata_port *ap)
+{
+ struct ata_eh_context *ehc = &ap->eh_context;
+ const unsigned long *timing = sata_ehc_deb_timing(ehc);
+ int rc;
+
+ /* handle link resume & hotplug spinup */
+ if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
+ (ap->flags & ATA_FLAG_HRST_TO_RESUME))
+ ehc->i.action |= ATA_EH_HARDRESET;
+
+ if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
+ (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
+ ata_wait_spinup(ap);
+
+ /* if we're about to do hardreset, nothing more to do */
+ if (ehc->i.action & ATA_EH_HARDRESET)
+ return 0;
+
+ /* if SATA, resume phy */
+ if (ap->cbl == ATA_CBL_SATA) {
+ rc = sata_phy_resume(ap, timing);
+ if (rc && rc != -EOPNOTSUPP) {
+ /* phy resume failed */
+ ata_port_printk(ap, KERN_WARNING, "failed to resume "
+ "link for reset (errno=%d)\n", rc);
+ return rc;
+ }
+ }
+
+ /* Wait for !BSY if the controller can wait for the first D2H
+ * Reg FIS and we don't know that no device is attached.
+ */
+ if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
+ ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
+
+ return 0;
+}
+
+/**
+ * ata_std_softreset - reset host port via ATA SRST
+ * @ap: port to reset
+ * @classes: resulting classes of attached devices
+ *
+ * Reset host port using ATA SRST.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
+{
+ unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
+ unsigned int devmask = 0, err_mask;
+ u8 err;
+
+ DPRINTK("ENTER\n");
+
+ if (ata_port_offline(ap)) {
+ classes[0] = ATA_DEV_NONE;
+ goto out;
+ }
+
+ /* determine if device 0/1 are present */
+ if (ata_devchk(ap, 0))
+ devmask |= (1 << 0);
+ if (slave_possible && ata_devchk(ap, 1))
+ devmask |= (1 << 1);
+
+ /* select device 0 again */
+ ap->ops->dev_select(ap, 0);
+
+ /* issue bus reset */
+ DPRINTK("about to softreset, devmask=%x\n", devmask);
+ err_mask = ata_bus_softreset(ap, devmask);
+ if (err_mask) {
+ ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
+ err_mask);
+ return -EIO;
+ }
+
+ /* determine by signature whether we have ATA or ATAPI devices */
+ classes[0] = ata_dev_try_classify(ap, 0, &err);
+ if (slave_possible && err != 0x81)
+ classes[1] = ata_dev_try_classify(ap, 1, &err);
+
+ out:
+ DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
+ return 0;
+}
+
+/**
+ * sata_std_hardreset - reset host port via SATA phy reset
+ * @ap: port to reset
+ * @class: resulting class of attached device
+ *
+ * SATA phy-reset host port using DET bits of SControl register.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, -errno otherwise.
+ */
+int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
+{
+ struct ata_eh_context *ehc = &ap->eh_context;
+ const unsigned long *timing = sata_ehc_deb_timing(ehc);
+ u32 scontrol;
+ int rc;
+
+ DPRINTK("ENTER\n");
+
+ if (sata_set_spd_needed(ap)) {
+ /* SATA spec says nothing about how to reconfigure
+ * spd. To be on the safe side, turn off phy during
+ * reconfiguration. This works for at least ICH7 AHCI
+ * and Sil3124.
+ */
+ if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
+ return rc;
+
+ scontrol = (scontrol & 0x0f0) | 0x302;
+
+ if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
+ return rc;
+
+ sata_set_spd(ap);
+ }
+
+ /* issue phy wake/reset */
+ if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
+ return rc;
+
+ scontrol = (scontrol & 0x0f0) | 0x301;
+
+ if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
+ return rc;
+
+ /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
+ * 10.4.2 says at least 1 ms.
+ */
+ msleep(1);
+
+ /* bring phy back */
+ sata_phy_resume(ap, timing);
+
+ /* TODO: phy layer with polling, timeouts, etc. */
+ if (ata_port_offline(ap)) {
+ *class = ATA_DEV_NONE;
+ DPRINTK("EXIT, link offline\n");
+ return 0;
+ }
+
+ if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
+ ata_port_printk(ap, KERN_ERR,
+ "COMRESET failed (device not ready)\n");
+ return -EIO;
+ }
+
+ ap->ops->dev_select(ap, 0); /* probably unnecessary */
+
+ *class = ata_dev_try_classify(ap, 0, NULL);
+
+ DPRINTK("EXIT, class=%u\n", *class);
+ return 0;
+}
+
+/**
+ * ata_std_postreset - standard postreset callback
+ * @ap: the target ata_port
+ * @classes: classes of attached devices
+ *
+ * This function is invoked after a successful reset. Note that
+ * the device might have been reset more than once using
+ * different reset methods before postreset is invoked.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ */
+void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
+{
+ u32 serror;
+
+ DPRINTK("ENTER\n");
+
+ /* print link status */
+ sata_print_link_status(ap);
+
+ /* clear SError */
+ if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
+ sata_scr_write(ap, SCR_ERROR, serror);
+
+ /* re-enable interrupts */
+ if (!ap->ops->error_handler) {
+ /* FIXME: hack. create a hook instead */
+ if (ap->ioaddr.ctl_addr)
+ ata_irq_on(ap);
+ }
+
+ /* is double-select really necessary? */
+ if (classes[0] != ATA_DEV_NONE)
+ ap->ops->dev_select(ap, 1);
+ if (classes[1] != ATA_DEV_NONE)
+ ap->ops->dev_select(ap, 0);
+
+ /* bail out if no device is present */
+ if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
+ DPRINTK("EXIT, no device\n");
+ return;
+ }
+
+ /* set up device control */
+ if (ap->ioaddr.ctl_addr) {
+ if (ap->flags & ATA_FLAG_MMIO)
+ writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
+ else
+ outb(ap->ctl, ap->ioaddr.ctl_addr);
+ }
+
+ DPRINTK("EXIT\n");
+}
+
+/**
+ * ata_dev_same_device - Determine whether new ID matches configured device
+ * @dev: device to compare against
+ * @new_class: class of the new device
+ * @new_id: IDENTIFY page of the new device
+ *
+ * Compare @new_class and @new_id against @dev and determine
+ * whether @dev is the device indicated by @new_class and
+ * @new_id.
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * 1 if @dev matches @new_class and @new_id, 0 otherwise.
+ */
+static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
+ const u16 *new_id)
+{
+ const u16 *old_id = dev->id;
+ unsigned char model[2][41], serial[2][21];
+ u64 new_n_sectors;
+
+ if (dev->class != new_class) {
+ ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
+ dev->class, new_class);
+ return 0;
+ }
+
+ ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
+ ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
+ ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
+ ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
+ new_n_sectors = ata_id_n_sectors(new_id);
+
+ if (strcmp(model[0], model[1])) {
+ ata_dev_printk(dev, KERN_INFO, "model number mismatch "
+ "'%s' != '%s'\n", model[0], model[1]);
+ return 0;
+ }
+
+ if (strcmp(serial[0], serial[1])) {
+ ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
+ "'%s' != '%s'\n", serial[0], serial[1]);
+ return 0;
+ }
+
+ if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
+ ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
+ "%llu != %llu\n",
+ (unsigned long long)dev->n_sectors,
+ (unsigned long long)new_n_sectors);
+ return 0;
+ }
+
+ return 1;
+}
+
+/**
+ * ata_dev_revalidate - Revalidate ATA device
+ * @dev: device to revalidate
+ * @post_reset: is this revalidation after reset?
+ *
+ * Re-read IDENTIFY page and make sure @dev is still attached to
+ * the port.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, negative errno otherwise
+ */
+int ata_dev_revalidate(struct ata_device *dev, int post_reset)
+{
+ unsigned int class = dev->class;
+ u16 *id = (void *)dev->ap->sector_buf;
+ int rc;
+
+ if (!ata_dev_enabled(dev)) {
+ rc = -ENODEV;
+ goto fail;
+ }
+
+ /* read ID data */
+ rc = ata_dev_read_id(dev, &class, post_reset, id);
+ if (rc)
+ goto fail;
+
+ /* is the device still there? */
+ if (!ata_dev_same_device(dev, class, id)) {
+ rc = -ENODEV;
+ goto fail;
+ }
+
+ memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
+
+ /* configure device according to the new ID */
+ rc = ata_dev_configure(dev, 0);
+ if (rc == 0)
+ return 0;
+
+ fail:
+ ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
+ return rc;
+}
+
+static const char * const ata_dma_blacklist [] = {
+ "WDC AC11000H", NULL,
+ "WDC AC22100H", NULL,
+ "WDC AC32500H", NULL,
+ "WDC AC33100H", NULL,
+ "WDC AC31600H", NULL,
+ "WDC AC32100H", "24.09P07",
+ "WDC AC23200L", "21.10N21",
+ "Compaq CRD-8241B", NULL,
+ "CRD-8400B", NULL,
+ "CRD-8480B", NULL,
+ "CRD-8482B", NULL,
+ "CRD-84", NULL,
+ "SanDisk SDP3B", NULL,
+ "SanDisk SDP3B-64", NULL,
+ "SANYO CD-ROM CRD", NULL,
+ "HITACHI CDR-8", NULL,
+ "HITACHI CDR-8335", NULL,
+ "HITACHI CDR-8435", NULL,
+ "Toshiba CD-ROM XM-6202B", NULL,
+ "TOSHIBA CD-ROM XM-1702BC", NULL,
+ "CD-532E-A", NULL,
+ "E-IDE CD-ROM CR-840", NULL,
+ "CD-ROM Drive/F5A", NULL,
+ "WPI CDD-820", NULL,
+ "SAMSUNG CD-ROM SC-148C", NULL,
+ "SAMSUNG CD-ROM SC", NULL,
+ "SanDisk SDP3B-64", NULL,
+ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
+ "_NEC DV5800A", NULL,
+ "SAMSUNG CD-ROM SN-124", "N001"
+};
+
+static int ata_strim(char *s, size_t len)
+{
+ len = strnlen(s, len);
+
+ /* ATAPI specifies that empty space is blank-filled; remove blanks */
+ while ((len > 0) && (s[len - 1] == ' ')) {
+ len--;
+ s[len] = 0;
+ }
+ return len;
+}
+
+static int ata_dma_blacklisted(const struct ata_device *dev)
+{
+ unsigned char model_num[40];
+ unsigned char model_rev[16];
+ unsigned int nlen, rlen;
+ int i;
+
+ /* We don't support polling DMA.
+ * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
+ * if the LLDD handles only interrupts in the HSM_ST_LAST state.
+ */
+ if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
+ (dev->flags & ATA_DFLAG_CDB_INTR))
+ return 1;
+
+ ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
+ sizeof(model_num));
+ ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
+ sizeof(model_rev));
+ nlen = ata_strim(model_num, sizeof(model_num));
+ rlen = ata_strim(model_rev, sizeof(model_rev));
+
+ for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
+ if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
+ if (ata_dma_blacklist[i+1] == NULL)
+ return 1;
+ if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
+ return 1;
+ }
+ }
+ return 0;
+}
+
+/**
+ * ata_dev_xfermask - Compute supported xfermask of the given device
+ * @dev: Device to compute xfermask for
+ *
+ * Compute supported xfermask of @dev and store it in
+ * dev->*_mask. This function is responsible for applying all
+ * known limits including host controller limits, device
+ * blacklist, etc...
+ *
+ * LOCKING:
+ * None.
+ */
+static void ata_dev_xfermask(struct ata_device *dev)
+{
+ struct ata_port *ap = dev->ap;
+ struct ata_host_set *hs = ap->host_set;
+ unsigned long xfer_mask;
+
+ /* controller modes available */
+ xfer_mask = ata_pack_xfermask(ap->pio_mask,
+ ap->mwdma_mask, ap->udma_mask);
+
+ /* Apply cable rule here. Don't apply it early because when
+ * we handle hot plug the cable type can itself change.
+ */
+ if (ap->cbl == ATA_CBL_PATA40)
+ xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
+
+ xfer_mask &= ata_pack_xfermask(dev->pio_mask,
+ dev->mwdma_mask, dev->udma_mask);
+ xfer_mask &= ata_id_xfermask(dev->id);
+
+ if (ata_dma_blacklisted(dev)) {
+ xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
+ ata_dev_printk(dev, KERN_WARNING,
+ "device is on DMA blacklist, disabling DMA\n");
+ }
+
+ if ((hs->flags & ATA_HOST_SIMPLEX) && hs->simplex_claimed) {
+ xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
+ ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
+ "other device, disabling DMA\n");
+ }
+
+ if (ap->ops->mode_filter)
+ xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
+
+ ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
+ &dev->mwdma_mask, &dev->udma_mask);
+}
+
+/**
+ * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
+ * @dev: Device to which command will be sent
+ *
+ * Issue SET FEATURES - XFER MODE command to device @dev
+ * on port @ap.
+ *
+ * LOCKING:
+ * PCI/etc. bus probe sem.
+ *
+ * RETURNS:
+ * 0 on success, AC_ERR_* mask otherwise.
+ */
+
+static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
+{
+ struct ata_taskfile tf;
+ unsigned int err_mask;
+
+ /* set up set-features taskfile */
+ DPRINTK("set features - xfer mode\n");
+
+ ata_tf_init(dev, &tf);
+ tf.command = ATA_CMD_SET_FEATURES;
+ tf.feature = SETFEATURES_XFER;
+ tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
+ tf.protocol = ATA_PROT_NODATA;
+ tf.nsect = dev->xfer_mode;
+
+ err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
+
+ DPRINTK("EXIT, err_mask=%x\n", err_mask);
+ return err_mask;
+}
+
+/**
+ * ata_dev_init_params - Issue INIT DEV PARAMS command
+ * @dev: Device to which command will be sent
+ * @heads: Number of heads (taskfile parameter)
+ * @sectors: Number of sectors (taskfile parameter)
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * 0 on success, AC_ERR_* mask otherwise.
+ */
+static unsigned int ata_dev_init_params(struct ata_device *dev,
+ u16 heads, u16 sectors)
+{
+ struct ata_taskfile tf;
+ unsigned int err_mask;
+
+ /* Number of sectors per track 1-255. Number of heads 1-16 */
+ if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
+ return AC_ERR_INVALID;
+
+ /* set up init dev params taskfile */
+ DPRINTK("init dev params \n");
+
+ ata_tf_init(dev, &tf);
+ tf.command = ATA_CMD_INIT_DEV_PARAMS;
+ tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
+ tf.protocol = ATA_PROT_NODATA;
+ tf.nsect = sectors;
+ tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
+
+ err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
+
+ DPRINTK("EXIT, err_mask=%x\n", err_mask);
+ return err_mask;
+}
+
+/**
+ * ata_sg_clean - Unmap DMA memory associated with command
+ * @qc: Command containing DMA memory to be released
+ *
+ * Unmap all mapped DMA memory associated with this command.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ */
+
+static void ata_sg_clean(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct scatterlist *sg = qc->__sg;
+ int dir = qc->dma_dir;
+ void *pad_buf = NULL;
+
+ WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
+ WARN_ON(sg == NULL);
+
+ if (qc->flags & ATA_QCFLAG_SINGLE)
+ WARN_ON(qc->n_elem > 1);
+
+ VPRINTK("unmapping %u sg elements\n", qc->n_elem);
+
+ /* if we padded the buffer out to 32-bit bound, and data
+ * xfer direction is from-device, we must copy from the
+ * pad buffer back into the supplied buffer
+ */
+ if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
+ pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
+
+ if (qc->flags & ATA_QCFLAG_SG) {
+ if (qc->n_elem)
+ dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
+ /* restore last sg */
+ sg[qc->orig_n_elem - 1].length += qc->pad_len;
+ if (pad_buf) {
+ struct scatterlist *psg = &qc->pad_sgent;
+ void *addr = kmap_atomic(psg->page, KM_IRQ0);
+ memcpy(addr + psg->offset, pad_buf, qc->pad_len);
+ kunmap_atomic(addr, KM_IRQ0);
+ }
+ } else {
+ if (qc->n_elem)
+ dma_unmap_single(ap->dev,
+ sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
+ dir);
+ /* restore sg */
+ sg->length += qc->pad_len;
+ if (pad_buf)
+ memcpy(qc->buf_virt + sg->length - qc->pad_len,
+ pad_buf, qc->pad_len);
+ }
+
+ qc->flags &= ~ATA_QCFLAG_DMAMAP;
+ qc->__sg = NULL;
+}
+
+/**
+ * ata_fill_sg - Fill PCI IDE PRD table
+ * @qc: Metadata associated with taskfile to be transferred
+ *
+ * Fill PCI IDE PRD (scatter-gather) table with segments
+ * associated with the current disk command.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ *
+ */
+static void ata_fill_sg(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct scatterlist *sg;
+ unsigned int idx;
+
+ WARN_ON(qc->__sg == NULL);
+ WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
+
+ idx = 0;
+ ata_for_each_sg(sg, qc) {
+ u32 addr, offset;
+ u32 sg_len, len;
+
+ /* determine if physical DMA addr spans 64K boundary.
+ * Note h/w doesn't support 64-bit, so we unconditionally
+ * truncate dma_addr_t to u32.
+ */
+ addr = (u32) sg_dma_address(sg);
+ sg_len = sg_dma_len(sg);
+
+ while (sg_len) {
+ offset = addr & 0xffff;
+ len = sg_len;
+ if ((offset + sg_len) > 0x10000)
+ len = 0x10000 - offset;
+
+ ap->prd[idx].addr = cpu_to_le32(addr);
+ ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
+ VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
+
+ idx++;
+ sg_len -= len;
+ addr += len;
+ }
+ }
+
+ if (idx)
+ ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
+}
+/**
+ * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
+ * @qc: Metadata associated with taskfile to check
+ *
+ * Allow low-level driver to filter ATA PACKET commands, returning
+ * a status indicating whether or not it is OK to use DMA for the
+ * supplied PACKET command.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ *
+ * RETURNS: 0 when ATAPI DMA can be used
+ * nonzero otherwise
+ */
+int ata_check_atapi_dma(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ int rc = 0; /* Assume ATAPI DMA is OK by default */
+
+ if (ap->ops->check_atapi_dma)
+ rc = ap->ops->check_atapi_dma(qc);
+
+ return rc;
+}
+/**
+ * ata_qc_prep - Prepare taskfile for submission
+ * @qc: Metadata associated with taskfile to be prepared
+ *
+ * Prepare ATA taskfile for submission.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ */
+void ata_qc_prep(struct ata_queued_cmd *qc)
+{
+ if (!(qc->flags & ATA_QCFLAG_DMAMAP))
+ return;
+
+ ata_fill_sg(qc);
+}
+
+void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
+
+/**
+ * ata_sg_init_one - Associate command with memory buffer
+ * @qc: Command to be associated
+ * @buf: Memory buffer
+ * @buflen: Length of memory buffer, in bytes.
+ *
+ * Initialize the data-related elements of queued_cmd @qc
+ * to point to a single memory buffer, @buf of byte length @buflen.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ */
+
+void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
+{
+ struct scatterlist *sg;
+
+ qc->flags |= ATA_QCFLAG_SINGLE;
+
+ memset(&qc->sgent, 0, sizeof(qc->sgent));
+ qc->__sg = &qc->sgent;
+ qc->n_elem = 1;
+ qc->orig_n_elem = 1;
+ qc->buf_virt = buf;
+ qc->nbytes = buflen;
+
+ sg = qc->__sg;
+ sg_init_one(sg, buf, buflen);
+}
+
+/**
+ * ata_sg_init - Associate command with scatter-gather table.
+ * @qc: Command to be associated
+ * @sg: Scatter-gather table.
+ * @n_elem: Number of elements in s/g table.
+ *
+ * Initialize the data-related elements of queued_cmd @qc
+ * to point to a scatter-gather table @sg, containing @n_elem
+ * elements.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ */
+
+void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
+ unsigned int n_elem)
+{
+ qc->flags |= ATA_QCFLAG_SG;
+ qc->__sg = sg;
+ qc->n_elem = n_elem;
+ qc->orig_n_elem = n_elem;
+}
+
+/**
+ * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
+ * @qc: Command with memory buffer to be mapped.
+ *
+ * DMA-map the memory buffer associated with queued_cmd @qc.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ *
+ * RETURNS:
+ * Zero on success, negative on error.
+ */
+
+static int ata_sg_setup_one(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ int dir = qc->dma_dir;
+ struct scatterlist *sg = qc->__sg;
+ dma_addr_t dma_address;
+ int trim_sg = 0;
+
+ /* we must lengthen transfers to end on a 32-bit boundary */
+ qc->pad_len = sg->length & 3;
+ if (qc->pad_len) {
+ void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
+ struct scatterlist *psg = &qc->pad_sgent;
+
+ WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
+
+ memset(pad_buf, 0, ATA_DMA_PAD_SZ);
+
+ if (qc->tf.flags & ATA_TFLAG_WRITE)
+ memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
+ qc->pad_len);
+
+ sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
+ sg_dma_len(psg) = ATA_DMA_PAD_SZ;
+ /* trim sg */
+ sg->length -= qc->pad_len;
+ if (sg->length == 0)
+ trim_sg = 1;
+
+ DPRINTK("padding done, sg->length=%u pad_len=%u\n",
+ sg->length, qc->pad_len);
+ }
+
+ if (trim_sg) {
+ qc->n_elem--;
+ goto skip_map;
+ }
+
+ dma_address = dma_map_single(ap->dev, qc->buf_virt,
+ sg->length, dir);
+ if (dma_mapping_error(dma_address)) {
+ /* restore sg */
+ sg->length += qc->pad_len;
+ return -1;
+ }
+
+ sg_dma_address(sg) = dma_address;
+ sg_dma_len(sg) = sg->length;
+
+skip_map:
+ DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
+ qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
+
+ return 0;
+}
+
+/**
+ * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
+ * @qc: Command with scatter-gather table to be mapped.
+ *
+ * DMA-map the scatter-gather table associated with queued_cmd @qc.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ *
+ * RETURNS:
+ * Zero on success, negative on error.
+ *
+ */
+
+static int ata_sg_setup(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct scatterlist *sg = qc->__sg;
+ struct scatterlist *lsg = &sg[qc->n_elem - 1];
+ int n_elem, pre_n_elem, dir, trim_sg = 0;
+
+ VPRINTK("ENTER, ata%u\n", ap->id);
+ WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
+
+ /* we must lengthen transfers to end on a 32-bit boundary */
+ qc->pad_len = lsg->length & 3;
+ if (qc->pad_len) {
+ void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
+ struct scatterlist *psg = &qc->pad_sgent;
+ unsigned int offset;
+
+ WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
+
+ memset(pad_buf, 0, ATA_DMA_PAD_SZ);
+
+ /*
+ * psg->page/offset are used to copy to-be-written
+ * data in this function or read data in ata_sg_clean.
+ */
+ offset = lsg->offset + lsg->length - qc->pad_len;
+ psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
+ psg->offset = offset_in_page(offset);
+
+ if (qc->tf.flags & ATA_TFLAG_WRITE) {
+ void *addr = kmap_atomic(psg->page, KM_IRQ0);
+ memcpy(pad_buf, addr + psg->offset, qc->pad_len);
+ kunmap_atomic(addr, KM_IRQ0);
+ }
+
+ sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
+ sg_dma_len(psg) = ATA_DMA_PAD_SZ;
+ /* trim last sg */
+ lsg->length -= qc->pad_len;
+ if (lsg->length == 0)
+ trim_sg = 1;
+
+ DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
+ qc->n_elem - 1, lsg->length, qc->pad_len);
+ }
+
+ pre_n_elem = qc->n_elem;
+ if (trim_sg && pre_n_elem)
+ pre_n_elem--;
+
+ if (!pre_n_elem) {
+ n_elem = 0;
+ goto skip_map;
+ }
+
+ dir = qc->dma_dir;
+ n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
+ if (n_elem < 1) {
+ /* restore last sg */
+ lsg->length += qc->pad_len;
+ return -1;
+ }
+
+ DPRINTK("%d sg elements mapped\n", n_elem);
+
+skip_map:
+ qc->n_elem = n_elem;
+
+ return 0;
+}
+
+/**
+ * swap_buf_le16 - swap halves of 16-bit words in place
+ * @buf: Buffer to swap
+ * @buf_words: Number of 16-bit words in buffer.
+ *
+ * Swap halves of 16-bit words if needed to convert from
+ * little-endian byte order to native cpu byte order, or
+ * vice-versa.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+void swap_buf_le16(u16 *buf, unsigned int buf_words)
+{
+#ifdef __BIG_ENDIAN
+ unsigned int i;
+
+ for (i = 0; i < buf_words; i++)
+ buf[i] = le16_to_cpu(buf[i]);
+#endif /* __BIG_ENDIAN */
+}
+
+/**
+ * ata_mmio_data_xfer - Transfer data by MMIO
+ * @adev: device for this I/O
+ * @buf: data buffer
+ * @buflen: buffer length
+ * @write_data: read/write
+ *
+ * Transfer data from/to the device data register by MMIO.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
+ unsigned int buflen, int write_data)
+{
+ struct ata_port *ap = adev->ap;
+ unsigned int i;
+ unsigned int words = buflen >> 1;
+ u16 *buf16 = (u16 *) buf;
+ void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
+
+ /* Transfer multiple of 2 bytes */
+ if (write_data) {
+ for (i = 0; i < words; i++)
+ writew(le16_to_cpu(buf16[i]), mmio);
+ } else {
+ for (i = 0; i < words; i++)
+ buf16[i] = cpu_to_le16(readw(mmio));
+ }
+
+ /* Transfer trailing 1 byte, if any. */
+ if (unlikely(buflen & 0x01)) {
+ u16 align_buf[1] = { 0 };
+ unsigned char *trailing_buf = buf + buflen - 1;
+
+ if (write_data) {
+ memcpy(align_buf, trailing_buf, 1);
+ writew(le16_to_cpu(align_buf[0]), mmio);
+ } else {
+ align_buf[0] = cpu_to_le16(readw(mmio));
+ memcpy(trailing_buf, align_buf, 1);
+ }
+ }
+}
+
+/**
+ * ata_pio_data_xfer - Transfer data by PIO
+ * @adev: device to target
+ * @buf: data buffer
+ * @buflen: buffer length
+ * @write_data: read/write
+ *
+ * Transfer data from/to the device data register by PIO.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
+ unsigned int buflen, int write_data)
+{
+ struct ata_port *ap = adev->ap;
+ unsigned int words = buflen >> 1;
+
+ /* Transfer multiple of 2 bytes */
+ if (write_data)
+ outsw(ap->ioaddr.data_addr, buf, words);
+ else
+ insw(ap->ioaddr.data_addr, buf, words);
+
+ /* Transfer trailing 1 byte, if any. */
+ if (unlikely(buflen & 0x01)) {
+ u16 align_buf[1] = { 0 };
+ unsigned char *trailing_buf = buf + buflen - 1;
+
+ if (write_data) {
+ memcpy(align_buf, trailing_buf, 1);
+ outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
+ } else {
+ align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
+ memcpy(trailing_buf, align_buf, 1);
+ }
+ }
+}
+
+/**
+ * ata_pio_data_xfer_noirq - Transfer data by PIO
+ * @adev: device to target
+ * @buf: data buffer
+ * @buflen: buffer length
+ * @write_data: read/write
+ *
+ * Transfer data from/to the device data register by PIO. Do the
+ * transfer with interrupts disabled.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
+ unsigned int buflen, int write_data)
+{
+ unsigned long flags;
+ local_irq_save(flags);
+ ata_pio_data_xfer(adev, buf, buflen, write_data);
+ local_irq_restore(flags);
+}
+
+
+/**
+ * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
+ * @qc: Command on going
+ *
+ * Transfer ATA_SECT_SIZE of data from/to the ATA device.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+static void ata_pio_sector(struct ata_queued_cmd *qc)
+{
+ int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
+ struct scatterlist *sg = qc->__sg;
+ struct ata_port *ap = qc->ap;
+ struct page *page;
+ unsigned int offset;
+ unsigned char *buf;
+
+ if (qc->cursect == (qc->nsect - 1))
+ ap->hsm_task_state = HSM_ST_LAST;
+
+ page = sg[qc->cursg].page;
+ offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
+
+ /* get the current page and offset */
+ page = nth_page(page, (offset >> PAGE_SHIFT));
+ offset %= PAGE_SIZE;
+
+ DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
+
+ if (PageHighMem(page)) {
+ unsigned long flags;
+
+ /* FIXME: use a bounce buffer */
+ local_irq_save(flags);
+ buf = kmap_atomic(page, KM_IRQ0);
+
+ /* do the actual data transfer */
+ ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
+
+ kunmap_atomic(buf, KM_IRQ0);
+ local_irq_restore(flags);
+ } else {
+ buf = page_address(page);
+ ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
+ }
+
+ qc->cursect++;
+ qc->cursg_ofs++;
+
+ if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
+ qc->cursg++;
+ qc->cursg_ofs = 0;
+ }
+}
+
+/**
+ * ata_pio_sectors - Transfer one or many 512-byte sectors.
+ * @qc: Command on going
+ *
+ * Transfer one or many ATA_SECT_SIZE of data from/to the
+ * ATA device for the DRQ request.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+static void ata_pio_sectors(struct ata_queued_cmd *qc)
+{
+ if (is_multi_taskfile(&qc->tf)) {
+ /* READ/WRITE MULTIPLE */
+ unsigned int nsect;
+
+ WARN_ON(qc->dev->multi_count == 0);
+
+ nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
+ while (nsect--)
+ ata_pio_sector(qc);
+ } else
+ ata_pio_sector(qc);
+}
+
+/**
+ * atapi_send_cdb - Write CDB bytes to hardware
+ * @ap: Port to which ATAPI device is attached.
+ * @qc: Taskfile currently active
+ *
+ * When device has indicated its readiness to accept
+ * a CDB, this function is called. Send the CDB.
+ *
+ * LOCKING:
+ * caller.
+ */
+
+static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
+{
+ /* send SCSI cdb */
+ DPRINTK("send cdb\n");
+ WARN_ON(qc->dev->cdb_len < 12);
+
+ ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
+ ata_altstatus(ap); /* flush */
+
+ switch (qc->tf.protocol) {
+ case ATA_PROT_ATAPI:
+ ap->hsm_task_state = HSM_ST;
+ break;
+ case ATA_PROT_ATAPI_NODATA:
+ ap->hsm_task_state = HSM_ST_LAST;
+ break;
+ case ATA_PROT_ATAPI_DMA:
+ ap->hsm_task_state = HSM_ST_LAST;
+ /* initiate bmdma */
+ ap->ops->bmdma_start(qc);
+ break;
+ }
+}
+
+/**
+ * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
+ * @qc: Command on going
+ * @bytes: number of bytes
+ *
+ * Transfer Transfer data from/to the ATAPI device.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ *
+ */
+
+static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
+{
+ int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
+ struct scatterlist *sg = qc->__sg;
+ struct ata_port *ap = qc->ap;
+ struct page *page;
+ unsigned char *buf;
+ unsigned int offset, count;
+
+ if (qc->curbytes + bytes >= qc->nbytes)
+ ap->hsm_task_state = HSM_ST_LAST;
+
+next_sg:
+ if (unlikely(qc->cursg >= qc->n_elem)) {
+ /*
+ * The end of qc->sg is reached and the device expects
+ * more data to transfer. In order not to overrun qc->sg
+ * and fulfill length specified in the byte count register,
+ * - for read case, discard trailing data from the device
+ * - for write case, padding zero data to the device
+ */
+ u16 pad_buf[1] = { 0 };
+ unsigned int words = bytes >> 1;
+ unsigned int i;
+
+ if (words) /* warning if bytes > 1 */
+ ata_dev_printk(qc->dev, KERN_WARNING,
+ "%u bytes trailing data\n", bytes);
+
+ for (i = 0; i < words; i++)
+ ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
+
+ ap->hsm_task_state = HSM_ST_LAST;
+ return;
+ }
+
+ sg = &qc->__sg[qc->cursg];
+
+ page = sg->page;
+ offset = sg->offset + qc->cursg_ofs;
+
+ /* get the current page and offset */
+ page = nth_page(page, (offset >> PAGE_SHIFT));
+ offset %= PAGE_SIZE;
+
+ /* don't overrun current sg */
+ count = min(sg->length - qc->cursg_ofs, bytes);
+
+ /* don't cross page boundaries */
+ count = min(count, (unsigned int)PAGE_SIZE - offset);
+
+ DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
+
+ if (PageHighMem(page)) {
+ unsigned long flags;
+
+ /* FIXME: use bounce buffer */
+ local_irq_save(flags);
+ buf = kmap_atomic(page, KM_IRQ0);
+
+ /* do the actual data transfer */
+ ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
+
+ kunmap_atomic(buf, KM_IRQ0);
+ local_irq_restore(flags);
+ } else {
+ buf = page_address(page);
+ ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
+ }
+
+ bytes -= count;
+ qc->curbytes += count;
+ qc->cursg_ofs += count;
+
+ if (qc->cursg_ofs == sg->length) {
+ qc->cursg++;
+ qc->cursg_ofs = 0;
+ }
+
+ if (bytes)
+ goto next_sg;
+}
+
+/**
+ * atapi_pio_bytes - Transfer data from/to the ATAPI device.
+ * @qc: Command on going
+ *
+ * Transfer Transfer data from/to the ATAPI device.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+static void atapi_pio_bytes(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ struct ata_device *dev = qc->dev;
+ unsigned int ireason, bc_lo, bc_hi, bytes;
+ int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
+
+ /* Abuse qc->result_tf for temp storage of intermediate TF
+ * here to save some kernel stack usage.
+ * For normal completion, qc->result_tf is not relevant. For
+ * error, qc->result_tf is later overwritten by ata_qc_complete().
+ * So, the correctness of qc->result_tf is not affected.
+ */
+ ap->ops->tf_read(ap, &qc->result_tf);
+ ireason = qc->result_tf.nsect;
+ bc_lo = qc->result_tf.lbam;
+ bc_hi = qc->result_tf.lbah;
+ bytes = (bc_hi << 8) | bc_lo;
+
+ /* shall be cleared to zero, indicating xfer of data */
+ if (ireason & (1 << 0))
+ goto err_out;
+
+ /* make sure transfer direction matches expected */
+ i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
+ if (do_write != i_write)
+ goto err_out;
+
+ VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
+
+ __atapi_pio_bytes(qc, bytes);
+
+ return;
+
+err_out:
+ ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
+ qc->err_mask |= AC_ERR_HSM;
+ ap->hsm_task_state = HSM_ST_ERR;
+}
+
+/**
+ * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
+ * @ap: the target ata_port
+ * @qc: qc on going
+ *
+ * RETURNS:
+ * 1 if ok in workqueue, 0 otherwise.
+ */
+
+static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
+{
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ return 1;
+
+ if (ap->hsm_task_state == HSM_ST_FIRST) {
+ if (qc->tf.protocol == ATA_PROT_PIO &&
+ (qc->tf.flags & ATA_TFLAG_WRITE))
+ return 1;
+
+ if (is_atapi_taskfile(&qc->tf) &&
+ !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+ return 1;
+ }
+
+ return 0;
+}
+
+/**
+ * ata_hsm_qc_complete - finish a qc running on standard HSM
+ * @qc: Command to complete
+ * @in_wq: 1 if called from workqueue, 0 otherwise
+ *
+ * Finish @qc which is running on standard HSM.
+ *
+ * LOCKING:
+ * If @in_wq is zero, spin_lock_irqsave(host_set lock).
+ * Otherwise, none on entry and grabs host lock.
+ */
+static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
+{
+ struct ata_port *ap = qc->ap;
+ unsigned long flags;
+
+ if (ap->ops->error_handler) {
+ if (in_wq) {
+ spin_lock_irqsave(ap->lock, flags);
+
+ /* EH might have kicked in while host_set lock
+ * is released.
+ */
+ qc = ata_qc_from_tag(ap, qc->tag);
+ if (qc) {
+ if (likely(!(qc->err_mask & AC_ERR_HSM))) {
+ ata_irq_on(ap);
+ ata_qc_complete(qc);
+ } else
+ ata_port_freeze(ap);
+ }
+
+ spin_unlock_irqrestore(ap->lock, flags);
+ } else {
+ if (likely(!(qc->err_mask & AC_ERR_HSM)))
+ ata_qc_complete(qc);
+ else
+ ata_port_freeze(ap);
+ }
+ } else {
+ if (in_wq) {
+ spin_lock_irqsave(ap->lock, flags);
+ ata_irq_on(ap);
+ ata_qc_complete(qc);
+ spin_unlock_irqrestore(ap->lock, flags);
+ } else
+ ata_qc_complete(qc);
+ }
+
+ ata_altstatus(ap); /* flush */
+}
+
+/**
+ * ata_hsm_move - move the HSM to the next state.
+ * @ap: the target ata_port
+ * @qc: qc on going
+ * @status: current device status
+ * @in_wq: 1 if called from workqueue, 0 otherwise
+ *
+ * RETURNS:
+ * 1 when poll next status needed, 0 otherwise.
+ */
+int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
+ u8 status, int in_wq)
+{
+ unsigned long flags = 0;
+ int poll_next;
+
+ WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
+
+ /* Make sure ata_qc_issue_prot() does not throw things
+ * like DMA polling into the workqueue. Notice that
+ * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
+ */
+ WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
+
+fsm_start:
+ DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
+ ap->id, qc->tf.protocol, ap->hsm_task_state, status);
+
+ switch (ap->hsm_task_state) {
+ case HSM_ST_FIRST:
+ /* Send first data block or PACKET CDB */
+
+ /* If polling, we will stay in the work queue after
+ * sending the data. Otherwise, interrupt handler
+ * takes over after sending the data.
+ */
+ poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
+
+ /* check device status */
+ if (unlikely((status & ATA_DRQ) == 0)) {
+ /* handle BSY=0, DRQ=0 as error */
+ if (likely(status & (ATA_ERR | ATA_DF)))
+ /* device stops HSM for abort/error */
+ qc->err_mask |= AC_ERR_DEV;
+ else
+ /* HSM violation. Let EH handle this */
+ qc->err_mask |= AC_ERR_HSM;
+
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ /* Device should not ask for data transfer (DRQ=1)
+ * when it finds something wrong.
+ * We ignore DRQ here and stop the HSM by
+ * changing hsm_task_state to HSM_ST_ERR and
+ * let the EH abort the command or reset the device.
+ */
+ if (unlikely(status & (ATA_ERR | ATA_DF))) {
+ printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
+ ap->id, status);
+ qc->err_mask |= AC_ERR_HSM;
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ /* Send the CDB (atapi) or the first data block (ata pio out).
+ * During the state transition, interrupt handler shouldn't
+ * be invoked before the data transfer is complete and
+ * hsm_task_state is changed. Hence, the following locking.
+ */
+ if (in_wq)
+ spin_lock_irqsave(ap->lock, flags);
+
+ if (qc->tf.protocol == ATA_PROT_PIO) {
+ /* PIO data out protocol.
+ * send first data block.
+ */
+
+ /* ata_pio_sectors() might change the state
+ * to HSM_ST_LAST. so, the state is changed here
+ * before ata_pio_sectors().
+ */
+ ap->hsm_task_state = HSM_ST;
+ ata_pio_sectors(qc);
+ ata_altstatus(ap); /* flush */
+ } else
+ /* send CDB */
+ atapi_send_cdb(ap, qc);
+
+ if (in_wq)
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ /* if polling, ata_pio_task() handles the rest.
+ * otherwise, interrupt handler takes over from here.
+ */
+ break;
+
+ case HSM_ST:
+ /* complete command or read/write the data register */
+ if (qc->tf.protocol == ATA_PROT_ATAPI) {
+ /* ATAPI PIO protocol */
+ if ((status & ATA_DRQ) == 0) {
+ /* No more data to transfer or device error.
+ * Device error will be tagged in HSM_ST_LAST.
+ */
+ ap->hsm_task_state = HSM_ST_LAST;
+ goto fsm_start;
+ }
+
+ /* Device should not ask for data transfer (DRQ=1)
+ * when it finds something wrong.
+ * We ignore DRQ here and stop the HSM by
+ * changing hsm_task_state to HSM_ST_ERR and
+ * let the EH abort the command or reset the device.
+ */
+ if (unlikely(status & (ATA_ERR | ATA_DF))) {
+ printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
+ ap->id, status);
+ qc->err_mask |= AC_ERR_HSM;
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ atapi_pio_bytes(qc);
+
+ if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
+ /* bad ireason reported by device */
+ goto fsm_start;
+
+ } else {
+ /* ATA PIO protocol */
+ if (unlikely((status & ATA_DRQ) == 0)) {
+ /* handle BSY=0, DRQ=0 as error */
+ if (likely(status & (ATA_ERR | ATA_DF)))
+ /* device stops HSM for abort/error */
+ qc->err_mask |= AC_ERR_DEV;
+ else
+ /* HSM violation. Let EH handle this */
+ qc->err_mask |= AC_ERR_HSM;
+
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ /* For PIO reads, some devices may ask for
+ * data transfer (DRQ=1) alone with ERR=1.
+ * We respect DRQ here and transfer one
+ * block of junk data before changing the
+ * hsm_task_state to HSM_ST_ERR.
+ *
+ * For PIO writes, ERR=1 DRQ=1 doesn't make
+ * sense since the data block has been
+ * transferred to the device.
+ */
+ if (unlikely(status & (ATA_ERR | ATA_DF))) {
+ /* data might be corrputed */
+ qc->err_mask |= AC_ERR_DEV;
+
+ if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
+ ata_pio_sectors(qc);
+ ata_altstatus(ap);
+ status = ata_wait_idle(ap);
+ }
+
+ if (status & (ATA_BUSY | ATA_DRQ))
+ qc->err_mask |= AC_ERR_HSM;
+
+ /* ata_pio_sectors() might change the
+ * state to HSM_ST_LAST. so, the state
+ * is changed after ata_pio_sectors().
+ */
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ ata_pio_sectors(qc);
+
+ if (ap->hsm_task_state == HSM_ST_LAST &&
+ (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
+ /* all data read */
+ ata_altstatus(ap);
+ status = ata_wait_idle(ap);
+ goto fsm_start;
+ }
+ }
+
+ ata_altstatus(ap); /* flush */
+ poll_next = 1;
+ break;
+
+ case HSM_ST_LAST:
+ if (unlikely(!ata_ok(status))) {
+ qc->err_mask |= __ac_err_mask(status);
+ ap->hsm_task_state = HSM_ST_ERR;
+ goto fsm_start;
+ }
+
+ /* no more data to transfer */
+ DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
+ ap->id, qc->dev->devno, status);
+
+ WARN_ON(qc->err_mask);
+
+ ap->hsm_task_state = HSM_ST_IDLE;
+
+ /* complete taskfile transaction */
+ ata_hsm_qc_complete(qc, in_wq);
+
+ poll_next = 0;
+ break;
+
+ case HSM_ST_ERR:
+ /* make sure qc->err_mask is available to
+ * know what's wrong and recover
+ */
+ WARN_ON(qc->err_mask == 0);
+
+ ap->hsm_task_state = HSM_ST_IDLE;
+
+ /* complete taskfile transaction */
+ ata_hsm_qc_complete(qc, in_wq);
+
+ poll_next = 0;
+ break;
+ default:
+ poll_next = 0;
+ BUG();
+ }
+
+ return poll_next;
+}
+
+static void ata_pio_task(void *_data)
+{
+ struct ata_queued_cmd *qc = _data;
+ struct ata_port *ap = qc->ap;
+ u8 status;
+ int poll_next;
+
+fsm_start:
+ WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
+
+ /*
+ * This is purely heuristic. This is a fast path.
+ * Sometimes when we enter, BSY will be cleared in
+ * a chk-status or two. If not, the drive is probably seeking
+ * or something. Snooze for a couple msecs, then
+ * chk-status again. If still busy, queue delayed work.
+ */
+ status = ata_busy_wait(ap, ATA_BUSY, 5);
+ if (status & ATA_BUSY) {
+ msleep(2);
+ status = ata_busy_wait(ap, ATA_BUSY, 10);
+ if (status & ATA_BUSY) {
+ ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
+ return;
+ }
+ }
+
+ /* move the HSM */
+ poll_next = ata_hsm_move(ap, qc, status, 1);
+
+ /* another command or interrupt handler
+ * may be running at this point.
+ */
+ if (poll_next)
+ goto fsm_start;
+}
+
+/**
+ * ata_qc_new - Request an available ATA command, for queueing
+ * @ap: Port associated with device @dev
+ * @dev: Device from whom we request an available command structure
+ *
+ * LOCKING:
+ * None.
+ */
+
+static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
+{
+ struct ata_queued_cmd *qc = NULL;
+ unsigned int i;
+
+ /* no command while frozen */
+ if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
+ return NULL;
+
+ /* the last tag is reserved for internal command. */
+ for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
+ if (!test_and_set_bit(i, &ap->qc_allocated)) {
+ qc = __ata_qc_from_tag(ap, i);
+ break;
+ }
+
+ if (qc)
+ qc->tag = i;
+
+ return qc;
+}
+
+/**
+ * ata_qc_new_init - Request an available ATA command, and initialize it
+ * @dev: Device from whom we request an available command structure
+ *
+ * LOCKING:
+ * None.
+ */
+
+struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
+{
+ struct ata_port *ap = dev->ap;
+ struct ata_queued_cmd *qc;
+
+ qc = ata_qc_new(ap);
+ if (qc) {
+ qc->scsicmd = NULL;
+ qc->ap = ap;
+ qc->dev = dev;
+
+ ata_qc_reinit(qc);
+ }
+
+ return qc;
+}
+
+/**
+ * ata_qc_free - free unused ata_queued_cmd
+ * @qc: Command to complete
+ *
+ * Designed to free unused ata_queued_cmd object
+ * in case something prevents using it.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ */
+void ata_qc_free(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+ unsigned int tag;
+
+ WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
+
+ qc->flags = 0;
+ tag = qc->tag;
+ if (likely(ata_tag_valid(tag))) {
+ qc->tag = ATA_TAG_POISON;
+ clear_bit(tag, &ap->qc_allocated);
+ }
+}
+
+void __ata_qc_complete(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+
+ WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
+ WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
+
+ if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
+ ata_sg_clean(qc);
+
+ /* command should be marked inactive atomically with qc completion */
+ if (qc->tf.protocol == ATA_PROT_NCQ)
+ ap->sactive &= ~(1 << qc->tag);
+ else
+ ap->active_tag = ATA_TAG_POISON;
+
+ /* atapi: mark qc as inactive to prevent the interrupt handler
+ * from completing the command twice later, before the error handler
+ * is called. (when rc != 0 and atapi request sense is needed)
+ */
+ qc->flags &= ~ATA_QCFLAG_ACTIVE;
+ ap->qc_active &= ~(1 << qc->tag);
+
+ /* call completion callback */
+ qc->complete_fn(qc);
+}
+
+/**
+ * ata_qc_complete - Complete an active ATA command
+ * @qc: Command to complete
+ * @err_mask: ATA Status register contents
+ *
+ * Indicate to the mid and upper layers that an ATA
+ * command has completed, with either an ok or not-ok status.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ */
+void ata_qc_complete(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+
+ /* XXX: New EH and old EH use different mechanisms to
+ * synchronize EH with regular execution path.
+ *
+ * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
+ * Normal execution path is responsible for not accessing a
+ * failed qc. libata core enforces the rule by returning NULL
+ * from ata_qc_from_tag() for failed qcs.
+ *
+ * Old EH depends on ata_qc_complete() nullifying completion
+ * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
+ * not synchronize with interrupt handler. Only PIO task is
+ * taken care of.
+ */
+ if (ap->ops->error_handler) {
+ WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
+
+ if (unlikely(qc->err_mask))
+ qc->flags |= ATA_QCFLAG_FAILED;
+
+ if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
+ if (!ata_tag_internal(qc->tag)) {
+ /* always fill result TF for failed qc */
+ ap->ops->tf_read(ap, &qc->result_tf);
+ ata_qc_schedule_eh(qc);
+ return;
+ }
+ }
+
+ /* read result TF if requested */
+ if (qc->flags & ATA_QCFLAG_RESULT_TF)
+ ap->ops->tf_read(ap, &qc->result_tf);
+
+ __ata_qc_complete(qc);
+ } else {
+ if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
+ return;
+
+ /* read result TF if failed or requested */
+ if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
+ ap->ops->tf_read(ap, &qc->result_tf);
+
+ __ata_qc_complete(qc);
+ }
+}
+
+/**
+ * ata_qc_complete_multiple - Complete multiple qcs successfully
+ * @ap: port in question
+ * @qc_active: new qc_active mask
+ * @finish_qc: LLDD callback invoked before completing a qc
+ *
+ * Complete in-flight commands. This functions is meant to be
+ * called from low-level driver's interrupt routine to complete
+ * requests normally. ap->qc_active and @qc_active is compared
+ * and commands are completed accordingly.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ *
+ * RETURNS:
+ * Number of completed commands on success, -errno otherwise.
+ */
+int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
+ void (*finish_qc)(struct ata_queued_cmd *))
+{
+ int nr_done = 0;
+ u32 done_mask;
+ int i;
+
+ done_mask = ap->qc_active ^ qc_active;
+
+ if (unlikely(done_mask & qc_active)) {
+ ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
+ "(%08x->%08x)\n", ap->qc_active, qc_active);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < ATA_MAX_QUEUE; i++) {
+ struct ata_queued_cmd *qc;
+
+ if (!(done_mask & (1 << i)))
+ continue;
+
+ if ((qc = ata_qc_from_tag(ap, i))) {
+ if (finish_qc)
+ finish_qc(qc);
+ ata_qc_complete(qc);
+ nr_done++;
+ }
+ }
+
+ return nr_done;
+}
+
+static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+
+ switch (qc->tf.protocol) {
+ case ATA_PROT_NCQ:
+ case ATA_PROT_DMA:
+ case ATA_PROT_ATAPI_DMA:
+ return 1;
+
+ case ATA_PROT_ATAPI:
+ case ATA_PROT_PIO:
+ if (ap->flags & ATA_FLAG_PIO_DMA)
+ return 1;
+
+ /* fall through */
+
+ default:
+ return 0;
+ }
+
+ /* never reached */
+}
+
+/**
+ * ata_qc_issue - issue taskfile to device
+ * @qc: command to issue to device
+ *
+ * Prepare an ATA command to submission to device.
+ * This includes mapping the data into a DMA-able
+ * area, filling in the S/G table, and finally
+ * writing the taskfile to hardware, starting the command.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ */
+void ata_qc_issue(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+
+ /* Make sure only one non-NCQ command is outstanding. The
+ * check is skipped for old EH because it reuses active qc to
+ * request ATAPI sense.
+ */
+ WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
+
+ if (qc->tf.protocol == ATA_PROT_NCQ) {
+ WARN_ON(ap->sactive & (1 << qc->tag));
+ ap->sactive |= 1 << qc->tag;
+ } else {
+ WARN_ON(ap->sactive);
+ ap->active_tag = qc->tag;
+ }
+
+ qc->flags |= ATA_QCFLAG_ACTIVE;
+ ap->qc_active |= 1 << qc->tag;
+
+ if (ata_should_dma_map(qc)) {
+ if (qc->flags & ATA_QCFLAG_SG) {
+ if (ata_sg_setup(qc))
+ goto sg_err;
+ } else if (qc->flags & ATA_QCFLAG_SINGLE) {
+ if (ata_sg_setup_one(qc))
+ goto sg_err;
+ }
+ } else {
+ qc->flags &= ~ATA_QCFLAG_DMAMAP;
+ }
+
+ ap->ops->qc_prep(qc);
+
+ qc->err_mask |= ap->ops->qc_issue(qc);
+ if (unlikely(qc->err_mask))
+ goto err;
+ return;
+
+sg_err:
+ qc->flags &= ~ATA_QCFLAG_DMAMAP;
+ qc->err_mask |= AC_ERR_SYSTEM;
+err:
+ ata_qc_complete(qc);
+}
+
+/**
+ * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
+ * @qc: command to issue to device
+ *
+ * Using various libata functions and hooks, this function
+ * starts an ATA command. ATA commands are grouped into
+ * classes called "protocols", and issuing each type of protocol
+ * is slightly different.
+ *
+ * May be used as the qc_issue() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ *
+ * RETURNS:
+ * Zero on success, AC_ERR_* mask on failure
+ */
+
+unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
+{
+ struct ata_port *ap = qc->ap;
+
+ /* Use polling pio if the LLD doesn't handle
+ * interrupt driven pio and atapi CDB interrupt.
+ */
+ if (ap->flags & ATA_FLAG_PIO_POLLING) {
+ switch (qc->tf.protocol) {
+ case ATA_PROT_PIO:
+ case ATA_PROT_ATAPI:
+ case ATA_PROT_ATAPI_NODATA:
+ qc->tf.flags |= ATA_TFLAG_POLLING;
+ break;
+ case ATA_PROT_ATAPI_DMA:
+ if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
+ /* see ata_dma_blacklisted() */
+ BUG();
+ break;
+ default:
+ break;
+ }
+ }
+
+ /* select the device */
+ ata_dev_select(ap, qc->dev->devno, 1, 0);
+
+ /* start the command */
+ switch (qc->tf.protocol) {
+ case ATA_PROT_NODATA:
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_qc_set_polling(qc);
+
+ ata_tf_to_host(ap, &qc->tf);
+ ap->hsm_task_state = HSM_ST_LAST;
+
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_port_queue_task(ap, ata_pio_task, qc, 0);
+
+ break;
+
+ case ATA_PROT_DMA:
+ WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
+
+ ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
+ ap->ops->bmdma_setup(qc); /* set up bmdma */
+ ap->ops->bmdma_start(qc); /* initiate bmdma */
+ ap->hsm_task_state = HSM_ST_LAST;
+ break;
+
+ case ATA_PROT_PIO:
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_qc_set_polling(qc);
+
+ ata_tf_to_host(ap, &qc->tf);
+
+ if (qc->tf.flags & ATA_TFLAG_WRITE) {
+ /* PIO data out protocol */
+ ap->hsm_task_state = HSM_ST_FIRST;
+ ata_port_queue_task(ap, ata_pio_task, qc, 0);
+
+ /* always send first data block using
+ * the ata_pio_task() codepath.
+ */
+ } else {
+ /* PIO data in protocol */
+ ap->hsm_task_state = HSM_ST;
+
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_port_queue_task(ap, ata_pio_task, qc, 0);
+
+ /* if polling, ata_pio_task() handles the rest.
+ * otherwise, interrupt handler takes over from here.
+ */
+ }
+
+ break;
+
+ case ATA_PROT_ATAPI:
+ case ATA_PROT_ATAPI_NODATA:
+ if (qc->tf.flags & ATA_TFLAG_POLLING)
+ ata_qc_set_polling(qc);
+
+ ata_tf_to_host(ap, &qc->tf);
+
+ ap->hsm_task_state = HSM_ST_FIRST;
+
+ /* send cdb by polling if no cdb interrupt */
+ if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
+ (qc->tf.flags & ATA_TFLAG_POLLING))
+ ata_port_queue_task(ap, ata_pio_task, qc, 0);
+ break;
+
+ case ATA_PROT_ATAPI_DMA:
+ WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
+
+ ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
+ ap->ops->bmdma_setup(qc); /* set up bmdma */
+ ap->hsm_task_state = HSM_ST_FIRST;
+
+ /* send cdb by polling if no cdb interrupt */
+ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+ ata_port_queue_task(ap, ata_pio_task, qc, 0);
+ break;
+
+ default:
+ WARN_ON(1);
+ return AC_ERR_SYSTEM;
+ }
+
+ return 0;
+}
+
+/**
+ * ata_host_intr - Handle host interrupt for given (port, task)
+ * @ap: Port on which interrupt arrived (possibly...)
+ * @qc: Taskfile currently active in engine
+ *
+ * Handle host interrupt for given queued command. Currently,
+ * only DMA interrupts are handled. All other commands are
+ * handled via polling with interrupts disabled (nIEN bit).
+ *
+ * LOCKING:
+ * spin_lock_irqsave(host_set lock)
+ *
+ * RETURNS:
+ * One if interrupt was handled, zero if not (shared irq).
+ */
+
+inline unsigned int ata_host_intr (struct ata_port *ap,
+ struct ata_queued_cmd *qc)
+{
+ u8 status, host_stat = 0;
+
+ VPRINTK("ata%u: protocol %d task_state %d\n",
+ ap->id, qc->tf.protocol, ap->hsm_task_state);
+
+ /* Check whether we are expecting interrupt in this state */
+ switch (ap->hsm_task_state) {
+ case HSM_ST_FIRST:
+ /* Some pre-ATAPI-4 devices assert INTRQ
+ * at this state when ready to receive CDB.
+ */
+
+ /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
+ * The flag was turned on only for atapi devices.
+ * No need to check is_atapi_taskfile(&qc->tf) again.
+ */
+ if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
+ goto idle_irq;
+ break;
+ case HSM_ST_LAST:
+ if (qc->tf.protocol == ATA_PROT_DMA ||
+ qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
+ /* check status of DMA engine */
+ host_stat = ap->ops->bmdma_status(ap);
+ VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
+
+ /* if it's not our irq... */
+ if (!(host_stat & ATA_DMA_INTR))
+ goto idle_irq;
+
+ /* before we do anything else, clear DMA-Start bit */
+ ap->ops->bmdma_stop(qc);
+
+ if (unlikely(host_stat & ATA_DMA_ERR)) {
+ /* error when transfering data to/from memory */
+ qc->err_mask |= AC_ERR_HOST_BUS;
+ ap->hsm_task_state = HSM_ST_ERR;
+ }
+ }
+ break;
+ case HSM_ST:
+ break;
+ default:
+ goto idle_irq;
+ }
+
+ /* check altstatus */
+ status = ata_altstatus(ap);
+ if (status & ATA_BUSY)
+ goto idle_irq;
+
+ /* check main status, clearing INTRQ */
+ status = ata_chk_status(ap);
+ if (unlikely(status & ATA_BUSY))
+ goto idle_irq;
+
+ /* ack bmdma irq events */
+ ap->ops->irq_clear(ap);
+
+ ata_hsm_move(ap, qc, status, 0);
+ return 1; /* irq handled */
+
+idle_irq:
+ ap->stats.idle_irq++;
+
+#ifdef ATA_IRQ_TRAP
+ if ((ap->stats.idle_irq % 1000) == 0) {
+ ata_irq_ack(ap, 0); /* debug trap */
+ ata_port_printk(ap, KERN_WARNING, "irq trap\n");
+ return 1;
+ }
+#endif
+ return 0; /* irq not handled */
+}
+
+/**
+ * ata_interrupt - Default ATA host interrupt handler
+ * @irq: irq line (unused)
+ * @dev_instance: pointer to our ata_host_set information structure
+ * @regs: unused
+ *
+ * Default interrupt handler for PCI IDE devices. Calls
+ * ata_host_intr() for each port that is not disabled.
+ *
+ * LOCKING:
+ * Obtains host_set lock during operation.
+ *
+ * RETURNS:
+ * IRQ_NONE or IRQ_HANDLED.
+ */
+
+irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
+{
+ struct ata_host_set *host_set = dev_instance;
+ unsigned int i;
+ unsigned int handled = 0;
+ unsigned long flags;
+
+ /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
+ spin_lock_irqsave(&host_set->lock, flags);
+
+ for (i = 0; i < host_set->n_ports; i++) {
+ struct ata_port *ap;
+
+ ap = host_set->ports[i];
+ if (ap &&
+ !(ap->flags & ATA_FLAG_DISABLED)) {
+ struct ata_queued_cmd *qc;
+
+ qc = ata_qc_from_tag(ap, ap->active_tag);
+ if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
+ (qc->flags & ATA_QCFLAG_ACTIVE))
+ handled |= ata_host_intr(ap, qc);
+ }
+ }
+
+ spin_unlock_irqrestore(&host_set->lock, flags);
+
+ return IRQ_RETVAL(handled);
+}
+
+/**
+ * sata_scr_valid - test whether SCRs are accessible
+ * @ap: ATA port to test SCR accessibility for
+ *
+ * Test whether SCRs are accessible for @ap.
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * 1 if SCRs are accessible, 0 otherwise.
+ */
+int sata_scr_valid(struct ata_port *ap)
+{
+ return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
+}
+
+/**
+ * sata_scr_read - read SCR register of the specified port
+ * @ap: ATA port to read SCR for
+ * @reg: SCR to read
+ * @val: Place to store read value
+ *
+ * Read SCR register @reg of @ap into *@val. This function is
+ * guaranteed to succeed if the cable type of the port is SATA
+ * and the port implements ->scr_read.
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * 0 on success, negative errno on failure.
+ */
+int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
+{
+ if (sata_scr_valid(ap)) {
+ *val = ap->ops->scr_read(ap, reg);
+ return 0;
+ }
+ return -EOPNOTSUPP;
+}
+
+/**
+ * sata_scr_write - write SCR register of the specified port
+ * @ap: ATA port to write SCR for
+ * @reg: SCR to write
+ * @val: value to write
+ *
+ * Write @val to SCR register @reg of @ap. This function is
+ * guaranteed to succeed if the cable type of the port is SATA
+ * and the port implements ->scr_read.
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * 0 on success, negative errno on failure.
+ */
+int sata_scr_write(struct ata_port *ap, int reg, u32 val)
+{
+ if (sata_scr_valid(ap)) {
+ ap->ops->scr_write(ap, reg, val);
+ return 0;
+ }
+ return -EOPNOTSUPP;
+}
+
+/**
+ * sata_scr_write_flush - write SCR register of the specified port and flush
+ * @ap: ATA port to write SCR for
+ * @reg: SCR to write
+ * @val: value to write
+ *
+ * This function is identical to sata_scr_write() except that this
+ * function performs flush after writing to the register.
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * 0 on success, negative errno on failure.
+ */
+int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
+{
+ if (sata_scr_valid(ap)) {
+ ap->ops->scr_write(ap, reg, val);
+ ap->ops->scr_read(ap, reg);
+ return 0;
+ }
+ return -EOPNOTSUPP;
+}
+
+/**
+ * ata_port_online - test whether the given port is online
+ * @ap: ATA port to test
+ *
+ * Test whether @ap is online. Note that this function returns 0
+ * if online status of @ap cannot be obtained, so
+ * ata_port_online(ap) != !ata_port_offline(ap).
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * 1 if the port online status is available and online.
+ */
+int ata_port_online(struct ata_port *ap)
+{
+ u32 sstatus;
+
+ if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
+ return 1;
+ return 0;
+}
+
+/**
+ * ata_port_offline - test whether the given port is offline
+ * @ap: ATA port to test
+ *
+ * Test whether @ap is offline. Note that this function returns
+ * 0 if offline status of @ap cannot be obtained, so
+ * ata_port_online(ap) != !ata_port_offline(ap).
+ *
+ * LOCKING:
+ * None.
+ *
+ * RETURNS:
+ * 1 if the port offline status is available and offline.
+ */
+int ata_port_offline(struct ata_port *ap)
+{
+ u32 sstatus;
+
+ if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
+ return 1;
+ return 0;
+}
+
+int ata_flush_cache(struct ata_device *dev)
+{
+ unsigned int err_mask;
+ u8 cmd;
+
+ if (!ata_try_flush_cache(dev))
+ return 0;
+
+ if (ata_id_has_flush_ext(dev->id))
+ cmd = ATA_CMD_FLUSH_EXT;
+ else
+ cmd = ATA_CMD_FLUSH;
+
+ err_mask = ata_do_simple_cmd(dev, cmd);
+ if (err_mask) {
+ ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static int ata_host_set_request_pm(struct ata_host_set *host_set,
+ pm_message_t mesg, unsigned int action,
+ unsigned int ehi_flags, int wait)
+{
+ unsigned long flags;
+ int i, rc;
+
+ for (i = 0; i < host_set->n_ports; i++) {
+ struct ata_port *ap = host_set->ports[i];
+
+ /* Previous resume operation might still be in
+ * progress. Wait for PM_PENDING to clear.
+ */
+ if (ap->pflags & ATA_PFLAG_PM_PENDING) {
+ ata_port_wait_eh(ap);
+ WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
+ }
+
+ /* request PM ops to EH */
+ spin_lock_irqsave(ap->lock, flags);
+
+ ap->pm_mesg = mesg;
+ if (wait) {
+ rc = 0;
+ ap->pm_result = &rc;
+ }
+
+ ap->pflags |= ATA_PFLAG_PM_PENDING;
+ ap->eh_info.action |= action;
+ ap->eh_info.flags |= ehi_flags;
+
+ ata_port_schedule_eh(ap);
+
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ /* wait and check result */
+ if (wait) {
+ ata_port_wait_eh(ap);
+ WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
+ if (rc)
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * ata_host_set_suspend - suspend host_set
+ * @host_set: host_set to suspend
+ * @mesg: PM message
+ *
+ * Suspend @host_set. Actual operation is performed by EH. This
+ * function requests EH to perform PM operations and waits for EH
+ * to finish.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep).
+ *
+ * RETURNS:
+ * 0 on success, -errno on failure.
+ */
+int ata_host_set_suspend(struct ata_host_set *host_set, pm_message_t mesg)
+{
+ int i, j, rc;
+
+ rc = ata_host_set_request_pm(host_set, mesg, 0, ATA_EHI_QUIET, 1);
+ if (rc)
+ goto fail;
+
+ /* EH is quiescent now. Fail if we have any ready device.
+ * This happens if hotplug occurs between completion of device
+ * suspension and here.
+ */
+ for (i = 0; i < host_set->n_ports; i++) {
+ struct ata_port *ap = host_set->ports[i];
+
+ for (j = 0; j < ATA_MAX_DEVICES; j++) {
+ struct ata_device *dev = &ap->device[j];
+
+ if (ata_dev_ready(dev)) {
+ ata_port_printk(ap, KERN_WARNING,
+ "suspend failed, device %d "
+ "still active\n", dev->devno);
+ rc = -EBUSY;
+ goto fail;
+ }
+ }
+ }
+
+ host_set->dev->power.power_state = mesg;
+ return 0;
+
+ fail:
+ ata_host_set_resume(host_set);
+ return rc;
+}
+
+/**
+ * ata_host_set_resume - resume host_set
+ * @host_set: host_set to resume
+ *
+ * Resume @host_set. Actual operation is performed by EH. This
+ * function requests EH to perform PM operations and returns.
+ * Note that all resume operations are performed parallely.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep).
+ */
+void ata_host_set_resume(struct ata_host_set *host_set)
+{
+ ata_host_set_request_pm(host_set, PMSG_ON, ATA_EH_SOFTRESET,
+ ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
+ host_set->dev->power.power_state = PMSG_ON;
+}
+
+/**
+ * ata_port_start - Set port up for dma.
+ * @ap: Port to initialize
+ *
+ * Called just after data structures for each port are
+ * initialized. Allocates space for PRD table.
+ *
+ * May be used as the port_start() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+int ata_port_start (struct ata_port *ap)
+{
+ struct device *dev = ap->dev;
+ int rc;
+
+ ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
+ if (!ap->prd)
+ return -ENOMEM;
+
+ rc = ata_pad_alloc(ap, dev);
+ if (rc) {
+ dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
+ return rc;
+ }
+
+ DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
+
+ return 0;
+}
+
+
+/**
+ * ata_port_stop - Undo ata_port_start()
+ * @ap: Port to shut down
+ *
+ * Frees the PRD table.
+ *
+ * May be used as the port_stop() entry in ata_port_operations.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+
+void ata_port_stop (struct ata_port *ap)
+{
+ struct device *dev = ap->dev;
+
+ dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
+ ata_pad_free(ap, dev);
+}
+
+void ata_host_stop (struct ata_host_set *host_set)
+{
+ if (host_set->mmio_base)
+ iounmap(host_set->mmio_base);
+}
+
+/**
+ * ata_dev_init - Initialize an ata_device structure
+ * @dev: Device structure to initialize
+ *
+ * Initialize @dev in preparation for probing.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+void ata_dev_init(struct ata_device *dev)
+{
+ struct ata_port *ap = dev->ap;
+ unsigned long flags;
+
+ /* SATA spd limit is bound to the first device */
+ ap->sata_spd_limit = ap->hw_sata_spd_limit;
+
+ /* High bits of dev->flags are used to record warm plug
+ * requests which occur asynchronously. Synchronize using
+ * host_set lock.
+ */
+ spin_lock_irqsave(ap->lock, flags);
+ dev->flags &= ~ATA_DFLAG_INIT_MASK;
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
+ sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
+ dev->pio_mask = UINT_MAX;
+ dev->mwdma_mask = UINT_MAX;
+ dev->udma_mask = UINT_MAX;
+}
+
+/**
+ * ata_port_init - Initialize an ata_port structure
+ * @ap: Structure to initialize
+ * @host_set: Collection of hosts to which @ap belongs
+ * @ent: Probe information provided by low-level driver
+ * @port_no: Port number associated with this ata_port
+ *
+ * Initialize a new ata_port structure.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+void ata_port_init(struct ata_port *ap, struct ata_host_set *host_set,
+ const struct ata_probe_ent *ent, unsigned int port_no)
+{
+ unsigned int i;
+
+ ap->lock = &host_set->lock;
+ ap->flags = ATA_FLAG_DISABLED;
+ ap->id = ata_unique_id++;
+ ap->ctl = ATA_DEVCTL_OBS;
+ ap->host_set = host_set;
+ ap->dev = ent->dev;
+ ap->port_no = port_no;
+ ap->pio_mask = ent->pio_mask;
+ ap->mwdma_mask = ent->mwdma_mask;
+ ap->udma_mask = ent->udma_mask;
+ ap->flags |= ent->host_flags;
+ ap->ops = ent->port_ops;
+ ap->hw_sata_spd_limit = UINT_MAX;
+ ap->active_tag = ATA_TAG_POISON;
+ ap->last_ctl = 0xFF;
+
+#if defined(ATA_VERBOSE_DEBUG)
+ /* turn on all debugging levels */
+ ap->msg_enable = 0x00FF;
+#elif defined(ATA_DEBUG)
+ ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
+#else
+ ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
+#endif
+
+ INIT_WORK(&ap->port_task, NULL, NULL);
+ INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
+ INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
+ INIT_LIST_HEAD(&ap->eh_done_q);
+ init_waitqueue_head(&ap->eh_wait_q);
+
+ /* set cable type */
+ ap->cbl = ATA_CBL_NONE;
+ if (ap->flags & ATA_FLAG_SATA)
+ ap->cbl = ATA_CBL_SATA;
+
+ for (i = 0; i < ATA_MAX_DEVICES; i++) {
+ struct ata_device *dev = &ap->device[i];
+ dev->ap = ap;
+ dev->devno = i;
+ ata_dev_init(dev);
+ }
+
+#ifdef ATA_IRQ_TRAP
+ ap->stats.unhandled_irq = 1;
+ ap->stats.idle_irq = 1;
+#endif
+
+ memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
+}
+
+/**
+ * ata_port_init_shost - Initialize SCSI host associated with ATA port
+ * @ap: ATA port to initialize SCSI host for
+ * @shost: SCSI host associated with @ap
+ *
+ * Initialize SCSI host @shost associated with ATA port @ap.
+ *
+ * LOCKING:
+ * Inherited from caller.
+ */
+static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
+{
+ ap->host = shost;
+
+ shost->unique_id = ap->id;
+ shost->max_id = 16;
+ shost->max_lun = 1;
+ shost->max_channel = 1;
+ shost->max_cmd_len = 12;
+}
+
+/**
+ * ata_port_add - Attach low-level ATA driver to system
+ * @ent: Information provided by low-level driver
+ * @host_set: Collections of ports to which we add
+ * @port_no: Port number associated with this host
+ *
+ * Attach low-level ATA driver to system.
+ *
+ * LOCKING:
+ * PCI/etc. bus probe sem.
+ *
+ * RETURNS:
+ * New ata_port on success, for NULL on error.
+ */
+static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
+ struct ata_host_set *host_set,
+ unsigned int port_no)
+{
+ struct Scsi_Host *shost;
+ struct ata_port *ap;
+
+ DPRINTK("ENTER\n");
+
+ if (!ent->port_ops->error_handler &&
+ !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
+ printk(KERN_ERR "ata%u: no reset mechanism available\n",
+ port_no);
+ return NULL;
+ }
+
+ shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
+ if (!shost)
+ return NULL;
+
+ shost->transportt = &ata_scsi_transport_template;
+
+ ap = ata_shost_to_port(shost);
+
+ ata_port_init(ap, host_set, ent, port_no);
+ ata_port_init_shost(ap, shost);
+
+ return ap;
+}
+
+/**
+ * ata_sas_host_init - Initialize a host_set struct
+ * @host_set: host_set to initialize
+ * @dev: device host_set is attached to
+ * @flags: host_set flags
+ * @ops: port_ops
+ *
+ * LOCKING:
+ * PCI/etc. bus probe sem.
+ *
+ */
+
+void ata_host_set_init(struct ata_host_set *host_set,
+ struct device *dev, unsigned long flags,
+ const struct ata_port_operations *ops)
+{
+ spin_lock_init(&host_set->lock);
+ host_set->dev = dev;
+ host_set->flags = flags;
+ host_set->ops = ops;
+}
+
+/**
+ * ata_device_add - Register hardware device with ATA and SCSI layers
+ * @ent: Probe information describing hardware device to be registered
+ *
+ * This function processes the information provided in the probe
+ * information struct @ent, allocates the necessary ATA and SCSI
+ * host information structures, initializes them, and registers
+ * everything with requisite kernel subsystems.
+ *
+ * This function requests irqs, probes the ATA bus, and probes
+ * the SCSI bus.
+ *
+ * LOCKING:
+ * PCI/etc. bus probe sem.
+ *
+ * RETURNS:
+ * Number of ports registered. Zero on error (no ports registered).
+ */
+int ata_device_add(const struct ata_probe_ent *ent)
+{
+ unsigned int i;
+ struct device *dev = ent->dev;
+ struct ata_host_set *host_set;
+ int rc;
+
+ DPRINTK("ENTER\n");
+ /* alloc a container for our list of ATA ports (buses) */
+ host_set = kzalloc(sizeof(struct ata_host_set) +
+ (ent->n_ports * sizeof(void *)), GFP_KERNEL);
+ if (!host_set)
+ return 0;
+
+ ata_host_set_init(host_set, dev, ent->host_set_flags, ent->port_ops);
+ host_set->n_ports = ent->n_ports;
+ host_set->irq = ent->irq;
+ host_set->irq2 = ent->irq2;
+ host_set->mmio_base = ent->mmio_base;
+ host_set->private_data = ent->private_data;
+
+ /* register each port bound to this device */
+ for (i = 0; i < host_set->n_ports; i++) {
+ struct ata_port *ap;
+ unsigned long xfer_mode_mask;
+ int irq_line = ent->irq;
+
+ ap = ata_port_add(ent, host_set, i);
+ if (!ap)
+ goto err_out;
+
+ host_set->ports[i] = ap;
+
+ /* dummy? */
+ if (ent->dummy_port_mask & (1 << i)) {
+ ata_port_printk(ap, KERN_INFO, "DUMMY\n");
+ ap->ops = &ata_dummy_port_ops;
+ continue;
+ }
+
+ /* start port */
+ rc = ap->ops->port_start(ap);
+ if (rc) {
+ host_set->ports[i] = NULL;
+ scsi_host_put(ap->host);
+ goto err_out;
+ }
+
+ /* Report the secondary IRQ for second channel legacy */
+ if (i == 1 && ent->irq2)
+ irq_line = ent->irq2;
+
+ xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
+ (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
+ (ap->pio_mask << ATA_SHIFT_PIO);
+
+ /* print per-port info to dmesg */
+ ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
+ "ctl 0x%lX bmdma 0x%lX irq %d\n",
+ ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
+ ata_mode_string(xfer_mode_mask),
+ ap->ioaddr.cmd_addr,
+ ap->ioaddr.ctl_addr,
+ ap->ioaddr.bmdma_addr,
+ irq_line);
+
+ ata_chk_status(ap);
+ host_set->ops->irq_clear(ap);
+ ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
+ }
+
+ /* obtain irq, that may be shared between channels */
+ rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
+ DRV_NAME, host_set);
+ if (rc) {
+ dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
+ ent->irq, rc);
+ goto err_out;
+ }
+
+ /* do we have a second IRQ for the other channel, eg legacy mode */
+ if (ent->irq2) {
+ /* We will get weird core code crashes later if this is true
+ so trap it now */
+ BUG_ON(ent->irq == ent->irq2);
+
+ rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
+ DRV_NAME, host_set);
+ if (rc) {
+ dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
+ ent->irq2, rc);
+ goto err_out_free_irq;
+ }
+ }
+
+ /* perform each probe synchronously */
+ DPRINTK("probe begin\n");
+ for (i = 0; i < host_set->n_ports; i++) {
+ struct ata_port *ap = host_set->ports[i];
+ u32 scontrol;
+ int rc;
+
+ /* init sata_spd_limit to the current value */
+ if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
+ int spd = (scontrol >> 4) & 0xf;
+ ap->hw_sata_spd_limit &= (1 << spd) - 1;
+ }
+ ap->sata_spd_limit = ap->hw_sata_spd_limit;
+
+ rc = scsi_add_host(ap->host, dev);
+ if (rc) {
+ ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
+ /* FIXME: do something useful here */
+ /* FIXME: handle unconditional calls to
+ * scsi_scan_host and ata_host_remove, below,
+ * at the very least
+ */
+ }
+
+ if (ap->ops->error_handler) {
+ struct ata_eh_info *ehi = &ap->eh_info;
+ unsigned long flags;
+
+ ata_port_probe(ap);
+
+ /* kick EH for boot probing */
+ spin_lock_irqsave(ap->lock, flags);
+
+ ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
+ ehi->action |= ATA_EH_SOFTRESET;
+ ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
+
+ ap->pflags |= ATA_PFLAG_LOADING;
+ ata_port_schedule_eh(ap);
+
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ /* wait for EH to finish */
+ ata_port_wait_eh(ap);
+ } else {
+ DPRINTK("ata%u: bus probe begin\n", ap->id);
+ rc = ata_bus_probe(ap);
+ DPRINTK("ata%u: bus probe end\n", ap->id);
+
+ if (rc) {
+ /* FIXME: do something useful here?
+ * Current libata behavior will
+ * tear down everything when
+ * the module is removed
+ * or the h/w is unplugged.
+ */
+ }
+ }
+ }
+
+ /* probes are done, now scan each port's disk(s) */
+ DPRINTK("host probe begin\n");
+ for (i = 0; i < host_set->n_ports; i++) {
+ struct ata_port *ap = host_set->ports[i];
+
+ ata_scsi_scan_host(ap);
+ }
+
+ dev_set_drvdata(dev, host_set);
+
+ VPRINTK("EXIT, returning %u\n", ent->n_ports);
+ return ent->n_ports; /* success */
+
+err_out_free_irq:
+ free_irq(ent->irq, host_set);
+err_out:
+ for (i = 0; i < host_set->n_ports; i++) {
+ struct ata_port *ap = host_set->ports[i];
+ if (ap) {
+ ap->ops->port_stop(ap);
+ scsi_host_put(ap->host);
+ }
+ }
+
+ kfree(host_set);
+ VPRINTK("EXIT, returning 0\n");
+ return 0;
+}
+
+/**
+ * ata_port_detach - Detach ATA port in prepration of device removal
+ * @ap: ATA port to be detached
+ *
+ * Detach all ATA devices and the associated SCSI devices of @ap;
+ * then, remove the associated SCSI host. @ap is guaranteed to
+ * be quiescent on return from this function.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep).
+ */
+void ata_port_detach(struct ata_port *ap)
+{
+ unsigned long flags;
+ int i;
+
+ if (!ap->ops->error_handler)
+ goto skip_eh;
+
+ /* tell EH we're leaving & flush EH */
+ spin_lock_irqsave(ap->lock, flags);
+ ap->pflags |= ATA_PFLAG_UNLOADING;
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ ata_port_wait_eh(ap);
+
+ /* EH is now guaranteed to see UNLOADING, so no new device
+ * will be attached. Disable all existing devices.
+ */
+ spin_lock_irqsave(ap->lock, flags);
+
+ for (i = 0; i < ATA_MAX_DEVICES; i++)
+ ata_dev_disable(&ap->device[i]);
+
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ /* Final freeze & EH. All in-flight commands are aborted. EH
+ * will be skipped and retrials will be terminated with bad
+ * target.
+ */
+ spin_lock_irqsave(ap->lock, flags);
+ ata_port_freeze(ap); /* won't be thawed */
+ spin_unlock_irqrestore(ap->lock, flags);
+
+ ata_port_wait_eh(ap);
+
+ /* Flush hotplug task. The sequence is similar to
+ * ata_port_flush_task().
+ */
+ flush_workqueue(ata_aux_wq);
+ cancel_delayed_work(&ap->hotplug_task);
+ flush_workqueue(ata_aux_wq);
+
+ skip_eh:
+ /* remove the associated SCSI host */
+ scsi_remove_host(ap->host);
+}
+
+/**
+ * ata_host_set_remove - PCI layer callback for device removal
+ * @host_set: ATA host set that was removed
+ *
+ * Unregister all objects associated with this host set. Free those
+ * objects.
+ *
+ * LOCKING:
+ * Inherited from calling layer (may sleep).
+ */
+
+void ata_host_set_remove(struct ata_host_set *host_set)
+{
+ unsigned int i;
+
+ for (i = 0; i < host_set->n_ports; i++)
+ ata_port_detach(host_set->ports[i]);
+
+ free_irq(host_set->irq, host_set);
+ if (host_set->irq2)
+ free_irq(host_set->irq2, host_set);
+
+ for (i = 0; i < host_set->n_ports; i++) {
+ struct ata_port *ap = host_set->ports[i];
+
+ ata_scsi_release(ap->host);
+
+ if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
+ struct ata_ioports *ioaddr = &ap->ioaddr;
+
+ /* FIXME: Add -ac IDE pci mods to remove these special cases */
+ if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
+ release_region(ATA_PRIMARY_CMD, 8);
+ else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
+ release_region(ATA_SECONDARY_CMD, 8);
+ }
+
+ scsi_host_put(ap->host);
+ }
+
+ if (host_set->ops->host_stop)
+ host_set->ops->host_stop(host_set);
+
+ kfree(host_set);
+}
+
+/**
+ * ata_scsi_release - SCSI layer callback hook for host unload
+ * @host: libata host to be unloaded
+ *
+ * Performs all duties necessary to shut down a libata port...
+ * Kill port kthread, disable port, and release resources.
+ *
+ * LOCKING:
+ * Inherited from SCSI layer.
+ *
+ * RETURNS:
+ * One.
+ */
+
+int ata_scsi_release(struct Scsi_Host *host)
+{
+ struct ata_port *ap = ata_shost_to_port(host);
+
+ DPRINTK("ENTER\n");
+
+ ap->ops->port_disable(ap);
+ ap->ops->port_stop(ap);
+
+ DPRINTK("EXIT\n");
+ return 1;
+}
+
+struct ata_probe_ent *
+ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
+{
+ struct ata_probe_ent *probe_ent;
+
+ probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
+ if (!probe_ent) {
+ printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
+ kobject_name(&(dev->kobj)));
+ return NULL;
+ }
+
+ INIT_LIST_HEAD(&probe_ent->node);
+ probe_ent->dev = dev;
+
+ probe_ent->sht = port->sht;
+ probe_ent->host_flags = port->host_flags;
+ probe_ent->pio_mask = port->pio_mask;
+ probe_ent->mwdma_mask = port->mwdma_mask;
+ probe_ent->udma_mask = port->udma_mask;
+ probe_ent->port_ops = port->port_ops;
+
+ return probe_ent;
+}
+
+/**
+ * ata_std_ports - initialize ioaddr with standard port offsets.
+ * @ioaddr: IO address structure to be initialized
+ *
+ * Utility function which initializes data_addr, error_addr,
+ * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
+ * device_addr, status_addr, and command_addr to standard offsets
+ * relative to cmd_addr.
+ *
+ * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
+ */
+
+void ata_std_ports(struct ata_ioports *ioaddr)
+{
+ ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
+ ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
+ ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
+ ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
+ ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
+ ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
+ ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
+ ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
+ ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
+ ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
+}
+
+
+#ifdef CONFIG_PCI
+
+void ata_pci_host_stop (struct ata_host_set *host_set)
+{
+ struct pci_dev *pdev = to_pci_dev(host_set->dev);
+
+ pci_iounmap(pdev, host_set->mmio_base);
+}
+
+/**
+ * ata_pci_remove_one - PCI layer callback for device removal
+ * @pdev: PCI device that was removed
+ *
+ * PCI layer indicates to libata via this hook that
+ * hot-unplug or module unload event has occurred.
+ * Handle this by unregistering all objects associated
+ * with this PCI device. Free those objects. Then finally
+ * release PCI resources and disable device.
+ *
+ * LOCKING:
+ * Inherited from PCI layer (may sleep).
+ */
+
+void ata_pci_remove_one (struct pci_dev *pdev)
+{
+ struct device *dev = pci_dev_to_dev(pdev);
+ struct ata_host_set *host_set = dev_get_drvdata(dev);
+
+ ata_host_set_remove(host_set);
+
+ pci_release_regions(pdev);
+ pci_disable_device(pdev);
+ dev_set_drvdata(dev, NULL);
+}
+
+/* move to PCI subsystem */
+int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
+{
+ unsigned long tmp = 0;
+
+ switch (bits->width) {
+ case 1: {
+ u8 tmp8 = 0;
+ pci_read_config_byte(pdev, bits->reg, &tmp8);
+ tmp = tmp8;
+ break;
+ }
+ case 2: {
+ u16 tmp16 = 0;
+ pci_read_config_word(pdev, bits->reg, &tmp16);
+ tmp = tmp16;
+ break;
+ }
+ case 4: {
+ u32 tmp32 = 0;
+ pci_read_config_dword(pdev, bits->reg, &tmp32);
+ tmp = tmp32;
+ break;
+ }
+
+ default:
+ return -EINVAL;
+ }
+
+ tmp &= bits->mask;
+
+ return (tmp == bits->val) ? 1 : 0;
+}
+
+void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
+{
+ pci_save_state(pdev);
+
+ if (mesg.event == PM_EVENT_SUSPEND) {
+ pci_disable_device(pdev);
+ pci_set_power_state(pdev, PCI_D3hot);
+ }
+}
+
+void ata_pci_device_do_resume(struct pci_dev *pdev)
+{
+ pci_set_power_state(pdev, PCI_D0);
+ pci_restore_state(pdev);
+ pci_enable_device(pdev);
+ pci_set_master(pdev);
+}
+
+int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
+{
+ struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
+ int rc = 0;
+
+ rc = ata_host_set_suspend(host_set, mesg);
+ if (rc)
+ return rc;
+
+ ata_pci_device_do_suspend(pdev, mesg);
+
+ return 0;
+}
+
+int ata_pci_device_resume(struct pci_dev *pdev)
+{
+ struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
+
+ ata_pci_device_do_resume(pdev);
+ ata_host_set_resume(host_set);
+ return 0;
+}
+#endif /* CONFIG_PCI */
+
+
+static int __init ata_init(void)
+{
+ ata_probe_timeout *= HZ;
+ ata_wq = create_workqueue("ata");
+ if (!ata_wq)
+ return -ENOMEM;
+
+ ata_aux_wq = create_singlethread_workqueue("ata_aux");
+ if (!ata_aux_wq) {
+ destroy_workqueue(ata_wq);
+ return -ENOMEM;
+ }
+
+ printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
+ return 0;
+}
+
+static void __exit ata_exit(void)
+{
+ destroy_workqueue(ata_wq);
+ destroy_workqueue(ata_aux_wq);
+}
+
+module_init(ata_init);
+module_exit(ata_exit);
+
+static unsigned long ratelimit_time;
+static DEFINE_SPINLOCK(ata_ratelimit_lock);
+
+int ata_ratelimit(void)
+{
+ int rc;
+ unsigned long flags;
+
+ spin_lock_irqsave(&ata_ratelimit_lock, flags);
+
+ if (time_after(jiffies, ratelimit_time)) {
+ rc = 1;
+ ratelimit_time = jiffies + (HZ/5);
+ } else
+ rc = 0;
+
+ spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
+
+ return rc;
+}
+
+/**
+ * ata_wait_register - wait until register value changes
+ * @reg: IO-mapped register
+ * @mask: Mask to apply to read register value
+ * @val: Wait condition
+ * @interval_msec: polling interval in milliseconds
+ * @timeout_msec: timeout in milliseconds
+ *
+ * Waiting for some bits of register to change is a common
+ * operation for ATA controllers. This function reads 32bit LE
+ * IO-mapped register @reg and tests for the following condition.
+ *
+ * (*@reg & mask) != val
+ *
+ * If the condition is met, it returns; otherwise, the process is
+ * repeated after @interval_msec until timeout.
+ *
+ * LOCKING:
+ * Kernel thread context (may sleep)
+ *
+ * RETURNS:
+ * The final register value.
+ */
+u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
+ unsigned long interval_msec,
+ unsigned long timeout_msec)
+{
+ unsigned long timeout;
+ u32 tmp;
+
+ tmp = ioread32(reg);
+
+ /* Calculate timeout _after_ the first read to make sure
+ * preceding writes reach the controller before starting to
+ * eat away the timeout.
+ */
+ timeout = jiffies + (timeout_msec * HZ) / 1000;
+
+ while ((tmp & mask) == val && time_before(jiffies, timeout)) {
+ msleep(interval_msec);
+ tmp = ioread32(reg);
+ }
+
+ return tmp;
+}
+
+/*
+ * Dummy port_ops
+ */
+static void ata_dummy_noret(struct ata_port *ap) { }
+static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
+static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
+
+static u8 ata_dummy_check_status(struct ata_port *ap)
+{
+ return ATA_DRDY;
+}
+
+static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
+{
+ return AC_ERR_SYSTEM;
+}
+
+const struct ata_port_operations ata_dummy_port_ops = {
+ .port_disable = ata_port_disable,
+ .check_status = ata_dummy_check_status,
+ .check_altstatus = ata_dummy_check_status,
+ .dev_select = ata_noop_dev_select,
+ .qc_prep = ata_noop_qc_prep,
+ .qc_issue = ata_dummy_qc_issue,
+ .freeze = ata_dummy_noret,
+ .thaw = ata_dummy_noret,
+ .error_handler = ata_dummy_noret,
+ .post_internal_cmd = ata_dummy_qc_noret,
+ .irq_clear = ata_dummy_noret,
+ .port_start = ata_dummy_ret0,
+ .port_stop = ata_dummy_noret,
+};
+
+/*
+ * libata is essentially a library of internal helper functions for
+ * low-level ATA host controller drivers. As such, the API/ABI is
+ * likely to change as new drivers are added and updated.
+ * Do not depend on ABI/API stability.
+ */
+
+EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
+EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
+EXPORT_SYMBOL_GPL(sata_deb_timing_long);
+EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
+EXPORT_SYMBOL_GPL(ata_std_bios_param);
+EXPORT_SYMBOL_GPL(ata_std_ports);
+EXPORT_SYMBOL_GPL(ata_host_set_init);
+EXPORT_SYMBOL_GPL(ata_device_add);
+EXPORT_SYMBOL_GPL(ata_port_detach);
+EXPORT_SYMBOL_GPL(ata_host_set_remove);
+EXPORT_SYMBOL_GPL(ata_sg_init);
+EXPORT_SYMBOL_GPL(ata_sg_init_one);
+EXPORT_SYMBOL_GPL(ata_hsm_move);
+EXPORT_SYMBOL_GPL(ata_qc_complete);
+EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
+EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
+EXPORT_SYMBOL_GPL(ata_tf_load);
+EXPORT_SYMBOL_GPL(ata_tf_read);
+EXPORT_SYMBOL_GPL(ata_noop_dev_select);
+EXPORT_SYMBOL_GPL(ata_std_dev_select);
+EXPORT_SYMBOL_GPL(ata_tf_to_fis);
+EXPORT_SYMBOL_GPL(ata_tf_from_fis);
+EXPORT_SYMBOL_GPL(ata_check_status);
+EXPORT_SYMBOL_GPL(ata_altstatus);
+EXPORT_SYMBOL_GPL(ata_exec_command);
+EXPORT_SYMBOL_GPL(ata_port_start);
+EXPORT_SYMBOL_GPL(ata_port_stop);
+EXPORT_SYMBOL_GPL(ata_host_stop);
+EXPORT_SYMBOL_GPL(ata_interrupt);
+EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
+EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
+EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
+EXPORT_SYMBOL_GPL(ata_qc_prep);
+EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
+EXPORT_SYMBOL_GPL(ata_bmdma_setup);
+EXPORT_SYMBOL_GPL(ata_bmdma_start);
+EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
+EXPORT_SYMBOL_GPL(ata_bmdma_status);
+EXPORT_SYMBOL_GPL(ata_bmdma_stop);
+EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
+EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
+EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
+EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
+EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
+EXPORT_SYMBOL_GPL(ata_port_probe);
+EXPORT_SYMBOL_GPL(sata_set_spd);
+EXPORT_SYMBOL_GPL(sata_phy_debounce);
+EXPORT_SYMBOL_GPL(sata_phy_resume);
+EXPORT_SYMBOL_GPL(sata_phy_reset);
+EXPORT_SYMBOL_GPL(__sata_phy_reset);
+EXPORT_SYMBOL_GPL(ata_bus_reset);
+EXPORT_SYMBOL_GPL(ata_std_prereset);
+EXPORT_SYMBOL_GPL(ata_std_softreset);
+EXPORT_SYMBOL_GPL(sata_std_hardreset);
+EXPORT_SYMBOL_GPL(ata_std_postreset);
+EXPORT_SYMBOL_GPL(ata_dev_revalidate);
+EXPORT_SYMBOL_GPL(ata_dev_classify);
+EXPORT_SYMBOL_GPL(ata_dev_pair);
+EXPORT_SYMBOL_GPL(ata_port_disable);
+EXPORT_SYMBOL_GPL(ata_ratelimit);
+EXPORT_SYMBOL_GPL(ata_wait_register);
+EXPORT_SYMBOL_GPL(ata_busy_sleep);
+EXPORT_SYMBOL_GPL(ata_port_queue_task);
+EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
+EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
+EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
+EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
+EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
+EXPORT_SYMBOL_GPL(ata_scsi_release);
+EXPORT_SYMBOL_GPL(ata_host_intr);
+EXPORT_SYMBOL_GPL(sata_scr_valid);
+EXPORT_SYMBOL_GPL(sata_scr_read);
+EXPORT_SYMBOL_GPL(sata_scr_write);
+EXPORT_SYMBOL_GPL(sata_scr_write_flush);
+EXPORT_SYMBOL_GPL(ata_port_online);
+EXPORT_SYMBOL_GPL(ata_port_offline);
+EXPORT_SYMBOL_GPL(ata_host_set_suspend);
+EXPORT_SYMBOL_GPL(ata_host_set_resume);
+EXPORT_SYMBOL_GPL(ata_id_string);
+EXPORT_SYMBOL_GPL(ata_id_c_string);
+EXPORT_SYMBOL_GPL(ata_scsi_simulate);
+
+EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
+EXPORT_SYMBOL_GPL(ata_timing_compute);
+EXPORT_SYMBOL_GPL(ata_timing_merge);
+
+#ifdef CONFIG_PCI
+EXPORT_SYMBOL_GPL(pci_test_config_bits);
+EXPORT_SYMBOL_GPL(ata_pci_host_stop);
+EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
+EXPORT_SYMBOL_GPL(ata_pci_init_one);
+EXPORT_SYMBOL_GPL(ata_pci_remove_one);
+EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
+EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
+EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
+EXPORT_SYMBOL_GPL(ata_pci_device_resume);
+EXPORT_SYMBOL_GPL(ata_pci_default_filter);
+EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
+#endif /* CONFIG_PCI */
+
+EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
+EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
+
+EXPORT_SYMBOL_GPL(ata_eng_timeout);
+EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
+EXPORT_SYMBOL_GPL(ata_port_abort);
+EXPORT_SYMBOL_GPL(ata_port_freeze);
+EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
+EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
+EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
+EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
+EXPORT_SYMBOL_GPL(ata_do_eh);
OpenPOWER on IntegriCloud