summaryrefslogtreecommitdiffstats
path: root/arch/x86/mm
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/mm')
-rw-r--r--arch/x86/mm/Makefile5
-rw-r--r--arch/x86/mm/Makefile_3210
-rw-r--r--arch/x86/mm/boot_ioremap_32.c100
-rw-r--r--arch/x86/mm/discontig_32.c431
-rw-r--r--arch/x86/mm/extable_32.c35
-rw-r--r--arch/x86/mm/fault_32.c657
-rw-r--r--arch/x86/mm/highmem_32.c113
-rw-r--r--arch/x86/mm/hugetlbpage.c391
-rw-r--r--arch/x86/mm/init_32.c858
-rw-r--r--arch/x86/mm/ioremap_32.c274
-rw-r--r--arch/x86/mm/mmap_32.c77
-rw-r--r--arch/x86/mm/pageattr_32.c278
-rw-r--r--arch/x86/mm/pgtable_32.c373
13 files changed, 3602 insertions, 0 deletions
diff --git a/arch/x86/mm/Makefile b/arch/x86/mm/Makefile
new file mode 100644
index 0000000..7317648
--- /dev/null
+++ b/arch/x86/mm/Makefile
@@ -0,0 +1,5 @@
+ifeq ($(CONFIG_X86_32),y)
+include ${srctree}/arch/x86/mm/Makefile_32
+else
+include ${srctree}/arch/x86_64/mm/Makefile_64
+endif
diff --git a/arch/x86/mm/Makefile_32 b/arch/x86/mm/Makefile_32
new file mode 100644
index 0000000..362b4ad
--- /dev/null
+++ b/arch/x86/mm/Makefile_32
@@ -0,0 +1,10 @@
+#
+# Makefile for the linux i386-specific parts of the memory manager.
+#
+
+obj-y := init_32.o pgtable_32.o fault_32.o ioremap_32.o extable_32.o pageattr_32.o mmap_32.o
+
+obj-$(CONFIG_NUMA) += discontig_32.o
+obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
+obj-$(CONFIG_HIGHMEM) += highmem_32.o
+obj-$(CONFIG_BOOT_IOREMAP) += boot_ioremap_32.o
diff --git a/arch/x86/mm/boot_ioremap_32.c b/arch/x86/mm/boot_ioremap_32.c
new file mode 100644
index 0000000..4de95a1
--- /dev/null
+++ b/arch/x86/mm/boot_ioremap_32.c
@@ -0,0 +1,100 @@
+/*
+ * arch/i386/mm/boot_ioremap.c
+ *
+ * Re-map functions for early boot-time before paging_init() when the
+ * boot-time pagetables are still in use
+ *
+ * Written by Dave Hansen <haveblue@us.ibm.com>
+ */
+
+
+/*
+ * We need to use the 2-level pagetable functions, but CONFIG_X86_PAE
+ * keeps that from happenning. If anyone has a better way, I'm listening.
+ *
+ * boot_pte_t is defined only if this all works correctly
+ */
+
+#undef CONFIG_X86_PAE
+#undef CONFIG_PARAVIRT
+#include <asm/page.h>
+#include <asm/pgtable.h>
+#include <asm/tlbflush.h>
+#include <linux/init.h>
+#include <linux/stddef.h>
+
+/*
+ * I'm cheating here. It is known that the two boot PTE pages are
+ * allocated next to each other. I'm pretending that they're just
+ * one big array.
+ */
+
+#define BOOT_PTE_PTRS (PTRS_PER_PTE*2)
+
+static unsigned long boot_pte_index(unsigned long vaddr)
+{
+ return __pa(vaddr) >> PAGE_SHIFT;
+}
+
+static inline boot_pte_t* boot_vaddr_to_pte(void *address)
+{
+ boot_pte_t* boot_pg = (boot_pte_t*)pg0;
+ return &boot_pg[boot_pte_index((unsigned long)address)];
+}
+
+/*
+ * This is only for a caller who is clever enough to page-align
+ * phys_addr and virtual_source, and who also has a preference
+ * about which virtual address from which to steal ptes
+ */
+static void __boot_ioremap(unsigned long phys_addr, unsigned long nrpages,
+ void* virtual_source)
+{
+ boot_pte_t* pte;
+ int i;
+ char *vaddr = virtual_source;
+
+ pte = boot_vaddr_to_pte(virtual_source);
+ for (i=0; i < nrpages; i++, phys_addr += PAGE_SIZE, pte++) {
+ set_pte(pte, pfn_pte(phys_addr>>PAGE_SHIFT, PAGE_KERNEL));
+ __flush_tlb_one(&vaddr[i*PAGE_SIZE]);
+ }
+}
+
+/* the virtual space we're going to remap comes from this array */
+#define BOOT_IOREMAP_PAGES 4
+#define BOOT_IOREMAP_SIZE (BOOT_IOREMAP_PAGES*PAGE_SIZE)
+static __initdata char boot_ioremap_space[BOOT_IOREMAP_SIZE]
+ __attribute__ ((aligned (PAGE_SIZE)));
+
+/*
+ * This only applies to things which need to ioremap before paging_init()
+ * bt_ioremap() and plain ioremap() are both useless at this point.
+ *
+ * When used, we're still using the boot-time pagetables, which only
+ * have 2 PTE pages mapping the first 8MB
+ *
+ * There is no unmap. The boot-time PTE pages aren't used after boot.
+ * If you really want the space back, just remap it yourself.
+ * boot_ioremap(&ioremap_space-PAGE_OFFSET, BOOT_IOREMAP_SIZE)
+ */
+__init void* boot_ioremap(unsigned long phys_addr, unsigned long size)
+{
+ unsigned long last_addr, offset;
+ unsigned int nrpages;
+
+ last_addr = phys_addr + size - 1;
+
+ /* page align the requested address */
+ offset = phys_addr & ~PAGE_MASK;
+ phys_addr &= PAGE_MASK;
+ size = PAGE_ALIGN(last_addr) - phys_addr;
+
+ nrpages = size >> PAGE_SHIFT;
+ if (nrpages > BOOT_IOREMAP_PAGES)
+ return NULL;
+
+ __boot_ioremap(phys_addr, nrpages, boot_ioremap_space);
+
+ return &boot_ioremap_space[offset];
+}
diff --git a/arch/x86/mm/discontig_32.c b/arch/x86/mm/discontig_32.c
new file mode 100644
index 0000000..860e912
--- /dev/null
+++ b/arch/x86/mm/discontig_32.c
@@ -0,0 +1,431 @@
+/*
+ * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation
+ * August 2002: added remote node KVA remap - Martin J. Bligh
+ *
+ * Copyright (C) 2002, IBM Corp.
+ *
+ * All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
+ * NON INFRINGEMENT. See the GNU General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/mm.h>
+#include <linux/bootmem.h>
+#include <linux/mmzone.h>
+#include <linux/highmem.h>
+#include <linux/initrd.h>
+#include <linux/nodemask.h>
+#include <linux/module.h>
+#include <linux/kexec.h>
+#include <linux/pfn.h>
+#include <linux/swap.h>
+
+#include <asm/e820.h>
+#include <asm/setup.h>
+#include <asm/mmzone.h>
+#include <bios_ebda.h>
+
+struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
+EXPORT_SYMBOL(node_data);
+bootmem_data_t node0_bdata;
+
+/*
+ * numa interface - we expect the numa architecture specific code to have
+ * populated the following initialisation.
+ *
+ * 1) node_online_map - the map of all nodes configured (online) in the system
+ * 2) node_start_pfn - the starting page frame number for a node
+ * 3) node_end_pfn - the ending page fram number for a node
+ */
+unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly;
+unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly;
+
+
+#ifdef CONFIG_DISCONTIGMEM
+/*
+ * 4) physnode_map - the mapping between a pfn and owning node
+ * physnode_map keeps track of the physical memory layout of a generic
+ * numa node on a 256Mb break (each element of the array will
+ * represent 256Mb of memory and will be marked by the node id. so,
+ * if the first gig is on node 0, and the second gig is on node 1
+ * physnode_map will contain:
+ *
+ * physnode_map[0-3] = 0;
+ * physnode_map[4-7] = 1;
+ * physnode_map[8- ] = -1;
+ */
+s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1};
+EXPORT_SYMBOL(physnode_map);
+
+void memory_present(int nid, unsigned long start, unsigned long end)
+{
+ unsigned long pfn;
+
+ printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n",
+ nid, start, end);
+ printk(KERN_DEBUG " Setting physnode_map array to node %d for pfns:\n", nid);
+ printk(KERN_DEBUG " ");
+ for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) {
+ physnode_map[pfn / PAGES_PER_ELEMENT] = nid;
+ printk("%ld ", pfn);
+ }
+ printk("\n");
+}
+
+unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn,
+ unsigned long end_pfn)
+{
+ unsigned long nr_pages = end_pfn - start_pfn;
+
+ if (!nr_pages)
+ return 0;
+
+ return (nr_pages + 1) * sizeof(struct page);
+}
+#endif
+
+extern unsigned long find_max_low_pfn(void);
+extern void add_one_highpage_init(struct page *, int, int);
+extern unsigned long highend_pfn, highstart_pfn;
+
+#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)
+
+unsigned long node_remap_start_pfn[MAX_NUMNODES];
+unsigned long node_remap_size[MAX_NUMNODES];
+unsigned long node_remap_offset[MAX_NUMNODES];
+void *node_remap_start_vaddr[MAX_NUMNODES];
+void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);
+
+void *node_remap_end_vaddr[MAX_NUMNODES];
+void *node_remap_alloc_vaddr[MAX_NUMNODES];
+static unsigned long kva_start_pfn;
+static unsigned long kva_pages;
+/*
+ * FLAT - support for basic PC memory model with discontig enabled, essentially
+ * a single node with all available processors in it with a flat
+ * memory map.
+ */
+int __init get_memcfg_numa_flat(void)
+{
+ printk("NUMA - single node, flat memory mode\n");
+
+ /* Run the memory configuration and find the top of memory. */
+ find_max_pfn();
+ node_start_pfn[0] = 0;
+ node_end_pfn[0] = max_pfn;
+ memory_present(0, 0, max_pfn);
+
+ /* Indicate there is one node available. */
+ nodes_clear(node_online_map);
+ node_set_online(0);
+ return 1;
+}
+
+/*
+ * Find the highest page frame number we have available for the node
+ */
+static void __init find_max_pfn_node(int nid)
+{
+ if (node_end_pfn[nid] > max_pfn)
+ node_end_pfn[nid] = max_pfn;
+ /*
+ * if a user has given mem=XXXX, then we need to make sure
+ * that the node _starts_ before that, too, not just ends
+ */
+ if (node_start_pfn[nid] > max_pfn)
+ node_start_pfn[nid] = max_pfn;
+ BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]);
+}
+
+/*
+ * Allocate memory for the pg_data_t for this node via a crude pre-bootmem
+ * method. For node zero take this from the bottom of memory, for
+ * subsequent nodes place them at node_remap_start_vaddr which contains
+ * node local data in physically node local memory. See setup_memory()
+ * for details.
+ */
+static void __init allocate_pgdat(int nid)
+{
+ if (nid && node_has_online_mem(nid))
+ NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];
+ else {
+ NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn));
+ min_low_pfn += PFN_UP(sizeof(pg_data_t));
+ }
+}
+
+void *alloc_remap(int nid, unsigned long size)
+{
+ void *allocation = node_remap_alloc_vaddr[nid];
+
+ size = ALIGN(size, L1_CACHE_BYTES);
+
+ if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid])
+ return 0;
+
+ node_remap_alloc_vaddr[nid] += size;
+ memset(allocation, 0, size);
+
+ return allocation;
+}
+
+void __init remap_numa_kva(void)
+{
+ void *vaddr;
+ unsigned long pfn;
+ int node;
+
+ for_each_online_node(node) {
+ for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {
+ vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);
+ set_pmd_pfn((ulong) vaddr,
+ node_remap_start_pfn[node] + pfn,
+ PAGE_KERNEL_LARGE);
+ }
+ }
+}
+
+static unsigned long calculate_numa_remap_pages(void)
+{
+ int nid;
+ unsigned long size, reserve_pages = 0;
+ unsigned long pfn;
+
+ for_each_online_node(nid) {
+ unsigned old_end_pfn = node_end_pfn[nid];
+
+ /*
+ * The acpi/srat node info can show hot-add memroy zones
+ * where memory could be added but not currently present.
+ */
+ if (node_start_pfn[nid] > max_pfn)
+ continue;
+ if (node_end_pfn[nid] > max_pfn)
+ node_end_pfn[nid] = max_pfn;
+
+ /* ensure the remap includes space for the pgdat. */
+ size = node_remap_size[nid] + sizeof(pg_data_t);
+
+ /* convert size to large (pmd size) pages, rounding up */
+ size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;
+ /* now the roundup is correct, convert to PAGE_SIZE pages */
+ size = size * PTRS_PER_PTE;
+
+ /*
+ * Validate the region we are allocating only contains valid
+ * pages.
+ */
+ for (pfn = node_end_pfn[nid] - size;
+ pfn < node_end_pfn[nid]; pfn++)
+ if (!page_is_ram(pfn))
+ break;
+
+ if (pfn != node_end_pfn[nid])
+ size = 0;
+
+ printk("Reserving %ld pages of KVA for lmem_map of node %d\n",
+ size, nid);
+ node_remap_size[nid] = size;
+ node_remap_offset[nid] = reserve_pages;
+ reserve_pages += size;
+ printk("Shrinking node %d from %ld pages to %ld pages\n",
+ nid, node_end_pfn[nid], node_end_pfn[nid] - size);
+
+ if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) {
+ /*
+ * Align node_end_pfn[] and node_remap_start_pfn[] to
+ * pmd boundary. remap_numa_kva will barf otherwise.
+ */
+ printk("Shrinking node %d further by %ld pages for proper alignment\n",
+ nid, node_end_pfn[nid] & (PTRS_PER_PTE-1));
+ size += node_end_pfn[nid] & (PTRS_PER_PTE-1);
+ }
+
+ node_end_pfn[nid] -= size;
+ node_remap_start_pfn[nid] = node_end_pfn[nid];
+ shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]);
+ }
+ printk("Reserving total of %ld pages for numa KVA remap\n",
+ reserve_pages);
+ return reserve_pages;
+}
+
+extern void setup_bootmem_allocator(void);
+unsigned long __init setup_memory(void)
+{
+ int nid;
+ unsigned long system_start_pfn, system_max_low_pfn;
+
+ /*
+ * When mapping a NUMA machine we allocate the node_mem_map arrays
+ * from node local memory. They are then mapped directly into KVA
+ * between zone normal and vmalloc space. Calculate the size of
+ * this space and use it to adjust the boundry between ZONE_NORMAL
+ * and ZONE_HIGHMEM.
+ */
+ find_max_pfn();
+ get_memcfg_numa();
+
+ kva_pages = calculate_numa_remap_pages();
+
+ /* partially used pages are not usable - thus round upwards */
+ system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);
+
+ kva_start_pfn = find_max_low_pfn() - kva_pages;
+
+#ifdef CONFIG_BLK_DEV_INITRD
+ /* Numa kva area is below the initrd */
+ if (LOADER_TYPE && INITRD_START)
+ kva_start_pfn = PFN_DOWN(INITRD_START) - kva_pages;
+#endif
+ kva_start_pfn -= kva_start_pfn & (PTRS_PER_PTE-1);
+
+ system_max_low_pfn = max_low_pfn = find_max_low_pfn();
+ printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n",
+ kva_start_pfn, max_low_pfn);
+ printk("max_pfn = %ld\n", max_pfn);
+#ifdef CONFIG_HIGHMEM
+ highstart_pfn = highend_pfn = max_pfn;
+ if (max_pfn > system_max_low_pfn)
+ highstart_pfn = system_max_low_pfn;
+ printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
+ pages_to_mb(highend_pfn - highstart_pfn));
+ num_physpages = highend_pfn;
+ high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1;
+#else
+ num_physpages = system_max_low_pfn;
+ high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1;
+#endif
+ printk(KERN_NOTICE "%ldMB LOWMEM available.\n",
+ pages_to_mb(system_max_low_pfn));
+ printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n",
+ min_low_pfn, max_low_pfn, highstart_pfn);
+
+ printk("Low memory ends at vaddr %08lx\n",
+ (ulong) pfn_to_kaddr(max_low_pfn));
+ for_each_online_node(nid) {
+ node_remap_start_vaddr[nid] = pfn_to_kaddr(
+ kva_start_pfn + node_remap_offset[nid]);
+ /* Init the node remap allocator */
+ node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] +
+ (node_remap_size[nid] * PAGE_SIZE);
+ node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] +
+ ALIGN(sizeof(pg_data_t), PAGE_SIZE);
+
+ allocate_pgdat(nid);
+ printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,
+ (ulong) node_remap_start_vaddr[nid],
+ (ulong) pfn_to_kaddr(highstart_pfn
+ + node_remap_offset[nid] + node_remap_size[nid]));
+ }
+ printk("High memory starts at vaddr %08lx\n",
+ (ulong) pfn_to_kaddr(highstart_pfn));
+ for_each_online_node(nid)
+ find_max_pfn_node(nid);
+
+ memset(NODE_DATA(0), 0, sizeof(struct pglist_data));
+ NODE_DATA(0)->bdata = &node0_bdata;
+ setup_bootmem_allocator();
+ return max_low_pfn;
+}
+
+void __init numa_kva_reserve(void)
+{
+ reserve_bootmem(PFN_PHYS(kva_start_pfn),PFN_PHYS(kva_pages));
+}
+
+void __init zone_sizes_init(void)
+{
+ int nid;
+ unsigned long max_zone_pfns[MAX_NR_ZONES];
+ memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
+ max_zone_pfns[ZONE_DMA] =
+ virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
+ max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
+#ifdef CONFIG_HIGHMEM
+ max_zone_pfns[ZONE_HIGHMEM] = highend_pfn;
+#endif
+
+ /* If SRAT has not registered memory, register it now */
+ if (find_max_pfn_with_active_regions() == 0) {
+ for_each_online_node(nid) {
+ if (node_has_online_mem(nid))
+ add_active_range(nid, node_start_pfn[nid],
+ node_end_pfn[nid]);
+ }
+ }
+
+ free_area_init_nodes(max_zone_pfns);
+ return;
+}
+
+void __init set_highmem_pages_init(int bad_ppro)
+{
+#ifdef CONFIG_HIGHMEM
+ struct zone *zone;
+ struct page *page;
+
+ for_each_zone(zone) {
+ unsigned long node_pfn, zone_start_pfn, zone_end_pfn;
+
+ if (!is_highmem(zone))
+ continue;
+
+ zone_start_pfn = zone->zone_start_pfn;
+ zone_end_pfn = zone_start_pfn + zone->spanned_pages;
+
+ printk("Initializing %s for node %d (%08lx:%08lx)\n",
+ zone->name, zone_to_nid(zone),
+ zone_start_pfn, zone_end_pfn);
+
+ for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) {
+ if (!pfn_valid(node_pfn))
+ continue;
+ page = pfn_to_page(node_pfn);
+ add_one_highpage_init(page, node_pfn, bad_ppro);
+ }
+ }
+ totalram_pages += totalhigh_pages;
+#endif
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+int paddr_to_nid(u64 addr)
+{
+ int nid;
+ unsigned long pfn = PFN_DOWN(addr);
+
+ for_each_node(nid)
+ if (node_start_pfn[nid] <= pfn &&
+ pfn < node_end_pfn[nid])
+ return nid;
+
+ return -1;
+}
+
+/*
+ * This function is used to ask node id BEFORE memmap and mem_section's
+ * initialization (pfn_to_nid() can't be used yet).
+ * If _PXM is not defined on ACPI's DSDT, node id must be found by this.
+ */
+int memory_add_physaddr_to_nid(u64 addr)
+{
+ int nid = paddr_to_nid(addr);
+ return (nid >= 0) ? nid : 0;
+}
+
+EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
+#endif
diff --git a/arch/x86/mm/extable_32.c b/arch/x86/mm/extable_32.c
new file mode 100644
index 0000000..0ce4f22
--- /dev/null
+++ b/arch/x86/mm/extable_32.c
@@ -0,0 +1,35 @@
+/*
+ * linux/arch/i386/mm/extable.c
+ */
+
+#include <linux/module.h>
+#include <linux/spinlock.h>
+#include <asm/uaccess.h>
+
+int fixup_exception(struct pt_regs *regs)
+{
+ const struct exception_table_entry *fixup;
+
+#ifdef CONFIG_PNPBIOS
+ if (unlikely(SEGMENT_IS_PNP_CODE(regs->xcs)))
+ {
+ extern u32 pnp_bios_fault_eip, pnp_bios_fault_esp;
+ extern u32 pnp_bios_is_utter_crap;
+ pnp_bios_is_utter_crap = 1;
+ printk(KERN_CRIT "PNPBIOS fault.. attempting recovery.\n");
+ __asm__ volatile(
+ "movl %0, %%esp\n\t"
+ "jmp *%1\n\t"
+ : : "g" (pnp_bios_fault_esp), "g" (pnp_bios_fault_eip));
+ panic("do_trap: can't hit this");
+ }
+#endif
+
+ fixup = search_exception_tables(regs->eip);
+ if (fixup) {
+ regs->eip = fixup->fixup;
+ return 1;
+ }
+
+ return 0;
+}
diff --git a/arch/x86/mm/fault_32.c b/arch/x86/mm/fault_32.c
new file mode 100644
index 0000000..fcb38e7
--- /dev/null
+++ b/arch/x86/mm/fault_32.c
@@ -0,0 +1,657 @@
+/*
+ * linux/arch/i386/mm/fault.c
+ *
+ * Copyright (C) 1995 Linus Torvalds
+ */
+
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/ptrace.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <linux/smp.h>
+#include <linux/interrupt.h>
+#include <linux/init.h>
+#include <linux/tty.h>
+#include <linux/vt_kern.h> /* For unblank_screen() */
+#include <linux/highmem.h>
+#include <linux/bootmem.h> /* for max_low_pfn */
+#include <linux/vmalloc.h>
+#include <linux/module.h>
+#include <linux/kprobes.h>
+#include <linux/uaccess.h>
+#include <linux/kdebug.h>
+
+#include <asm/system.h>
+#include <asm/desc.h>
+#include <asm/segment.h>
+
+extern void die(const char *,struct pt_regs *,long);
+
+static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
+
+int register_page_fault_notifier(struct notifier_block *nb)
+{
+ vmalloc_sync_all();
+ return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
+}
+EXPORT_SYMBOL_GPL(register_page_fault_notifier);
+
+int unregister_page_fault_notifier(struct notifier_block *nb)
+{
+ return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
+}
+EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
+
+static inline int notify_page_fault(struct pt_regs *regs, long err)
+{
+ struct die_args args = {
+ .regs = regs,
+ .str = "page fault",
+ .err = err,
+ .trapnr = 14,
+ .signr = SIGSEGV
+ };
+ return atomic_notifier_call_chain(&notify_page_fault_chain,
+ DIE_PAGE_FAULT, &args);
+}
+
+/*
+ * Return EIP plus the CS segment base. The segment limit is also
+ * adjusted, clamped to the kernel/user address space (whichever is
+ * appropriate), and returned in *eip_limit.
+ *
+ * The segment is checked, because it might have been changed by another
+ * task between the original faulting instruction and here.
+ *
+ * If CS is no longer a valid code segment, or if EIP is beyond the
+ * limit, or if it is a kernel address when CS is not a kernel segment,
+ * then the returned value will be greater than *eip_limit.
+ *
+ * This is slow, but is very rarely executed.
+ */
+static inline unsigned long get_segment_eip(struct pt_regs *regs,
+ unsigned long *eip_limit)
+{
+ unsigned long eip = regs->eip;
+ unsigned seg = regs->xcs & 0xffff;
+ u32 seg_ar, seg_limit, base, *desc;
+
+ /* Unlikely, but must come before segment checks. */
+ if (unlikely(regs->eflags & VM_MASK)) {
+ base = seg << 4;
+ *eip_limit = base + 0xffff;
+ return base + (eip & 0xffff);
+ }
+
+ /* The standard kernel/user address space limit. */
+ *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
+
+ /* By far the most common cases. */
+ if (likely(SEGMENT_IS_FLAT_CODE(seg)))
+ return eip;
+
+ /* Check the segment exists, is within the current LDT/GDT size,
+ that kernel/user (ring 0..3) has the appropriate privilege,
+ that it's a code segment, and get the limit. */
+ __asm__ ("larl %3,%0; lsll %3,%1"
+ : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
+ if ((~seg_ar & 0x9800) || eip > seg_limit) {
+ *eip_limit = 0;
+ return 1; /* So that returned eip > *eip_limit. */
+ }
+
+ /* Get the GDT/LDT descriptor base.
+ When you look for races in this code remember that
+ LDT and other horrors are only used in user space. */
+ if (seg & (1<<2)) {
+ /* Must lock the LDT while reading it. */
+ down(&current->mm->context.sem);
+ desc = current->mm->context.ldt;
+ desc = (void *)desc + (seg & ~7);
+ } else {
+ /* Must disable preemption while reading the GDT. */
+ desc = (u32 *)get_cpu_gdt_table(get_cpu());
+ desc = (void *)desc + (seg & ~7);
+ }
+
+ /* Decode the code segment base from the descriptor */
+ base = get_desc_base((unsigned long *)desc);
+
+ if (seg & (1<<2)) {
+ up(&current->mm->context.sem);
+ } else
+ put_cpu();
+
+ /* Adjust EIP and segment limit, and clamp at the kernel limit.
+ It's legitimate for segments to wrap at 0xffffffff. */
+ seg_limit += base;
+ if (seg_limit < *eip_limit && seg_limit >= base)
+ *eip_limit = seg_limit;
+ return eip + base;
+}
+
+/*
+ * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
+ * Check that here and ignore it.
+ */
+static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
+{
+ unsigned long limit;
+ unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
+ int scan_more = 1;
+ int prefetch = 0;
+ int i;
+
+ for (i = 0; scan_more && i < 15; i++) {
+ unsigned char opcode;
+ unsigned char instr_hi;
+ unsigned char instr_lo;
+
+ if (instr > (unsigned char *)limit)
+ break;
+ if (probe_kernel_address(instr, opcode))
+ break;
+
+ instr_hi = opcode & 0xf0;
+ instr_lo = opcode & 0x0f;
+ instr++;
+
+ switch (instr_hi) {
+ case 0x20:
+ case 0x30:
+ /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
+ scan_more = ((instr_lo & 7) == 0x6);
+ break;
+
+ case 0x60:
+ /* 0x64 thru 0x67 are valid prefixes in all modes. */
+ scan_more = (instr_lo & 0xC) == 0x4;
+ break;
+ case 0xF0:
+ /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
+ scan_more = !instr_lo || (instr_lo>>1) == 1;
+ break;
+ case 0x00:
+ /* Prefetch instruction is 0x0F0D or 0x0F18 */
+ scan_more = 0;
+ if (instr > (unsigned char *)limit)
+ break;
+ if (probe_kernel_address(instr, opcode))
+ break;
+ prefetch = (instr_lo == 0xF) &&
+ (opcode == 0x0D || opcode == 0x18);
+ break;
+ default:
+ scan_more = 0;
+ break;
+ }
+ }
+ return prefetch;
+}
+
+static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
+ unsigned long error_code)
+{
+ if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
+ boot_cpu_data.x86 >= 6)) {
+ /* Catch an obscure case of prefetch inside an NX page. */
+ if (nx_enabled && (error_code & 16))
+ return 0;
+ return __is_prefetch(regs, addr);
+ }
+ return 0;
+}
+
+static noinline void force_sig_info_fault(int si_signo, int si_code,
+ unsigned long address, struct task_struct *tsk)
+{
+ siginfo_t info;
+
+ info.si_signo = si_signo;
+ info.si_errno = 0;
+ info.si_code = si_code;
+ info.si_addr = (void __user *)address;
+ force_sig_info(si_signo, &info, tsk);
+}
+
+fastcall void do_invalid_op(struct pt_regs *, unsigned long);
+
+static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
+{
+ unsigned index = pgd_index(address);
+ pgd_t *pgd_k;
+ pud_t *pud, *pud_k;
+ pmd_t *pmd, *pmd_k;
+
+ pgd += index;
+ pgd_k = init_mm.pgd + index;
+
+ if (!pgd_present(*pgd_k))
+ return NULL;
+
+ /*
+ * set_pgd(pgd, *pgd_k); here would be useless on PAE
+ * and redundant with the set_pmd() on non-PAE. As would
+ * set_pud.
+ */
+
+ pud = pud_offset(pgd, address);
+ pud_k = pud_offset(pgd_k, address);
+ if (!pud_present(*pud_k))
+ return NULL;
+
+ pmd = pmd_offset(pud, address);
+ pmd_k = pmd_offset(pud_k, address);
+ if (!pmd_present(*pmd_k))
+ return NULL;
+ if (!pmd_present(*pmd)) {
+ set_pmd(pmd, *pmd_k);
+ arch_flush_lazy_mmu_mode();
+ } else
+ BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
+ return pmd_k;
+}
+
+/*
+ * Handle a fault on the vmalloc or module mapping area
+ *
+ * This assumes no large pages in there.
+ */
+static inline int vmalloc_fault(unsigned long address)
+{
+ unsigned long pgd_paddr;
+ pmd_t *pmd_k;
+ pte_t *pte_k;
+ /*
+ * Synchronize this task's top level page-table
+ * with the 'reference' page table.
+ *
+ * Do _not_ use "current" here. We might be inside
+ * an interrupt in the middle of a task switch..
+ */
+ pgd_paddr = read_cr3();
+ pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
+ if (!pmd_k)
+ return -1;
+ pte_k = pte_offset_kernel(pmd_k, address);
+ if (!pte_present(*pte_k))
+ return -1;
+ return 0;
+}
+
+int show_unhandled_signals = 1;
+
+/*
+ * This routine handles page faults. It determines the address,
+ * and the problem, and then passes it off to one of the appropriate
+ * routines.
+ *
+ * error_code:
+ * bit 0 == 0 means no page found, 1 means protection fault
+ * bit 1 == 0 means read, 1 means write
+ * bit 2 == 0 means kernel, 1 means user-mode
+ * bit 3 == 1 means use of reserved bit detected
+ * bit 4 == 1 means fault was an instruction fetch
+ */
+fastcall void __kprobes do_page_fault(struct pt_regs *regs,
+ unsigned long error_code)
+{
+ struct task_struct *tsk;
+ struct mm_struct *mm;
+ struct vm_area_struct * vma;
+ unsigned long address;
+ int write, si_code;
+ int fault;
+
+ /* get the address */
+ address = read_cr2();
+
+ tsk = current;
+
+ si_code = SEGV_MAPERR;
+
+ /*
+ * We fault-in kernel-space virtual memory on-demand. The
+ * 'reference' page table is init_mm.pgd.
+ *
+ * NOTE! We MUST NOT take any locks for this case. We may
+ * be in an interrupt or a critical region, and should
+ * only copy the information from the master page table,
+ * nothing more.
+ *
+ * This verifies that the fault happens in kernel space
+ * (error_code & 4) == 0, and that the fault was not a
+ * protection error (error_code & 9) == 0.
+ */
+ if (unlikely(address >= TASK_SIZE)) {
+ if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
+ return;
+ if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
+ return;
+ /*
+ * Don't take the mm semaphore here. If we fixup a prefetch
+ * fault we could otherwise deadlock.
+ */
+ goto bad_area_nosemaphore;
+ }
+
+ if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
+ return;
+
+ /* It's safe to allow irq's after cr2 has been saved and the vmalloc
+ fault has been handled. */
+ if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
+ local_irq_enable();
+
+ mm = tsk->mm;
+
+ /*
+ * If we're in an interrupt, have no user context or are running in an
+ * atomic region then we must not take the fault..
+ */
+ if (in_atomic() || !mm)
+ goto bad_area_nosemaphore;
+
+ /* When running in the kernel we expect faults to occur only to
+ * addresses in user space. All other faults represent errors in the
+ * kernel and should generate an OOPS. Unfortunatly, in the case of an
+ * erroneous fault occurring in a code path which already holds mmap_sem
+ * we will deadlock attempting to validate the fault against the
+ * address space. Luckily the kernel only validly references user
+ * space from well defined areas of code, which are listed in the
+ * exceptions table.
+ *
+ * As the vast majority of faults will be valid we will only perform
+ * the source reference check when there is a possibilty of a deadlock.
+ * Attempt to lock the address space, if we cannot we then validate the
+ * source. If this is invalid we can skip the address space check,
+ * thus avoiding the deadlock.
+ */
+ if (!down_read_trylock(&mm->mmap_sem)) {
+ if ((error_code & 4) == 0 &&
+ !search_exception_tables(regs->eip))
+ goto bad_area_nosemaphore;
+ down_read(&mm->mmap_sem);
+ }
+
+ vma = find_vma(mm, address);
+ if (!vma)
+ goto bad_area;
+ if (vma->vm_start <= address)
+ goto good_area;
+ if (!(vma->vm_flags & VM_GROWSDOWN))
+ goto bad_area;
+ if (error_code & 4) {
+ /*
+ * Accessing the stack below %esp is always a bug.
+ * The large cushion allows instructions like enter
+ * and pusha to work. ("enter $65535,$31" pushes
+ * 32 pointers and then decrements %esp by 65535.)
+ */
+ if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
+ goto bad_area;
+ }
+ if (expand_stack(vma, address))
+ goto bad_area;
+/*
+ * Ok, we have a good vm_area for this memory access, so
+ * we can handle it..
+ */
+good_area:
+ si_code = SEGV_ACCERR;
+ write = 0;
+ switch (error_code & 3) {
+ default: /* 3: write, present */
+ /* fall through */
+ case 2: /* write, not present */
+ if (!(vma->vm_flags & VM_WRITE))
+ goto bad_area;
+ write++;
+ break;
+ case 1: /* read, present */
+ goto bad_area;
+ case 0: /* read, not present */
+ if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
+ goto bad_area;
+ }
+
+ survive:
+ /*
+ * If for any reason at all we couldn't handle the fault,
+ * make sure we exit gracefully rather than endlessly redo
+ * the fault.
+ */
+ fault = handle_mm_fault(mm, vma, address, write);
+ if (unlikely(fault & VM_FAULT_ERROR)) {
+ if (fault & VM_FAULT_OOM)
+ goto out_of_memory;
+ else if (fault & VM_FAULT_SIGBUS)
+ goto do_sigbus;
+ BUG();
+ }
+ if (fault & VM_FAULT_MAJOR)
+ tsk->maj_flt++;
+ else
+ tsk->min_flt++;
+
+ /*
+ * Did it hit the DOS screen memory VA from vm86 mode?
+ */
+ if (regs->eflags & VM_MASK) {
+ unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
+ if (bit < 32)
+ tsk->thread.screen_bitmap |= 1 << bit;
+ }
+ up_read(&mm->mmap_sem);
+ return;
+
+/*
+ * Something tried to access memory that isn't in our memory map..
+ * Fix it, but check if it's kernel or user first..
+ */
+bad_area:
+ up_read(&mm->mmap_sem);
+
+bad_area_nosemaphore:
+ /* User mode accesses just cause a SIGSEGV */
+ if (error_code & 4) {
+ /*
+ * It's possible to have interrupts off here.
+ */
+ local_irq_enable();
+
+ /*
+ * Valid to do another page fault here because this one came
+ * from user space.
+ */
+ if (is_prefetch(regs, address, error_code))
+ return;
+
+ if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
+ printk_ratelimit()) {
+ printk("%s%s[%d]: segfault at %08lx eip %08lx "
+ "esp %08lx error %lx\n",
+ tsk->pid > 1 ? KERN_INFO : KERN_EMERG,
+ tsk->comm, tsk->pid, address, regs->eip,
+ regs->esp, error_code);
+ }
+ tsk->thread.cr2 = address;
+ /* Kernel addresses are always protection faults */
+ tsk->thread.error_code = error_code | (address >= TASK_SIZE);
+ tsk->thread.trap_no = 14;
+ force_sig_info_fault(SIGSEGV, si_code, address, tsk);
+ return;
+ }
+
+#ifdef CONFIG_X86_F00F_BUG
+ /*
+ * Pentium F0 0F C7 C8 bug workaround.
+ */
+ if (boot_cpu_data.f00f_bug) {
+ unsigned long nr;
+
+ nr = (address - idt_descr.address) >> 3;
+
+ if (nr == 6) {
+ do_invalid_op(regs, 0);
+ return;
+ }
+ }
+#endif
+
+no_context:
+ /* Are we prepared to handle this kernel fault? */
+ if (fixup_exception(regs))
+ return;
+
+ /*
+ * Valid to do another page fault here, because if this fault
+ * had been triggered by is_prefetch fixup_exception would have
+ * handled it.
+ */
+ if (is_prefetch(regs, address, error_code))
+ return;
+
+/*
+ * Oops. The kernel tried to access some bad page. We'll have to
+ * terminate things with extreme prejudice.
+ */
+
+ bust_spinlocks(1);
+
+ if (oops_may_print()) {
+ __typeof__(pte_val(__pte(0))) page;
+
+#ifdef CONFIG_X86_PAE
+ if (error_code & 16) {
+ pte_t *pte = lookup_address(address);
+
+ if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
+ printk(KERN_CRIT "kernel tried to execute "
+ "NX-protected page - exploit attempt? "
+ "(uid: %d)\n", current->uid);
+ }
+#endif
+ if (address < PAGE_SIZE)
+ printk(KERN_ALERT "BUG: unable to handle kernel NULL "
+ "pointer dereference");
+ else
+ printk(KERN_ALERT "BUG: unable to handle kernel paging"
+ " request");
+ printk(" at virtual address %08lx\n",address);
+ printk(KERN_ALERT " printing eip:\n");
+ printk("%08lx\n", regs->eip);
+
+ page = read_cr3();
+ page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
+#ifdef CONFIG_X86_PAE
+ printk(KERN_ALERT "*pdpt = %016Lx\n", page);
+ if ((page >> PAGE_SHIFT) < max_low_pfn
+ && page & _PAGE_PRESENT) {
+ page &= PAGE_MASK;
+ page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
+ & (PTRS_PER_PMD - 1)];
+ printk(KERN_ALERT "*pde = %016Lx\n", page);
+ page &= ~_PAGE_NX;
+ }
+#else
+ printk(KERN_ALERT "*pde = %08lx\n", page);
+#endif
+
+ /*
+ * We must not directly access the pte in the highpte
+ * case if the page table is located in highmem.
+ * And let's rather not kmap-atomic the pte, just in case
+ * it's allocated already.
+ */
+ if ((page >> PAGE_SHIFT) < max_low_pfn
+ && (page & _PAGE_PRESENT)) {
+ page &= PAGE_MASK;
+ page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
+ & (PTRS_PER_PTE - 1)];
+ printk(KERN_ALERT "*pte = %0*Lx\n", sizeof(page)*2, (u64)page);
+ }
+ }
+
+ tsk->thread.cr2 = address;
+ tsk->thread.trap_no = 14;
+ tsk->thread.error_code = error_code;
+ die("Oops", regs, error_code);
+ bust_spinlocks(0);
+ do_exit(SIGKILL);
+
+/*
+ * We ran out of memory, or some other thing happened to us that made
+ * us unable to handle the page fault gracefully.
+ */
+out_of_memory:
+ up_read(&mm->mmap_sem);
+ if (is_init(tsk)) {
+ yield();
+ down_read(&mm->mmap_sem);
+ goto survive;
+ }
+ printk("VM: killing process %s\n", tsk->comm);
+ if (error_code & 4)
+ do_exit(SIGKILL);
+ goto no_context;
+
+do_sigbus:
+ up_read(&mm->mmap_sem);
+
+ /* Kernel mode? Handle exceptions or die */
+ if (!(error_code & 4))
+ goto no_context;
+
+ /* User space => ok to do another page fault */
+ if (is_prefetch(regs, address, error_code))
+ return;
+
+ tsk->thread.cr2 = address;
+ tsk->thread.error_code = error_code;
+ tsk->thread.trap_no = 14;
+ force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
+}
+
+void vmalloc_sync_all(void)
+{
+ /*
+ * Note that races in the updates of insync and start aren't
+ * problematic: insync can only get set bits added, and updates to
+ * start are only improving performance (without affecting correctness
+ * if undone).
+ */
+ static DECLARE_BITMAP(insync, PTRS_PER_PGD);
+ static unsigned long start = TASK_SIZE;
+ unsigned long address;
+
+ if (SHARED_KERNEL_PMD)
+ return;
+
+ BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
+ for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
+ if (!test_bit(pgd_index(address), insync)) {
+ unsigned long flags;
+ struct page *page;
+
+ spin_lock_irqsave(&pgd_lock, flags);
+ for (page = pgd_list; page; page =
+ (struct page *)page->index)
+ if (!vmalloc_sync_one(page_address(page),
+ address)) {
+ BUG_ON(page != pgd_list);
+ break;
+ }
+ spin_unlock_irqrestore(&pgd_lock, flags);
+ if (!page)
+ set_bit(pgd_index(address), insync);
+ }
+ if (address == start && test_bit(pgd_index(address), insync))
+ start = address + PGDIR_SIZE;
+ }
+}
diff --git a/arch/x86/mm/highmem_32.c b/arch/x86/mm/highmem_32.c
new file mode 100644
index 0000000..1c3bf95
--- /dev/null
+++ b/arch/x86/mm/highmem_32.c
@@ -0,0 +1,113 @@
+#include <linux/highmem.h>
+#include <linux/module.h>
+
+void *kmap(struct page *page)
+{
+ might_sleep();
+ if (!PageHighMem(page))
+ return page_address(page);
+ return kmap_high(page);
+}
+
+void kunmap(struct page *page)
+{
+ if (in_interrupt())
+ BUG();
+ if (!PageHighMem(page))
+ return;
+ kunmap_high(page);
+}
+
+/*
+ * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because
+ * no global lock is needed and because the kmap code must perform a global TLB
+ * invalidation when the kmap pool wraps.
+ *
+ * However when holding an atomic kmap is is not legal to sleep, so atomic
+ * kmaps are appropriate for short, tight code paths only.
+ */
+void *kmap_atomic_prot(struct page *page, enum km_type type, pgprot_t prot)
+{
+ enum fixed_addresses idx;
+ unsigned long vaddr;
+
+ /* even !CONFIG_PREEMPT needs this, for in_atomic in do_page_fault */
+ pagefault_disable();
+
+ if (!PageHighMem(page))
+ return page_address(page);
+
+ idx = type + KM_TYPE_NR*smp_processor_id();
+ vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
+ BUG_ON(!pte_none(*(kmap_pte-idx)));
+ set_pte(kmap_pte-idx, mk_pte(page, prot));
+ arch_flush_lazy_mmu_mode();
+
+ return (void *)vaddr;
+}
+
+void *kmap_atomic(struct page *page, enum km_type type)
+{
+ return kmap_atomic_prot(page, type, kmap_prot);
+}
+
+void kunmap_atomic(void *kvaddr, enum km_type type)
+{
+ unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK;
+ enum fixed_addresses idx = type + KM_TYPE_NR*smp_processor_id();
+
+ /*
+ * Force other mappings to Oops if they'll try to access this pte
+ * without first remap it. Keeping stale mappings around is a bad idea
+ * also, in case the page changes cacheability attributes or becomes
+ * a protected page in a hypervisor.
+ */
+ if (vaddr == __fix_to_virt(FIX_KMAP_BEGIN+idx))
+ kpte_clear_flush(kmap_pte-idx, vaddr);
+ else {
+#ifdef CONFIG_DEBUG_HIGHMEM
+ BUG_ON(vaddr < PAGE_OFFSET);
+ BUG_ON(vaddr >= (unsigned long)high_memory);
+#endif
+ }
+
+ arch_flush_lazy_mmu_mode();
+ pagefault_enable();
+}
+
+/* This is the same as kmap_atomic() but can map memory that doesn't
+ * have a struct page associated with it.
+ */
+void *kmap_atomic_pfn(unsigned long pfn, enum km_type type)
+{
+ enum fixed_addresses idx;
+ unsigned long vaddr;
+
+ pagefault_disable();
+
+ idx = type + KM_TYPE_NR*smp_processor_id();
+ vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
+ set_pte(kmap_pte-idx, pfn_pte(pfn, kmap_prot));
+ arch_flush_lazy_mmu_mode();
+
+ return (void*) vaddr;
+}
+
+struct page *kmap_atomic_to_page(void *ptr)
+{
+ unsigned long idx, vaddr = (unsigned long)ptr;
+ pte_t *pte;
+
+ if (vaddr < FIXADDR_START)
+ return virt_to_page(ptr);
+
+ idx = virt_to_fix(vaddr);
+ pte = kmap_pte - (idx - FIX_KMAP_BEGIN);
+ return pte_page(*pte);
+}
+
+EXPORT_SYMBOL(kmap);
+EXPORT_SYMBOL(kunmap);
+EXPORT_SYMBOL(kmap_atomic);
+EXPORT_SYMBOL(kunmap_atomic);
+EXPORT_SYMBOL(kmap_atomic_to_page);
diff --git a/arch/x86/mm/hugetlbpage.c b/arch/x86/mm/hugetlbpage.c
new file mode 100644
index 0000000..6c06d9c
--- /dev/null
+++ b/arch/x86/mm/hugetlbpage.c
@@ -0,0 +1,391 @@
+/*
+ * IA-32 Huge TLB Page Support for Kernel.
+ *
+ * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
+ */
+
+#include <linux/init.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/pagemap.h>
+#include <linux/slab.h>
+#include <linux/err.h>
+#include <linux/sysctl.h>
+#include <asm/mman.h>
+#include <asm/tlb.h>
+#include <asm/tlbflush.h>
+
+static unsigned long page_table_shareable(struct vm_area_struct *svma,
+ struct vm_area_struct *vma,
+ unsigned long addr, pgoff_t idx)
+{
+ unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
+ svma->vm_start;
+ unsigned long sbase = saddr & PUD_MASK;
+ unsigned long s_end = sbase + PUD_SIZE;
+
+ /*
+ * match the virtual addresses, permission and the alignment of the
+ * page table page.
+ */
+ if (pmd_index(addr) != pmd_index(saddr) ||
+ vma->vm_flags != svma->vm_flags ||
+ sbase < svma->vm_start || svma->vm_end < s_end)
+ return 0;
+
+ return saddr;
+}
+
+static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
+{
+ unsigned long base = addr & PUD_MASK;
+ unsigned long end = base + PUD_SIZE;
+
+ /*
+ * check on proper vm_flags and page table alignment
+ */
+ if (vma->vm_flags & VM_MAYSHARE &&
+ vma->vm_start <= base && end <= vma->vm_end)
+ return 1;
+ return 0;
+}
+
+/*
+ * search for a shareable pmd page for hugetlb.
+ */
+static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
+{
+ struct vm_area_struct *vma = find_vma(mm, addr);
+ struct address_space *mapping = vma->vm_file->f_mapping;
+ pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
+ vma->vm_pgoff;
+ struct prio_tree_iter iter;
+ struct vm_area_struct *svma;
+ unsigned long saddr;
+ pte_t *spte = NULL;
+
+ if (!vma_shareable(vma, addr))
+ return;
+
+ spin_lock(&mapping->i_mmap_lock);
+ vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
+ if (svma == vma)
+ continue;
+
+ saddr = page_table_shareable(svma, vma, addr, idx);
+ if (saddr) {
+ spte = huge_pte_offset(svma->vm_mm, saddr);
+ if (spte) {
+ get_page(virt_to_page(spte));
+ break;
+ }
+ }
+ }
+
+ if (!spte)
+ goto out;
+
+ spin_lock(&mm->page_table_lock);
+ if (pud_none(*pud))
+ pud_populate(mm, pud, (unsigned long) spte & PAGE_MASK);
+ else
+ put_page(virt_to_page(spte));
+ spin_unlock(&mm->page_table_lock);
+out:
+ spin_unlock(&mapping->i_mmap_lock);
+}
+
+/*
+ * unmap huge page backed by shared pte.
+ *
+ * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
+ * indicated by page_count > 1, unmap is achieved by clearing pud and
+ * decrementing the ref count. If count == 1, the pte page is not shared.
+ *
+ * called with vma->vm_mm->page_table_lock held.
+ *
+ * returns: 1 successfully unmapped a shared pte page
+ * 0 the underlying pte page is not shared, or it is the last user
+ */
+int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
+{
+ pgd_t *pgd = pgd_offset(mm, *addr);
+ pud_t *pud = pud_offset(pgd, *addr);
+
+ BUG_ON(page_count(virt_to_page(ptep)) == 0);
+ if (page_count(virt_to_page(ptep)) == 1)
+ return 0;
+
+ pud_clear(pud);
+ put_page(virt_to_page(ptep));
+ *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
+ return 1;
+}
+
+pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pte_t *pte = NULL;
+
+ pgd = pgd_offset(mm, addr);
+ pud = pud_alloc(mm, pgd, addr);
+ if (pud) {
+ if (pud_none(*pud))
+ huge_pmd_share(mm, addr, pud);
+ pte = (pte_t *) pmd_alloc(mm, pud, addr);
+ }
+ BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
+
+ return pte;
+}
+
+pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd = NULL;
+
+ pgd = pgd_offset(mm, addr);
+ if (pgd_present(*pgd)) {
+ pud = pud_offset(pgd, addr);
+ if (pud_present(*pud))
+ pmd = pmd_offset(pud, addr);
+ }
+ return (pte_t *) pmd;
+}
+
+#if 0 /* This is just for testing */
+struct page *
+follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
+{
+ unsigned long start = address;
+ int length = 1;
+ int nr;
+ struct page *page;
+ struct vm_area_struct *vma;
+
+ vma = find_vma(mm, addr);
+ if (!vma || !is_vm_hugetlb_page(vma))
+ return ERR_PTR(-EINVAL);
+
+ pte = huge_pte_offset(mm, address);
+
+ /* hugetlb should be locked, and hence, prefaulted */
+ WARN_ON(!pte || pte_none(*pte));
+
+ page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
+
+ WARN_ON(!PageCompound(page));
+
+ return page;
+}
+
+int pmd_huge(pmd_t pmd)
+{
+ return 0;
+}
+
+struct page *
+follow_huge_pmd(struct mm_struct *mm, unsigned long address,
+ pmd_t *pmd, int write)
+{
+ return NULL;
+}
+
+#else
+
+struct page *
+follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
+{
+ return ERR_PTR(-EINVAL);
+}
+
+int pmd_huge(pmd_t pmd)
+{
+ return !!(pmd_val(pmd) & _PAGE_PSE);
+}
+
+struct page *
+follow_huge_pmd(struct mm_struct *mm, unsigned long address,
+ pmd_t *pmd, int write)
+{
+ struct page *page;
+
+ page = pte_page(*(pte_t *)pmd);
+ if (page)
+ page += ((address & ~HPAGE_MASK) >> PAGE_SHIFT);
+ return page;
+}
+#endif
+
+/* x86_64 also uses this file */
+
+#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
+static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
+ unsigned long addr, unsigned long len,
+ unsigned long pgoff, unsigned long flags)
+{
+ struct mm_struct *mm = current->mm;
+ struct vm_area_struct *vma;
+ unsigned long start_addr;
+
+ if (len > mm->cached_hole_size) {
+ start_addr = mm->free_area_cache;
+ } else {
+ start_addr = TASK_UNMAPPED_BASE;
+ mm->cached_hole_size = 0;
+ }
+
+full_search:
+ addr = ALIGN(start_addr, HPAGE_SIZE);
+
+ for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
+ /* At this point: (!vma || addr < vma->vm_end). */
+ if (TASK_SIZE - len < addr) {
+ /*
+ * Start a new search - just in case we missed
+ * some holes.
+ */
+ if (start_addr != TASK_UNMAPPED_BASE) {
+ start_addr = TASK_UNMAPPED_BASE;
+ mm->cached_hole_size = 0;
+ goto full_search;
+ }
+ return -ENOMEM;
+ }
+ if (!vma || addr + len <= vma->vm_start) {
+ mm->free_area_cache = addr + len;
+ return addr;
+ }
+ if (addr + mm->cached_hole_size < vma->vm_start)
+ mm->cached_hole_size = vma->vm_start - addr;
+ addr = ALIGN(vma->vm_end, HPAGE_SIZE);
+ }
+}
+
+static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
+ unsigned long addr0, unsigned long len,
+ unsigned long pgoff, unsigned long flags)
+{
+ struct mm_struct *mm = current->mm;
+ struct vm_area_struct *vma, *prev_vma;
+ unsigned long base = mm->mmap_base, addr = addr0;
+ unsigned long largest_hole = mm->cached_hole_size;
+ int first_time = 1;
+
+ /* don't allow allocations above current base */
+ if (mm->free_area_cache > base)
+ mm->free_area_cache = base;
+
+ if (len <= largest_hole) {
+ largest_hole = 0;
+ mm->free_area_cache = base;
+ }
+try_again:
+ /* make sure it can fit in the remaining address space */
+ if (mm->free_area_cache < len)
+ goto fail;
+
+ /* either no address requested or cant fit in requested address hole */
+ addr = (mm->free_area_cache - len) & HPAGE_MASK;
+ do {
+ /*
+ * Lookup failure means no vma is above this address,
+ * i.e. return with success:
+ */
+ if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
+ return addr;
+
+ /*
+ * new region fits between prev_vma->vm_end and
+ * vma->vm_start, use it:
+ */
+ if (addr + len <= vma->vm_start &&
+ (!prev_vma || (addr >= prev_vma->vm_end))) {
+ /* remember the address as a hint for next time */
+ mm->cached_hole_size = largest_hole;
+ return (mm->free_area_cache = addr);
+ } else {
+ /* pull free_area_cache down to the first hole */
+ if (mm->free_area_cache == vma->vm_end) {
+ mm->free_area_cache = vma->vm_start;
+ mm->cached_hole_size = largest_hole;
+ }
+ }
+
+ /* remember the largest hole we saw so far */
+ if (addr + largest_hole < vma->vm_start)
+ largest_hole = vma->vm_start - addr;
+
+ /* try just below the current vma->vm_start */
+ addr = (vma->vm_start - len) & HPAGE_MASK;
+ } while (len <= vma->vm_start);
+
+fail:
+ /*
+ * if hint left us with no space for the requested
+ * mapping then try again:
+ */
+ if (first_time) {
+ mm->free_area_cache = base;
+ largest_hole = 0;
+ first_time = 0;
+ goto try_again;
+ }
+ /*
+ * A failed mmap() very likely causes application failure,
+ * so fall back to the bottom-up function here. This scenario
+ * can happen with large stack limits and large mmap()
+ * allocations.
+ */
+ mm->free_area_cache = TASK_UNMAPPED_BASE;
+ mm->cached_hole_size = ~0UL;
+ addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
+ len, pgoff, flags);
+
+ /*
+ * Restore the topdown base:
+ */
+ mm->free_area_cache = base;
+ mm->cached_hole_size = ~0UL;
+
+ return addr;
+}
+
+unsigned long
+hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
+ unsigned long len, unsigned long pgoff, unsigned long flags)
+{
+ struct mm_struct *mm = current->mm;
+ struct vm_area_struct *vma;
+
+ if (len & ~HPAGE_MASK)
+ return -EINVAL;
+ if (len > TASK_SIZE)
+ return -ENOMEM;
+
+ if (flags & MAP_FIXED) {
+ if (prepare_hugepage_range(addr, len))
+ return -EINVAL;
+ return addr;
+ }
+
+ if (addr) {
+ addr = ALIGN(addr, HPAGE_SIZE);
+ vma = find_vma(mm, addr);
+ if (TASK_SIZE - len >= addr &&
+ (!vma || addr + len <= vma->vm_start))
+ return addr;
+ }
+ if (mm->get_unmapped_area == arch_get_unmapped_area)
+ return hugetlb_get_unmapped_area_bottomup(file, addr, len,
+ pgoff, flags);
+ else
+ return hugetlb_get_unmapped_area_topdown(file, addr, len,
+ pgoff, flags);
+}
+
+#endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
+
diff --git a/arch/x86/mm/init_32.c b/arch/x86/mm/init_32.c
new file mode 100644
index 0000000..730a5b1
--- /dev/null
+++ b/arch/x86/mm/init_32.c
@@ -0,0 +1,858 @@
+/*
+ * linux/arch/i386/mm/init.c
+ *
+ * Copyright (C) 1995 Linus Torvalds
+ *
+ * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
+ */
+
+#include <linux/module.h>
+#include <linux/signal.h>
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/types.h>
+#include <linux/ptrace.h>
+#include <linux/mman.h>
+#include <linux/mm.h>
+#include <linux/hugetlb.h>
+#include <linux/swap.h>
+#include <linux/smp.h>
+#include <linux/init.h>
+#include <linux/highmem.h>
+#include <linux/pagemap.h>
+#include <linux/pfn.h>
+#include <linux/poison.h>
+#include <linux/bootmem.h>
+#include <linux/slab.h>
+#include <linux/proc_fs.h>
+#include <linux/efi.h>
+#include <linux/memory_hotplug.h>
+#include <linux/initrd.h>
+#include <linux/cpumask.h>
+
+#include <asm/processor.h>
+#include <asm/system.h>
+#include <asm/uaccess.h>
+#include <asm/pgtable.h>
+#include <asm/dma.h>
+#include <asm/fixmap.h>
+#include <asm/e820.h>
+#include <asm/apic.h>
+#include <asm/tlb.h>
+#include <asm/tlbflush.h>
+#include <asm/sections.h>
+#include <asm/paravirt.h>
+
+unsigned int __VMALLOC_RESERVE = 128 << 20;
+
+DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
+unsigned long highstart_pfn, highend_pfn;
+
+static int noinline do_test_wp_bit(void);
+
+/*
+ * Creates a middle page table and puts a pointer to it in the
+ * given global directory entry. This only returns the gd entry
+ * in non-PAE compilation mode, since the middle layer is folded.
+ */
+static pmd_t * __init one_md_table_init(pgd_t *pgd)
+{
+ pud_t *pud;
+ pmd_t *pmd_table;
+
+#ifdef CONFIG_X86_PAE
+ if (!(pgd_val(*pgd) & _PAGE_PRESENT)) {
+ pmd_table = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);
+
+ paravirt_alloc_pd(__pa(pmd_table) >> PAGE_SHIFT);
+ set_pgd(pgd, __pgd(__pa(pmd_table) | _PAGE_PRESENT));
+ pud = pud_offset(pgd, 0);
+ if (pmd_table != pmd_offset(pud, 0))
+ BUG();
+ }
+#endif
+ pud = pud_offset(pgd, 0);
+ pmd_table = pmd_offset(pud, 0);
+ return pmd_table;
+}
+
+/*
+ * Create a page table and place a pointer to it in a middle page
+ * directory entry.
+ */
+static pte_t * __init one_page_table_init(pmd_t *pmd)
+{
+ if (!(pmd_val(*pmd) & _PAGE_PRESENT)) {
+ pte_t *page_table = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);
+
+ paravirt_alloc_pt(&init_mm, __pa(page_table) >> PAGE_SHIFT);
+ set_pmd(pmd, __pmd(__pa(page_table) | _PAGE_TABLE));
+ BUG_ON(page_table != pte_offset_kernel(pmd, 0));
+ }
+
+ return pte_offset_kernel(pmd, 0);
+}
+
+/*
+ * This function initializes a certain range of kernel virtual memory
+ * with new bootmem page tables, everywhere page tables are missing in
+ * the given range.
+ */
+
+/*
+ * NOTE: The pagetables are allocated contiguous on the physical space
+ * so we can cache the place of the first one and move around without
+ * checking the pgd every time.
+ */
+static void __init page_table_range_init (unsigned long start, unsigned long end, pgd_t *pgd_base)
+{
+ pgd_t *pgd;
+ pmd_t *pmd;
+ int pgd_idx, pmd_idx;
+ unsigned long vaddr;
+
+ vaddr = start;
+ pgd_idx = pgd_index(vaddr);
+ pmd_idx = pmd_index(vaddr);
+ pgd = pgd_base + pgd_idx;
+
+ for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
+ pmd = one_md_table_init(pgd);
+ pmd = pmd + pmd_index(vaddr);
+ for (; (pmd_idx < PTRS_PER_PMD) && (vaddr != end); pmd++, pmd_idx++) {
+ one_page_table_init(pmd);
+
+ vaddr += PMD_SIZE;
+ }
+ pmd_idx = 0;
+ }
+}
+
+static inline int is_kernel_text(unsigned long addr)
+{
+ if (addr >= PAGE_OFFSET && addr <= (unsigned long)__init_end)
+ return 1;
+ return 0;
+}
+
+/*
+ * This maps the physical memory to kernel virtual address space, a total
+ * of max_low_pfn pages, by creating page tables starting from address
+ * PAGE_OFFSET.
+ */
+static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
+{
+ unsigned long pfn;
+ pgd_t *pgd;
+ pmd_t *pmd;
+ pte_t *pte;
+ int pgd_idx, pmd_idx, pte_ofs;
+
+ pgd_idx = pgd_index(PAGE_OFFSET);
+ pgd = pgd_base + pgd_idx;
+ pfn = 0;
+
+ for (; pgd_idx < PTRS_PER_PGD; pgd++, pgd_idx++) {
+ pmd = one_md_table_init(pgd);
+ if (pfn >= max_low_pfn)
+ continue;
+ for (pmd_idx = 0; pmd_idx < PTRS_PER_PMD && pfn < max_low_pfn; pmd++, pmd_idx++) {
+ unsigned int address = pfn * PAGE_SIZE + PAGE_OFFSET;
+
+ /* Map with big pages if possible, otherwise create normal page tables. */
+ if (cpu_has_pse) {
+ unsigned int address2 = (pfn + PTRS_PER_PTE - 1) * PAGE_SIZE + PAGE_OFFSET + PAGE_SIZE-1;
+ if (is_kernel_text(address) || is_kernel_text(address2))
+ set_pmd(pmd, pfn_pmd(pfn, PAGE_KERNEL_LARGE_EXEC));
+ else
+ set_pmd(pmd, pfn_pmd(pfn, PAGE_KERNEL_LARGE));
+
+ pfn += PTRS_PER_PTE;
+ } else {
+ pte = one_page_table_init(pmd);
+
+ for (pte_ofs = 0;
+ pte_ofs < PTRS_PER_PTE && pfn < max_low_pfn;
+ pte++, pfn++, pte_ofs++, address += PAGE_SIZE) {
+ if (is_kernel_text(address))
+ set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC));
+ else
+ set_pte(pte, pfn_pte(pfn, PAGE_KERNEL));
+ }
+ }
+ }
+ }
+}
+
+static inline int page_kills_ppro(unsigned long pagenr)
+{
+ if (pagenr >= 0x70000 && pagenr <= 0x7003F)
+ return 1;
+ return 0;
+}
+
+int page_is_ram(unsigned long pagenr)
+{
+ int i;
+ unsigned long addr, end;
+
+ if (efi_enabled) {
+ efi_memory_desc_t *md;
+ void *p;
+
+ for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
+ md = p;
+ if (!is_available_memory(md))
+ continue;
+ addr = (md->phys_addr+PAGE_SIZE-1) >> PAGE_SHIFT;
+ end = (md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT)) >> PAGE_SHIFT;
+
+ if ((pagenr >= addr) && (pagenr < end))
+ return 1;
+ }
+ return 0;
+ }
+
+ for (i = 0; i < e820.nr_map; i++) {
+
+ if (e820.map[i].type != E820_RAM) /* not usable memory */
+ continue;
+ /*
+ * !!!FIXME!!! Some BIOSen report areas as RAM that
+ * are not. Notably the 640->1Mb area. We need a sanity
+ * check here.
+ */
+ addr = (e820.map[i].addr+PAGE_SIZE-1) >> PAGE_SHIFT;
+ end = (e820.map[i].addr+e820.map[i].size) >> PAGE_SHIFT;
+ if ((pagenr >= addr) && (pagenr < end))
+ return 1;
+ }
+ return 0;
+}
+
+#ifdef CONFIG_HIGHMEM
+pte_t *kmap_pte;
+pgprot_t kmap_prot;
+
+#define kmap_get_fixmap_pte(vaddr) \
+ pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), vaddr), (vaddr)), (vaddr))
+
+static void __init kmap_init(void)
+{
+ unsigned long kmap_vstart;
+
+ /* cache the first kmap pte */
+ kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);
+ kmap_pte = kmap_get_fixmap_pte(kmap_vstart);
+
+ kmap_prot = PAGE_KERNEL;
+}
+
+static void __init permanent_kmaps_init(pgd_t *pgd_base)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+ unsigned long vaddr;
+
+ vaddr = PKMAP_BASE;
+ page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
+
+ pgd = swapper_pg_dir + pgd_index(vaddr);
+ pud = pud_offset(pgd, vaddr);
+ pmd = pmd_offset(pud, vaddr);
+ pte = pte_offset_kernel(pmd, vaddr);
+ pkmap_page_table = pte;
+}
+
+static void __meminit free_new_highpage(struct page *page)
+{
+ init_page_count(page);
+ __free_page(page);
+ totalhigh_pages++;
+}
+
+void __init add_one_highpage_init(struct page *page, int pfn, int bad_ppro)
+{
+ if (page_is_ram(pfn) && !(bad_ppro && page_kills_ppro(pfn))) {
+ ClearPageReserved(page);
+ free_new_highpage(page);
+ } else
+ SetPageReserved(page);
+}
+
+static int __meminit add_one_highpage_hotplug(struct page *page, unsigned long pfn)
+{
+ free_new_highpage(page);
+ totalram_pages++;
+#ifdef CONFIG_FLATMEM
+ max_mapnr = max(pfn, max_mapnr);
+#endif
+ num_physpages++;
+ return 0;
+}
+
+/*
+ * Not currently handling the NUMA case.
+ * Assuming single node and all memory that
+ * has been added dynamically that would be
+ * onlined here is in HIGHMEM
+ */
+void __meminit online_page(struct page *page)
+{
+ ClearPageReserved(page);
+ add_one_highpage_hotplug(page, page_to_pfn(page));
+}
+
+
+#ifdef CONFIG_NUMA
+extern void set_highmem_pages_init(int);
+#else
+static void __init set_highmem_pages_init(int bad_ppro)
+{
+ int pfn;
+ for (pfn = highstart_pfn; pfn < highend_pfn; pfn++)
+ add_one_highpage_init(pfn_to_page(pfn), pfn, bad_ppro);
+ totalram_pages += totalhigh_pages;
+}
+#endif /* CONFIG_FLATMEM */
+
+#else
+#define kmap_init() do { } while (0)
+#define permanent_kmaps_init(pgd_base) do { } while (0)
+#define set_highmem_pages_init(bad_ppro) do { } while (0)
+#endif /* CONFIG_HIGHMEM */
+
+unsigned long long __PAGE_KERNEL = _PAGE_KERNEL;
+EXPORT_SYMBOL(__PAGE_KERNEL);
+unsigned long long __PAGE_KERNEL_EXEC = _PAGE_KERNEL_EXEC;
+
+#ifdef CONFIG_NUMA
+extern void __init remap_numa_kva(void);
+#else
+#define remap_numa_kva() do {} while (0)
+#endif
+
+void __init native_pagetable_setup_start(pgd_t *base)
+{
+#ifdef CONFIG_X86_PAE
+ int i;
+
+ /*
+ * Init entries of the first-level page table to the
+ * zero page, if they haven't already been set up.
+ *
+ * In a normal native boot, we'll be running on a
+ * pagetable rooted in swapper_pg_dir, but not in PAE
+ * mode, so this will end up clobbering the mappings
+ * for the lower 24Mbytes of the address space,
+ * without affecting the kernel address space.
+ */
+ for (i = 0; i < USER_PTRS_PER_PGD; i++)
+ set_pgd(&base[i],
+ __pgd(__pa(empty_zero_page) | _PAGE_PRESENT));
+
+ /* Make sure kernel address space is empty so that a pagetable
+ will be allocated for it. */
+ memset(&base[USER_PTRS_PER_PGD], 0,
+ KERNEL_PGD_PTRS * sizeof(pgd_t));
+#else
+ paravirt_alloc_pd(__pa(swapper_pg_dir) >> PAGE_SHIFT);
+#endif
+}
+
+void __init native_pagetable_setup_done(pgd_t *base)
+{
+#ifdef CONFIG_X86_PAE
+ /*
+ * Add low memory identity-mappings - SMP needs it when
+ * starting up on an AP from real-mode. In the non-PAE
+ * case we already have these mappings through head.S.
+ * All user-space mappings are explicitly cleared after
+ * SMP startup.
+ */
+ set_pgd(&base[0], base[USER_PTRS_PER_PGD]);
+#endif
+}
+
+/*
+ * Build a proper pagetable for the kernel mappings. Up until this
+ * point, we've been running on some set of pagetables constructed by
+ * the boot process.
+ *
+ * If we're booting on native hardware, this will be a pagetable
+ * constructed in arch/i386/kernel/head.S, and not running in PAE mode
+ * (even if we'll end up running in PAE). The root of the pagetable
+ * will be swapper_pg_dir.
+ *
+ * If we're booting paravirtualized under a hypervisor, then there are
+ * more options: we may already be running PAE, and the pagetable may
+ * or may not be based in swapper_pg_dir. In any case,
+ * paravirt_pagetable_setup_start() will set up swapper_pg_dir
+ * appropriately for the rest of the initialization to work.
+ *
+ * In general, pagetable_init() assumes that the pagetable may already
+ * be partially populated, and so it avoids stomping on any existing
+ * mappings.
+ */
+static void __init pagetable_init (void)
+{
+ unsigned long vaddr, end;
+ pgd_t *pgd_base = swapper_pg_dir;
+
+ paravirt_pagetable_setup_start(pgd_base);
+
+ /* Enable PSE if available */
+ if (cpu_has_pse)
+ set_in_cr4(X86_CR4_PSE);
+
+ /* Enable PGE if available */
+ if (cpu_has_pge) {
+ set_in_cr4(X86_CR4_PGE);
+ __PAGE_KERNEL |= _PAGE_GLOBAL;
+ __PAGE_KERNEL_EXEC |= _PAGE_GLOBAL;
+ }
+
+ kernel_physical_mapping_init(pgd_base);
+ remap_numa_kva();
+
+ /*
+ * Fixed mappings, only the page table structure has to be
+ * created - mappings will be set by set_fixmap():
+ */
+ vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
+ end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
+ page_table_range_init(vaddr, end, pgd_base);
+
+ permanent_kmaps_init(pgd_base);
+
+ paravirt_pagetable_setup_done(pgd_base);
+}
+
+#if defined(CONFIG_HIBERNATION) || defined(CONFIG_ACPI)
+/*
+ * Swap suspend & friends need this for resume because things like the intel-agp
+ * driver might have split up a kernel 4MB mapping.
+ */
+char __nosavedata swsusp_pg_dir[PAGE_SIZE]
+ __attribute__ ((aligned (PAGE_SIZE)));
+
+static inline void save_pg_dir(void)
+{
+ memcpy(swsusp_pg_dir, swapper_pg_dir, PAGE_SIZE);
+}
+#else
+static inline void save_pg_dir(void)
+{
+}
+#endif
+
+void zap_low_mappings (void)
+{
+ int i;
+
+ save_pg_dir();
+
+ /*
+ * Zap initial low-memory mappings.
+ *
+ * Note that "pgd_clear()" doesn't do it for
+ * us, because pgd_clear() is a no-op on i386.
+ */
+ for (i = 0; i < USER_PTRS_PER_PGD; i++)
+#ifdef CONFIG_X86_PAE
+ set_pgd(swapper_pg_dir+i, __pgd(1 + __pa(empty_zero_page)));
+#else
+ set_pgd(swapper_pg_dir+i, __pgd(0));
+#endif
+ flush_tlb_all();
+}
+
+int nx_enabled = 0;
+
+#ifdef CONFIG_X86_PAE
+
+static int disable_nx __initdata = 0;
+u64 __supported_pte_mask __read_mostly = ~_PAGE_NX;
+EXPORT_SYMBOL_GPL(__supported_pte_mask);
+
+/*
+ * noexec = on|off
+ *
+ * Control non executable mappings.
+ *
+ * on Enable
+ * off Disable
+ */
+static int __init noexec_setup(char *str)
+{
+ if (!str || !strcmp(str, "on")) {
+ if (cpu_has_nx) {
+ __supported_pte_mask |= _PAGE_NX;
+ disable_nx = 0;
+ }
+ } else if (!strcmp(str,"off")) {
+ disable_nx = 1;
+ __supported_pte_mask &= ~_PAGE_NX;
+ } else
+ return -EINVAL;
+
+ return 0;
+}
+early_param("noexec", noexec_setup);
+
+static void __init set_nx(void)
+{
+ unsigned int v[4], l, h;
+
+ if (cpu_has_pae && (cpuid_eax(0x80000000) > 0x80000001)) {
+ cpuid(0x80000001, &v[0], &v[1], &v[2], &v[3]);
+ if ((v[3] & (1 << 20)) && !disable_nx) {
+ rdmsr(MSR_EFER, l, h);
+ l |= EFER_NX;
+ wrmsr(MSR_EFER, l, h);
+ nx_enabled = 1;
+ __supported_pte_mask |= _PAGE_NX;
+ }
+ }
+}
+
+/*
+ * Enables/disables executability of a given kernel page and
+ * returns the previous setting.
+ */
+int __init set_kernel_exec(unsigned long vaddr, int enable)
+{
+ pte_t *pte;
+ int ret = 1;
+
+ if (!nx_enabled)
+ goto out;
+
+ pte = lookup_address(vaddr);
+ BUG_ON(!pte);
+
+ if (!pte_exec_kernel(*pte))
+ ret = 0;
+
+ if (enable)
+ pte->pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
+ else
+ pte->pte_high |= 1 << (_PAGE_BIT_NX - 32);
+ pte_update_defer(&init_mm, vaddr, pte);
+ __flush_tlb_all();
+out:
+ return ret;
+}
+
+#endif
+
+/*
+ * paging_init() sets up the page tables - note that the first 8MB are
+ * already mapped by head.S.
+ *
+ * This routines also unmaps the page at virtual kernel address 0, so
+ * that we can trap those pesky NULL-reference errors in the kernel.
+ */
+void __init paging_init(void)
+{
+#ifdef CONFIG_X86_PAE
+ set_nx();
+ if (nx_enabled)
+ printk("NX (Execute Disable) protection: active\n");
+#endif
+
+ pagetable_init();
+
+ load_cr3(swapper_pg_dir);
+
+#ifdef CONFIG_X86_PAE
+ /*
+ * We will bail out later - printk doesn't work right now so
+ * the user would just see a hanging kernel.
+ */
+ if (cpu_has_pae)
+ set_in_cr4(X86_CR4_PAE);
+#endif
+ __flush_tlb_all();
+
+ kmap_init();
+}
+
+/*
+ * Test if the WP bit works in supervisor mode. It isn't supported on 386's
+ * and also on some strange 486's (NexGen etc.). All 586+'s are OK. This
+ * used to involve black magic jumps to work around some nasty CPU bugs,
+ * but fortunately the switch to using exceptions got rid of all that.
+ */
+
+static void __init test_wp_bit(void)
+{
+ printk("Checking if this processor honours the WP bit even in supervisor mode... ");
+
+ /* Any page-aligned address will do, the test is non-destructive */
+ __set_fixmap(FIX_WP_TEST, __pa(&swapper_pg_dir), PAGE_READONLY);
+ boot_cpu_data.wp_works_ok = do_test_wp_bit();
+ clear_fixmap(FIX_WP_TEST);
+
+ if (!boot_cpu_data.wp_works_ok) {
+ printk("No.\n");
+#ifdef CONFIG_X86_WP_WORKS_OK
+ panic("This kernel doesn't support CPU's with broken WP. Recompile it for a 386!");
+#endif
+ } else {
+ printk("Ok.\n");
+ }
+}
+
+static struct kcore_list kcore_mem, kcore_vmalloc;
+
+void __init mem_init(void)
+{
+ extern int ppro_with_ram_bug(void);
+ int codesize, reservedpages, datasize, initsize;
+ int tmp;
+ int bad_ppro;
+
+#ifdef CONFIG_FLATMEM
+ BUG_ON(!mem_map);
+#endif
+
+ bad_ppro = ppro_with_ram_bug();
+
+#ifdef CONFIG_HIGHMEM
+ /* check that fixmap and pkmap do not overlap */
+ if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) {
+ printk(KERN_ERR "fixmap and kmap areas overlap - this will crash\n");
+ printk(KERN_ERR "pkstart: %lxh pkend: %lxh fixstart %lxh\n",
+ PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, FIXADDR_START);
+ BUG();
+ }
+#endif
+
+ /* this will put all low memory onto the freelists */
+ totalram_pages += free_all_bootmem();
+
+ reservedpages = 0;
+ for (tmp = 0; tmp < max_low_pfn; tmp++)
+ /*
+ * Only count reserved RAM pages
+ */
+ if (page_is_ram(tmp) && PageReserved(pfn_to_page(tmp)))
+ reservedpages++;
+
+ set_highmem_pages_init(bad_ppro);
+
+ codesize = (unsigned long) &_etext - (unsigned long) &_text;
+ datasize = (unsigned long) &_edata - (unsigned long) &_etext;
+ initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
+
+ kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
+ kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
+ VMALLOC_END-VMALLOC_START);
+
+ printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk data, %dk init, %ldk highmem)\n",
+ (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
+ num_physpages << (PAGE_SHIFT-10),
+ codesize >> 10,
+ reservedpages << (PAGE_SHIFT-10),
+ datasize >> 10,
+ initsize >> 10,
+ (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
+ );
+
+#if 1 /* double-sanity-check paranoia */
+ printk("virtual kernel memory layout:\n"
+ " fixmap : 0x%08lx - 0x%08lx (%4ld kB)\n"
+#ifdef CONFIG_HIGHMEM
+ " pkmap : 0x%08lx - 0x%08lx (%4ld kB)\n"
+#endif
+ " vmalloc : 0x%08lx - 0x%08lx (%4ld MB)\n"
+ " lowmem : 0x%08lx - 0x%08lx (%4ld MB)\n"
+ " .init : 0x%08lx - 0x%08lx (%4ld kB)\n"
+ " .data : 0x%08lx - 0x%08lx (%4ld kB)\n"
+ " .text : 0x%08lx - 0x%08lx (%4ld kB)\n",
+ FIXADDR_START, FIXADDR_TOP,
+ (FIXADDR_TOP - FIXADDR_START) >> 10,
+
+#ifdef CONFIG_HIGHMEM
+ PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE,
+ (LAST_PKMAP*PAGE_SIZE) >> 10,
+#endif
+
+ VMALLOC_START, VMALLOC_END,
+ (VMALLOC_END - VMALLOC_START) >> 20,
+
+ (unsigned long)__va(0), (unsigned long)high_memory,
+ ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
+
+ (unsigned long)&__init_begin, (unsigned long)&__init_end,
+ ((unsigned long)&__init_end - (unsigned long)&__init_begin) >> 10,
+
+ (unsigned long)&_etext, (unsigned long)&_edata,
+ ((unsigned long)&_edata - (unsigned long)&_etext) >> 10,
+
+ (unsigned long)&_text, (unsigned long)&_etext,
+ ((unsigned long)&_etext - (unsigned long)&_text) >> 10);
+
+#ifdef CONFIG_HIGHMEM
+ BUG_ON(PKMAP_BASE+LAST_PKMAP*PAGE_SIZE > FIXADDR_START);
+ BUG_ON(VMALLOC_END > PKMAP_BASE);
+#endif
+ BUG_ON(VMALLOC_START > VMALLOC_END);
+ BUG_ON((unsigned long)high_memory > VMALLOC_START);
+#endif /* double-sanity-check paranoia */
+
+#ifdef CONFIG_X86_PAE
+ if (!cpu_has_pae)
+ panic("cannot execute a PAE-enabled kernel on a PAE-less CPU!");
+#endif
+ if (boot_cpu_data.wp_works_ok < 0)
+ test_wp_bit();
+
+ /*
+ * Subtle. SMP is doing it's boot stuff late (because it has to
+ * fork idle threads) - but it also needs low mappings for the
+ * protected-mode entry to work. We zap these entries only after
+ * the WP-bit has been tested.
+ */
+#ifndef CONFIG_SMP
+ zap_low_mappings();
+#endif
+}
+
+#ifdef CONFIG_MEMORY_HOTPLUG
+int arch_add_memory(int nid, u64 start, u64 size)
+{
+ struct pglist_data *pgdata = NODE_DATA(nid);
+ struct zone *zone = pgdata->node_zones + ZONE_HIGHMEM;
+ unsigned long start_pfn = start >> PAGE_SHIFT;
+ unsigned long nr_pages = size >> PAGE_SHIFT;
+
+ return __add_pages(zone, start_pfn, nr_pages);
+}
+
+int remove_memory(u64 start, u64 size)
+{
+ return -EINVAL;
+}
+EXPORT_SYMBOL_GPL(remove_memory);
+#endif
+
+struct kmem_cache *pmd_cache;
+
+void __init pgtable_cache_init(void)
+{
+ size_t pgd_size = PTRS_PER_PGD*sizeof(pgd_t);
+
+ if (PTRS_PER_PMD > 1) {
+ pmd_cache = kmem_cache_create("pmd",
+ PTRS_PER_PMD*sizeof(pmd_t),
+ PTRS_PER_PMD*sizeof(pmd_t),
+ SLAB_PANIC,
+ pmd_ctor);
+ if (!SHARED_KERNEL_PMD) {
+ /* If we're in PAE mode and have a non-shared
+ kernel pmd, then the pgd size must be a
+ page size. This is because the pgd_list
+ links through the page structure, so there
+ can only be one pgd per page for this to
+ work. */
+ pgd_size = PAGE_SIZE;
+ }
+ }
+}
+
+/*
+ * This function cannot be __init, since exceptions don't work in that
+ * section. Put this after the callers, so that it cannot be inlined.
+ */
+static int noinline do_test_wp_bit(void)
+{
+ char tmp_reg;
+ int flag;
+
+ __asm__ __volatile__(
+ " movb %0,%1 \n"
+ "1: movb %1,%0 \n"
+ " xorl %2,%2 \n"
+ "2: \n"
+ ".section __ex_table,\"a\"\n"
+ " .align 4 \n"
+ " .long 1b,2b \n"
+ ".previous \n"
+ :"=m" (*(char *)fix_to_virt(FIX_WP_TEST)),
+ "=q" (tmp_reg),
+ "=r" (flag)
+ :"2" (1)
+ :"memory");
+
+ return flag;
+}
+
+#ifdef CONFIG_DEBUG_RODATA
+
+void mark_rodata_ro(void)
+{
+ unsigned long start = PFN_ALIGN(_text);
+ unsigned long size = PFN_ALIGN(_etext) - start;
+
+#ifndef CONFIG_KPROBES
+#ifdef CONFIG_HOTPLUG_CPU
+ /* It must still be possible to apply SMP alternatives. */
+ if (num_possible_cpus() <= 1)
+#endif
+ {
+ change_page_attr(virt_to_page(start),
+ size >> PAGE_SHIFT, PAGE_KERNEL_RX);
+ printk("Write protecting the kernel text: %luk\n", size >> 10);
+ }
+#endif
+ start += size;
+ size = (unsigned long)__end_rodata - start;
+ change_page_attr(virt_to_page(start),
+ size >> PAGE_SHIFT, PAGE_KERNEL_RO);
+ printk("Write protecting the kernel read-only data: %luk\n",
+ size >> 10);
+
+ /*
+ * change_page_attr() requires a global_flush_tlb() call after it.
+ * We do this after the printk so that if something went wrong in the
+ * change, the printk gets out at least to give a better debug hint
+ * of who is the culprit.
+ */
+ global_flush_tlb();
+}
+#endif
+
+void free_init_pages(char *what, unsigned long begin, unsigned long end)
+{
+ unsigned long addr;
+
+ for (addr = begin; addr < end; addr += PAGE_SIZE) {
+ ClearPageReserved(virt_to_page(addr));
+ init_page_count(virt_to_page(addr));
+ memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
+ free_page(addr);
+ totalram_pages++;
+ }
+ printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
+}
+
+void free_initmem(void)
+{
+ free_init_pages("unused kernel memory",
+ (unsigned long)(&__init_begin),
+ (unsigned long)(&__init_end));
+}
+
+#ifdef CONFIG_BLK_DEV_INITRD
+void free_initrd_mem(unsigned long start, unsigned long end)
+{
+ free_init_pages("initrd memory", start, end);
+}
+#endif
+
diff --git a/arch/x86/mm/ioremap_32.c b/arch/x86/mm/ioremap_32.c
new file mode 100644
index 0000000..0b27831
--- /dev/null
+++ b/arch/x86/mm/ioremap_32.c
@@ -0,0 +1,274 @@
+/*
+ * arch/i386/mm/ioremap.c
+ *
+ * Re-map IO memory to kernel address space so that we can access it.
+ * This is needed for high PCI addresses that aren't mapped in the
+ * 640k-1MB IO memory area on PC's
+ *
+ * (C) Copyright 1995 1996 Linus Torvalds
+ */
+
+#include <linux/vmalloc.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/io.h>
+#include <asm/fixmap.h>
+#include <asm/cacheflush.h>
+#include <asm/tlbflush.h>
+#include <asm/pgtable.h>
+
+#define ISA_START_ADDRESS 0xa0000
+#define ISA_END_ADDRESS 0x100000
+
+/*
+ * Generic mapping function (not visible outside):
+ */
+
+/*
+ * Remap an arbitrary physical address space into the kernel virtual
+ * address space. Needed when the kernel wants to access high addresses
+ * directly.
+ *
+ * NOTE! We need to allow non-page-aligned mappings too: we will obviously
+ * have to convert them into an offset in a page-aligned mapping, but the
+ * caller shouldn't need to know that small detail.
+ */
+void __iomem * __ioremap(unsigned long phys_addr, unsigned long size, unsigned long flags)
+{
+ void __iomem * addr;
+ struct vm_struct * area;
+ unsigned long offset, last_addr;
+ pgprot_t prot;
+
+ /* Don't allow wraparound or zero size */
+ last_addr = phys_addr + size - 1;
+ if (!size || last_addr < phys_addr)
+ return NULL;
+
+ /*
+ * Don't remap the low PCI/ISA area, it's always mapped..
+ */
+ if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS)
+ return (void __iomem *) phys_to_virt(phys_addr);
+
+ /*
+ * Don't allow anybody to remap normal RAM that we're using..
+ */
+ if (phys_addr <= virt_to_phys(high_memory - 1)) {
+ char *t_addr, *t_end;
+ struct page *page;
+
+ t_addr = __va(phys_addr);
+ t_end = t_addr + (size - 1);
+
+ for(page = virt_to_page(t_addr); page <= virt_to_page(t_end); page++)
+ if(!PageReserved(page))
+ return NULL;
+ }
+
+ prot = __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY
+ | _PAGE_ACCESSED | flags);
+
+ /*
+ * Mappings have to be page-aligned
+ */
+ offset = phys_addr & ~PAGE_MASK;
+ phys_addr &= PAGE_MASK;
+ size = PAGE_ALIGN(last_addr+1) - phys_addr;
+
+ /*
+ * Ok, go for it..
+ */
+ area = get_vm_area(size, VM_IOREMAP | (flags << 20));
+ if (!area)
+ return NULL;
+ area->phys_addr = phys_addr;
+ addr = (void __iomem *) area->addr;
+ if (ioremap_page_range((unsigned long) addr,
+ (unsigned long) addr + size, phys_addr, prot)) {
+ vunmap((void __force *) addr);
+ return NULL;
+ }
+ return (void __iomem *) (offset + (char __iomem *)addr);
+}
+EXPORT_SYMBOL(__ioremap);
+
+/**
+ * ioremap_nocache - map bus memory into CPU space
+ * @offset: bus address of the memory
+ * @size: size of the resource to map
+ *
+ * ioremap_nocache performs a platform specific sequence of operations to
+ * make bus memory CPU accessible via the readb/readw/readl/writeb/
+ * writew/writel functions and the other mmio helpers. The returned
+ * address is not guaranteed to be usable directly as a virtual
+ * address.
+ *
+ * This version of ioremap ensures that the memory is marked uncachable
+ * on the CPU as well as honouring existing caching rules from things like
+ * the PCI bus. Note that there are other caches and buffers on many
+ * busses. In particular driver authors should read up on PCI writes
+ *
+ * It's useful if some control registers are in such an area and
+ * write combining or read caching is not desirable:
+ *
+ * Must be freed with iounmap.
+ */
+
+void __iomem *ioremap_nocache (unsigned long phys_addr, unsigned long size)
+{
+ unsigned long last_addr;
+ void __iomem *p = __ioremap(phys_addr, size, _PAGE_PCD);
+ if (!p)
+ return p;
+
+ /* Guaranteed to be > phys_addr, as per __ioremap() */
+ last_addr = phys_addr + size - 1;
+
+ if (last_addr < virt_to_phys(high_memory) - 1) {
+ struct page *ppage = virt_to_page(__va(phys_addr));
+ unsigned long npages;
+
+ phys_addr &= PAGE_MASK;
+
+ /* This might overflow and become zero.. */
+ last_addr = PAGE_ALIGN(last_addr);
+
+ /* .. but that's ok, because modulo-2**n arithmetic will make
+ * the page-aligned "last - first" come out right.
+ */
+ npages = (last_addr - phys_addr) >> PAGE_SHIFT;
+
+ if (change_page_attr(ppage, npages, PAGE_KERNEL_NOCACHE) < 0) {
+ iounmap(p);
+ p = NULL;
+ }
+ global_flush_tlb();
+ }
+
+ return p;
+}
+EXPORT_SYMBOL(ioremap_nocache);
+
+/**
+ * iounmap - Free a IO remapping
+ * @addr: virtual address from ioremap_*
+ *
+ * Caller must ensure there is only one unmapping for the same pointer.
+ */
+void iounmap(volatile void __iomem *addr)
+{
+ struct vm_struct *p, *o;
+
+ if ((void __force *)addr <= high_memory)
+ return;
+
+ /*
+ * __ioremap special-cases the PCI/ISA range by not instantiating a
+ * vm_area and by simply returning an address into the kernel mapping
+ * of ISA space. So handle that here.
+ */
+ if (addr >= phys_to_virt(ISA_START_ADDRESS) &&
+ addr < phys_to_virt(ISA_END_ADDRESS))
+ return;
+
+ addr = (volatile void __iomem *)(PAGE_MASK & (unsigned long __force)addr);
+
+ /* Use the vm area unlocked, assuming the caller
+ ensures there isn't another iounmap for the same address
+ in parallel. Reuse of the virtual address is prevented by
+ leaving it in the global lists until we're done with it.
+ cpa takes care of the direct mappings. */
+ read_lock(&vmlist_lock);
+ for (p = vmlist; p; p = p->next) {
+ if (p->addr == addr)
+ break;
+ }
+ read_unlock(&vmlist_lock);
+
+ if (!p) {
+ printk("iounmap: bad address %p\n", addr);
+ dump_stack();
+ return;
+ }
+
+ /* Reset the direct mapping. Can block */
+ if ((p->flags >> 20) && p->phys_addr < virt_to_phys(high_memory) - 1) {
+ change_page_attr(virt_to_page(__va(p->phys_addr)),
+ get_vm_area_size(p) >> PAGE_SHIFT,
+ PAGE_KERNEL);
+ global_flush_tlb();
+ }
+
+ /* Finally remove it */
+ o = remove_vm_area((void *)addr);
+ BUG_ON(p != o || o == NULL);
+ kfree(p);
+}
+EXPORT_SYMBOL(iounmap);
+
+void __init *bt_ioremap(unsigned long phys_addr, unsigned long size)
+{
+ unsigned long offset, last_addr;
+ unsigned int nrpages;
+ enum fixed_addresses idx;
+
+ /* Don't allow wraparound or zero size */
+ last_addr = phys_addr + size - 1;
+ if (!size || last_addr < phys_addr)
+ return NULL;
+
+ /*
+ * Don't remap the low PCI/ISA area, it's always mapped..
+ */
+ if (phys_addr >= ISA_START_ADDRESS && last_addr < ISA_END_ADDRESS)
+ return phys_to_virt(phys_addr);
+
+ /*
+ * Mappings have to be page-aligned
+ */
+ offset = phys_addr & ~PAGE_MASK;
+ phys_addr &= PAGE_MASK;
+ size = PAGE_ALIGN(last_addr) - phys_addr;
+
+ /*
+ * Mappings have to fit in the FIX_BTMAP area.
+ */
+ nrpages = size >> PAGE_SHIFT;
+ if (nrpages > NR_FIX_BTMAPS)
+ return NULL;
+
+ /*
+ * Ok, go for it..
+ */
+ idx = FIX_BTMAP_BEGIN;
+ while (nrpages > 0) {
+ set_fixmap(idx, phys_addr);
+ phys_addr += PAGE_SIZE;
+ --idx;
+ --nrpages;
+ }
+ return (void*) (offset + fix_to_virt(FIX_BTMAP_BEGIN));
+}
+
+void __init bt_iounmap(void *addr, unsigned long size)
+{
+ unsigned long virt_addr;
+ unsigned long offset;
+ unsigned int nrpages;
+ enum fixed_addresses idx;
+
+ virt_addr = (unsigned long)addr;
+ if (virt_addr < fix_to_virt(FIX_BTMAP_BEGIN))
+ return;
+ offset = virt_addr & ~PAGE_MASK;
+ nrpages = PAGE_ALIGN(offset + size - 1) >> PAGE_SHIFT;
+
+ idx = FIX_BTMAP_BEGIN;
+ while (nrpages > 0) {
+ clear_fixmap(idx);
+ --idx;
+ --nrpages;
+ }
+}
diff --git a/arch/x86/mm/mmap_32.c b/arch/x86/mm/mmap_32.c
new file mode 100644
index 0000000..552e084
--- /dev/null
+++ b/arch/x86/mm/mmap_32.c
@@ -0,0 +1,77 @@
+/*
+ * linux/arch/i386/mm/mmap.c
+ *
+ * flexible mmap layout support
+ *
+ * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
+ * All Rights Reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ *
+ *
+ * Started by Ingo Molnar <mingo@elte.hu>
+ */
+
+#include <linux/personality.h>
+#include <linux/mm.h>
+#include <linux/random.h>
+#include <linux/sched.h>
+
+/*
+ * Top of mmap area (just below the process stack).
+ *
+ * Leave an at least ~128 MB hole.
+ */
+#define MIN_GAP (128*1024*1024)
+#define MAX_GAP (TASK_SIZE/6*5)
+
+static inline unsigned long mmap_base(struct mm_struct *mm)
+{
+ unsigned long gap = current->signal->rlim[RLIMIT_STACK].rlim_cur;
+ unsigned long random_factor = 0;
+
+ if (current->flags & PF_RANDOMIZE)
+ random_factor = get_random_int() % (1024*1024);
+
+ if (gap < MIN_GAP)
+ gap = MIN_GAP;
+ else if (gap > MAX_GAP)
+ gap = MAX_GAP;
+
+ return PAGE_ALIGN(TASK_SIZE - gap - random_factor);
+}
+
+/*
+ * This function, called very early during the creation of a new
+ * process VM image, sets up which VM layout function to use:
+ */
+void arch_pick_mmap_layout(struct mm_struct *mm)
+{
+ /*
+ * Fall back to the standard layout if the personality
+ * bit is set, or if the expected stack growth is unlimited:
+ */
+ if (sysctl_legacy_va_layout ||
+ (current->personality & ADDR_COMPAT_LAYOUT) ||
+ current->signal->rlim[RLIMIT_STACK].rlim_cur == RLIM_INFINITY) {
+ mm->mmap_base = TASK_UNMAPPED_BASE;
+ mm->get_unmapped_area = arch_get_unmapped_area;
+ mm->unmap_area = arch_unmap_area;
+ } else {
+ mm->mmap_base = mmap_base(mm);
+ mm->get_unmapped_area = arch_get_unmapped_area_topdown;
+ mm->unmap_area = arch_unmap_area_topdown;
+ }
+}
diff --git a/arch/x86/mm/pageattr_32.c b/arch/x86/mm/pageattr_32.c
new file mode 100644
index 0000000..4241a74
--- /dev/null
+++ b/arch/x86/mm/pageattr_32.c
@@ -0,0 +1,278 @@
+/*
+ * Copyright 2002 Andi Kleen, SuSE Labs.
+ * Thanks to Ben LaHaise for precious feedback.
+ */
+
+#include <linux/mm.h>
+#include <linux/sched.h>
+#include <linux/highmem.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <asm/uaccess.h>
+#include <asm/processor.h>
+#include <asm/tlbflush.h>
+#include <asm/pgalloc.h>
+#include <asm/sections.h>
+
+static DEFINE_SPINLOCK(cpa_lock);
+static struct list_head df_list = LIST_HEAD_INIT(df_list);
+
+
+pte_t *lookup_address(unsigned long address)
+{
+ pgd_t *pgd = pgd_offset_k(address);
+ pud_t *pud;
+ pmd_t *pmd;
+ if (pgd_none(*pgd))
+ return NULL;
+ pud = pud_offset(pgd, address);
+ if (pud_none(*pud))
+ return NULL;
+ pmd = pmd_offset(pud, address);
+ if (pmd_none(*pmd))
+ return NULL;
+ if (pmd_large(*pmd))
+ return (pte_t *)pmd;
+ return pte_offset_kernel(pmd, address);
+}
+
+static struct page *split_large_page(unsigned long address, pgprot_t prot,
+ pgprot_t ref_prot)
+{
+ int i;
+ unsigned long addr;
+ struct page *base;
+ pte_t *pbase;
+
+ spin_unlock_irq(&cpa_lock);
+ base = alloc_pages(GFP_KERNEL, 0);
+ spin_lock_irq(&cpa_lock);
+ if (!base)
+ return NULL;
+
+ /*
+ * page_private is used to track the number of entries in
+ * the page table page that have non standard attributes.
+ */
+ SetPagePrivate(base);
+ page_private(base) = 0;
+
+ address = __pa(address);
+ addr = address & LARGE_PAGE_MASK;
+ pbase = (pte_t *)page_address(base);
+ paravirt_alloc_pt(&init_mm, page_to_pfn(base));
+ for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
+ set_pte(&pbase[i], pfn_pte(addr >> PAGE_SHIFT,
+ addr == address ? prot : ref_prot));
+ }
+ return base;
+}
+
+static void cache_flush_page(struct page *p)
+{
+ unsigned long adr = (unsigned long)page_address(p);
+ int i;
+ for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
+ asm volatile("clflush (%0)" :: "r" (adr + i));
+}
+
+static void flush_kernel_map(void *arg)
+{
+ struct list_head *lh = (struct list_head *)arg;
+ struct page *p;
+
+ /* High level code is not ready for clflush yet */
+ if (0 && cpu_has_clflush) {
+ list_for_each_entry (p, lh, lru)
+ cache_flush_page(p);
+ } else if (boot_cpu_data.x86_model >= 4)
+ wbinvd();
+
+ /* Flush all to work around Errata in early athlons regarding
+ * large page flushing.
+ */
+ __flush_tlb_all();
+}
+
+static void set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
+{
+ struct page *page;
+ unsigned long flags;
+
+ set_pte_atomic(kpte, pte); /* change init_mm */
+ if (SHARED_KERNEL_PMD)
+ return;
+
+ spin_lock_irqsave(&pgd_lock, flags);
+ for (page = pgd_list; page; page = (struct page *)page->index) {
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pgd = (pgd_t *)page_address(page) + pgd_index(address);
+ pud = pud_offset(pgd, address);
+ pmd = pmd_offset(pud, address);
+ set_pte_atomic((pte_t *)pmd, pte);
+ }
+ spin_unlock_irqrestore(&pgd_lock, flags);
+}
+
+/*
+ * No more special protections in this 2/4MB area - revert to a
+ * large page again.
+ */
+static inline void revert_page(struct page *kpte_page, unsigned long address)
+{
+ pgprot_t ref_prot;
+ pte_t *linear;
+
+ ref_prot =
+ ((address & LARGE_PAGE_MASK) < (unsigned long)&_etext)
+ ? PAGE_KERNEL_LARGE_EXEC : PAGE_KERNEL_LARGE;
+
+ linear = (pte_t *)
+ pmd_offset(pud_offset(pgd_offset_k(address), address), address);
+ set_pmd_pte(linear, address,
+ pfn_pte((__pa(address) & LARGE_PAGE_MASK) >> PAGE_SHIFT,
+ ref_prot));
+}
+
+static inline void save_page(struct page *kpte_page)
+{
+ if (!test_and_set_bit(PG_arch_1, &kpte_page->flags))
+ list_add(&kpte_page->lru, &df_list);
+}
+
+static int
+__change_page_attr(struct page *page, pgprot_t prot)
+{
+ pte_t *kpte;
+ unsigned long address;
+ struct page *kpte_page;
+
+ BUG_ON(PageHighMem(page));
+ address = (unsigned long)page_address(page);
+
+ kpte = lookup_address(address);
+ if (!kpte)
+ return -EINVAL;
+ kpte_page = virt_to_page(kpte);
+ BUG_ON(PageLRU(kpte_page));
+ BUG_ON(PageCompound(kpte_page));
+
+ if (pgprot_val(prot) != pgprot_val(PAGE_KERNEL)) {
+ if (!pte_huge(*kpte)) {
+ set_pte_atomic(kpte, mk_pte(page, prot));
+ } else {
+ pgprot_t ref_prot;
+ struct page *split;
+
+ ref_prot =
+ ((address & LARGE_PAGE_MASK) < (unsigned long)&_etext)
+ ? PAGE_KERNEL_EXEC : PAGE_KERNEL;
+ split = split_large_page(address, prot, ref_prot);
+ if (!split)
+ return -ENOMEM;
+ set_pmd_pte(kpte,address,mk_pte(split, ref_prot));
+ kpte_page = split;
+ }
+ page_private(kpte_page)++;
+ } else if (!pte_huge(*kpte)) {
+ set_pte_atomic(kpte, mk_pte(page, PAGE_KERNEL));
+ BUG_ON(page_private(kpte_page) == 0);
+ page_private(kpte_page)--;
+ } else
+ BUG();
+
+ /*
+ * If the pte was reserved, it means it was created at boot
+ * time (not via split_large_page) and in turn we must not
+ * replace it with a largepage.
+ */
+
+ save_page(kpte_page);
+ if (!PageReserved(kpte_page)) {
+ if (cpu_has_pse && (page_private(kpte_page) == 0)) {
+ paravirt_release_pt(page_to_pfn(kpte_page));
+ revert_page(kpte_page, address);
+ }
+ }
+ return 0;
+}
+
+static inline void flush_map(struct list_head *l)
+{
+ on_each_cpu(flush_kernel_map, l, 1, 1);
+}
+
+/*
+ * Change the page attributes of an page in the linear mapping.
+ *
+ * This should be used when a page is mapped with a different caching policy
+ * than write-back somewhere - some CPUs do not like it when mappings with
+ * different caching policies exist. This changes the page attributes of the
+ * in kernel linear mapping too.
+ *
+ * The caller needs to ensure that there are no conflicting mappings elsewhere.
+ * This function only deals with the kernel linear map.
+ *
+ * Caller must call global_flush_tlb() after this.
+ */
+int change_page_attr(struct page *page, int numpages, pgprot_t prot)
+{
+ int err = 0;
+ int i;
+ unsigned long flags;
+
+ spin_lock_irqsave(&cpa_lock, flags);
+ for (i = 0; i < numpages; i++, page++) {
+ err = __change_page_attr(page, prot);
+ if (err)
+ break;
+ }
+ spin_unlock_irqrestore(&cpa_lock, flags);
+ return err;
+}
+
+void global_flush_tlb(void)
+{
+ struct list_head l;
+ struct page *pg, *next;
+
+ BUG_ON(irqs_disabled());
+
+ spin_lock_irq(&cpa_lock);
+ list_replace_init(&df_list, &l);
+ spin_unlock_irq(&cpa_lock);
+ flush_map(&l);
+ list_for_each_entry_safe(pg, next, &l, lru) {
+ list_del(&pg->lru);
+ clear_bit(PG_arch_1, &pg->flags);
+ if (PageReserved(pg) || !cpu_has_pse || page_private(pg) != 0)
+ continue;
+ ClearPagePrivate(pg);
+ __free_page(pg);
+ }
+}
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+void kernel_map_pages(struct page *page, int numpages, int enable)
+{
+ if (PageHighMem(page))
+ return;
+ if (!enable)
+ debug_check_no_locks_freed(page_address(page),
+ numpages * PAGE_SIZE);
+
+ /* the return value is ignored - the calls cannot fail,
+ * large pages are disabled at boot time.
+ */
+ change_page_attr(page, numpages, enable ? PAGE_KERNEL : __pgprot(0));
+ /* we should perform an IPI and flush all tlbs,
+ * but that can deadlock->flush only current cpu.
+ */
+ __flush_tlb_all();
+}
+#endif
+
+EXPORT_SYMBOL(change_page_attr);
+EXPORT_SYMBOL(global_flush_tlb);
diff --git a/arch/x86/mm/pgtable_32.c b/arch/x86/mm/pgtable_32.c
new file mode 100644
index 0000000..01437c4
--- /dev/null
+++ b/arch/x86/mm/pgtable_32.c
@@ -0,0 +1,373 @@
+/*
+ * linux/arch/i386/mm/pgtable.c
+ */
+
+#include <linux/sched.h>
+#include <linux/kernel.h>
+#include <linux/errno.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/smp.h>
+#include <linux/highmem.h>
+#include <linux/slab.h>
+#include <linux/pagemap.h>
+#include <linux/spinlock.h>
+#include <linux/module.h>
+#include <linux/quicklist.h>
+
+#include <asm/system.h>
+#include <asm/pgtable.h>
+#include <asm/pgalloc.h>
+#include <asm/fixmap.h>
+#include <asm/e820.h>
+#include <asm/tlb.h>
+#include <asm/tlbflush.h>
+
+void show_mem(void)
+{
+ int total = 0, reserved = 0;
+ int shared = 0, cached = 0;
+ int highmem = 0;
+ struct page *page;
+ pg_data_t *pgdat;
+ unsigned long i;
+ unsigned long flags;
+
+ printk(KERN_INFO "Mem-info:\n");
+ show_free_areas();
+ printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
+ for_each_online_pgdat(pgdat) {
+ pgdat_resize_lock(pgdat, &flags);
+ for (i = 0; i < pgdat->node_spanned_pages; ++i) {
+ page = pgdat_page_nr(pgdat, i);
+ total++;
+ if (PageHighMem(page))
+ highmem++;
+ if (PageReserved(page))
+ reserved++;
+ else if (PageSwapCache(page))
+ cached++;
+ else if (page_count(page))
+ shared += page_count(page) - 1;
+ }
+ pgdat_resize_unlock(pgdat, &flags);
+ }
+ printk(KERN_INFO "%d pages of RAM\n", total);
+ printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
+ printk(KERN_INFO "%d reserved pages\n", reserved);
+ printk(KERN_INFO "%d pages shared\n", shared);
+ printk(KERN_INFO "%d pages swap cached\n", cached);
+
+ printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
+ printk(KERN_INFO "%lu pages writeback\n",
+ global_page_state(NR_WRITEBACK));
+ printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
+ printk(KERN_INFO "%lu pages slab\n",
+ global_page_state(NR_SLAB_RECLAIMABLE) +
+ global_page_state(NR_SLAB_UNRECLAIMABLE));
+ printk(KERN_INFO "%lu pages pagetables\n",
+ global_page_state(NR_PAGETABLE));
+}
+
+/*
+ * Associate a virtual page frame with a given physical page frame
+ * and protection flags for that frame.
+ */
+static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+ pte_t *pte;
+
+ pgd = swapper_pg_dir + pgd_index(vaddr);
+ if (pgd_none(*pgd)) {
+ BUG();
+ return;
+ }
+ pud = pud_offset(pgd, vaddr);
+ if (pud_none(*pud)) {
+ BUG();
+ return;
+ }
+ pmd = pmd_offset(pud, vaddr);
+ if (pmd_none(*pmd)) {
+ BUG();
+ return;
+ }
+ pte = pte_offset_kernel(pmd, vaddr);
+ if (pgprot_val(flags))
+ /* <pfn,flags> stored as-is, to permit clearing entries */
+ set_pte(pte, pfn_pte(pfn, flags));
+ else
+ pte_clear(&init_mm, vaddr, pte);
+
+ /*
+ * It's enough to flush this one mapping.
+ * (PGE mappings get flushed as well)
+ */
+ __flush_tlb_one(vaddr);
+}
+
+/*
+ * Associate a large virtual page frame with a given physical page frame
+ * and protection flags for that frame. pfn is for the base of the page,
+ * vaddr is what the page gets mapped to - both must be properly aligned.
+ * The pmd must already be instantiated. Assumes PAE mode.
+ */
+void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
+{
+ pgd_t *pgd;
+ pud_t *pud;
+ pmd_t *pmd;
+
+ if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
+ printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
+ return; /* BUG(); */
+ }
+ if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
+ printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
+ return; /* BUG(); */
+ }
+ pgd = swapper_pg_dir + pgd_index(vaddr);
+ if (pgd_none(*pgd)) {
+ printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
+ return; /* BUG(); */
+ }
+ pud = pud_offset(pgd, vaddr);
+ pmd = pmd_offset(pud, vaddr);
+ set_pmd(pmd, pfn_pmd(pfn, flags));
+ /*
+ * It's enough to flush this one mapping.
+ * (PGE mappings get flushed as well)
+ */
+ __flush_tlb_one(vaddr);
+}
+
+static int fixmaps;
+unsigned long __FIXADDR_TOP = 0xfffff000;
+EXPORT_SYMBOL(__FIXADDR_TOP);
+
+void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
+{
+ unsigned long address = __fix_to_virt(idx);
+
+ if (idx >= __end_of_fixed_addresses) {
+ BUG();
+ return;
+ }
+ set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
+ fixmaps++;
+}
+
+/**
+ * reserve_top_address - reserves a hole in the top of kernel address space
+ * @reserve - size of hole to reserve
+ *
+ * Can be used to relocate the fixmap area and poke a hole in the top
+ * of kernel address space to make room for a hypervisor.
+ */
+void reserve_top_address(unsigned long reserve)
+{
+ BUG_ON(fixmaps > 0);
+ printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
+ (int)-reserve);
+ __FIXADDR_TOP = -reserve - PAGE_SIZE;
+ __VMALLOC_RESERVE += reserve;
+}
+
+pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
+{
+ return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
+}
+
+struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
+{
+ struct page *pte;
+
+#ifdef CONFIG_HIGHPTE
+ pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
+#else
+ pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
+#endif
+ return pte;
+}
+
+void pmd_ctor(void *pmd, struct kmem_cache *cache, unsigned long flags)
+{
+ memset(pmd, 0, PTRS_PER_PMD*sizeof(pmd_t));
+}
+
+/*
+ * List of all pgd's needed for non-PAE so it can invalidate entries
+ * in both cached and uncached pgd's; not needed for PAE since the
+ * kernel pmd is shared. If PAE were not to share the pmd a similar
+ * tactic would be needed. This is essentially codepath-based locking
+ * against pageattr.c; it is the unique case in which a valid change
+ * of kernel pagetables can't be lazily synchronized by vmalloc faults.
+ * vmalloc faults work because attached pagetables are never freed.
+ * -- wli
+ */
+DEFINE_SPINLOCK(pgd_lock);
+struct page *pgd_list;
+
+static inline void pgd_list_add(pgd_t *pgd)
+{
+ struct page *page = virt_to_page(pgd);
+ page->index = (unsigned long)pgd_list;
+ if (pgd_list)
+ set_page_private(pgd_list, (unsigned long)&page->index);
+ pgd_list = page;
+ set_page_private(page, (unsigned long)&pgd_list);
+}
+
+static inline void pgd_list_del(pgd_t *pgd)
+{
+ struct page *next, **pprev, *page = virt_to_page(pgd);
+ next = (struct page *)page->index;
+ pprev = (struct page **)page_private(page);
+ *pprev = next;
+ if (next)
+ set_page_private(next, (unsigned long)pprev);
+}
+
+
+
+#if (PTRS_PER_PMD == 1)
+/* Non-PAE pgd constructor */
+static void pgd_ctor(void *pgd)
+{
+ unsigned long flags;
+
+ /* !PAE, no pagetable sharing */
+ memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
+
+ spin_lock_irqsave(&pgd_lock, flags);
+
+ /* must happen under lock */
+ clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
+ swapper_pg_dir + USER_PTRS_PER_PGD,
+ KERNEL_PGD_PTRS);
+ paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT,
+ __pa(swapper_pg_dir) >> PAGE_SHIFT,
+ USER_PTRS_PER_PGD,
+ KERNEL_PGD_PTRS);
+ pgd_list_add(pgd);
+ spin_unlock_irqrestore(&pgd_lock, flags);
+}
+#else /* PTRS_PER_PMD > 1 */
+/* PAE pgd constructor */
+static void pgd_ctor(void *pgd)
+{
+ /* PAE, kernel PMD may be shared */
+
+ if (SHARED_KERNEL_PMD) {
+ clone_pgd_range((pgd_t *)pgd + USER_PTRS_PER_PGD,
+ swapper_pg_dir + USER_PTRS_PER_PGD,
+ KERNEL_PGD_PTRS);
+ } else {
+ unsigned long flags;
+
+ memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
+ spin_lock_irqsave(&pgd_lock, flags);
+ pgd_list_add(pgd);
+ spin_unlock_irqrestore(&pgd_lock, flags);
+ }
+}
+#endif /* PTRS_PER_PMD */
+
+static void pgd_dtor(void *pgd)
+{
+ unsigned long flags; /* can be called from interrupt context */
+
+ if (SHARED_KERNEL_PMD)
+ return;
+
+ paravirt_release_pd(__pa(pgd) >> PAGE_SHIFT);
+ spin_lock_irqsave(&pgd_lock, flags);
+ pgd_list_del(pgd);
+ spin_unlock_irqrestore(&pgd_lock, flags);
+}
+
+#define UNSHARED_PTRS_PER_PGD \
+ (SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD)
+
+/* If we allocate a pmd for part of the kernel address space, then
+ make sure its initialized with the appropriate kernel mappings.
+ Otherwise use a cached zeroed pmd. */
+static pmd_t *pmd_cache_alloc(int idx)
+{
+ pmd_t *pmd;
+
+ if (idx >= USER_PTRS_PER_PGD) {
+ pmd = (pmd_t *)__get_free_page(GFP_KERNEL);
+
+ if (pmd)
+ memcpy(pmd,
+ (void *)pgd_page_vaddr(swapper_pg_dir[idx]),
+ sizeof(pmd_t) * PTRS_PER_PMD);
+ } else
+ pmd = kmem_cache_alloc(pmd_cache, GFP_KERNEL);
+
+ return pmd;
+}
+
+static void pmd_cache_free(pmd_t *pmd, int idx)
+{
+ if (idx >= USER_PTRS_PER_PGD)
+ free_page((unsigned long)pmd);
+ else
+ kmem_cache_free(pmd_cache, pmd);
+}
+
+pgd_t *pgd_alloc(struct mm_struct *mm)
+{
+ int i;
+ pgd_t *pgd = quicklist_alloc(0, GFP_KERNEL, pgd_ctor);
+
+ if (PTRS_PER_PMD == 1 || !pgd)
+ return pgd;
+
+ for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) {
+ pmd_t *pmd = pmd_cache_alloc(i);
+
+ if (!pmd)
+ goto out_oom;
+
+ paravirt_alloc_pd(__pa(pmd) >> PAGE_SHIFT);
+ set_pgd(&pgd[i], __pgd(1 + __pa(pmd)));
+ }
+ return pgd;
+
+out_oom:
+ for (i--; i >= 0; i--) {
+ pgd_t pgdent = pgd[i];
+ void* pmd = (void *)__va(pgd_val(pgdent)-1);
+ paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
+ pmd_cache_free(pmd, i);
+ }
+ quicklist_free(0, pgd_dtor, pgd);
+ return NULL;
+}
+
+void pgd_free(pgd_t *pgd)
+{
+ int i;
+
+ /* in the PAE case user pgd entries are overwritten before usage */
+ if (PTRS_PER_PMD > 1)
+ for (i = 0; i < UNSHARED_PTRS_PER_PGD; ++i) {
+ pgd_t pgdent = pgd[i];
+ void* pmd = (void *)__va(pgd_val(pgdent)-1);
+ paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
+ pmd_cache_free(pmd, i);
+ }
+ /* in the non-PAE case, free_pgtables() clears user pgd entries */
+ quicklist_free(0, pgd_dtor, pgd);
+}
+
+void check_pgt_cache(void)
+{
+ quicklist_trim(0, pgd_dtor, 25, 16);
+}
+
OpenPOWER on IntegriCloud