summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/mmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/mmu.c')
-rw-r--r--arch/x86/kvm/mmu.c1885
1 files changed, 1885 insertions, 0 deletions
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
new file mode 100644
index 0000000..8efdcdb
--- /dev/null
+++ b/arch/x86/kvm/mmu.c
@@ -0,0 +1,1885 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * This module enables machines with Intel VT-x extensions to run virtual
+ * machines without emulation or binary translation.
+ *
+ * MMU support
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ *
+ * Authors:
+ * Yaniv Kamay <yaniv@qumranet.com>
+ * Avi Kivity <avi@qumranet.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include "vmx.h"
+#include "mmu.h"
+
+#include <linux/kvm_host.h>
+#include <linux/types.h>
+#include <linux/string.h>
+#include <linux/mm.h>
+#include <linux/highmem.h>
+#include <linux/module.h>
+#include <linux/swap.h>
+
+#include <asm/page.h>
+#include <asm/cmpxchg.h>
+#include <asm/io.h>
+
+#undef MMU_DEBUG
+
+#undef AUDIT
+
+#ifdef AUDIT
+static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
+#else
+static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
+#endif
+
+#ifdef MMU_DEBUG
+
+#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
+#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
+
+#else
+
+#define pgprintk(x...) do { } while (0)
+#define rmap_printk(x...) do { } while (0)
+
+#endif
+
+#if defined(MMU_DEBUG) || defined(AUDIT)
+static int dbg = 1;
+#endif
+
+#ifndef MMU_DEBUG
+#define ASSERT(x) do { } while (0)
+#else
+#define ASSERT(x) \
+ if (!(x)) { \
+ printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
+ __FILE__, __LINE__, #x); \
+ }
+#endif
+
+#define PT64_PT_BITS 9
+#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
+#define PT32_PT_BITS 10
+#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
+
+#define PT_WRITABLE_SHIFT 1
+
+#define PT_PRESENT_MASK (1ULL << 0)
+#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
+#define PT_USER_MASK (1ULL << 2)
+#define PT_PWT_MASK (1ULL << 3)
+#define PT_PCD_MASK (1ULL << 4)
+#define PT_ACCESSED_MASK (1ULL << 5)
+#define PT_DIRTY_MASK (1ULL << 6)
+#define PT_PAGE_SIZE_MASK (1ULL << 7)
+#define PT_PAT_MASK (1ULL << 7)
+#define PT_GLOBAL_MASK (1ULL << 8)
+#define PT64_NX_SHIFT 63
+#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
+
+#define PT_PAT_SHIFT 7
+#define PT_DIR_PAT_SHIFT 12
+#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
+
+#define PT32_DIR_PSE36_SIZE 4
+#define PT32_DIR_PSE36_SHIFT 13
+#define PT32_DIR_PSE36_MASK \
+ (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
+
+
+#define PT_FIRST_AVAIL_BITS_SHIFT 9
+#define PT64_SECOND_AVAIL_BITS_SHIFT 52
+
+#define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
+
+#define VALID_PAGE(x) ((x) != INVALID_PAGE)
+
+#define PT64_LEVEL_BITS 9
+
+#define PT64_LEVEL_SHIFT(level) \
+ (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
+
+#define PT64_LEVEL_MASK(level) \
+ (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
+
+#define PT64_INDEX(address, level)\
+ (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
+
+
+#define PT32_LEVEL_BITS 10
+
+#define PT32_LEVEL_SHIFT(level) \
+ (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
+
+#define PT32_LEVEL_MASK(level) \
+ (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
+
+#define PT32_INDEX(address, level)\
+ (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
+
+
+#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
+#define PT64_DIR_BASE_ADDR_MASK \
+ (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
+
+#define PT32_BASE_ADDR_MASK PAGE_MASK
+#define PT32_DIR_BASE_ADDR_MASK \
+ (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
+
+#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
+ | PT64_NX_MASK)
+
+#define PFERR_PRESENT_MASK (1U << 0)
+#define PFERR_WRITE_MASK (1U << 1)
+#define PFERR_USER_MASK (1U << 2)
+#define PFERR_FETCH_MASK (1U << 4)
+
+#define PT64_ROOT_LEVEL 4
+#define PT32_ROOT_LEVEL 2
+#define PT32E_ROOT_LEVEL 3
+
+#define PT_DIRECTORY_LEVEL 2
+#define PT_PAGE_TABLE_LEVEL 1
+
+#define RMAP_EXT 4
+
+#define ACC_EXEC_MASK 1
+#define ACC_WRITE_MASK PT_WRITABLE_MASK
+#define ACC_USER_MASK PT_USER_MASK
+#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
+
+struct kvm_rmap_desc {
+ u64 *shadow_ptes[RMAP_EXT];
+ struct kvm_rmap_desc *more;
+};
+
+static struct kmem_cache *pte_chain_cache;
+static struct kmem_cache *rmap_desc_cache;
+static struct kmem_cache *mmu_page_header_cache;
+
+static u64 __read_mostly shadow_trap_nonpresent_pte;
+static u64 __read_mostly shadow_notrap_nonpresent_pte;
+
+void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
+{
+ shadow_trap_nonpresent_pte = trap_pte;
+ shadow_notrap_nonpresent_pte = notrap_pte;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
+
+static int is_write_protection(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.cr0 & X86_CR0_WP;
+}
+
+static int is_cpuid_PSE36(void)
+{
+ return 1;
+}
+
+static int is_nx(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.shadow_efer & EFER_NX;
+}
+
+static int is_present_pte(unsigned long pte)
+{
+ return pte & PT_PRESENT_MASK;
+}
+
+static int is_shadow_present_pte(u64 pte)
+{
+ pte &= ~PT_SHADOW_IO_MARK;
+ return pte != shadow_trap_nonpresent_pte
+ && pte != shadow_notrap_nonpresent_pte;
+}
+
+static int is_writeble_pte(unsigned long pte)
+{
+ return pte & PT_WRITABLE_MASK;
+}
+
+static int is_dirty_pte(unsigned long pte)
+{
+ return pte & PT_DIRTY_MASK;
+}
+
+static int is_io_pte(unsigned long pte)
+{
+ return pte & PT_SHADOW_IO_MARK;
+}
+
+static int is_rmap_pte(u64 pte)
+{
+ return pte != shadow_trap_nonpresent_pte
+ && pte != shadow_notrap_nonpresent_pte;
+}
+
+static gfn_t pse36_gfn_delta(u32 gpte)
+{
+ int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
+
+ return (gpte & PT32_DIR_PSE36_MASK) << shift;
+}
+
+static void set_shadow_pte(u64 *sptep, u64 spte)
+{
+#ifdef CONFIG_X86_64
+ set_64bit((unsigned long *)sptep, spte);
+#else
+ set_64bit((unsigned long long *)sptep, spte);
+#endif
+}
+
+static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
+ struct kmem_cache *base_cache, int min)
+{
+ void *obj;
+
+ if (cache->nobjs >= min)
+ return 0;
+ while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
+ obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
+ if (!obj)
+ return -ENOMEM;
+ cache->objects[cache->nobjs++] = obj;
+ }
+ return 0;
+}
+
+static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
+{
+ while (mc->nobjs)
+ kfree(mc->objects[--mc->nobjs]);
+}
+
+static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
+ int min)
+{
+ struct page *page;
+
+ if (cache->nobjs >= min)
+ return 0;
+ while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
+ page = alloc_page(GFP_KERNEL);
+ if (!page)
+ return -ENOMEM;
+ set_page_private(page, 0);
+ cache->objects[cache->nobjs++] = page_address(page);
+ }
+ return 0;
+}
+
+static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
+{
+ while (mc->nobjs)
+ free_page((unsigned long)mc->objects[--mc->nobjs]);
+}
+
+static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
+{
+ int r;
+
+ r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
+ pte_chain_cache, 4);
+ if (r)
+ goto out;
+ r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
+ rmap_desc_cache, 1);
+ if (r)
+ goto out;
+ r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
+ if (r)
+ goto out;
+ r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
+ mmu_page_header_cache, 4);
+out:
+ return r;
+}
+
+static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
+{
+ mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
+ mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
+ mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
+ mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
+}
+
+static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
+ size_t size)
+{
+ void *p;
+
+ BUG_ON(!mc->nobjs);
+ p = mc->objects[--mc->nobjs];
+ memset(p, 0, size);
+ return p;
+}
+
+static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
+{
+ return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
+ sizeof(struct kvm_pte_chain));
+}
+
+static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
+{
+ kfree(pc);
+}
+
+static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
+{
+ return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
+ sizeof(struct kvm_rmap_desc));
+}
+
+static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
+{
+ kfree(rd);
+}
+
+/*
+ * Take gfn and return the reverse mapping to it.
+ * Note: gfn must be unaliased before this function get called
+ */
+
+static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn)
+{
+ struct kvm_memory_slot *slot;
+
+ slot = gfn_to_memslot(kvm, gfn);
+ return &slot->rmap[gfn - slot->base_gfn];
+}
+
+/*
+ * Reverse mapping data structures:
+ *
+ * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
+ * that points to page_address(page).
+ *
+ * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
+ * containing more mappings.
+ */
+static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
+{
+ struct kvm_mmu_page *sp;
+ struct kvm_rmap_desc *desc;
+ unsigned long *rmapp;
+ int i;
+
+ if (!is_rmap_pte(*spte))
+ return;
+ gfn = unalias_gfn(vcpu->kvm, gfn);
+ sp = page_header(__pa(spte));
+ sp->gfns[spte - sp->spt] = gfn;
+ rmapp = gfn_to_rmap(vcpu->kvm, gfn);
+ if (!*rmapp) {
+ rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
+ *rmapp = (unsigned long)spte;
+ } else if (!(*rmapp & 1)) {
+ rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
+ desc = mmu_alloc_rmap_desc(vcpu);
+ desc->shadow_ptes[0] = (u64 *)*rmapp;
+ desc->shadow_ptes[1] = spte;
+ *rmapp = (unsigned long)desc | 1;
+ } else {
+ rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
+ desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
+ while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
+ desc = desc->more;
+ if (desc->shadow_ptes[RMAP_EXT-1]) {
+ desc->more = mmu_alloc_rmap_desc(vcpu);
+ desc = desc->more;
+ }
+ for (i = 0; desc->shadow_ptes[i]; ++i)
+ ;
+ desc->shadow_ptes[i] = spte;
+ }
+}
+
+static void rmap_desc_remove_entry(unsigned long *rmapp,
+ struct kvm_rmap_desc *desc,
+ int i,
+ struct kvm_rmap_desc *prev_desc)
+{
+ int j;
+
+ for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
+ ;
+ desc->shadow_ptes[i] = desc->shadow_ptes[j];
+ desc->shadow_ptes[j] = NULL;
+ if (j != 0)
+ return;
+ if (!prev_desc && !desc->more)
+ *rmapp = (unsigned long)desc->shadow_ptes[0];
+ else
+ if (prev_desc)
+ prev_desc->more = desc->more;
+ else
+ *rmapp = (unsigned long)desc->more | 1;
+ mmu_free_rmap_desc(desc);
+}
+
+static void rmap_remove(struct kvm *kvm, u64 *spte)
+{
+ struct kvm_rmap_desc *desc;
+ struct kvm_rmap_desc *prev_desc;
+ struct kvm_mmu_page *sp;
+ struct page *page;
+ unsigned long *rmapp;
+ int i;
+
+ if (!is_rmap_pte(*spte))
+ return;
+ sp = page_header(__pa(spte));
+ page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
+ mark_page_accessed(page);
+ if (is_writeble_pte(*spte))
+ kvm_release_page_dirty(page);
+ else
+ kvm_release_page_clean(page);
+ rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt]);
+ if (!*rmapp) {
+ printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
+ BUG();
+ } else if (!(*rmapp & 1)) {
+ rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
+ if ((u64 *)*rmapp != spte) {
+ printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
+ spte, *spte);
+ BUG();
+ }
+ *rmapp = 0;
+ } else {
+ rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
+ desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
+ prev_desc = NULL;
+ while (desc) {
+ for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
+ if (desc->shadow_ptes[i] == spte) {
+ rmap_desc_remove_entry(rmapp,
+ desc, i,
+ prev_desc);
+ return;
+ }
+ prev_desc = desc;
+ desc = desc->more;
+ }
+ BUG();
+ }
+}
+
+static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
+{
+ struct kvm_rmap_desc *desc;
+ struct kvm_rmap_desc *prev_desc;
+ u64 *prev_spte;
+ int i;
+
+ if (!*rmapp)
+ return NULL;
+ else if (!(*rmapp & 1)) {
+ if (!spte)
+ return (u64 *)*rmapp;
+ return NULL;
+ }
+ desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
+ prev_desc = NULL;
+ prev_spte = NULL;
+ while (desc) {
+ for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
+ if (prev_spte == spte)
+ return desc->shadow_ptes[i];
+ prev_spte = desc->shadow_ptes[i];
+ }
+ desc = desc->more;
+ }
+ return NULL;
+}
+
+static void rmap_write_protect(struct kvm *kvm, u64 gfn)
+{
+ unsigned long *rmapp;
+ u64 *spte;
+ int write_protected = 0;
+
+ gfn = unalias_gfn(kvm, gfn);
+ rmapp = gfn_to_rmap(kvm, gfn);
+
+ spte = rmap_next(kvm, rmapp, NULL);
+ while (spte) {
+ BUG_ON(!spte);
+ BUG_ON(!(*spte & PT_PRESENT_MASK));
+ rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
+ if (is_writeble_pte(*spte)) {
+ set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
+ write_protected = 1;
+ }
+ spte = rmap_next(kvm, rmapp, spte);
+ }
+ if (write_protected)
+ kvm_flush_remote_tlbs(kvm);
+}
+
+#ifdef MMU_DEBUG
+static int is_empty_shadow_page(u64 *spt)
+{
+ u64 *pos;
+ u64 *end;
+
+ for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
+ if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
+ printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
+ pos, *pos);
+ return 0;
+ }
+ return 1;
+}
+#endif
+
+static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ ASSERT(is_empty_shadow_page(sp->spt));
+ list_del(&sp->link);
+ __free_page(virt_to_page(sp->spt));
+ __free_page(virt_to_page(sp->gfns));
+ kfree(sp);
+ ++kvm->arch.n_free_mmu_pages;
+}
+
+static unsigned kvm_page_table_hashfn(gfn_t gfn)
+{
+ return gfn;
+}
+
+static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
+ u64 *parent_pte)
+{
+ struct kvm_mmu_page *sp;
+
+ sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
+ sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
+ sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
+ set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
+ list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
+ ASSERT(is_empty_shadow_page(sp->spt));
+ sp->slot_bitmap = 0;
+ sp->multimapped = 0;
+ sp->parent_pte = parent_pte;
+ --vcpu->kvm->arch.n_free_mmu_pages;
+ return sp;
+}
+
+static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp, u64 *parent_pte)
+{
+ struct kvm_pte_chain *pte_chain;
+ struct hlist_node *node;
+ int i;
+
+ if (!parent_pte)
+ return;
+ if (!sp->multimapped) {
+ u64 *old = sp->parent_pte;
+
+ if (!old) {
+ sp->parent_pte = parent_pte;
+ return;
+ }
+ sp->multimapped = 1;
+ pte_chain = mmu_alloc_pte_chain(vcpu);
+ INIT_HLIST_HEAD(&sp->parent_ptes);
+ hlist_add_head(&pte_chain->link, &sp->parent_ptes);
+ pte_chain->parent_ptes[0] = old;
+ }
+ hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
+ if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
+ continue;
+ for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
+ if (!pte_chain->parent_ptes[i]) {
+ pte_chain->parent_ptes[i] = parent_pte;
+ return;
+ }
+ }
+ pte_chain = mmu_alloc_pte_chain(vcpu);
+ BUG_ON(!pte_chain);
+ hlist_add_head(&pte_chain->link, &sp->parent_ptes);
+ pte_chain->parent_ptes[0] = parent_pte;
+}
+
+static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
+ u64 *parent_pte)
+{
+ struct kvm_pte_chain *pte_chain;
+ struct hlist_node *node;
+ int i;
+
+ if (!sp->multimapped) {
+ BUG_ON(sp->parent_pte != parent_pte);
+ sp->parent_pte = NULL;
+ return;
+ }
+ hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
+ for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
+ if (!pte_chain->parent_ptes[i])
+ break;
+ if (pte_chain->parent_ptes[i] != parent_pte)
+ continue;
+ while (i + 1 < NR_PTE_CHAIN_ENTRIES
+ && pte_chain->parent_ptes[i + 1]) {
+ pte_chain->parent_ptes[i]
+ = pte_chain->parent_ptes[i + 1];
+ ++i;
+ }
+ pte_chain->parent_ptes[i] = NULL;
+ if (i == 0) {
+ hlist_del(&pte_chain->link);
+ mmu_free_pte_chain(pte_chain);
+ if (hlist_empty(&sp->parent_ptes)) {
+ sp->multimapped = 0;
+ sp->parent_pte = NULL;
+ }
+ }
+ return;
+ }
+ BUG();
+}
+
+static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
+{
+ unsigned index;
+ struct hlist_head *bucket;
+ struct kvm_mmu_page *sp;
+ struct hlist_node *node;
+
+ pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
+ index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
+ bucket = &kvm->arch.mmu_page_hash[index];
+ hlist_for_each_entry(sp, node, bucket, hash_link)
+ if (sp->gfn == gfn && !sp->role.metaphysical) {
+ pgprintk("%s: found role %x\n",
+ __FUNCTION__, sp->role.word);
+ return sp;
+ }
+ return NULL;
+}
+
+static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
+ gfn_t gfn,
+ gva_t gaddr,
+ unsigned level,
+ int metaphysical,
+ unsigned access,
+ u64 *parent_pte,
+ bool *new_page)
+{
+ union kvm_mmu_page_role role;
+ unsigned index;
+ unsigned quadrant;
+ struct hlist_head *bucket;
+ struct kvm_mmu_page *sp;
+ struct hlist_node *node;
+
+ role.word = 0;
+ role.glevels = vcpu->arch.mmu.root_level;
+ role.level = level;
+ role.metaphysical = metaphysical;
+ role.access = access;
+ if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
+ quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
+ quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
+ role.quadrant = quadrant;
+ }
+ pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
+ gfn, role.word);
+ index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
+ bucket = &vcpu->kvm->arch.mmu_page_hash[index];
+ hlist_for_each_entry(sp, node, bucket, hash_link)
+ if (sp->gfn == gfn && sp->role.word == role.word) {
+ mmu_page_add_parent_pte(vcpu, sp, parent_pte);
+ pgprintk("%s: found\n", __FUNCTION__);
+ return sp;
+ }
+ ++vcpu->kvm->stat.mmu_cache_miss;
+ sp = kvm_mmu_alloc_page(vcpu, parent_pte);
+ if (!sp)
+ return sp;
+ pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
+ sp->gfn = gfn;
+ sp->role = role;
+ hlist_add_head(&sp->hash_link, bucket);
+ vcpu->arch.mmu.prefetch_page(vcpu, sp);
+ if (!metaphysical)
+ rmap_write_protect(vcpu->kvm, gfn);
+ if (new_page)
+ *new_page = 1;
+ return sp;
+}
+
+static void kvm_mmu_page_unlink_children(struct kvm *kvm,
+ struct kvm_mmu_page *sp)
+{
+ unsigned i;
+ u64 *pt;
+ u64 ent;
+
+ pt = sp->spt;
+
+ if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
+ if (is_shadow_present_pte(pt[i]))
+ rmap_remove(kvm, &pt[i]);
+ pt[i] = shadow_trap_nonpresent_pte;
+ }
+ kvm_flush_remote_tlbs(kvm);
+ return;
+ }
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
+ ent = pt[i];
+
+ pt[i] = shadow_trap_nonpresent_pte;
+ if (!is_shadow_present_pte(ent))
+ continue;
+ ent &= PT64_BASE_ADDR_MASK;
+ mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
+ }
+ kvm_flush_remote_tlbs(kvm);
+}
+
+static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
+{
+ mmu_page_remove_parent_pte(sp, parent_pte);
+}
+
+static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
+{
+ int i;
+
+ for (i = 0; i < KVM_MAX_VCPUS; ++i)
+ if (kvm->vcpus[i])
+ kvm->vcpus[i]->arch.last_pte_updated = NULL;
+}
+
+static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
+{
+ u64 *parent_pte;
+
+ ++kvm->stat.mmu_shadow_zapped;
+ while (sp->multimapped || sp->parent_pte) {
+ if (!sp->multimapped)
+ parent_pte = sp->parent_pte;
+ else {
+ struct kvm_pte_chain *chain;
+
+ chain = container_of(sp->parent_ptes.first,
+ struct kvm_pte_chain, link);
+ parent_pte = chain->parent_ptes[0];
+ }
+ BUG_ON(!parent_pte);
+ kvm_mmu_put_page(sp, parent_pte);
+ set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
+ }
+ kvm_mmu_page_unlink_children(kvm, sp);
+ if (!sp->root_count) {
+ hlist_del(&sp->hash_link);
+ kvm_mmu_free_page(kvm, sp);
+ } else
+ list_move(&sp->link, &kvm->arch.active_mmu_pages);
+ kvm_mmu_reset_last_pte_updated(kvm);
+}
+
+/*
+ * Changing the number of mmu pages allocated to the vm
+ * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
+ */
+void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
+{
+ /*
+ * If we set the number of mmu pages to be smaller be than the
+ * number of actived pages , we must to free some mmu pages before we
+ * change the value
+ */
+
+ if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
+ kvm_nr_mmu_pages) {
+ int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
+ - kvm->arch.n_free_mmu_pages;
+
+ while (n_used_mmu_pages > kvm_nr_mmu_pages) {
+ struct kvm_mmu_page *page;
+
+ page = container_of(kvm->arch.active_mmu_pages.prev,
+ struct kvm_mmu_page, link);
+ kvm_mmu_zap_page(kvm, page);
+ n_used_mmu_pages--;
+ }
+ kvm->arch.n_free_mmu_pages = 0;
+ }
+ else
+ kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
+ - kvm->arch.n_alloc_mmu_pages;
+
+ kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
+}
+
+static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
+{
+ unsigned index;
+ struct hlist_head *bucket;
+ struct kvm_mmu_page *sp;
+ struct hlist_node *node, *n;
+ int r;
+
+ pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
+ r = 0;
+ index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
+ bucket = &kvm->arch.mmu_page_hash[index];
+ hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
+ if (sp->gfn == gfn && !sp->role.metaphysical) {
+ pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
+ sp->role.word);
+ kvm_mmu_zap_page(kvm, sp);
+ r = 1;
+ }
+ return r;
+}
+
+static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
+{
+ struct kvm_mmu_page *sp;
+
+ while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
+ pgprintk("%s: zap %lx %x\n", __FUNCTION__, gfn, sp->role.word);
+ kvm_mmu_zap_page(kvm, sp);
+ }
+}
+
+static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
+{
+ int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
+ struct kvm_mmu_page *sp = page_header(__pa(pte));
+
+ __set_bit(slot, &sp->slot_bitmap);
+}
+
+struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
+{
+ gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
+
+ if (gpa == UNMAPPED_GVA)
+ return NULL;
+ return gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
+}
+
+static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
+ unsigned pt_access, unsigned pte_access,
+ int user_fault, int write_fault, int dirty,
+ int *ptwrite, gfn_t gfn, struct page *page)
+{
+ u64 spte;
+ int was_rmapped = is_rmap_pte(*shadow_pte);
+ int was_writeble = is_writeble_pte(*shadow_pte);
+
+ pgprintk("%s: spte %llx access %x write_fault %d"
+ " user_fault %d gfn %lx\n",
+ __FUNCTION__, *shadow_pte, pt_access,
+ write_fault, user_fault, gfn);
+
+ /*
+ * We don't set the accessed bit, since we sometimes want to see
+ * whether the guest actually used the pte (in order to detect
+ * demand paging).
+ */
+ spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
+ if (!dirty)
+ pte_access &= ~ACC_WRITE_MASK;
+ if (!(pte_access & ACC_EXEC_MASK))
+ spte |= PT64_NX_MASK;
+
+ spte |= PT_PRESENT_MASK;
+ if (pte_access & ACC_USER_MASK)
+ spte |= PT_USER_MASK;
+
+ if (is_error_page(page)) {
+ set_shadow_pte(shadow_pte,
+ shadow_trap_nonpresent_pte | PT_SHADOW_IO_MARK);
+ kvm_release_page_clean(page);
+ return;
+ }
+
+ spte |= page_to_phys(page);
+
+ if ((pte_access & ACC_WRITE_MASK)
+ || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
+ struct kvm_mmu_page *shadow;
+
+ spte |= PT_WRITABLE_MASK;
+ if (user_fault) {
+ mmu_unshadow(vcpu->kvm, gfn);
+ goto unshadowed;
+ }
+
+ shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
+ if (shadow) {
+ pgprintk("%s: found shadow page for %lx, marking ro\n",
+ __FUNCTION__, gfn);
+ pte_access &= ~ACC_WRITE_MASK;
+ if (is_writeble_pte(spte)) {
+ spte &= ~PT_WRITABLE_MASK;
+ kvm_x86_ops->tlb_flush(vcpu);
+ }
+ if (write_fault)
+ *ptwrite = 1;
+ }
+ }
+
+unshadowed:
+
+ if (pte_access & ACC_WRITE_MASK)
+ mark_page_dirty(vcpu->kvm, gfn);
+
+ pgprintk("%s: setting spte %llx\n", __FUNCTION__, spte);
+ set_shadow_pte(shadow_pte, spte);
+ page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
+ if (!was_rmapped) {
+ rmap_add(vcpu, shadow_pte, gfn);
+ if (!is_rmap_pte(*shadow_pte))
+ kvm_release_page_clean(page);
+ } else {
+ if (was_writeble)
+ kvm_release_page_dirty(page);
+ else
+ kvm_release_page_clean(page);
+ }
+ if (!ptwrite || !*ptwrite)
+ vcpu->arch.last_pte_updated = shadow_pte;
+}
+
+static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
+{
+}
+
+static int __nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write,
+ gfn_t gfn, struct page *page)
+{
+ int level = PT32E_ROOT_LEVEL;
+ hpa_t table_addr = vcpu->arch.mmu.root_hpa;
+ int pt_write = 0;
+
+ for (; ; level--) {
+ u32 index = PT64_INDEX(v, level);
+ u64 *table;
+
+ ASSERT(VALID_PAGE(table_addr));
+ table = __va(table_addr);
+
+ if (level == 1) {
+ mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
+ 0, write, 1, &pt_write, gfn, page);
+ return pt_write || is_io_pte(table[index]);
+ }
+
+ if (table[index] == shadow_trap_nonpresent_pte) {
+ struct kvm_mmu_page *new_table;
+ gfn_t pseudo_gfn;
+
+ pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
+ >> PAGE_SHIFT;
+ new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
+ v, level - 1,
+ 1, ACC_ALL, &table[index],
+ NULL);
+ if (!new_table) {
+ pgprintk("nonpaging_map: ENOMEM\n");
+ kvm_release_page_clean(page);
+ return -ENOMEM;
+ }
+
+ table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
+ | PT_WRITABLE_MASK | PT_USER_MASK;
+ }
+ table_addr = table[index] & PT64_BASE_ADDR_MASK;
+ }
+}
+
+static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
+{
+ int r;
+
+ struct page *page;
+
+ down_read(&current->mm->mmap_sem);
+ page = gfn_to_page(vcpu->kvm, gfn);
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ kvm_mmu_free_some_pages(vcpu);
+ r = __nonpaging_map(vcpu, v, write, gfn, page);
+ spin_unlock(&vcpu->kvm->mmu_lock);
+
+ up_read(&current->mm->mmap_sem);
+
+ return r;
+}
+
+
+static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp)
+{
+ int i;
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
+ sp->spt[i] = shadow_trap_nonpresent_pte;
+}
+
+static void mmu_free_roots(struct kvm_vcpu *vcpu)
+{
+ int i;
+ struct kvm_mmu_page *sp;
+
+ if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
+ return;
+ spin_lock(&vcpu->kvm->mmu_lock);
+#ifdef CONFIG_X86_64
+ if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
+ hpa_t root = vcpu->arch.mmu.root_hpa;
+
+ sp = page_header(root);
+ --sp->root_count;
+ vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ return;
+ }
+#endif
+ for (i = 0; i < 4; ++i) {
+ hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+ if (root) {
+ root &= PT64_BASE_ADDR_MASK;
+ sp = page_header(root);
+ --sp->root_count;
+ }
+ vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
+ }
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+}
+
+static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
+{
+ int i;
+ gfn_t root_gfn;
+ struct kvm_mmu_page *sp;
+
+ root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
+
+#ifdef CONFIG_X86_64
+ if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
+ hpa_t root = vcpu->arch.mmu.root_hpa;
+
+ ASSERT(!VALID_PAGE(root));
+ sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
+ PT64_ROOT_LEVEL, 0, ACC_ALL, NULL, NULL);
+ root = __pa(sp->spt);
+ ++sp->root_count;
+ vcpu->arch.mmu.root_hpa = root;
+ return;
+ }
+#endif
+ for (i = 0; i < 4; ++i) {
+ hpa_t root = vcpu->arch.mmu.pae_root[i];
+
+ ASSERT(!VALID_PAGE(root));
+ if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
+ if (!is_present_pte(vcpu->arch.pdptrs[i])) {
+ vcpu->arch.mmu.pae_root[i] = 0;
+ continue;
+ }
+ root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
+ } else if (vcpu->arch.mmu.root_level == 0)
+ root_gfn = 0;
+ sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
+ PT32_ROOT_LEVEL, !is_paging(vcpu),
+ ACC_ALL, NULL, NULL);
+ root = __pa(sp->spt);
+ ++sp->root_count;
+ vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
+ }
+ vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
+}
+
+static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
+{
+ return vaddr;
+}
+
+static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
+ u32 error_code)
+{
+ gfn_t gfn;
+ int r;
+
+ pgprintk("%s: gva %lx error %x\n", __FUNCTION__, gva, error_code);
+ r = mmu_topup_memory_caches(vcpu);
+ if (r)
+ return r;
+
+ ASSERT(vcpu);
+ ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+ gfn = gva >> PAGE_SHIFT;
+
+ return nonpaging_map(vcpu, gva & PAGE_MASK,
+ error_code & PFERR_WRITE_MASK, gfn);
+}
+
+static void nonpaging_free(struct kvm_vcpu *vcpu)
+{
+ mmu_free_roots(vcpu);
+}
+
+static int nonpaging_init_context(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *context = &vcpu->arch.mmu;
+
+ context->new_cr3 = nonpaging_new_cr3;
+ context->page_fault = nonpaging_page_fault;
+ context->gva_to_gpa = nonpaging_gva_to_gpa;
+ context->free = nonpaging_free;
+ context->prefetch_page = nonpaging_prefetch_page;
+ context->root_level = 0;
+ context->shadow_root_level = PT32E_ROOT_LEVEL;
+ context->root_hpa = INVALID_PAGE;
+ return 0;
+}
+
+void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
+{
+ ++vcpu->stat.tlb_flush;
+ kvm_x86_ops->tlb_flush(vcpu);
+}
+
+static void paging_new_cr3(struct kvm_vcpu *vcpu)
+{
+ pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
+ mmu_free_roots(vcpu);
+}
+
+static void inject_page_fault(struct kvm_vcpu *vcpu,
+ u64 addr,
+ u32 err_code)
+{
+ kvm_inject_page_fault(vcpu, addr, err_code);
+}
+
+static void paging_free(struct kvm_vcpu *vcpu)
+{
+ nonpaging_free(vcpu);
+}
+
+#define PTTYPE 64
+#include "paging_tmpl.h"
+#undef PTTYPE
+
+#define PTTYPE 32
+#include "paging_tmpl.h"
+#undef PTTYPE
+
+static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
+{
+ struct kvm_mmu *context = &vcpu->arch.mmu;
+
+ ASSERT(is_pae(vcpu));
+ context->new_cr3 = paging_new_cr3;
+ context->page_fault = paging64_page_fault;
+ context->gva_to_gpa = paging64_gva_to_gpa;
+ context->prefetch_page = paging64_prefetch_page;
+ context->free = paging_free;
+ context->root_level = level;
+ context->shadow_root_level = level;
+ context->root_hpa = INVALID_PAGE;
+ return 0;
+}
+
+static int paging64_init_context(struct kvm_vcpu *vcpu)
+{
+ return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
+}
+
+static int paging32_init_context(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *context = &vcpu->arch.mmu;
+
+ context->new_cr3 = paging_new_cr3;
+ context->page_fault = paging32_page_fault;
+ context->gva_to_gpa = paging32_gva_to_gpa;
+ context->free = paging_free;
+ context->prefetch_page = paging32_prefetch_page;
+ context->root_level = PT32_ROOT_LEVEL;
+ context->shadow_root_level = PT32E_ROOT_LEVEL;
+ context->root_hpa = INVALID_PAGE;
+ return 0;
+}
+
+static int paging32E_init_context(struct kvm_vcpu *vcpu)
+{
+ return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
+}
+
+static int init_kvm_mmu(struct kvm_vcpu *vcpu)
+{
+ ASSERT(vcpu);
+ ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+ if (!is_paging(vcpu))
+ return nonpaging_init_context(vcpu);
+ else if (is_long_mode(vcpu))
+ return paging64_init_context(vcpu);
+ else if (is_pae(vcpu))
+ return paging32E_init_context(vcpu);
+ else
+ return paging32_init_context(vcpu);
+}
+
+static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
+{
+ ASSERT(vcpu);
+ if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
+ vcpu->arch.mmu.free(vcpu);
+ vcpu->arch.mmu.root_hpa = INVALID_PAGE;
+ }
+}
+
+int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
+{
+ destroy_kvm_mmu(vcpu);
+ return init_kvm_mmu(vcpu);
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
+
+int kvm_mmu_load(struct kvm_vcpu *vcpu)
+{
+ int r;
+
+ r = mmu_topup_memory_caches(vcpu);
+ if (r)
+ goto out;
+ spin_lock(&vcpu->kvm->mmu_lock);
+ kvm_mmu_free_some_pages(vcpu);
+ mmu_alloc_roots(vcpu);
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
+ kvm_mmu_flush_tlb(vcpu);
+out:
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_load);
+
+void kvm_mmu_unload(struct kvm_vcpu *vcpu)
+{
+ mmu_free_roots(vcpu);
+}
+
+static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp,
+ u64 *spte)
+{
+ u64 pte;
+ struct kvm_mmu_page *child;
+
+ pte = *spte;
+ if (is_shadow_present_pte(pte)) {
+ if (sp->role.level == PT_PAGE_TABLE_LEVEL)
+ rmap_remove(vcpu->kvm, spte);
+ else {
+ child = page_header(pte & PT64_BASE_ADDR_MASK);
+ mmu_page_remove_parent_pte(child, spte);
+ }
+ }
+ set_shadow_pte(spte, shadow_trap_nonpresent_pte);
+}
+
+static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
+ struct kvm_mmu_page *sp,
+ u64 *spte,
+ const void *new, int bytes,
+ int offset_in_pte)
+{
+ if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
+ ++vcpu->kvm->stat.mmu_pde_zapped;
+ return;
+ }
+
+ ++vcpu->kvm->stat.mmu_pte_updated;
+ if (sp->role.glevels == PT32_ROOT_LEVEL)
+ paging32_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
+ else
+ paging64_update_pte(vcpu, sp, spte, new, bytes, offset_in_pte);
+}
+
+static bool need_remote_flush(u64 old, u64 new)
+{
+ if (!is_shadow_present_pte(old))
+ return false;
+ if (!is_shadow_present_pte(new))
+ return true;
+ if ((old ^ new) & PT64_BASE_ADDR_MASK)
+ return true;
+ old ^= PT64_NX_MASK;
+ new ^= PT64_NX_MASK;
+ return (old & ~new & PT64_PERM_MASK) != 0;
+}
+
+static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
+{
+ if (need_remote_flush(old, new))
+ kvm_flush_remote_tlbs(vcpu->kvm);
+ else
+ kvm_mmu_flush_tlb(vcpu);
+}
+
+static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
+{
+ u64 *spte = vcpu->arch.last_pte_updated;
+
+ return !!(spte && (*spte & PT_ACCESSED_MASK));
+}
+
+static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
+ const u8 *new, int bytes)
+{
+ gfn_t gfn;
+ int r;
+ u64 gpte = 0;
+
+ if (bytes != 4 && bytes != 8)
+ return;
+
+ /*
+ * Assume that the pte write on a page table of the same type
+ * as the current vcpu paging mode. This is nearly always true
+ * (might be false while changing modes). Note it is verified later
+ * by update_pte().
+ */
+ if (is_pae(vcpu)) {
+ /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
+ if ((bytes == 4) && (gpa % 4 == 0)) {
+ r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
+ if (r)
+ return;
+ memcpy((void *)&gpte + (gpa % 8), new, 4);
+ } else if ((bytes == 8) && (gpa % 8 == 0)) {
+ memcpy((void *)&gpte, new, 8);
+ }
+ } else {
+ if ((bytes == 4) && (gpa % 4 == 0))
+ memcpy((void *)&gpte, new, 4);
+ }
+ if (!is_present_pte(gpte))
+ return;
+ gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
+ vcpu->arch.update_pte.gfn = gfn;
+ vcpu->arch.update_pte.page = gfn_to_page(vcpu->kvm, gfn);
+}
+
+void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
+ const u8 *new, int bytes)
+{
+ gfn_t gfn = gpa >> PAGE_SHIFT;
+ struct kvm_mmu_page *sp;
+ struct hlist_node *node, *n;
+ struct hlist_head *bucket;
+ unsigned index;
+ u64 entry;
+ u64 *spte;
+ unsigned offset = offset_in_page(gpa);
+ unsigned pte_size;
+ unsigned page_offset;
+ unsigned misaligned;
+ unsigned quadrant;
+ int level;
+ int flooded = 0;
+ int npte;
+
+ pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
+ mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
+ spin_lock(&vcpu->kvm->mmu_lock);
+ kvm_mmu_free_some_pages(vcpu);
+ ++vcpu->kvm->stat.mmu_pte_write;
+ kvm_mmu_audit(vcpu, "pre pte write");
+ if (gfn == vcpu->arch.last_pt_write_gfn
+ && !last_updated_pte_accessed(vcpu)) {
+ ++vcpu->arch.last_pt_write_count;
+ if (vcpu->arch.last_pt_write_count >= 3)
+ flooded = 1;
+ } else {
+ vcpu->arch.last_pt_write_gfn = gfn;
+ vcpu->arch.last_pt_write_count = 1;
+ vcpu->arch.last_pte_updated = NULL;
+ }
+ index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
+ bucket = &vcpu->kvm->arch.mmu_page_hash[index];
+ hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
+ if (sp->gfn != gfn || sp->role.metaphysical)
+ continue;
+ pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
+ misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
+ misaligned |= bytes < 4;
+ if (misaligned || flooded) {
+ /*
+ * Misaligned accesses are too much trouble to fix
+ * up; also, they usually indicate a page is not used
+ * as a page table.
+ *
+ * If we're seeing too many writes to a page,
+ * it may no longer be a page table, or we may be
+ * forking, in which case it is better to unmap the
+ * page.
+ */
+ pgprintk("misaligned: gpa %llx bytes %d role %x\n",
+ gpa, bytes, sp->role.word);
+ kvm_mmu_zap_page(vcpu->kvm, sp);
+ ++vcpu->kvm->stat.mmu_flooded;
+ continue;
+ }
+ page_offset = offset;
+ level = sp->role.level;
+ npte = 1;
+ if (sp->role.glevels == PT32_ROOT_LEVEL) {
+ page_offset <<= 1; /* 32->64 */
+ /*
+ * A 32-bit pde maps 4MB while the shadow pdes map
+ * only 2MB. So we need to double the offset again
+ * and zap two pdes instead of one.
+ */
+ if (level == PT32_ROOT_LEVEL) {
+ page_offset &= ~7; /* kill rounding error */
+ page_offset <<= 1;
+ npte = 2;
+ }
+ quadrant = page_offset >> PAGE_SHIFT;
+ page_offset &= ~PAGE_MASK;
+ if (quadrant != sp->role.quadrant)
+ continue;
+ }
+ spte = &sp->spt[page_offset / sizeof(*spte)];
+ while (npte--) {
+ entry = *spte;
+ mmu_pte_write_zap_pte(vcpu, sp, spte);
+ mmu_pte_write_new_pte(vcpu, sp, spte, new, bytes,
+ page_offset & (pte_size - 1));
+ mmu_pte_write_flush_tlb(vcpu, entry, *spte);
+ ++spte;
+ }
+ }
+ kvm_mmu_audit(vcpu, "post pte write");
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ if (vcpu->arch.update_pte.page) {
+ kvm_release_page_clean(vcpu->arch.update_pte.page);
+ vcpu->arch.update_pte.page = NULL;
+ }
+}
+
+int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
+{
+ gpa_t gpa;
+ int r;
+
+ down_read(&current->mm->mmap_sem);
+ gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
+ up_read(&current->mm->mmap_sem);
+
+ spin_lock(&vcpu->kvm->mmu_lock);
+ r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
+ spin_unlock(&vcpu->kvm->mmu_lock);
+ return r;
+}
+
+void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
+{
+ while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
+ struct kvm_mmu_page *sp;
+
+ sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
+ struct kvm_mmu_page, link);
+ kvm_mmu_zap_page(vcpu->kvm, sp);
+ ++vcpu->kvm->stat.mmu_recycled;
+ }
+}
+
+int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
+{
+ int r;
+ enum emulation_result er;
+
+ r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
+ if (r < 0)
+ goto out;
+
+ if (!r) {
+ r = 1;
+ goto out;
+ }
+
+ r = mmu_topup_memory_caches(vcpu);
+ if (r)
+ goto out;
+
+ er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
+
+ switch (er) {
+ case EMULATE_DONE:
+ return 1;
+ case EMULATE_DO_MMIO:
+ ++vcpu->stat.mmio_exits;
+ return 0;
+ case EMULATE_FAIL:
+ kvm_report_emulation_failure(vcpu, "pagetable");
+ return 1;
+ default:
+ BUG();
+ }
+out:
+ return r;
+}
+EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
+
+static void free_mmu_pages(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu_page *sp;
+
+ while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
+ sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
+ struct kvm_mmu_page, link);
+ kvm_mmu_zap_page(vcpu->kvm, sp);
+ }
+ free_page((unsigned long)vcpu->arch.mmu.pae_root);
+}
+
+static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
+{
+ struct page *page;
+ int i;
+
+ ASSERT(vcpu);
+
+ if (vcpu->kvm->arch.n_requested_mmu_pages)
+ vcpu->kvm->arch.n_free_mmu_pages =
+ vcpu->kvm->arch.n_requested_mmu_pages;
+ else
+ vcpu->kvm->arch.n_free_mmu_pages =
+ vcpu->kvm->arch.n_alloc_mmu_pages;
+ /*
+ * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
+ * Therefore we need to allocate shadow page tables in the first
+ * 4GB of memory, which happens to fit the DMA32 zone.
+ */
+ page = alloc_page(GFP_KERNEL | __GFP_DMA32);
+ if (!page)
+ goto error_1;
+ vcpu->arch.mmu.pae_root = page_address(page);
+ for (i = 0; i < 4; ++i)
+ vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
+
+ return 0;
+
+error_1:
+ free_mmu_pages(vcpu);
+ return -ENOMEM;
+}
+
+int kvm_mmu_create(struct kvm_vcpu *vcpu)
+{
+ ASSERT(vcpu);
+ ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+ return alloc_mmu_pages(vcpu);
+}
+
+int kvm_mmu_setup(struct kvm_vcpu *vcpu)
+{
+ ASSERT(vcpu);
+ ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
+
+ return init_kvm_mmu(vcpu);
+}
+
+void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
+{
+ ASSERT(vcpu);
+
+ destroy_kvm_mmu(vcpu);
+ free_mmu_pages(vcpu);
+ mmu_free_memory_caches(vcpu);
+}
+
+void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
+{
+ struct kvm_mmu_page *sp;
+
+ list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
+ int i;
+ u64 *pt;
+
+ if (!test_bit(slot, &sp->slot_bitmap))
+ continue;
+
+ pt = sp->spt;
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
+ /* avoid RMW */
+ if (pt[i] & PT_WRITABLE_MASK)
+ pt[i] &= ~PT_WRITABLE_MASK;
+ }
+}
+
+void kvm_mmu_zap_all(struct kvm *kvm)
+{
+ struct kvm_mmu_page *sp, *node;
+
+ spin_lock(&kvm->mmu_lock);
+ list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
+ kvm_mmu_zap_page(kvm, sp);
+ spin_unlock(&kvm->mmu_lock);
+
+ kvm_flush_remote_tlbs(kvm);
+}
+
+void kvm_mmu_module_exit(void)
+{
+ if (pte_chain_cache)
+ kmem_cache_destroy(pte_chain_cache);
+ if (rmap_desc_cache)
+ kmem_cache_destroy(rmap_desc_cache);
+ if (mmu_page_header_cache)
+ kmem_cache_destroy(mmu_page_header_cache);
+}
+
+int kvm_mmu_module_init(void)
+{
+ pte_chain_cache = kmem_cache_create("kvm_pte_chain",
+ sizeof(struct kvm_pte_chain),
+ 0, 0, NULL);
+ if (!pte_chain_cache)
+ goto nomem;
+ rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
+ sizeof(struct kvm_rmap_desc),
+ 0, 0, NULL);
+ if (!rmap_desc_cache)
+ goto nomem;
+
+ mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
+ sizeof(struct kvm_mmu_page),
+ 0, 0, NULL);
+ if (!mmu_page_header_cache)
+ goto nomem;
+
+ return 0;
+
+nomem:
+ kvm_mmu_module_exit();
+ return -ENOMEM;
+}
+
+/*
+ * Caculate mmu pages needed for kvm.
+ */
+unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
+{
+ int i;
+ unsigned int nr_mmu_pages;
+ unsigned int nr_pages = 0;
+
+ for (i = 0; i < kvm->nmemslots; i++)
+ nr_pages += kvm->memslots[i].npages;
+
+ nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
+ nr_mmu_pages = max(nr_mmu_pages,
+ (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
+
+ return nr_mmu_pages;
+}
+
+#ifdef AUDIT
+
+static const char *audit_msg;
+
+static gva_t canonicalize(gva_t gva)
+{
+#ifdef CONFIG_X86_64
+ gva = (long long)(gva << 16) >> 16;
+#endif
+ return gva;
+}
+
+static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
+ gva_t va, int level)
+{
+ u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
+ int i;
+ gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
+ u64 ent = pt[i];
+
+ if (ent == shadow_trap_nonpresent_pte)
+ continue;
+
+ va = canonicalize(va);
+ if (level > 1) {
+ if (ent == shadow_notrap_nonpresent_pte)
+ printk(KERN_ERR "audit: (%s) nontrapping pte"
+ " in nonleaf level: levels %d gva %lx"
+ " level %d pte %llx\n", audit_msg,
+ vcpu->arch.mmu.root_level, va, level, ent);
+
+ audit_mappings_page(vcpu, ent, va, level - 1);
+ } else {
+ gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
+ struct page *page = gpa_to_page(vcpu, gpa);
+ hpa_t hpa = page_to_phys(page);
+
+ if (is_shadow_present_pte(ent)
+ && (ent & PT64_BASE_ADDR_MASK) != hpa)
+ printk(KERN_ERR "xx audit error: (%s) levels %d"
+ " gva %lx gpa %llx hpa %llx ent %llx %d\n",
+ audit_msg, vcpu->arch.mmu.root_level,
+ va, gpa, hpa, ent,
+ is_shadow_present_pte(ent));
+ else if (ent == shadow_notrap_nonpresent_pte
+ && !is_error_hpa(hpa))
+ printk(KERN_ERR "audit: (%s) notrap shadow,"
+ " valid guest gva %lx\n", audit_msg, va);
+ kvm_release_page_clean(page);
+
+ }
+ }
+}
+
+static void audit_mappings(struct kvm_vcpu *vcpu)
+{
+ unsigned i;
+
+ if (vcpu->arch.mmu.root_level == 4)
+ audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
+ else
+ for (i = 0; i < 4; ++i)
+ if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
+ audit_mappings_page(vcpu,
+ vcpu->arch.mmu.pae_root[i],
+ i << 30,
+ 2);
+}
+
+static int count_rmaps(struct kvm_vcpu *vcpu)
+{
+ int nmaps = 0;
+ int i, j, k;
+
+ for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
+ struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
+ struct kvm_rmap_desc *d;
+
+ for (j = 0; j < m->npages; ++j) {
+ unsigned long *rmapp = &m->rmap[j];
+
+ if (!*rmapp)
+ continue;
+ if (!(*rmapp & 1)) {
+ ++nmaps;
+ continue;
+ }
+ d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
+ while (d) {
+ for (k = 0; k < RMAP_EXT; ++k)
+ if (d->shadow_ptes[k])
+ ++nmaps;
+ else
+ break;
+ d = d->more;
+ }
+ }
+ }
+ return nmaps;
+}
+
+static int count_writable_mappings(struct kvm_vcpu *vcpu)
+{
+ int nmaps = 0;
+ struct kvm_mmu_page *sp;
+ int i;
+
+ list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
+ u64 *pt = sp->spt;
+
+ if (sp->role.level != PT_PAGE_TABLE_LEVEL)
+ continue;
+
+ for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
+ u64 ent = pt[i];
+
+ if (!(ent & PT_PRESENT_MASK))
+ continue;
+ if (!(ent & PT_WRITABLE_MASK))
+ continue;
+ ++nmaps;
+ }
+ }
+ return nmaps;
+}
+
+static void audit_rmap(struct kvm_vcpu *vcpu)
+{
+ int n_rmap = count_rmaps(vcpu);
+ int n_actual = count_writable_mappings(vcpu);
+
+ if (n_rmap != n_actual)
+ printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
+ __FUNCTION__, audit_msg, n_rmap, n_actual);
+}
+
+static void audit_write_protection(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu_page *sp;
+ struct kvm_memory_slot *slot;
+ unsigned long *rmapp;
+ gfn_t gfn;
+
+ list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
+ if (sp->role.metaphysical)
+ continue;
+
+ slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
+ gfn = unalias_gfn(vcpu->kvm, sp->gfn);
+ rmapp = &slot->rmap[gfn - slot->base_gfn];
+ if (*rmapp)
+ printk(KERN_ERR "%s: (%s) shadow page has writable"
+ " mappings: gfn %lx role %x\n",
+ __FUNCTION__, audit_msg, sp->gfn,
+ sp->role.word);
+ }
+}
+
+static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
+{
+ int olddbg = dbg;
+
+ dbg = 0;
+ audit_msg = msg;
+ audit_rmap(vcpu);
+ audit_write_protection(vcpu);
+ audit_mappings(vcpu);
+ dbg = olddbg;
+}
+
+#endif
OpenPOWER on IntegriCloud