diff options
Diffstat (limited to 'arch/parisc/lib/milli/milli.S')
-rw-r--r-- | arch/parisc/lib/milli/milli.S | 2071 |
1 files changed, 2071 insertions, 0 deletions
diff --git a/arch/parisc/lib/milli/milli.S b/arch/parisc/lib/milli/milli.S new file mode 100644 index 0000000..47c6cde --- /dev/null +++ b/arch/parisc/lib/milli/milli.S @@ -0,0 +1,2071 @@ +/* 32 and 64-bit millicode, original author Hewlett-Packard + adapted for gcc by Paul Bame <bame@debian.org> + and Alan Modra <alan@linuxcare.com.au>. + + Copyright 2001, 2002, 2003 Free Software Foundation, Inc. + + This file is part of GCC and is released under the terms of + of the GNU General Public License as published by the Free Software + Foundation; either version 2, or (at your option) any later version. + See the file COPYING in the top-level GCC source directory for a copy + of the license. */ + +#ifdef CONFIG_64BIT + .level 2.0w +#endif + +/* Hardware General Registers. */ +r0: .reg %r0 +r1: .reg %r1 +r2: .reg %r2 +r3: .reg %r3 +r4: .reg %r4 +r5: .reg %r5 +r6: .reg %r6 +r7: .reg %r7 +r8: .reg %r8 +r9: .reg %r9 +r10: .reg %r10 +r11: .reg %r11 +r12: .reg %r12 +r13: .reg %r13 +r14: .reg %r14 +r15: .reg %r15 +r16: .reg %r16 +r17: .reg %r17 +r18: .reg %r18 +r19: .reg %r19 +r20: .reg %r20 +r21: .reg %r21 +r22: .reg %r22 +r23: .reg %r23 +r24: .reg %r24 +r25: .reg %r25 +r26: .reg %r26 +r27: .reg %r27 +r28: .reg %r28 +r29: .reg %r29 +r30: .reg %r30 +r31: .reg %r31 + +/* Hardware Space Registers. */ +sr0: .reg %sr0 +sr1: .reg %sr1 +sr2: .reg %sr2 +sr3: .reg %sr3 +sr4: .reg %sr4 +sr5: .reg %sr5 +sr6: .reg %sr6 +sr7: .reg %sr7 + +/* Hardware Floating Point Registers. */ +fr0: .reg %fr0 +fr1: .reg %fr1 +fr2: .reg %fr2 +fr3: .reg %fr3 +fr4: .reg %fr4 +fr5: .reg %fr5 +fr6: .reg %fr6 +fr7: .reg %fr7 +fr8: .reg %fr8 +fr9: .reg %fr9 +fr10: .reg %fr10 +fr11: .reg %fr11 +fr12: .reg %fr12 +fr13: .reg %fr13 +fr14: .reg %fr14 +fr15: .reg %fr15 + +/* Hardware Control Registers. */ +cr11: .reg %cr11 +sar: .reg %cr11 /* Shift Amount Register */ + +/* Software Architecture General Registers. */ +rp: .reg r2 /* return pointer */ +#ifdef CONFIG_64BIT +mrp: .reg r2 /* millicode return pointer */ +#else +mrp: .reg r31 /* millicode return pointer */ +#endif +ret0: .reg r28 /* return value */ +ret1: .reg r29 /* return value (high part of double) */ +sp: .reg r30 /* stack pointer */ +dp: .reg r27 /* data pointer */ +arg0: .reg r26 /* argument */ +arg1: .reg r25 /* argument or high part of double argument */ +arg2: .reg r24 /* argument */ +arg3: .reg r23 /* argument or high part of double argument */ + +/* Software Architecture Space Registers. */ +/* sr0 ; return link from BLE */ +sret: .reg sr1 /* return value */ +sarg: .reg sr1 /* argument */ +/* sr4 ; PC SPACE tracker */ +/* sr5 ; process private data */ + +/* Frame Offsets (millicode convention!) Used when calling other + millicode routines. Stack unwinding is dependent upon these + definitions. */ +r31_slot: .equ -20 /* "current RP" slot */ +sr0_slot: .equ -16 /* "static link" slot */ +#if defined(CONFIG_64BIT) +mrp_slot: .equ -16 /* "current RP" slot */ +psp_slot: .equ -8 /* "previous SP" slot */ +#else +mrp_slot: .equ -20 /* "current RP" slot (replacing "r31_slot") */ +#endif + + +#define DEFINE(name,value)name: .EQU value +#define RDEFINE(name,value)name: .REG value +#ifdef milliext +#define MILLI_BE(lbl) BE lbl(sr7,r0) +#define MILLI_BEN(lbl) BE,n lbl(sr7,r0) +#define MILLI_BLE(lbl) BLE lbl(sr7,r0) +#define MILLI_BLEN(lbl) BLE,n lbl(sr7,r0) +#define MILLIRETN BE,n 0(sr0,mrp) +#define MILLIRET BE 0(sr0,mrp) +#define MILLI_RETN BE,n 0(sr0,mrp) +#define MILLI_RET BE 0(sr0,mrp) +#else +#define MILLI_BE(lbl) B lbl +#define MILLI_BEN(lbl) B,n lbl +#define MILLI_BLE(lbl) BL lbl,mrp +#define MILLI_BLEN(lbl) BL,n lbl,mrp +#define MILLIRETN BV,n 0(mrp) +#define MILLIRET BV 0(mrp) +#define MILLI_RETN BV,n 0(mrp) +#define MILLI_RET BV 0(mrp) +#endif + +#define CAT(a,b) a##b + +#define SUBSPA_MILLI .section .text +#define SUBSPA_MILLI_DIV .section .text.div,"ax",@progbits! .align 16 +#define SUBSPA_MILLI_MUL .section .text.mul,"ax",@progbits! .align 16 +#define ATTR_MILLI +#define SUBSPA_DATA .section .data +#define ATTR_DATA +#define GLOBAL $global$ +#define GSYM(sym) !sym: +#define LSYM(sym) !CAT(.L,sym:) +#define LREF(sym) CAT(.L,sym) + +#ifdef L_dyncall + SUBSPA_MILLI + ATTR_DATA +GSYM($$dyncall) + .export $$dyncall,millicode + .proc + .callinfo millicode + .entry + bb,>=,n %r22,30,LREF(1) ; branch if not plabel address + depi 0,31,2,%r22 ; clear the two least significant bits + ldw 4(%r22),%r19 ; load new LTP value + ldw 0(%r22),%r22 ; load address of target +LSYM(1) + bv %r0(%r22) ; branch to the real target + stw %r2,-24(%r30) ; save return address into frame marker + .exit + .procend +#endif + +#ifdef L_divI +/* ROUTINES: $$divI, $$divoI + + Single precision divide for signed binary integers. + + The quotient is truncated towards zero. + The sign of the quotient is the XOR of the signs of the dividend and + divisor. + Divide by zero is trapped. + Divide of -2**31 by -1 is trapped for $$divoI but not for $$divI. + + INPUT REGISTERS: + . arg0 == dividend + . arg1 == divisor + . mrp == return pc + . sr0 == return space when called externally + + OUTPUT REGISTERS: + . arg0 = undefined + . arg1 = undefined + . ret1 = quotient + + OTHER REGISTERS AFFECTED: + . r1 = undefined + + SIDE EFFECTS: + . Causes a trap under the following conditions: + . divisor is zero (traps with ADDIT,= 0,25,0) + . dividend==-2**31 and divisor==-1 and routine is $$divoI + . (traps with ADDO 26,25,0) + . Changes memory at the following places: + . NONE + + PERMISSIBLE CONTEXT: + . Unwindable. + . Suitable for internal or external millicode. + . Assumes the special millicode register conventions. + + DISCUSSION: + . Branchs to other millicode routines using BE + . $$div_# for # being 2,3,4,5,6,7,8,9,10,12,14,15 + . + . For selected divisors, calls a divide by constant routine written by + . Karl Pettis. Eligible divisors are 1..15 excluding 11 and 13. + . + . The only overflow case is -2**31 divided by -1. + . Both routines return -2**31 but only $$divoI traps. */ + +RDEFINE(temp,r1) +RDEFINE(retreg,ret1) /* r29 */ +RDEFINE(temp1,arg0) + SUBSPA_MILLI_DIV + ATTR_MILLI + .import $$divI_2,millicode + .import $$divI_3,millicode + .import $$divI_4,millicode + .import $$divI_5,millicode + .import $$divI_6,millicode + .import $$divI_7,millicode + .import $$divI_8,millicode + .import $$divI_9,millicode + .import $$divI_10,millicode + .import $$divI_12,millicode + .import $$divI_14,millicode + .import $$divI_15,millicode + .export $$divI,millicode + .export $$divoI,millicode + .proc + .callinfo millicode + .entry +GSYM($$divoI) + comib,=,n -1,arg1,LREF(negative1) /* when divisor == -1 */ +GSYM($$divI) + ldo -1(arg1),temp /* is there at most one bit set ? */ + and,<> arg1,temp,r0 /* if not, don't use power of 2 divide */ + addi,> 0,arg1,r0 /* if divisor > 0, use power of 2 divide */ + b,n LREF(neg_denom) +LSYM(pow2) + addi,>= 0,arg0,retreg /* if numerator is negative, add the */ + add arg0,temp,retreg /* (denominaotr -1) to correct for shifts */ + extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */ + extrs retreg,15,16,retreg /* retreg = retreg >> 16 */ + or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */ + ldi 0xcc,temp1 /* setup 0xcc in temp1 */ + extru,= arg1,23,8,temp /* test denominator with 0xff00 */ + extrs retreg,23,24,retreg /* retreg = retreg >> 8 */ + or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */ + ldi 0xaa,temp /* setup 0xaa in temp */ + extru,= arg1,27,4,r0 /* test denominator with 0xf0 */ + extrs retreg,27,28,retreg /* retreg = retreg >> 4 */ + and,= arg1,temp1,r0 /* test denominator with 0xcc */ + extrs retreg,29,30,retreg /* retreg = retreg >> 2 */ + and,= arg1,temp,r0 /* test denominator with 0xaa */ + extrs retreg,30,31,retreg /* retreg = retreg >> 1 */ + MILLIRETN +LSYM(neg_denom) + addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power of 2 */ + b,n LREF(regular_seq) + sub r0,arg1,temp /* make denominator positive */ + comb,=,n arg1,temp,LREF(regular_seq) /* test against 0x80000000 and 0 */ + ldo -1(temp),retreg /* is there at most one bit set ? */ + and,= temp,retreg,r0 /* if so, the denominator is power of 2 */ + b,n LREF(regular_seq) + sub r0,arg0,retreg /* negate numerator */ + comb,=,n arg0,retreg,LREF(regular_seq) /* test against 0x80000000 */ + copy retreg,arg0 /* set up arg0, arg1 and temp */ + copy temp,arg1 /* before branching to pow2 */ + b LREF(pow2) + ldo -1(arg1),temp +LSYM(regular_seq) + comib,>>=,n 15,arg1,LREF(small_divisor) + add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */ +LSYM(normal) + subi 0,retreg,retreg /* make it positive */ + sub 0,arg1,temp /* clear carry, */ + /* negate the divisor */ + ds 0,temp,0 /* set V-bit to the comple- */ + /* ment of the divisor sign */ + add retreg,retreg,retreg /* shift msb bit into carry */ + ds r0,arg1,temp /* 1st divide step, if no carry */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 2nd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 3rd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 4th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 5th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 6th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 7th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 8th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 9th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 10th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 11th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 12th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 13th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 14th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 15th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 16th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 17th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 18th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 19th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 20th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 21st divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 22nd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 23rd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 24th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 25th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 26th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 27th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 28th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 29th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 30th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 31st divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 32nd divide step, */ + addc retreg,retreg,retreg /* shift last retreg bit into retreg */ + xor,>= arg0,arg1,0 /* get correct sign of quotient */ + sub 0,retreg,retreg /* based on operand signs */ + MILLIRETN + nop + +LSYM(small_divisor) + +#if defined(CONFIG_64BIT) +/* Clear the upper 32 bits of the arg1 register. We are working with */ +/* small divisors (and 32-bit integers) We must not be mislead */ +/* by "1" bits left in the upper 32 bits. */ + depd %r0,31,32,%r25 +#endif + blr,n arg1,r0 + nop +/* table for divisor == 0,1, ... ,15 */ + addit,= 0,arg1,r0 /* trap if divisor == 0 */ + nop + MILLIRET /* divisor == 1 */ + copy arg0,retreg + MILLI_BEN($$divI_2) /* divisor == 2 */ + nop + MILLI_BEN($$divI_3) /* divisor == 3 */ + nop + MILLI_BEN($$divI_4) /* divisor == 4 */ + nop + MILLI_BEN($$divI_5) /* divisor == 5 */ + nop + MILLI_BEN($$divI_6) /* divisor == 6 */ + nop + MILLI_BEN($$divI_7) /* divisor == 7 */ + nop + MILLI_BEN($$divI_8) /* divisor == 8 */ + nop + MILLI_BEN($$divI_9) /* divisor == 9 */ + nop + MILLI_BEN($$divI_10) /* divisor == 10 */ + nop + b LREF(normal) /* divisor == 11 */ + add,>= 0,arg0,retreg + MILLI_BEN($$divI_12) /* divisor == 12 */ + nop + b LREF(normal) /* divisor == 13 */ + add,>= 0,arg0,retreg + MILLI_BEN($$divI_14) /* divisor == 14 */ + nop + MILLI_BEN($$divI_15) /* divisor == 15 */ + nop + +LSYM(negative1) + sub 0,arg0,retreg /* result is negation of dividend */ + MILLIRET + addo arg0,arg1,r0 /* trap iff dividend==0x80000000 && divisor==-1 */ + .exit + .procend + .end +#endif + +#ifdef L_divU +/* ROUTINE: $$divU + . + . Single precision divide for unsigned integers. + . + . Quotient is truncated towards zero. + . Traps on divide by zero. + + INPUT REGISTERS: + . arg0 == dividend + . arg1 == divisor + . mrp == return pc + . sr0 == return space when called externally + + OUTPUT REGISTERS: + . arg0 = undefined + . arg1 = undefined + . ret1 = quotient + + OTHER REGISTERS AFFECTED: + . r1 = undefined + + SIDE EFFECTS: + . Causes a trap under the following conditions: + . divisor is zero + . Changes memory at the following places: + . NONE + + PERMISSIBLE CONTEXT: + . Unwindable. + . Does not create a stack frame. + . Suitable for internal or external millicode. + . Assumes the special millicode register conventions. + + DISCUSSION: + . Branchs to other millicode routines using BE: + . $$divU_# for 3,5,6,7,9,10,12,14,15 + . + . For selected small divisors calls the special divide by constant + . routines written by Karl Pettis. These are: 3,5,6,7,9,10,12,14,15. */ + +RDEFINE(temp,r1) +RDEFINE(retreg,ret1) /* r29 */ +RDEFINE(temp1,arg0) + SUBSPA_MILLI_DIV + ATTR_MILLI + .export $$divU,millicode + .import $$divU_3,millicode + .import $$divU_5,millicode + .import $$divU_6,millicode + .import $$divU_7,millicode + .import $$divU_9,millicode + .import $$divU_10,millicode + .import $$divU_12,millicode + .import $$divU_14,millicode + .import $$divU_15,millicode + .proc + .callinfo millicode + .entry +GSYM($$divU) +/* The subtract is not nullified since it does no harm and can be used + by the two cases that branch back to "normal". */ + ldo -1(arg1),temp /* is there at most one bit set ? */ + and,= arg1,temp,r0 /* if so, denominator is power of 2 */ + b LREF(regular_seq) + addit,= 0,arg1,0 /* trap for zero dvr */ + copy arg0,retreg + extru,= arg1,15,16,temp /* test denominator with 0xffff0000 */ + extru retreg,15,16,retreg /* retreg = retreg >> 16 */ + or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 16) */ + ldi 0xcc,temp1 /* setup 0xcc in temp1 */ + extru,= arg1,23,8,temp /* test denominator with 0xff00 */ + extru retreg,23,24,retreg /* retreg = retreg >> 8 */ + or arg1,temp,arg1 /* arg1 = arg1 | (arg1 >> 8) */ + ldi 0xaa,temp /* setup 0xaa in temp */ + extru,= arg1,27,4,r0 /* test denominator with 0xf0 */ + extru retreg,27,28,retreg /* retreg = retreg >> 4 */ + and,= arg1,temp1,r0 /* test denominator with 0xcc */ + extru retreg,29,30,retreg /* retreg = retreg >> 2 */ + and,= arg1,temp,r0 /* test denominator with 0xaa */ + extru retreg,30,31,retreg /* retreg = retreg >> 1 */ + MILLIRETN + nop +LSYM(regular_seq) + comib,>= 15,arg1,LREF(special_divisor) + subi 0,arg1,temp /* clear carry, negate the divisor */ + ds r0,temp,r0 /* set V-bit to 1 */ +LSYM(normal) + add arg0,arg0,retreg /* shift msb bit into carry */ + ds r0,arg1,temp /* 1st divide step, if no carry */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 2nd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 3rd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 4th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 5th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 6th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 7th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 8th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 9th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 10th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 11th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 12th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 13th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 14th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 15th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 16th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 17th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 18th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 19th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 20th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 21st divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 22nd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 23rd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 24th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 25th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 26th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 27th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 28th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 29th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 30th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 31st divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds temp,arg1,temp /* 32nd divide step, */ + MILLIRET + addc retreg,retreg,retreg /* shift last retreg bit into retreg */ + +/* Handle the cases where divisor is a small constant or has high bit on. */ +LSYM(special_divisor) +/* blr arg1,r0 */ +/* comib,>,n 0,arg1,LREF(big_divisor) ; nullify previous instruction */ + +/* Pratap 8/13/90. The 815 Stirling chip set has a bug that prevents us from + generating such a blr, comib sequence. A problem in nullification. So I + rewrote this code. */ + +#if defined(CONFIG_64BIT) +/* Clear the upper 32 bits of the arg1 register. We are working with + small divisors (and 32-bit unsigned integers) We must not be mislead + by "1" bits left in the upper 32 bits. */ + depd %r0,31,32,%r25 +#endif + comib,> 0,arg1,LREF(big_divisor) + nop + blr arg1,r0 + nop + +LSYM(zero_divisor) /* this label is here to provide external visibility */ + addit,= 0,arg1,0 /* trap for zero dvr */ + nop + MILLIRET /* divisor == 1 */ + copy arg0,retreg + MILLIRET /* divisor == 2 */ + extru arg0,30,31,retreg + MILLI_BEN($$divU_3) /* divisor == 3 */ + nop + MILLIRET /* divisor == 4 */ + extru arg0,29,30,retreg + MILLI_BEN($$divU_5) /* divisor == 5 */ + nop + MILLI_BEN($$divU_6) /* divisor == 6 */ + nop + MILLI_BEN($$divU_7) /* divisor == 7 */ + nop + MILLIRET /* divisor == 8 */ + extru arg0,28,29,retreg + MILLI_BEN($$divU_9) /* divisor == 9 */ + nop + MILLI_BEN($$divU_10) /* divisor == 10 */ + nop + b LREF(normal) /* divisor == 11 */ + ds r0,temp,r0 /* set V-bit to 1 */ + MILLI_BEN($$divU_12) /* divisor == 12 */ + nop + b LREF(normal) /* divisor == 13 */ + ds r0,temp,r0 /* set V-bit to 1 */ + MILLI_BEN($$divU_14) /* divisor == 14 */ + nop + MILLI_BEN($$divU_15) /* divisor == 15 */ + nop + +/* Handle the case where the high bit is on in the divisor. + Compute: if( dividend>=divisor) quotient=1; else quotient=0; + Note: dividend>==divisor iff dividend-divisor does not borrow + and not borrow iff carry. */ +LSYM(big_divisor) + sub arg0,arg1,r0 + MILLIRET + addc r0,r0,retreg + .exit + .procend + .end +#endif + +#ifdef L_remI +/* ROUTINE: $$remI + + DESCRIPTION: + . $$remI returns the remainder of the division of two signed 32-bit + . integers. The sign of the remainder is the same as the sign of + . the dividend. + + + INPUT REGISTERS: + . arg0 == dividend + . arg1 == divisor + . mrp == return pc + . sr0 == return space when called externally + + OUTPUT REGISTERS: + . arg0 = destroyed + . arg1 = destroyed + . ret1 = remainder + + OTHER REGISTERS AFFECTED: + . r1 = undefined + + SIDE EFFECTS: + . Causes a trap under the following conditions: DIVIDE BY ZERO + . Changes memory at the following places: NONE + + PERMISSIBLE CONTEXT: + . Unwindable + . Does not create a stack frame + . Is usable for internal or external microcode + + DISCUSSION: + . Calls other millicode routines via mrp: NONE + . Calls other millicode routines: NONE */ + +RDEFINE(tmp,r1) +RDEFINE(retreg,ret1) + + SUBSPA_MILLI + ATTR_MILLI + .proc + .callinfo millicode + .entry +GSYM($$remI) +GSYM($$remoI) + .export $$remI,MILLICODE + .export $$remoI,MILLICODE + ldo -1(arg1),tmp /* is there at most one bit set ? */ + and,<> arg1,tmp,r0 /* if not, don't use power of 2 */ + addi,> 0,arg1,r0 /* if denominator > 0, use power */ + /* of 2 */ + b,n LREF(neg_denom) +LSYM(pow2) + comb,>,n 0,arg0,LREF(neg_num) /* is numerator < 0 ? */ + and arg0,tmp,retreg /* get the result */ + MILLIRETN +LSYM(neg_num) + subi 0,arg0,arg0 /* negate numerator */ + and arg0,tmp,retreg /* get the result */ + subi 0,retreg,retreg /* negate result */ + MILLIRETN +LSYM(neg_denom) + addi,< 0,arg1,r0 /* if arg1 >= 0, it's not power */ + /* of 2 */ + b,n LREF(regular_seq) + sub r0,arg1,tmp /* make denominator positive */ + comb,=,n arg1,tmp,LREF(regular_seq) /* test against 0x80000000 and 0 */ + ldo -1(tmp),retreg /* is there at most one bit set ? */ + and,= tmp,retreg,r0 /* if not, go to regular_seq */ + b,n LREF(regular_seq) + comb,>,n 0,arg0,LREF(neg_num_2) /* if arg0 < 0, negate it */ + and arg0,retreg,retreg + MILLIRETN +LSYM(neg_num_2) + subi 0,arg0,tmp /* test against 0x80000000 */ + and tmp,retreg,retreg + subi 0,retreg,retreg + MILLIRETN +LSYM(regular_seq) + addit,= 0,arg1,0 /* trap if div by zero */ + add,>= 0,arg0,retreg /* move dividend, if retreg < 0, */ + sub 0,retreg,retreg /* make it positive */ + sub 0,arg1, tmp /* clear carry, */ + /* negate the divisor */ + ds 0, tmp,0 /* set V-bit to the comple- */ + /* ment of the divisor sign */ + or 0,0, tmp /* clear tmp */ + add retreg,retreg,retreg /* shift msb bit into carry */ + ds tmp,arg1, tmp /* 1st divide step, if no carry */ + /* out, msb of quotient = 0 */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ +LSYM(t1) + ds tmp,arg1, tmp /* 2nd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 3rd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 4th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 5th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 6th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 7th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 8th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 9th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 10th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 11th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 12th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 13th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 14th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 15th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 16th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 17th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 18th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 19th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 20th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 21st divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 22nd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 23rd divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 24th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 25th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 26th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 27th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 28th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 29th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 30th divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 31st divide step */ + addc retreg,retreg,retreg /* shift retreg with/into carry */ + ds tmp,arg1, tmp /* 32nd divide step, */ + addc retreg,retreg,retreg /* shift last bit into retreg */ + movb,>=,n tmp,retreg,LREF(finish) /* branch if pos. tmp */ + add,< arg1,0,0 /* if arg1 > 0, add arg1 */ + add,tr tmp,arg1,retreg /* for correcting remainder tmp */ + sub tmp,arg1,retreg /* else add absolute value arg1 */ +LSYM(finish) + add,>= arg0,0,0 /* set sign of remainder */ + sub 0,retreg,retreg /* to sign of dividend */ + MILLIRET + nop + .exit + .procend +#ifdef milliext + .origin 0x00000200 +#endif + .end +#endif + +#ifdef L_remU +/* ROUTINE: $$remU + . Single precision divide for remainder with unsigned binary integers. + . + . The remainder must be dividend-(dividend/divisor)*divisor. + . Divide by zero is trapped. + + INPUT REGISTERS: + . arg0 == dividend + . arg1 == divisor + . mrp == return pc + . sr0 == return space when called externally + + OUTPUT REGISTERS: + . arg0 = undefined + . arg1 = undefined + . ret1 = remainder + + OTHER REGISTERS AFFECTED: + . r1 = undefined + + SIDE EFFECTS: + . Causes a trap under the following conditions: DIVIDE BY ZERO + . Changes memory at the following places: NONE + + PERMISSIBLE CONTEXT: + . Unwindable. + . Does not create a stack frame. + . Suitable for internal or external millicode. + . Assumes the special millicode register conventions. + + DISCUSSION: + . Calls other millicode routines using mrp: NONE + . Calls other millicode routines: NONE */ + + +RDEFINE(temp,r1) +RDEFINE(rmndr,ret1) /* r29 */ + SUBSPA_MILLI + ATTR_MILLI + .export $$remU,millicode + .proc + .callinfo millicode + .entry +GSYM($$remU) + ldo -1(arg1),temp /* is there at most one bit set ? */ + and,= arg1,temp,r0 /* if not, don't use power of 2 */ + b LREF(regular_seq) + addit,= 0,arg1,r0 /* trap on div by zero */ + and arg0,temp,rmndr /* get the result for power of 2 */ + MILLIRETN +LSYM(regular_seq) + comib,>=,n 0,arg1,LREF(special_case) + subi 0,arg1,rmndr /* clear carry, negate the divisor */ + ds r0,rmndr,r0 /* set V-bit to 1 */ + add arg0,arg0,temp /* shift msb bit into carry */ + ds r0,arg1,rmndr /* 1st divide step, if no carry */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 2nd divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 3rd divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 4th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 5th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 6th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 7th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 8th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 9th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 10th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 11th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 12th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 13th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 14th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 15th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 16th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 17th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 18th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 19th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 20th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 21st divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 22nd divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 23rd divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 24th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 25th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 26th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 27th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 28th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 29th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 30th divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 31st divide step */ + addc temp,temp,temp /* shift temp with/into carry */ + ds rmndr,arg1,rmndr /* 32nd divide step, */ + comiclr,<= 0,rmndr,r0 + add rmndr,arg1,rmndr /* correction */ + MILLIRETN + nop + +/* Putting >= on the last DS and deleting COMICLR does not work! */ +LSYM(special_case) + sub,>>= arg0,arg1,rmndr + copy arg0,rmndr + MILLIRETN + nop + .exit + .procend + .end +#endif + +#ifdef L_div_const +/* ROUTINE: $$divI_2 + . $$divI_3 $$divU_3 + . $$divI_4 + . $$divI_5 $$divU_5 + . $$divI_6 $$divU_6 + . $$divI_7 $$divU_7 + . $$divI_8 + . $$divI_9 $$divU_9 + . $$divI_10 $$divU_10 + . + . $$divI_12 $$divU_12 + . + . $$divI_14 $$divU_14 + . $$divI_15 $$divU_15 + . $$divI_16 + . $$divI_17 $$divU_17 + . + . Divide by selected constants for single precision binary integers. + + INPUT REGISTERS: + . arg0 == dividend + . mrp == return pc + . sr0 == return space when called externally + + OUTPUT REGISTERS: + . arg0 = undefined + . arg1 = undefined + . ret1 = quotient + + OTHER REGISTERS AFFECTED: + . r1 = undefined + + SIDE EFFECTS: + . Causes a trap under the following conditions: NONE + . Changes memory at the following places: NONE + + PERMISSIBLE CONTEXT: + . Unwindable. + . Does not create a stack frame. + . Suitable for internal or external millicode. + . Assumes the special millicode register conventions. + + DISCUSSION: + . Calls other millicode routines using mrp: NONE + . Calls other millicode routines: NONE */ + + +/* TRUNCATED DIVISION BY SMALL INTEGERS + + We are interested in q(x) = floor(x/y), where x >= 0 and y > 0 + (with y fixed). + + Let a = floor(z/y), for some choice of z. Note that z will be + chosen so that division by z is cheap. + + Let r be the remainder(z/y). In other words, r = z - ay. + + Now, our method is to choose a value for b such that + + q'(x) = floor((ax+b)/z) + + is equal to q(x) over as large a range of x as possible. If the + two are equal over a sufficiently large range, and if it is easy to + form the product (ax), and it is easy to divide by z, then we can + perform the division much faster than the general division algorithm. + + So, we want the following to be true: + + . For x in the following range: + . + . ky <= x < (k+1)y + . + . implies that + . + . k <= (ax+b)/z < (k+1) + + We want to determine b such that this is true for all k in the + range {0..K} for some maximum K. + + Since (ax+b) is an increasing function of x, we can take each + bound separately to determine the "best" value for b. + + (ax+b)/z < (k+1) implies + + (a((k+1)y-1)+b < (k+1)z implies + + b < a + (k+1)(z-ay) implies + + b < a + (k+1)r + + This needs to be true for all k in the range {0..K}. In + particular, it is true for k = 0 and this leads to a maximum + acceptable value for b. + + b < a+r or b <= a+r-1 + + Taking the other bound, we have + + k <= (ax+b)/z implies + + k <= (aky+b)/z implies + + k(z-ay) <= b implies + + kr <= b + + Clearly, the largest range for k will be achieved by maximizing b, + when r is not zero. When r is zero, then the simplest choice for b + is 0. When r is not 0, set + + . b = a+r-1 + + Now, by construction, q'(x) = floor((ax+b)/z) = q(x) = floor(x/y) + for all x in the range: + + . 0 <= x < (K+1)y + + We need to determine what K is. Of our two bounds, + + . b < a+(k+1)r is satisfied for all k >= 0, by construction. + + The other bound is + + . kr <= b + + This is always true if r = 0. If r is not 0 (the usual case), then + K = floor((a+r-1)/r), is the maximum value for k. + + Therefore, the formula q'(x) = floor((ax+b)/z) yields the correct + answer for q(x) = floor(x/y) when x is in the range + + (0,(K+1)y-1) K = floor((a+r-1)/r) + + To be most useful, we want (K+1)y-1 = (max x) >= 2**32-1 so that + the formula for q'(x) yields the correct value of q(x) for all x + representable by a single word in HPPA. + + We are also constrained in that computing the product (ax), adding + b, and dividing by z must all be done quickly, otherwise we will be + better off going through the general algorithm using the DS + instruction, which uses approximately 70 cycles. + + For each y, there is a choice of z which satisfies the constraints + for (K+1)y >= 2**32. We may not, however, be able to satisfy the + timing constraints for arbitrary y. It seems that z being equal to + a power of 2 or a power of 2 minus 1 is as good as we can do, since + it minimizes the time to do division by z. We want the choice of z + to also result in a value for (a) that minimizes the computation of + the product (ax). This is best achieved if (a) has a regular bit + pattern (so the multiplication can be done with shifts and adds). + The value of (a) also needs to be less than 2**32 so the product is + always guaranteed to fit in 2 words. + + In actual practice, the following should be done: + + 1) For negative x, you should take the absolute value and remember + . the fact so that the result can be negated. This obviously does + . not apply in the unsigned case. + 2) For even y, you should factor out the power of 2 that divides y + . and divide x by it. You can then proceed by dividing by the + . odd factor of y. + + Here is a table of some odd values of y, and corresponding choices + for z which are "good". + + y z r a (hex) max x (hex) + + 3 2**32 1 55555555 100000001 + 5 2**32 1 33333333 100000003 + 7 2**24-1 0 249249 (infinite) + 9 2**24-1 0 1c71c7 (infinite) + 11 2**20-1 0 1745d (infinite) + 13 2**24-1 0 13b13b (infinite) + 15 2**32 1 11111111 10000000d + 17 2**32 1 f0f0f0f 10000000f + + If r is 1, then b = a+r-1 = a. This simplifies the computation + of (ax+b), since you can compute (x+1)(a) instead. If r is 0, + then b = 0 is ok to use which simplifies (ax+b). + + The bit patterns for 55555555, 33333333, and 11111111 are obviously + very regular. The bit patterns for the other values of a above are: + + y (hex) (binary) + + 7 249249 001001001001001001001001 << regular >> + 9 1c71c7 000111000111000111000111 << regular >> + 11 1745d 000000010111010001011101 << irregular >> + 13 13b13b 000100111011000100111011 << irregular >> + + The bit patterns for (a) corresponding to (y) of 11 and 13 may be + too irregular to warrant using this method. + + When z is a power of 2 minus 1, then the division by z is slightly + more complicated, involving an iterative solution. + + The code presented here solves division by 1 through 17, except for + 11 and 13. There are algorithms for both signed and unsigned + quantities given. + + TIMINGS (cycles) + + divisor positive negative unsigned + + . 1 2 2 2 + . 2 4 4 2 + . 3 19 21 19 + . 4 4 4 2 + . 5 18 22 19 + . 6 19 22 19 + . 8 4 4 2 + . 10 18 19 17 + . 12 18 20 18 + . 15 16 18 16 + . 16 4 4 2 + . 17 16 18 16 + + Now, the algorithm for 7, 9, and 14 is an iterative one. That is, + a loop body is executed until the tentative quotient is 0. The + number of times the loop body is executed varies depending on the + dividend, but is never more than two times. If the dividend is + less than the divisor, then the loop body is not executed at all. + Each iteration adds 4 cycles to the timings. + + divisor positive negative unsigned + + . 7 19+4n 20+4n 20+4n n = number of iterations + . 9 21+4n 22+4n 21+4n + . 14 21+4n 22+4n 20+4n + + To give an idea of how the number of iterations varies, here is a + table of dividend versus number of iterations when dividing by 7. + + smallest largest required + dividend dividend iterations + + . 0 6 0 + . 7 0x6ffffff 1 + 0x1000006 0xffffffff 2 + + There is some overlap in the range of numbers requiring 1 and 2 + iterations. */ + +RDEFINE(t2,r1) +RDEFINE(x2,arg0) /* r26 */ +RDEFINE(t1,arg1) /* r25 */ +RDEFINE(x1,ret1) /* r29 */ + + SUBSPA_MILLI_DIV + ATTR_MILLI + + .proc + .callinfo millicode + .entry +/* NONE of these routines require a stack frame + ALL of these routines are unwindable from millicode */ + +GSYM($$divide_by_constant) + .export $$divide_by_constant,millicode +/* Provides a "nice" label for the code covered by the unwind descriptor + for things like gprof. */ + +/* DIVISION BY 2 (shift by 1) */ +GSYM($$divI_2) + .export $$divI_2,millicode + comclr,>= arg0,0,0 + addi 1,arg0,arg0 + MILLIRET + extrs arg0,30,31,ret1 + + +/* DIVISION BY 4 (shift by 2) */ +GSYM($$divI_4) + .export $$divI_4,millicode + comclr,>= arg0,0,0 + addi 3,arg0,arg0 + MILLIRET + extrs arg0,29,30,ret1 + + +/* DIVISION BY 8 (shift by 3) */ +GSYM($$divI_8) + .export $$divI_8,millicode + comclr,>= arg0,0,0 + addi 7,arg0,arg0 + MILLIRET + extrs arg0,28,29,ret1 + +/* DIVISION BY 16 (shift by 4) */ +GSYM($$divI_16) + .export $$divI_16,millicode + comclr,>= arg0,0,0 + addi 15,arg0,arg0 + MILLIRET + extrs arg0,27,28,ret1 + +/**************************************************************************** +* +* DIVISION BY DIVISORS OF FFFFFFFF, and powers of 2 times these +* +* includes 3,5,15,17 and also 6,10,12 +* +****************************************************************************/ + +/* DIVISION BY 3 (use z = 2**32; a = 55555555) */ + +GSYM($$divI_3) + .export $$divI_3,millicode + comb,<,N x2,0,LREF(neg3) + + addi 1,x2,x2 /* this cannot overflow */ + extru x2,1,2,x1 /* multiply by 5 to get started */ + sh2add x2,x2,x2 + b LREF(pos) + addc x1,0,x1 + +LSYM(neg3) + subi 1,x2,x2 /* this cannot overflow */ + extru x2,1,2,x1 /* multiply by 5 to get started */ + sh2add x2,x2,x2 + b LREF(neg) + addc x1,0,x1 + +GSYM($$divU_3) + .export $$divU_3,millicode + addi 1,x2,x2 /* this CAN overflow */ + addc 0,0,x1 + shd x1,x2,30,t1 /* multiply by 5 to get started */ + sh2add x2,x2,x2 + b LREF(pos) + addc x1,t1,x1 + +/* DIVISION BY 5 (use z = 2**32; a = 33333333) */ + +GSYM($$divI_5) + .export $$divI_5,millicode + comb,<,N x2,0,LREF(neg5) + + addi 3,x2,t1 /* this cannot overflow */ + sh1add x2,t1,x2 /* multiply by 3 to get started */ + b LREF(pos) + addc 0,0,x1 + +LSYM(neg5) + sub 0,x2,x2 /* negate x2 */ + addi 1,x2,x2 /* this cannot overflow */ + shd 0,x2,31,x1 /* get top bit (can be 1) */ + sh1add x2,x2,x2 /* multiply by 3 to get started */ + b LREF(neg) + addc x1,0,x1 + +GSYM($$divU_5) + .export $$divU_5,millicode + addi 1,x2,x2 /* this CAN overflow */ + addc 0,0,x1 + shd x1,x2,31,t1 /* multiply by 3 to get started */ + sh1add x2,x2,x2 + b LREF(pos) + addc t1,x1,x1 + +/* DIVISION BY 6 (shift to divide by 2 then divide by 3) */ +GSYM($$divI_6) + .export $$divI_6,millicode + comb,<,N x2,0,LREF(neg6) + extru x2,30,31,x2 /* divide by 2 */ + addi 5,x2,t1 /* compute 5*(x2+1) = 5*x2+5 */ + sh2add x2,t1,x2 /* multiply by 5 to get started */ + b LREF(pos) + addc 0,0,x1 + +LSYM(neg6) + subi 2,x2,x2 /* negate, divide by 2, and add 1 */ + /* negation and adding 1 are done */ + /* at the same time by the SUBI */ + extru x2,30,31,x2 + shd 0,x2,30,x1 + sh2add x2,x2,x2 /* multiply by 5 to get started */ + b LREF(neg) + addc x1,0,x1 + +GSYM($$divU_6) + .export $$divU_6,millicode + extru x2,30,31,x2 /* divide by 2 */ + addi 1,x2,x2 /* cannot carry */ + shd 0,x2,30,x1 /* multiply by 5 to get started */ + sh2add x2,x2,x2 + b LREF(pos) + addc x1,0,x1 + +/* DIVISION BY 10 (shift to divide by 2 then divide by 5) */ +GSYM($$divU_10) + .export $$divU_10,millicode + extru x2,30,31,x2 /* divide by 2 */ + addi 3,x2,t1 /* compute 3*(x2+1) = (3*x2)+3 */ + sh1add x2,t1,x2 /* multiply by 3 to get started */ + addc 0,0,x1 +LSYM(pos) + shd x1,x2,28,t1 /* multiply by 0x11 */ + shd x2,0,28,t2 + add x2,t2,x2 + addc x1,t1,x1 +LSYM(pos_for_17) + shd x1,x2,24,t1 /* multiply by 0x101 */ + shd x2,0,24,t2 + add x2,t2,x2 + addc x1,t1,x1 + + shd x1,x2,16,t1 /* multiply by 0x10001 */ + shd x2,0,16,t2 + add x2,t2,x2 + MILLIRET + addc x1,t1,x1 + +GSYM($$divI_10) + .export $$divI_10,millicode + comb,< x2,0,LREF(neg10) + copy 0,x1 + extru x2,30,31,x2 /* divide by 2 */ + addib,TR 1,x2,LREF(pos) /* add 1 (cannot overflow) */ + sh1add x2,x2,x2 /* multiply by 3 to get started */ + +LSYM(neg10) + subi 2,x2,x2 /* negate, divide by 2, and add 1 */ + /* negation and adding 1 are done */ + /* at the same time by the SUBI */ + extru x2,30,31,x2 + sh1add x2,x2,x2 /* multiply by 3 to get started */ +LSYM(neg) + shd x1,x2,28,t1 /* multiply by 0x11 */ + shd x2,0,28,t2 + add x2,t2,x2 + addc x1,t1,x1 +LSYM(neg_for_17) + shd x1,x2,24,t1 /* multiply by 0x101 */ + shd x2,0,24,t2 + add x2,t2,x2 + addc x1,t1,x1 + + shd x1,x2,16,t1 /* multiply by 0x10001 */ + shd x2,0,16,t2 + add x2,t2,x2 + addc x1,t1,x1 + MILLIRET + sub 0,x1,x1 + +/* DIVISION BY 12 (shift to divide by 4 then divide by 3) */ +GSYM($$divI_12) + .export $$divI_12,millicode + comb,< x2,0,LREF(neg12) + copy 0,x1 + extru x2,29,30,x2 /* divide by 4 */ + addib,tr 1,x2,LREF(pos) /* compute 5*(x2+1) = 5*x2+5 */ + sh2add x2,x2,x2 /* multiply by 5 to get started */ + +LSYM(neg12) + subi 4,x2,x2 /* negate, divide by 4, and add 1 */ + /* negation and adding 1 are done */ + /* at the same time by the SUBI */ + extru x2,29,30,x2 + b LREF(neg) + sh2add x2,x2,x2 /* multiply by 5 to get started */ + +GSYM($$divU_12) + .export $$divU_12,millicode + extru x2,29,30,x2 /* divide by 4 */ + addi 5,x2,t1 /* cannot carry */ + sh2add x2,t1,x2 /* multiply by 5 to get started */ + b LREF(pos) + addc 0,0,x1 + +/* DIVISION BY 15 (use z = 2**32; a = 11111111) */ +GSYM($$divI_15) + .export $$divI_15,millicode + comb,< x2,0,LREF(neg15) + copy 0,x1 + addib,tr 1,x2,LREF(pos)+4 + shd x1,x2,28,t1 + +LSYM(neg15) + b LREF(neg) + subi 1,x2,x2 + +GSYM($$divU_15) + .export $$divU_15,millicode + addi 1,x2,x2 /* this CAN overflow */ + b LREF(pos) + addc 0,0,x1 + +/* DIVISION BY 17 (use z = 2**32; a = f0f0f0f) */ +GSYM($$divI_17) + .export $$divI_17,millicode + comb,<,n x2,0,LREF(neg17) + addi 1,x2,x2 /* this cannot overflow */ + shd 0,x2,28,t1 /* multiply by 0xf to get started */ + shd x2,0,28,t2 + sub t2,x2,x2 + b LREF(pos_for_17) + subb t1,0,x1 + +LSYM(neg17) + subi 1,x2,x2 /* this cannot overflow */ + shd 0,x2,28,t1 /* multiply by 0xf to get started */ + shd x2,0,28,t2 + sub t2,x2,x2 + b LREF(neg_for_17) + subb t1,0,x1 + +GSYM($$divU_17) + .export $$divU_17,millicode + addi 1,x2,x2 /* this CAN overflow */ + addc 0,0,x1 + shd x1,x2,28,t1 /* multiply by 0xf to get started */ +LSYM(u17) + shd x2,0,28,t2 + sub t2,x2,x2 + b LREF(pos_for_17) + subb t1,x1,x1 + + +/* DIVISION BY DIVISORS OF FFFFFF, and powers of 2 times these + includes 7,9 and also 14 + + + z = 2**24-1 + r = z mod x = 0 + + so choose b = 0 + + Also, in order to divide by z = 2**24-1, we approximate by dividing + by (z+1) = 2**24 (which is easy), and then correcting. + + (ax) = (z+1)q' + r + . = zq' + (q'+r) + + So to compute (ax)/z, compute q' = (ax)/(z+1) and r = (ax) mod (z+1) + Then the true remainder of (ax)/z is (q'+r). Repeat the process + with this new remainder, adding the tentative quotients together, + until a tentative quotient is 0 (and then we are done). There is + one last correction to be done. It is possible that (q'+r) = z. + If so, then (q'+r)/(z+1) = 0 and it looks like we are done. But, + in fact, we need to add 1 more to the quotient. Now, it turns + out that this happens if and only if the original value x is + an exact multiple of y. So, to avoid a three instruction test at + the end, instead use 1 instruction to add 1 to x at the beginning. */ + +/* DIVISION BY 7 (use z = 2**24-1; a = 249249) */ +GSYM($$divI_7) + .export $$divI_7,millicode + comb,<,n x2,0,LREF(neg7) +LSYM(7) + addi 1,x2,x2 /* cannot overflow */ + shd 0,x2,29,x1 + sh3add x2,x2,x2 + addc x1,0,x1 +LSYM(pos7) + shd x1,x2,26,t1 + shd x2,0,26,t2 + add x2,t2,x2 + addc x1,t1,x1 + + shd x1,x2,20,t1 + shd x2,0,20,t2 + add x2,t2,x2 + addc x1,t1,t1 + + /* computed <t1,x2>. Now divide it by (2**24 - 1) */ + + copy 0,x1 + shd,= t1,x2,24,t1 /* tentative quotient */ +LSYM(1) + addb,tr t1,x1,LREF(2) /* add to previous quotient */ + extru x2,31,24,x2 /* new remainder (unadjusted) */ + + MILLIRETN + +LSYM(2) + addb,tr t1,x2,LREF(1) /* adjust remainder */ + extru,= x2,7,8,t1 /* new quotient */ + +LSYM(neg7) + subi 1,x2,x2 /* negate x2 and add 1 */ +LSYM(8) + shd 0,x2,29,x1 + sh3add x2,x2,x2 + addc x1,0,x1 + +LSYM(neg7_shift) + shd x1,x2,26,t1 + shd x2,0,26,t2 + add x2,t2,x2 + addc x1,t1,x1 + + shd x1,x2,20,t1 + shd x2,0,20,t2 + add x2,t2,x2 + addc x1,t1,t1 + + /* computed <t1,x2>. Now divide it by (2**24 - 1) */ + + copy 0,x1 + shd,= t1,x2,24,t1 /* tentative quotient */ +LSYM(3) + addb,tr t1,x1,LREF(4) /* add to previous quotient */ + extru x2,31,24,x2 /* new remainder (unadjusted) */ + + MILLIRET + sub 0,x1,x1 /* negate result */ + +LSYM(4) + addb,tr t1,x2,LREF(3) /* adjust remainder */ + extru,= x2,7,8,t1 /* new quotient */ + +GSYM($$divU_7) + .export $$divU_7,millicode + addi 1,x2,x2 /* can carry */ + addc 0,0,x1 + shd x1,x2,29,t1 + sh3add x2,x2,x2 + b LREF(pos7) + addc t1,x1,x1 + +/* DIVISION BY 9 (use z = 2**24-1; a = 1c71c7) */ +GSYM($$divI_9) + .export $$divI_9,millicode + comb,<,n x2,0,LREF(neg9) + addi 1,x2,x2 /* cannot overflow */ + shd 0,x2,29,t1 + shd x2,0,29,t2 + sub t2,x2,x2 + b LREF(pos7) + subb t1,0,x1 + +LSYM(neg9) + subi 1,x2,x2 /* negate and add 1 */ + shd 0,x2,29,t1 + shd x2,0,29,t2 + sub t2,x2,x2 + b LREF(neg7_shift) + subb t1,0,x1 + +GSYM($$divU_9) + .export $$divU_9,millicode + addi 1,x2,x2 /* can carry */ + addc 0,0,x1 + shd x1,x2,29,t1 + shd x2,0,29,t2 + sub t2,x2,x2 + b LREF(pos7) + subb t1,x1,x1 + +/* DIVISION BY 14 (shift to divide by 2 then divide by 7) */ +GSYM($$divI_14) + .export $$divI_14,millicode + comb,<,n x2,0,LREF(neg14) +GSYM($$divU_14) + .export $$divU_14,millicode + b LREF(7) /* go to 7 case */ + extru x2,30,31,x2 /* divide by 2 */ + +LSYM(neg14) + subi 2,x2,x2 /* negate (and add 2) */ + b LREF(8) + extru x2,30,31,x2 /* divide by 2 */ + .exit + .procend + .end +#endif + +#ifdef L_mulI +/* VERSION "@(#)$$mulI $ Revision: 12.4 $ $ Date: 94/03/17 17:18:51 $" */ +/****************************************************************************** +This routine is used on PA2.0 processors when gcc -mno-fpregs is used + +ROUTINE: $$mulI + + +DESCRIPTION: + + $$mulI multiplies two single word integers, giving a single + word result. + + +INPUT REGISTERS: + + arg0 = Operand 1 + arg1 = Operand 2 + r31 == return pc + sr0 == return space when called externally + + +OUTPUT REGISTERS: + + arg0 = undefined + arg1 = undefined + ret1 = result + +OTHER REGISTERS AFFECTED: + + r1 = undefined + +SIDE EFFECTS: + + Causes a trap under the following conditions: NONE + Changes memory at the following places: NONE + +PERMISSIBLE CONTEXT: + + Unwindable + Does not create a stack frame + Is usable for internal or external microcode + +DISCUSSION: + + Calls other millicode routines via mrp: NONE + Calls other millicode routines: NONE + +***************************************************************************/ + + +#define a0 %arg0 +#define a1 %arg1 +#define t0 %r1 +#define r %ret1 + +#define a0__128a0 zdep a0,24,25,a0 +#define a0__256a0 zdep a0,23,24,a0 +#define a1_ne_0_b_l0 comb,<> a1,0,LREF(l0) +#define a1_ne_0_b_l1 comb,<> a1,0,LREF(l1) +#define a1_ne_0_b_l2 comb,<> a1,0,LREF(l2) +#define b_n_ret_t0 b,n LREF(ret_t0) +#define b_e_shift b LREF(e_shift) +#define b_e_t0ma0 b LREF(e_t0ma0) +#define b_e_t0 b LREF(e_t0) +#define b_e_t0a0 b LREF(e_t0a0) +#define b_e_t02a0 b LREF(e_t02a0) +#define b_e_t04a0 b LREF(e_t04a0) +#define b_e_2t0 b LREF(e_2t0) +#define b_e_2t0a0 b LREF(e_2t0a0) +#define b_e_2t04a0 b LREF(e2t04a0) +#define b_e_3t0 b LREF(e_3t0) +#define b_e_4t0 b LREF(e_4t0) +#define b_e_4t0a0 b LREF(e_4t0a0) +#define b_e_4t08a0 b LREF(e4t08a0) +#define b_e_5t0 b LREF(e_5t0) +#define b_e_8t0 b LREF(e_8t0) +#define b_e_8t0a0 b LREF(e_8t0a0) +#define r__r_a0 add r,a0,r +#define r__r_2a0 sh1add a0,r,r +#define r__r_4a0 sh2add a0,r,r +#define r__r_8a0 sh3add a0,r,r +#define r__r_t0 add r,t0,r +#define r__r_2t0 sh1add t0,r,r +#define r__r_4t0 sh2add t0,r,r +#define r__r_8t0 sh3add t0,r,r +#define t0__3a0 sh1add a0,a0,t0 +#define t0__4a0 sh2add a0,0,t0 +#define t0__5a0 sh2add a0,a0,t0 +#define t0__8a0 sh3add a0,0,t0 +#define t0__9a0 sh3add a0,a0,t0 +#define t0__16a0 zdep a0,27,28,t0 +#define t0__32a0 zdep a0,26,27,t0 +#define t0__64a0 zdep a0,25,26,t0 +#define t0__128a0 zdep a0,24,25,t0 +#define t0__t0ma0 sub t0,a0,t0 +#define t0__t0_a0 add t0,a0,t0 +#define t0__t0_2a0 sh1add a0,t0,t0 +#define t0__t0_4a0 sh2add a0,t0,t0 +#define t0__t0_8a0 sh3add a0,t0,t0 +#define t0__2t0_a0 sh1add t0,a0,t0 +#define t0__3t0 sh1add t0,t0,t0 +#define t0__4t0 sh2add t0,0,t0 +#define t0__4t0_a0 sh2add t0,a0,t0 +#define t0__5t0 sh2add t0,t0,t0 +#define t0__8t0 sh3add t0,0,t0 +#define t0__8t0_a0 sh3add t0,a0,t0 +#define t0__9t0 sh3add t0,t0,t0 +#define t0__16t0 zdep t0,27,28,t0 +#define t0__32t0 zdep t0,26,27,t0 +#define t0__256a0 zdep a0,23,24,t0 + + + SUBSPA_MILLI + ATTR_MILLI + .align 16 + .proc + .callinfo millicode + .export $$mulI,millicode +GSYM($$mulI) + combt,<<= a1,a0,LREF(l4) /* swap args if unsigned a1>a0 */ + copy 0,r /* zero out the result */ + xor a0,a1,a0 /* swap a0 & a1 using the */ + xor a0,a1,a1 /* old xor trick */ + xor a0,a1,a0 +LSYM(l4) + combt,<= 0,a0,LREF(l3) /* if a0>=0 then proceed like unsigned */ + zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */ + sub,> 0,a1,t0 /* otherwise negate both and */ + combt,<=,n a0,t0,LREF(l2) /* swap back if |a0|<|a1| */ + sub 0,a0,a1 + movb,tr,n t0,a0,LREF(l2) /* 10th inst. */ + +LSYM(l0) r__r_t0 /* add in this partial product */ +LSYM(l1) a0__256a0 /* a0 <<= 8 ****************** */ +LSYM(l2) zdep a1,30,8,t0 /* t0 = (a1&0xff)<<1 ********* */ +LSYM(l3) blr t0,0 /* case on these 8 bits ****** */ + extru a1,23,24,a1 /* a1 >>= 8 ****************** */ + +/*16 insts before this. */ +/* a0 <<= 8 ************************** */ +LSYM(x0) a1_ne_0_b_l2 ! a0__256a0 ! MILLIRETN ! nop +LSYM(x1) a1_ne_0_b_l1 ! r__r_a0 ! MILLIRETN ! nop +LSYM(x2) a1_ne_0_b_l1 ! r__r_2a0 ! MILLIRETN ! nop +LSYM(x3) a1_ne_0_b_l0 ! t0__3a0 ! MILLIRET ! r__r_t0 +LSYM(x4) a1_ne_0_b_l1 ! r__r_4a0 ! MILLIRETN ! nop +LSYM(x5) a1_ne_0_b_l0 ! t0__5a0 ! MILLIRET ! r__r_t0 +LSYM(x6) t0__3a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN +LSYM(x7) t0__3a0 ! a1_ne_0_b_l0 ! r__r_4a0 ! b_n_ret_t0 +LSYM(x8) a1_ne_0_b_l1 ! r__r_8a0 ! MILLIRETN ! nop +LSYM(x9) a1_ne_0_b_l0 ! t0__9a0 ! MILLIRET ! r__r_t0 +LSYM(x10) t0__5a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN +LSYM(x11) t0__3a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0 +LSYM(x12) t0__3a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN +LSYM(x13) t0__5a0 ! a1_ne_0_b_l0 ! r__r_8a0 ! b_n_ret_t0 +LSYM(x14) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 +LSYM(x15) t0__5a0 ! a1_ne_0_b_l0 ! t0__3t0 ! b_n_ret_t0 +LSYM(x16) t0__16a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN +LSYM(x17) t0__9a0 ! a1_ne_0_b_l0 ! t0__t0_8a0 ! b_n_ret_t0 +LSYM(x18) t0__9a0 ! a1_ne_0_b_l1 ! r__r_2t0 ! MILLIRETN +LSYM(x19) t0__9a0 ! a1_ne_0_b_l0 ! t0__2t0_a0 ! b_n_ret_t0 +LSYM(x20) t0__5a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN +LSYM(x21) t0__5a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 +LSYM(x22) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 +LSYM(x23) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x24) t0__3a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN +LSYM(x25) t0__5a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0 +LSYM(x26) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 +LSYM(x27) t0__3a0 ! a1_ne_0_b_l0 ! t0__9t0 ! b_n_ret_t0 +LSYM(x28) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 +LSYM(x29) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x30) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_2t0 +LSYM(x31) t0__32a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 +LSYM(x32) t0__32a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN +LSYM(x33) t0__8a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 +LSYM(x34) t0__16a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 +LSYM(x35) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__t0_8a0 +LSYM(x36) t0__9a0 ! a1_ne_0_b_l1 ! r__r_4t0 ! MILLIRETN +LSYM(x37) t0__9a0 ! a1_ne_0_b_l0 ! t0__4t0_a0 ! b_n_ret_t0 +LSYM(x38) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_2t0 +LSYM(x39) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x40) t0__5a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN +LSYM(x41) t0__5a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0 +LSYM(x42) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 +LSYM(x43) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x44) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 +LSYM(x45) t0__9a0 ! a1_ne_0_b_l0 ! t0__5t0 ! b_n_ret_t0 +LSYM(x46) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_a0 +LSYM(x47) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_2a0 +LSYM(x48) t0__3a0 ! a1_ne_0_b_l0 ! t0__16t0 ! b_n_ret_t0 +LSYM(x49) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__t0_4a0 +LSYM(x50) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_2t0 +LSYM(x51) t0__9a0 ! t0__t0_8a0 ! b_e_t0 ! t0__3t0 +LSYM(x52) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 +LSYM(x53) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x54) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_2t0 +LSYM(x55) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x56) t0__3a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 +LSYM(x57) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__3t0 +LSYM(x58) t0__3a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 +LSYM(x59) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__3t0 +LSYM(x60) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 +LSYM(x61) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x62) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 +LSYM(x63) t0__64a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 +LSYM(x64) t0__64a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN +LSYM(x65) t0__8a0 ! a1_ne_0_b_l0 ! t0__8t0_a0 ! b_n_ret_t0 +LSYM(x66) t0__32a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 +LSYM(x67) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x68) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 +LSYM(x69) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x70) t0__64a0 ! t0__t0_4a0 ! b_e_t0 ! t0__t0_2a0 +LSYM(x71) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__t0ma0 +LSYM(x72) t0__9a0 ! a1_ne_0_b_l1 ! r__r_8t0 ! MILLIRETN +LSYM(x73) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_t0 +LSYM(x74) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_2t0 +LSYM(x75) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x76) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_4t0 +LSYM(x77) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x78) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__2t0_a0 +LSYM(x79) t0__16a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0 +LSYM(x80) t0__16a0 ! t0__5t0 ! b_e_shift ! r__r_t0 +LSYM(x81) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_t0 +LSYM(x82) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0 +LSYM(x83) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x84) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 +LSYM(x85) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0 +LSYM(x86) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 +LSYM(x87) t0__9a0 ! t0__9t0 ! b_e_t02a0 ! t0__t0_4a0 +LSYM(x88) t0__5a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 +LSYM(x89) t0__5a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 +LSYM(x90) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_2t0 +LSYM(x91) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x92) t0__5a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0 +LSYM(x93) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__3t0 +LSYM(x94) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__t0_2a0 +LSYM(x95) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__5t0 +LSYM(x96) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 +LSYM(x97) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x98) t0__32a0 ! t0__3t0 ! b_e_t0 ! t0__t0_2a0 +LSYM(x99) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0 +LSYM(x100) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_4t0 +LSYM(x101) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x102) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0 +LSYM(x103) t0__5a0 ! t0__5t0 ! b_e_t02a0 ! t0__4t0_a0 +LSYM(x104) t0__3a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0 +LSYM(x105) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 +LSYM(x106) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__4t0_a0 +LSYM(x107) t0__9a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__8t0_a0 +LSYM(x108) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_4t0 +LSYM(x109) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x110) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__2t0_a0 +LSYM(x111) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__3t0 +LSYM(x112) t0__3a0 ! t0__2t0_a0 ! b_e_t0 ! t0__16t0 +LSYM(x113) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__3t0 +LSYM(x114) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__3t0 +LSYM(x115) t0__9a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__3t0 +LSYM(x116) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__4t0_a0 +LSYM(x117) t0__3a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0 +LSYM(x118) t0__3a0 ! t0__4t0_a0 ! b_e_t0a0 ! t0__9t0 +LSYM(x119) t0__3a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__9t0 +LSYM(x120) t0__5a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 +LSYM(x121) t0__5a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 +LSYM(x122) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 +LSYM(x123) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 +LSYM(x124) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0 +LSYM(x125) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__5t0 +LSYM(x126) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 +LSYM(x127) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 +LSYM(x128) t0__128a0 ! a1_ne_0_b_l1 ! r__r_t0 ! MILLIRETN +LSYM(x129) t0__128a0 ! a1_ne_0_b_l0 ! t0__t0_a0 ! b_n_ret_t0 +LSYM(x130) t0__64a0 ! t0__t0_a0 ! b_e_shift ! r__r_2t0 +LSYM(x131) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x132) t0__8a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 +LSYM(x133) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x134) t0__8a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 +LSYM(x135) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__3t0 +LSYM(x136) t0__8a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 +LSYM(x137) t0__8a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 +LSYM(x138) t0__8a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 +LSYM(x139) t0__8a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__4t0_a0 +LSYM(x140) t0__3a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__5t0 +LSYM(x141) t0__8a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__2t0_a0 +LSYM(x142) t0__9a0 ! t0__8t0 ! b_e_2t0 ! t0__t0ma0 +LSYM(x143) t0__16a0 ! t0__9t0 ! b_e_t0 ! t0__t0ma0 +LSYM(x144) t0__9a0 ! t0__8t0 ! b_e_shift ! r__r_2t0 +LSYM(x145) t0__9a0 ! t0__8t0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x146) t0__9a0 ! t0__8t0_a0 ! b_e_shift ! r__r_2t0 +LSYM(x147) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x148) t0__9a0 ! t0__4t0_a0 ! b_e_shift ! r__r_4t0 +LSYM(x149) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x150) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__2t0_a0 +LSYM(x151) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__2t0_a0 +LSYM(x152) t0__9a0 ! t0__2t0_a0 ! b_e_shift ! r__r_8t0 +LSYM(x153) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__8t0_a0 +LSYM(x154) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__4t0_a0 +LSYM(x155) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__5t0 +LSYM(x156) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__2t0_a0 +LSYM(x157) t0__32a0 ! t0__t0ma0 ! b_e_t02a0 ! t0__5t0 +LSYM(x158) t0__16a0 ! t0__5t0 ! b_e_2t0 ! t0__t0ma0 +LSYM(x159) t0__32a0 ! t0__5t0 ! b_e_t0 ! t0__t0ma0 +LSYM(x160) t0__5a0 ! t0__4t0 ! b_e_shift ! r__r_8t0 +LSYM(x161) t0__8a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x162) t0__9a0 ! t0__9t0 ! b_e_shift ! r__r_2t0 +LSYM(x163) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__2t0_a0 +LSYM(x164) t0__5a0 ! t0__8t0_a0 ! b_e_shift ! r__r_4t0 +LSYM(x165) t0__8a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 +LSYM(x166) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__2t0_a0 +LSYM(x167) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__2t0_a0 +LSYM(x168) t0__5a0 ! t0__4t0_a0 ! b_e_shift ! r__r_8t0 +LSYM(x169) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__8t0_a0 +LSYM(x170) t0__32a0 ! t0__t0_2a0 ! b_e_t0 ! t0__5t0 +LSYM(x171) t0__9a0 ! t0__2t0_a0 ! b_e_t0 ! t0__9t0 +LSYM(x172) t0__5a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__2t0_a0 +LSYM(x173) t0__9a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__9t0 +LSYM(x174) t0__32a0 ! t0__t0_2a0 ! b_e_t04a0 ! t0__5t0 +LSYM(x175) t0__8a0 ! t0__2t0_a0 ! b_e_5t0 ! t0__2t0_a0 +LSYM(x176) t0__5a0 ! t0__4t0_a0 ! b_e_8t0 ! t0__t0_a0 +LSYM(x177) t0__5a0 ! t0__4t0_a0 ! b_e_8t0a0 ! t0__t0_a0 +LSYM(x178) t0__5a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__8t0_a0 +LSYM(x179) t0__5a0 ! t0__2t0_a0 ! b_e_2t0a0 ! t0__8t0_a0 +LSYM(x180) t0__9a0 ! t0__5t0 ! b_e_shift ! r__r_4t0 +LSYM(x181) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x182) t0__9a0 ! t0__5t0 ! b_e_2t0 ! t0__2t0_a0 +LSYM(x183) t0__9a0 ! t0__5t0 ! b_e_2t0a0 ! t0__2t0_a0 +LSYM(x184) t0__5a0 ! t0__9t0 ! b_e_4t0 ! t0__t0_a0 +LSYM(x185) t0__9a0 ! t0__4t0_a0 ! b_e_t0 ! t0__5t0 +LSYM(x186) t0__32a0 ! t0__t0ma0 ! b_e_2t0 ! t0__3t0 +LSYM(x187) t0__9a0 ! t0__4t0_a0 ! b_e_t02a0 ! t0__5t0 +LSYM(x188) t0__9a0 ! t0__5t0 ! b_e_4t0 ! t0__t0_2a0 +LSYM(x189) t0__5a0 ! t0__4t0_a0 ! b_e_t0 ! t0__9t0 +LSYM(x190) t0__9a0 ! t0__2t0_a0 ! b_e_2t0 ! t0__5t0 +LSYM(x191) t0__64a0 ! t0__3t0 ! b_e_t0 ! t0__t0ma0 +LSYM(x192) t0__8a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 +LSYM(x193) t0__8a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 +LSYM(x194) t0__8a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 +LSYM(x195) t0__8a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 +LSYM(x196) t0__8a0 ! t0__3t0 ! b_e_4t0 ! t0__2t0_a0 +LSYM(x197) t0__8a0 ! t0__3t0 ! b_e_4t0a0 ! t0__2t0_a0 +LSYM(x198) t0__64a0 ! t0__t0_2a0 ! b_e_t0 ! t0__3t0 +LSYM(x199) t0__8a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0 +LSYM(x200) t0__5a0 ! t0__5t0 ! b_e_shift ! r__r_8t0 +LSYM(x201) t0__5a0 ! t0__5t0 ! b_e_t0 ! t0__8t0_a0 +LSYM(x202) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__4t0_a0 +LSYM(x203) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__4t0_a0 +LSYM(x204) t0__8a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0 +LSYM(x205) t0__5a0 ! t0__8t0_a0 ! b_e_t0 ! t0__5t0 +LSYM(x206) t0__64a0 ! t0__t0_4a0 ! b_e_t02a0 ! t0__3t0 +LSYM(x207) t0__8a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0 +LSYM(x208) t0__5a0 ! t0__5t0 ! b_e_8t0 ! t0__t0_a0 +LSYM(x209) t0__5a0 ! t0__5t0 ! b_e_8t0a0 ! t0__t0_a0 +LSYM(x210) t0__5a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__5t0 +LSYM(x211) t0__5a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__5t0 +LSYM(x212) t0__3a0 ! t0__4t0_a0 ! b_e_4t0 ! t0__4t0_a0 +LSYM(x213) t0__3a0 ! t0__4t0_a0 ! b_e_4t0a0 ! t0__4t0_a0 +LSYM(x214) t0__9a0 ! t0__t0_4a0 ! b_e_2t04a0 ! t0__8t0_a0 +LSYM(x215) t0__5a0 ! t0__4t0_a0 ! b_e_5t0 ! t0__2t0_a0 +LSYM(x216) t0__9a0 ! t0__3t0 ! b_e_shift ! r__r_8t0 +LSYM(x217) t0__9a0 ! t0__3t0 ! b_e_t0 ! t0__8t0_a0 +LSYM(x218) t0__9a0 ! t0__3t0 ! b_e_2t0 ! t0__4t0_a0 +LSYM(x219) t0__9a0 ! t0__8t0_a0 ! b_e_t0 ! t0__3t0 +LSYM(x220) t0__3a0 ! t0__9t0 ! b_e_4t0 ! t0__2t0_a0 +LSYM(x221) t0__3a0 ! t0__9t0 ! b_e_4t0a0 ! t0__2t0_a0 +LSYM(x222) t0__9a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__3t0 +LSYM(x223) t0__9a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__3t0 +LSYM(x224) t0__9a0 ! t0__3t0 ! b_e_8t0 ! t0__t0_a0 +LSYM(x225) t0__9a0 ! t0__5t0 ! b_e_t0 ! t0__5t0 +LSYM(x226) t0__3a0 ! t0__2t0_a0 ! b_e_t02a0 ! t0__32t0 +LSYM(x227) t0__9a0 ! t0__5t0 ! b_e_t02a0 ! t0__5t0 +LSYM(x228) t0__9a0 ! t0__2t0_a0 ! b_e_4t0 ! t0__3t0 +LSYM(x229) t0__9a0 ! t0__2t0_a0 ! b_e_4t0a0 ! t0__3t0 +LSYM(x230) t0__9a0 ! t0__5t0 ! b_e_5t0 ! t0__t0_a0 +LSYM(x231) t0__9a0 ! t0__2t0_a0 ! b_e_3t0 ! t0__4t0_a0 +LSYM(x232) t0__3a0 ! t0__2t0_a0 ! b_e_8t0 ! t0__4t0_a0 +LSYM(x233) t0__3a0 ! t0__2t0_a0 ! b_e_8t0a0 ! t0__4t0_a0 +LSYM(x234) t0__3a0 ! t0__4t0_a0 ! b_e_2t0 ! t0__9t0 +LSYM(x235) t0__3a0 ! t0__4t0_a0 ! b_e_2t0a0 ! t0__9t0 +LSYM(x236) t0__9a0 ! t0__2t0_a0 ! b_e_4t08a0 ! t0__3t0 +LSYM(x237) t0__16a0 ! t0__5t0 ! b_e_3t0 ! t0__t0ma0 +LSYM(x238) t0__3a0 ! t0__4t0_a0 ! b_e_2t04a0 ! t0__9t0 +LSYM(x239) t0__16a0 ! t0__5t0 ! b_e_t0ma0 ! t0__3t0 +LSYM(x240) t0__9a0 ! t0__t0_a0 ! b_e_8t0 ! t0__3t0 +LSYM(x241) t0__9a0 ! t0__t0_a0 ! b_e_8t0a0 ! t0__3t0 +LSYM(x242) t0__5a0 ! t0__3t0 ! b_e_2t0 ! t0__8t0_a0 +LSYM(x243) t0__9a0 ! t0__9t0 ! b_e_t0 ! t0__3t0 +LSYM(x244) t0__5a0 ! t0__3t0 ! b_e_4t0 ! t0__4t0_a0 +LSYM(x245) t0__8a0 ! t0__3t0 ! b_e_5t0 ! t0__2t0_a0 +LSYM(x246) t0__5a0 ! t0__8t0_a0 ! b_e_2t0 ! t0__3t0 +LSYM(x247) t0__5a0 ! t0__8t0_a0 ! b_e_2t0a0 ! t0__3t0 +LSYM(x248) t0__32a0 ! t0__t0ma0 ! b_e_shift ! r__r_8t0 +LSYM(x249) t0__32a0 ! t0__t0ma0 ! b_e_t0 ! t0__8t0_a0 +LSYM(x250) t0__5a0 ! t0__5t0 ! b_e_2t0 ! t0__5t0 +LSYM(x251) t0__5a0 ! t0__5t0 ! b_e_2t0a0 ! t0__5t0 +LSYM(x252) t0__64a0 ! t0__t0ma0 ! b_e_shift ! r__r_4t0 +LSYM(x253) t0__64a0 ! t0__t0ma0 ! b_e_t0 ! t0__4t0_a0 +LSYM(x254) t0__128a0 ! t0__t0ma0 ! b_e_shift ! r__r_2t0 +LSYM(x255) t0__256a0 ! a1_ne_0_b_l0 ! t0__t0ma0 ! b_n_ret_t0 +/*1040 insts before this. */ +LSYM(ret_t0) MILLIRET +LSYM(e_t0) r__r_t0 +LSYM(e_shift) a1_ne_0_b_l2 + a0__256a0 /* a0 <<= 8 *********** */ + MILLIRETN +LSYM(e_t0ma0) a1_ne_0_b_l0 + t0__t0ma0 + MILLIRET + r__r_t0 +LSYM(e_t0a0) a1_ne_0_b_l0 + t0__t0_a0 + MILLIRET + r__r_t0 +LSYM(e_t02a0) a1_ne_0_b_l0 + t0__t0_2a0 + MILLIRET + r__r_t0 +LSYM(e_t04a0) a1_ne_0_b_l0 + t0__t0_4a0 + MILLIRET + r__r_t0 +LSYM(e_2t0) a1_ne_0_b_l1 + r__r_2t0 + MILLIRETN +LSYM(e_2t0a0) a1_ne_0_b_l0 + t0__2t0_a0 + MILLIRET + r__r_t0 +LSYM(e2t04a0) t0__t0_2a0 + a1_ne_0_b_l1 + r__r_2t0 + MILLIRETN +LSYM(e_3t0) a1_ne_0_b_l0 + t0__3t0 + MILLIRET + r__r_t0 +LSYM(e_4t0) a1_ne_0_b_l1 + r__r_4t0 + MILLIRETN +LSYM(e_4t0a0) a1_ne_0_b_l0 + t0__4t0_a0 + MILLIRET + r__r_t0 +LSYM(e4t08a0) t0__t0_2a0 + a1_ne_0_b_l1 + r__r_4t0 + MILLIRETN +LSYM(e_5t0) a1_ne_0_b_l0 + t0__5t0 + MILLIRET + r__r_t0 +LSYM(e_8t0) a1_ne_0_b_l1 + r__r_8t0 + MILLIRETN +LSYM(e_8t0a0) a1_ne_0_b_l0 + t0__8t0_a0 + MILLIRET + r__r_t0 + + .procend + .end +#endif |