diff options
Diffstat (limited to 'arch/x86/crypto')
-rw-r--r-- | arch/x86/crypto/aes-i586-asm_32.S | 89 | ||||
-rw-r--r-- | arch/x86/crypto/aes_32.c | 461 |
2 files changed, 46 insertions, 504 deletions
diff --git a/arch/x86/crypto/aes-i586-asm_32.S b/arch/x86/crypto/aes-i586-asm_32.S index f942f0c..1093bed 100644 --- a/arch/x86/crypto/aes-i586-asm_32.S +++ b/arch/x86/crypto/aes-i586-asm_32.S @@ -46,9 +46,9 @@ #define in_blk 16 /* offsets in crypto_tfm structure */ -#define ekey (crypto_tfm_ctx_offset + 0) -#define nrnd (crypto_tfm_ctx_offset + 256) -#define dkey (crypto_tfm_ctx_offset + 260) +#define klen (crypto_tfm_ctx_offset + 0) +#define ekey (crypto_tfm_ctx_offset + 4) +#define dkey (crypto_tfm_ctx_offset + 244) // register mapping for encrypt and decrypt subroutines @@ -221,8 +221,8 @@ .global aes_enc_blk -.extern ft_tab -.extern fl_tab +.extern crypto_ft_tab +.extern crypto_fl_tab .align 4 @@ -236,7 +236,7 @@ aes_enc_blk: 1: push %ebx mov in_blk+4(%esp),%r2 push %esi - mov nrnd(%ebp),%r3 // number of rounds + mov klen(%ebp),%r3 // key size push %edi #if ekey != 0 lea ekey(%ebp),%ebp // key pointer @@ -255,26 +255,26 @@ aes_enc_blk: sub $8,%esp // space for register saves on stack add $16,%ebp // increment to next round key - cmp $12,%r3 + cmp $24,%r3 jb 4f // 10 rounds for 128-bit key lea 32(%ebp),%ebp je 3f // 12 rounds for 192-bit key lea 32(%ebp),%ebp -2: fwd_rnd1( -64(%ebp) ,ft_tab) // 14 rounds for 256-bit key - fwd_rnd2( -48(%ebp) ,ft_tab) -3: fwd_rnd1( -32(%ebp) ,ft_tab) // 12 rounds for 192-bit key - fwd_rnd2( -16(%ebp) ,ft_tab) -4: fwd_rnd1( (%ebp) ,ft_tab) // 10 rounds for 128-bit key - fwd_rnd2( +16(%ebp) ,ft_tab) - fwd_rnd1( +32(%ebp) ,ft_tab) - fwd_rnd2( +48(%ebp) ,ft_tab) - fwd_rnd1( +64(%ebp) ,ft_tab) - fwd_rnd2( +80(%ebp) ,ft_tab) - fwd_rnd1( +96(%ebp) ,ft_tab) - fwd_rnd2(+112(%ebp) ,ft_tab) - fwd_rnd1(+128(%ebp) ,ft_tab) - fwd_rnd2(+144(%ebp) ,fl_tab) // last round uses a different table +2: fwd_rnd1( -64(%ebp), crypto_ft_tab) // 14 rounds for 256-bit key + fwd_rnd2( -48(%ebp), crypto_ft_tab) +3: fwd_rnd1( -32(%ebp), crypto_ft_tab) // 12 rounds for 192-bit key + fwd_rnd2( -16(%ebp), crypto_ft_tab) +4: fwd_rnd1( (%ebp), crypto_ft_tab) // 10 rounds for 128-bit key + fwd_rnd2( +16(%ebp), crypto_ft_tab) + fwd_rnd1( +32(%ebp), crypto_ft_tab) + fwd_rnd2( +48(%ebp), crypto_ft_tab) + fwd_rnd1( +64(%ebp), crypto_ft_tab) + fwd_rnd2( +80(%ebp), crypto_ft_tab) + fwd_rnd1( +96(%ebp), crypto_ft_tab) + fwd_rnd2(+112(%ebp), crypto_ft_tab) + fwd_rnd1(+128(%ebp), crypto_ft_tab) + fwd_rnd2(+144(%ebp), crypto_fl_tab) // last round uses a different table // move final values to the output array. CAUTION: the // order of these assigns rely on the register mappings @@ -297,8 +297,8 @@ aes_enc_blk: .global aes_dec_blk -.extern it_tab -.extern il_tab +.extern crypto_it_tab +.extern crypto_il_tab .align 4 @@ -312,14 +312,11 @@ aes_dec_blk: 1: push %ebx mov in_blk+4(%esp),%r2 push %esi - mov nrnd(%ebp),%r3 // number of rounds + mov klen(%ebp),%r3 // key size push %edi #if dkey != 0 lea dkey(%ebp),%ebp // key pointer #endif - mov %r3,%r0 - shl $4,%r0 - add %r0,%ebp // input four columns and xor in first round key @@ -333,27 +330,27 @@ aes_dec_blk: xor 12(%ebp),%r5 sub $8,%esp // space for register saves on stack - sub $16,%ebp // increment to next round key - cmp $12,%r3 + add $16,%ebp // increment to next round key + cmp $24,%r3 jb 4f // 10 rounds for 128-bit key - lea -32(%ebp),%ebp + lea 32(%ebp),%ebp je 3f // 12 rounds for 192-bit key - lea -32(%ebp),%ebp - -2: inv_rnd1( +64(%ebp), it_tab) // 14 rounds for 256-bit key - inv_rnd2( +48(%ebp), it_tab) -3: inv_rnd1( +32(%ebp), it_tab) // 12 rounds for 192-bit key - inv_rnd2( +16(%ebp), it_tab) -4: inv_rnd1( (%ebp), it_tab) // 10 rounds for 128-bit key - inv_rnd2( -16(%ebp), it_tab) - inv_rnd1( -32(%ebp), it_tab) - inv_rnd2( -48(%ebp), it_tab) - inv_rnd1( -64(%ebp), it_tab) - inv_rnd2( -80(%ebp), it_tab) - inv_rnd1( -96(%ebp), it_tab) - inv_rnd2(-112(%ebp), it_tab) - inv_rnd1(-128(%ebp), it_tab) - inv_rnd2(-144(%ebp), il_tab) // last round uses a different table + lea 32(%ebp),%ebp + +2: inv_rnd1( -64(%ebp), crypto_it_tab) // 14 rounds for 256-bit key + inv_rnd2( -48(%ebp), crypto_it_tab) +3: inv_rnd1( -32(%ebp), crypto_it_tab) // 12 rounds for 192-bit key + inv_rnd2( -16(%ebp), crypto_it_tab) +4: inv_rnd1( (%ebp), crypto_it_tab) // 10 rounds for 128-bit key + inv_rnd2( +16(%ebp), crypto_it_tab) + inv_rnd1( +32(%ebp), crypto_it_tab) + inv_rnd2( +48(%ebp), crypto_it_tab) + inv_rnd1( +64(%ebp), crypto_it_tab) + inv_rnd2( +80(%ebp), crypto_it_tab) + inv_rnd1( +96(%ebp), crypto_it_tab) + inv_rnd2(+112(%ebp), crypto_it_tab) + inv_rnd1(+128(%ebp), crypto_it_tab) + inv_rnd2(+144(%ebp), crypto_il_tab) // last round uses a different table // move final values to the output array. CAUTION: the // order of these assigns rely on the register mappings diff --git a/arch/x86/crypto/aes_32.c b/arch/x86/crypto/aes_32.c index 9b0ab50..8556d95 100644 --- a/arch/x86/crypto/aes_32.c +++ b/arch/x86/crypto/aes_32.c @@ -1,468 +1,14 @@ -/* - * +/* * Glue Code for optimized 586 assembler version of AES - * - * Copyright (c) 2002, Dr Brian Gladman <>, Worcester, UK. - * All rights reserved. - * - * LICENSE TERMS - * - * The free distribution and use of this software in both source and binary - * form is allowed (with or without changes) provided that: - * - * 1. distributions of this source code include the above copyright - * notice, this list of conditions and the following disclaimer; - * - * 2. distributions in binary form include the above copyright - * notice, this list of conditions and the following disclaimer - * in the documentation and/or other associated materials; - * - * 3. the copyright holder's name is not used to endorse products - * built using this software without specific written permission. - * - * ALTERNATIVELY, provided that this notice is retained in full, this product - * may be distributed under the terms of the GNU General Public License (GPL), - * in which case the provisions of the GPL apply INSTEAD OF those given above. - * - * DISCLAIMER - * - * This software is provided 'as is' with no explicit or implied warranties - * in respect of its properties, including, but not limited to, correctness - * and/or fitness for purpose. - * - * Copyright (c) 2003, Adam J. Richter <adam@yggdrasil.com> (conversion to - * 2.5 API). - * Copyright (c) 2003, 2004 Fruhwirth Clemens <clemens@endorphin.org> - * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> - * */ -#include <asm/byteorder.h> #include <crypto/aes.h> -#include <linux/kernel.h> #include <linux/module.h> -#include <linux/init.h> -#include <linux/types.h> #include <linux/crypto.h> -#include <linux/linkage.h> asmlinkage void aes_enc_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); asmlinkage void aes_dec_blk(struct crypto_tfm *tfm, u8 *dst, const u8 *src); -#define AES_KS_LENGTH 4 * AES_BLOCK_SIZE -#define RC_LENGTH 29 - -struct aes_ctx { - u32 ekey[AES_KS_LENGTH]; - u32 rounds; - u32 dkey[AES_KS_LENGTH]; -}; - -#define WPOLY 0x011b -#define bytes2word(b0, b1, b2, b3) \ - (((u32)(b3) << 24) | ((u32)(b2) << 16) | ((u32)(b1) << 8) | (b0)) - -/* define the finite field multiplies required for Rijndael */ -#define f2(x) ((x) ? pow[log[x] + 0x19] : 0) -#define f3(x) ((x) ? pow[log[x] + 0x01] : 0) -#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0) -#define fb(x) ((x) ? pow[log[x] + 0x68] : 0) -#define fd(x) ((x) ? pow[log[x] + 0xee] : 0) -#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0) -#define fi(x) ((x) ? pow[255 - log[x]]: 0) - -static inline u32 upr(u32 x, int n) -{ - return (x << 8 * n) | (x >> (32 - 8 * n)); -} - -static inline u8 bval(u32 x, int n) -{ - return x >> 8 * n; -} - -/* The forward and inverse affine transformations used in the S-box */ -#define fwd_affine(x) \ - (w = (u32)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(u8)(w^(w>>8))) - -#define inv_affine(x) \ - (w = (u32)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(u8)(w^(w>>8))) - -static u32 rcon_tab[RC_LENGTH]; - -u32 ft_tab[4][256]; -u32 fl_tab[4][256]; -static u32 im_tab[4][256]; -u32 il_tab[4][256]; -u32 it_tab[4][256]; - -static void gen_tabs(void) -{ - u32 i, w; - u8 pow[512], log[256]; - - /* - * log and power tables for GF(2^8) finite field with - * WPOLY as modular polynomial - the simplest primitive - * root is 0x03, used here to generate the tables. - */ - i = 0; w = 1; - - do { - pow[i] = (u8)w; - pow[i + 255] = (u8)w; - log[w] = (u8)i++; - w ^= (w << 1) ^ (w & 0x80 ? WPOLY : 0); - } while (w != 1); - - for(i = 0, w = 1; i < RC_LENGTH; ++i) { - rcon_tab[i] = bytes2word(w, 0, 0, 0); - w = f2(w); - } - - for(i = 0; i < 256; ++i) { - u8 b; - - b = fwd_affine(fi((u8)i)); - w = bytes2word(f2(b), b, b, f3(b)); - - /* tables for a normal encryption round */ - ft_tab[0][i] = w; - ft_tab[1][i] = upr(w, 1); - ft_tab[2][i] = upr(w, 2); - ft_tab[3][i] = upr(w, 3); - w = bytes2word(b, 0, 0, 0); - - /* - * tables for last encryption round - * (may also be used in the key schedule) - */ - fl_tab[0][i] = w; - fl_tab[1][i] = upr(w, 1); - fl_tab[2][i] = upr(w, 2); - fl_tab[3][i] = upr(w, 3); - - b = fi(inv_affine((u8)i)); - w = bytes2word(fe(b), f9(b), fd(b), fb(b)); - - /* tables for the inverse mix column operation */ - im_tab[0][b] = w; - im_tab[1][b] = upr(w, 1); - im_tab[2][b] = upr(w, 2); - im_tab[3][b] = upr(w, 3); - - /* tables for a normal decryption round */ - it_tab[0][i] = w; - it_tab[1][i] = upr(w,1); - it_tab[2][i] = upr(w,2); - it_tab[3][i] = upr(w,3); - - w = bytes2word(b, 0, 0, 0); - - /* tables for last decryption round */ - il_tab[0][i] = w; - il_tab[1][i] = upr(w,1); - il_tab[2][i] = upr(w,2); - il_tab[3][i] = upr(w,3); - } -} - -#define four_tables(x,tab,vf,rf,c) \ -( tab[0][bval(vf(x,0,c),rf(0,c))] ^ \ - tab[1][bval(vf(x,1,c),rf(1,c))] ^ \ - tab[2][bval(vf(x,2,c),rf(2,c))] ^ \ - tab[3][bval(vf(x,3,c),rf(3,c))] \ -) - -#define vf1(x,r,c) (x) -#define rf1(r,c) (r) -#define rf2(r,c) ((r-c)&3) - -#define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0) -#define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c) - -#define ff(x) inv_mcol(x) - -#define ke4(k,i) \ -{ \ - k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ - k[4*(i)+5] = ss[1] ^= ss[0]; \ - k[4*(i)+6] = ss[2] ^= ss[1]; \ - k[4*(i)+7] = ss[3] ^= ss[2]; \ -} - -#define kel4(k,i) \ -{ \ - k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i]; \ - k[4*(i)+5] = ss[1] ^= ss[0]; \ - k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2]; \ -} - -#define ke6(k,i) \ -{ \ - k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ - k[6*(i)+ 7] = ss[1] ^= ss[0]; \ - k[6*(i)+ 8] = ss[2] ^= ss[1]; \ - k[6*(i)+ 9] = ss[3] ^= ss[2]; \ - k[6*(i)+10] = ss[4] ^= ss[3]; \ - k[6*(i)+11] = ss[5] ^= ss[4]; \ -} - -#define kel6(k,i) \ -{ \ - k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ - k[6*(i)+ 7] = ss[1] ^= ss[0]; \ - k[6*(i)+ 8] = ss[2] ^= ss[1]; \ - k[6*(i)+ 9] = ss[3] ^= ss[2]; \ -} - -#define ke8(k,i) \ -{ \ - k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ - k[8*(i)+ 9] = ss[1] ^= ss[0]; \ - k[8*(i)+10] = ss[2] ^= ss[1]; \ - k[8*(i)+11] = ss[3] ^= ss[2]; \ - k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \ - k[8*(i)+13] = ss[5] ^= ss[4]; \ - k[8*(i)+14] = ss[6] ^= ss[5]; \ - k[8*(i)+15] = ss[7] ^= ss[6]; \ -} - -#define kel8(k,i) \ -{ \ - k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ - k[8*(i)+ 9] = ss[1] ^= ss[0]; \ - k[8*(i)+10] = ss[2] ^= ss[1]; \ - k[8*(i)+11] = ss[3] ^= ss[2]; \ -} - -#define kdf4(k,i) \ -{ \ - ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \ - ss[1] = ss[1] ^ ss[3]; \ - ss[2] = ss[2] ^ ss[3]; \ - ss[3] = ss[3]; \ - ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ - ss[i % 4] ^= ss[4]; \ - ss[4] ^= k[4*(i)]; \ - k[4*(i)+4] = ff(ss[4]); \ - ss[4] ^= k[4*(i)+1]; \ - k[4*(i)+5] = ff(ss[4]); \ - ss[4] ^= k[4*(i)+2]; \ - k[4*(i)+6] = ff(ss[4]); \ - ss[4] ^= k[4*(i)+3]; \ - k[4*(i)+7] = ff(ss[4]); \ -} - -#define kd4(k,i) \ -{ \ - ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ - ss[i % 4] ^= ss[4]; \ - ss[4] = ff(ss[4]); \ - k[4*(i)+4] = ss[4] ^= k[4*(i)]; \ - k[4*(i)+5] = ss[4] ^= k[4*(i)+1]; \ - k[4*(i)+6] = ss[4] ^= k[4*(i)+2]; \ - k[4*(i)+7] = ss[4] ^= k[4*(i)+3]; \ -} - -#define kdl4(k,i) \ -{ \ - ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i]; \ - ss[i % 4] ^= ss[4]; \ - k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \ - k[4*(i)+5] = ss[1] ^ ss[3]; \ - k[4*(i)+6] = ss[0]; \ - k[4*(i)+7] = ss[1]; \ -} - -#define kdf6(k,i) \ -{ \ - ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ - k[6*(i)+ 6] = ff(ss[0]); \ - ss[1] ^= ss[0]; \ - k[6*(i)+ 7] = ff(ss[1]); \ - ss[2] ^= ss[1]; \ - k[6*(i)+ 8] = ff(ss[2]); \ - ss[3] ^= ss[2]; \ - k[6*(i)+ 9] = ff(ss[3]); \ - ss[4] ^= ss[3]; \ - k[6*(i)+10] = ff(ss[4]); \ - ss[5] ^= ss[4]; \ - k[6*(i)+11] = ff(ss[5]); \ -} - -#define kd6(k,i) \ -{ \ - ss[6] = ls_box(ss[5],3) ^ rcon_tab[i]; \ - ss[0] ^= ss[6]; ss[6] = ff(ss[6]); \ - k[6*(i)+ 6] = ss[6] ^= k[6*(i)]; \ - ss[1] ^= ss[0]; \ - k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1]; \ - ss[2] ^= ss[1]; \ - k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2]; \ - ss[3] ^= ss[2]; \ - k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3]; \ - ss[4] ^= ss[3]; \ - k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4]; \ - ss[5] ^= ss[4]; \ - k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5]; \ -} - -#define kdl6(k,i) \ -{ \ - ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i]; \ - k[6*(i)+ 6] = ss[0]; \ - ss[1] ^= ss[0]; \ - k[6*(i)+ 7] = ss[1]; \ - ss[2] ^= ss[1]; \ - k[6*(i)+ 8] = ss[2]; \ - ss[3] ^= ss[2]; \ - k[6*(i)+ 9] = ss[3]; \ -} - -#define kdf8(k,i) \ -{ \ - ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ - k[8*(i)+ 8] = ff(ss[0]); \ - ss[1] ^= ss[0]; \ - k[8*(i)+ 9] = ff(ss[1]); \ - ss[2] ^= ss[1]; \ - k[8*(i)+10] = ff(ss[2]); \ - ss[3] ^= ss[2]; \ - k[8*(i)+11] = ff(ss[3]); \ - ss[4] ^= ls_box(ss[3],0); \ - k[8*(i)+12] = ff(ss[4]); \ - ss[5] ^= ss[4]; \ - k[8*(i)+13] = ff(ss[5]); \ - ss[6] ^= ss[5]; \ - k[8*(i)+14] = ff(ss[6]); \ - ss[7] ^= ss[6]; \ - k[8*(i)+15] = ff(ss[7]); \ -} - -#define kd8(k,i) \ -{ \ - u32 __g = ls_box(ss[7],3) ^ rcon_tab[i]; \ - ss[0] ^= __g; \ - __g = ff(__g); \ - k[8*(i)+ 8] = __g ^= k[8*(i)]; \ - ss[1] ^= ss[0]; \ - k[8*(i)+ 9] = __g ^= k[8*(i)+ 1]; \ - ss[2] ^= ss[1]; \ - k[8*(i)+10] = __g ^= k[8*(i)+ 2]; \ - ss[3] ^= ss[2]; \ - k[8*(i)+11] = __g ^= k[8*(i)+ 3]; \ - __g = ls_box(ss[3],0); \ - ss[4] ^= __g; \ - __g = ff(__g); \ - k[8*(i)+12] = __g ^= k[8*(i)+ 4]; \ - ss[5] ^= ss[4]; \ - k[8*(i)+13] = __g ^= k[8*(i)+ 5]; \ - ss[6] ^= ss[5]; \ - k[8*(i)+14] = __g ^= k[8*(i)+ 6]; \ - ss[7] ^= ss[6]; \ - k[8*(i)+15] = __g ^= k[8*(i)+ 7]; \ -} - -#define kdl8(k,i) \ -{ \ - ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i]; \ - k[8*(i)+ 8] = ss[0]; \ - ss[1] ^= ss[0]; \ - k[8*(i)+ 9] = ss[1]; \ - ss[2] ^= ss[1]; \ - k[8*(i)+10] = ss[2]; \ - ss[3] ^= ss[2]; \ - k[8*(i)+11] = ss[3]; \ -} - -static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key, - unsigned int key_len) -{ - int i; - u32 ss[8]; - struct aes_ctx *ctx = crypto_tfm_ctx(tfm); - const __le32 *key = (const __le32 *)in_key; - u32 *flags = &tfm->crt_flags; - - /* encryption schedule */ - - ctx->ekey[0] = ss[0] = le32_to_cpu(key[0]); - ctx->ekey[1] = ss[1] = le32_to_cpu(key[1]); - ctx->ekey[2] = ss[2] = le32_to_cpu(key[2]); - ctx->ekey[3] = ss[3] = le32_to_cpu(key[3]); - - switch(key_len) { - case 16: - for (i = 0; i < 9; i++) - ke4(ctx->ekey, i); - kel4(ctx->ekey, 9); - ctx->rounds = 10; - break; - - case 24: - ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); - ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); - for (i = 0; i < 7; i++) - ke6(ctx->ekey, i); - kel6(ctx->ekey, 7); - ctx->rounds = 12; - break; - - case 32: - ctx->ekey[4] = ss[4] = le32_to_cpu(key[4]); - ctx->ekey[5] = ss[5] = le32_to_cpu(key[5]); - ctx->ekey[6] = ss[6] = le32_to_cpu(key[6]); - ctx->ekey[7] = ss[7] = le32_to_cpu(key[7]); - for (i = 0; i < 6; i++) - ke8(ctx->ekey, i); - kel8(ctx->ekey, 6); - ctx->rounds = 14; - break; - - default: - *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; - return -EINVAL; - } - - /* decryption schedule */ - - ctx->dkey[0] = ss[0] = le32_to_cpu(key[0]); - ctx->dkey[1] = ss[1] = le32_to_cpu(key[1]); - ctx->dkey[2] = ss[2] = le32_to_cpu(key[2]); - ctx->dkey[3] = ss[3] = le32_to_cpu(key[3]); - - switch (key_len) { - case 16: - kdf4(ctx->dkey, 0); - for (i = 1; i < 9; i++) - kd4(ctx->dkey, i); - kdl4(ctx->dkey, 9); - break; - - case 24: - ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); - ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); - kdf6(ctx->dkey, 0); - for (i = 1; i < 7; i++) - kd6(ctx->dkey, i); - kdl6(ctx->dkey, 7); - break; - - case 32: - ctx->dkey[4] = ff(ss[4] = le32_to_cpu(key[4])); - ctx->dkey[5] = ff(ss[5] = le32_to_cpu(key[5])); - ctx->dkey[6] = ff(ss[6] = le32_to_cpu(key[6])); - ctx->dkey[7] = ff(ss[7] = le32_to_cpu(key[7])); - kdf8(ctx->dkey, 0); - for (i = 1; i < 6; i++) - kd8(ctx->dkey, i); - kdl8(ctx->dkey, 6); - break; - } - return 0; -} - static void aes_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) { aes_enc_blk(tfm, dst, src); @@ -479,14 +25,14 @@ static struct crypto_alg aes_alg = { .cra_priority = 200, .cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_blocksize = AES_BLOCK_SIZE, - .cra_ctxsize = sizeof(struct aes_ctx), + .cra_ctxsize = sizeof(struct crypto_aes_ctx), .cra_module = THIS_MODULE, .cra_list = LIST_HEAD_INIT(aes_alg.cra_list), .cra_u = { .cipher = { .cia_min_keysize = AES_MIN_KEY_SIZE, .cia_max_keysize = AES_MAX_KEY_SIZE, - .cia_setkey = aes_set_key, + .cia_setkey = crypto_aes_set_key, .cia_encrypt = aes_encrypt, .cia_decrypt = aes_decrypt } @@ -495,7 +41,6 @@ static struct crypto_alg aes_alg = { static int __init aes_init(void) { - gen_tabs(); return crypto_register_alg(&aes_alg); } |