diff options
Diffstat (limited to 'arch/ia64/kernel/unaligned.c')
-rw-r--r-- | arch/ia64/kernel/unaligned.c | 1521 |
1 files changed, 1521 insertions, 0 deletions
diff --git a/arch/ia64/kernel/unaligned.c b/arch/ia64/kernel/unaligned.c new file mode 100644 index 0000000..43b45b6 --- /dev/null +++ b/arch/ia64/kernel/unaligned.c @@ -0,0 +1,1521 @@ +/* + * Architecture-specific unaligned trap handling. + * + * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co + * Stephane Eranian <eranian@hpl.hp.com> + * David Mosberger-Tang <davidm@hpl.hp.com> + * + * 2002/12/09 Fix rotating register handling (off-by-1 error, missing fr-rotation). Fix + * get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame + * stacked register returns an undefined value; it does NOT trigger a + * "rsvd register fault"). + * 2001/10/11 Fix unaligned access to rotating registers in s/w pipelined loops. + * 2001/08/13 Correct size of extended floats (float_fsz) from 16 to 10 bytes. + * 2001/01/17 Add support emulation of unaligned kernel accesses. + */ +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/smp_lock.h> +#include <linux/tty.h> + +#include <asm/intrinsics.h> +#include <asm/processor.h> +#include <asm/rse.h> +#include <asm/uaccess.h> +#include <asm/unaligned.h> + +extern void die_if_kernel(char *str, struct pt_regs *regs, long err) __attribute__ ((noreturn)); + +#undef DEBUG_UNALIGNED_TRAP + +#ifdef DEBUG_UNALIGNED_TRAP +# define DPRINT(a...) do { printk("%s %u: ", __FUNCTION__, __LINE__); printk (a); } while (0) +# define DDUMP(str,vp,len) dump(str, vp, len) + +static void +dump (const char *str, void *vp, size_t len) +{ + unsigned char *cp = vp; + int i; + + printk("%s", str); + for (i = 0; i < len; ++i) + printk (" %02x", *cp++); + printk("\n"); +} +#else +# define DPRINT(a...) +# define DDUMP(str,vp,len) +#endif + +#define IA64_FIRST_STACKED_GR 32 +#define IA64_FIRST_ROTATING_FR 32 +#define SIGN_EXT9 0xffffffffffffff00ul + +/* + * For M-unit: + * + * opcode | m | x6 | + * --------|------|---------| + * [40-37] | [36] | [35:30] | + * --------|------|---------| + * 4 | 1 | 6 | = 11 bits + * -------------------------- + * However bits [31:30] are not directly useful to distinguish between + * load/store so we can use [35:32] instead, which gives the following + * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer + * checking the m-bit until later in the load/store emulation. + */ +#define IA64_OPCODE_MASK 0x1ef +#define IA64_OPCODE_SHIFT 32 + +/* + * Table C-28 Integer Load/Store + * + * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF + * + * ld8.fill, st8.fill MUST be aligned because the RNATs are based on + * the address (bits [8:3]), so we must failed. + */ +#define LD_OP 0x080 +#define LDS_OP 0x081 +#define LDA_OP 0x082 +#define LDSA_OP 0x083 +#define LDBIAS_OP 0x084 +#define LDACQ_OP 0x085 +/* 0x086, 0x087 are not relevant */ +#define LDCCLR_OP 0x088 +#define LDCNC_OP 0x089 +#define LDCCLRACQ_OP 0x08a +#define ST_OP 0x08c +#define STREL_OP 0x08d +/* 0x08e,0x8f are not relevant */ + +/* + * Table C-29 Integer Load +Reg + * + * we use the ld->m (bit [36:36]) field to determine whether or not we have + * a load/store of this form. + */ + +/* + * Table C-30 Integer Load/Store +Imm + * + * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF + * + * ld8.fill, st8.fill must be aligned because the Nat register are based on + * the address, so we must fail and the program must be fixed. + */ +#define LD_IMM_OP 0x0a0 +#define LDS_IMM_OP 0x0a1 +#define LDA_IMM_OP 0x0a2 +#define LDSA_IMM_OP 0x0a3 +#define LDBIAS_IMM_OP 0x0a4 +#define LDACQ_IMM_OP 0x0a5 +/* 0x0a6, 0xa7 are not relevant */ +#define LDCCLR_IMM_OP 0x0a8 +#define LDCNC_IMM_OP 0x0a9 +#define LDCCLRACQ_IMM_OP 0x0aa +#define ST_IMM_OP 0x0ac +#define STREL_IMM_OP 0x0ad +/* 0x0ae,0xaf are not relevant */ + +/* + * Table C-32 Floating-point Load/Store + */ +#define LDF_OP 0x0c0 +#define LDFS_OP 0x0c1 +#define LDFA_OP 0x0c2 +#define LDFSA_OP 0x0c3 +/* 0x0c6 is irrelevant */ +#define LDFCCLR_OP 0x0c8 +#define LDFCNC_OP 0x0c9 +/* 0x0cb is irrelevant */ +#define STF_OP 0x0cc + +/* + * Table C-33 Floating-point Load +Reg + * + * we use the ld->m (bit [36:36]) field to determine whether or not we have + * a load/store of this form. + */ + +/* + * Table C-34 Floating-point Load/Store +Imm + */ +#define LDF_IMM_OP 0x0e0 +#define LDFS_IMM_OP 0x0e1 +#define LDFA_IMM_OP 0x0e2 +#define LDFSA_IMM_OP 0x0e3 +/* 0x0e6 is irrelevant */ +#define LDFCCLR_IMM_OP 0x0e8 +#define LDFCNC_IMM_OP 0x0e9 +#define STF_IMM_OP 0x0ec + +typedef struct { + unsigned long qp:6; /* [0:5] */ + unsigned long r1:7; /* [6:12] */ + unsigned long imm:7; /* [13:19] */ + unsigned long r3:7; /* [20:26] */ + unsigned long x:1; /* [27:27] */ + unsigned long hint:2; /* [28:29] */ + unsigned long x6_sz:2; /* [30:31] */ + unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */ + unsigned long m:1; /* [36:36] */ + unsigned long op:4; /* [37:40] */ + unsigned long pad:23; /* [41:63] */ +} load_store_t; + + +typedef enum { + UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */ + UPD_REG /* ldXZ r1=[r3],r2 */ +} update_t; + +/* + * We use tables to keep track of the offsets of registers in the saved state. + * This way we save having big switch/case statements. + * + * We use bit 0 to indicate switch_stack or pt_regs. + * The offset is simply shifted by 1 bit. + * A 2-byte value should be enough to hold any kind of offset + * + * In case the calling convention changes (and thus pt_regs/switch_stack) + * simply use RSW instead of RPT or vice-versa. + */ + +#define RPO(x) ((size_t) &((struct pt_regs *)0)->x) +#define RSO(x) ((size_t) &((struct switch_stack *)0)->x) + +#define RPT(x) (RPO(x) << 1) +#define RSW(x) (1| RSO(x)<<1) + +#define GR_OFFS(x) (gr_info[x]>>1) +#define GR_IN_SW(x) (gr_info[x] & 0x1) + +#define FR_OFFS(x) (fr_info[x]>>1) +#define FR_IN_SW(x) (fr_info[x] & 0x1) + +static u16 gr_info[32]={ + 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */ + + RPT(r1), RPT(r2), RPT(r3), + + RSW(r4), RSW(r5), RSW(r6), RSW(r7), + + RPT(r8), RPT(r9), RPT(r10), RPT(r11), + RPT(r12), RPT(r13), RPT(r14), RPT(r15), + + RPT(r16), RPT(r17), RPT(r18), RPT(r19), + RPT(r20), RPT(r21), RPT(r22), RPT(r23), + RPT(r24), RPT(r25), RPT(r26), RPT(r27), + RPT(r28), RPT(r29), RPT(r30), RPT(r31) +}; + +static u16 fr_info[32]={ + 0, /* constant : WE SHOULD NEVER GET THIS */ + 0, /* constant : WE SHOULD NEVER GET THIS */ + + RSW(f2), RSW(f3), RSW(f4), RSW(f5), + + RPT(f6), RPT(f7), RPT(f8), RPT(f9), + RPT(f10), RPT(f11), + + RSW(f12), RSW(f13), RSW(f14), + RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19), + RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24), + RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29), + RSW(f30), RSW(f31) +}; + +/* Invalidate ALAT entry for integer register REGNO. */ +static void +invala_gr (int regno) +{ +# define F(reg) case reg: ia64_invala_gr(reg); break + + switch (regno) { + F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); + F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); + F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); + F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); + F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); + F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); + F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); + F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); + F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); + F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); + F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); + F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); + F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); + F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); + F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); + F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); + } +# undef F +} + +/* Invalidate ALAT entry for floating-point register REGNO. */ +static void +invala_fr (int regno) +{ +# define F(reg) case reg: ia64_invala_fr(reg); break + + switch (regno) { + F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); + F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); + F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); + F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); + F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); + F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); + F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); + F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); + F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); + F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); + F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); + F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); + F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); + F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); + F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); + F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); + } +# undef F +} + +static inline unsigned long +rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg) +{ + reg += rrb; + if (reg >= sor) + reg -= sor; + return reg; +} + +static void +set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat) +{ + struct switch_stack *sw = (struct switch_stack *) regs - 1; + unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end; + unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; + unsigned long rnats, nat_mask; + unsigned long on_kbs; + long sof = (regs->cr_ifs) & 0x7f; + long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); + long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; + long ridx = r1 - 32; + + if (ridx >= sof) { + /* this should never happen, as the "rsvd register fault" has higher priority */ + DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof); + return; + } + + if (ridx < sor) + ridx = rotate_reg(sor, rrb_gr, ridx); + + DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", + r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); + + on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); + addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); + if (addr >= kbs) { + /* the register is on the kernel backing store: easy... */ + rnat_addr = ia64_rse_rnat_addr(addr); + if ((unsigned long) rnat_addr >= sw->ar_bspstore) + rnat_addr = &sw->ar_rnat; + nat_mask = 1UL << ia64_rse_slot_num(addr); + + *addr = val; + if (nat) + *rnat_addr |= nat_mask; + else + *rnat_addr &= ~nat_mask; + return; + } + + if (!user_stack(current, regs)) { + DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1); + return; + } + + bspstore = (unsigned long *)regs->ar_bspstore; + ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); + bsp = ia64_rse_skip_regs(ubs_end, -sof); + addr = ia64_rse_skip_regs(bsp, ridx); + + DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); + + ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); + + rnat_addr = ia64_rse_rnat_addr(addr); + + ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); + DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n", + (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1); + + nat_mask = 1UL << ia64_rse_slot_num(addr); + if (nat) + rnats |= nat_mask; + else + rnats &= ~nat_mask; + ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats); + + DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats); +} + + +static void +get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat) +{ + struct switch_stack *sw = (struct switch_stack *) regs - 1; + unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore; + unsigned long *kbs = (void *) current + IA64_RBS_OFFSET; + unsigned long rnats, nat_mask; + unsigned long on_kbs; + long sof = (regs->cr_ifs) & 0x7f; + long sor = 8 * ((regs->cr_ifs >> 14) & 0xf); + long rrb_gr = (regs->cr_ifs >> 18) & 0x7f; + long ridx = r1 - 32; + + if (ridx >= sof) { + /* read of out-of-frame register returns an undefined value; 0 in our case. */ + DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof); + goto fail; + } + + if (ridx < sor) + ridx = rotate_reg(sor, rrb_gr, ridx); + + DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n", + r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx); + + on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore); + addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx); + if (addr >= kbs) { + /* the register is on the kernel backing store: easy... */ + *val = *addr; + if (nat) { + rnat_addr = ia64_rse_rnat_addr(addr); + if ((unsigned long) rnat_addr >= sw->ar_bspstore) + rnat_addr = &sw->ar_rnat; + nat_mask = 1UL << ia64_rse_slot_num(addr); + *nat = (*rnat_addr & nat_mask) != 0; + } + return; + } + + if (!user_stack(current, regs)) { + DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1); + goto fail; + } + + bspstore = (unsigned long *)regs->ar_bspstore; + ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); + bsp = ia64_rse_skip_regs(ubs_end, -sof); + addr = ia64_rse_skip_regs(bsp, ridx); + + DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr); + + ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val); + + if (nat) { + rnat_addr = ia64_rse_rnat_addr(addr); + nat_mask = 1UL << ia64_rse_slot_num(addr); + + DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats); + + ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats); + *nat = (rnats & nat_mask) != 0; + } + return; + + fail: + *val = 0; + if (nat) + *nat = 0; + return; +} + + +static void +setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs) +{ + struct switch_stack *sw = (struct switch_stack *) regs - 1; + unsigned long addr; + unsigned long bitmask; + unsigned long *unat; + + /* + * First takes care of stacked registers + */ + if (regnum >= IA64_FIRST_STACKED_GR) { + set_rse_reg(regs, regnum, val, nat); + return; + } + + /* + * Using r0 as a target raises a General Exception fault which has higher priority + * than the Unaligned Reference fault. + */ + + /* + * Now look at registers in [0-31] range and init correct UNAT + */ + if (GR_IN_SW(regnum)) { + addr = (unsigned long)sw; + unat = &sw->ar_unat; + } else { + addr = (unsigned long)regs; + unat = &sw->caller_unat; + } + DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n", + addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum)); + /* + * add offset from base of struct + * and do it ! + */ + addr += GR_OFFS(regnum); + + *(unsigned long *)addr = val; + + /* + * We need to clear the corresponding UNAT bit to fully emulate the load + * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4 + */ + bitmask = 1UL << (addr >> 3 & 0x3f); + DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat); + if (nat) { + *unat |= bitmask; + } else { + *unat &= ~bitmask; + } + DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat); +} + +/* + * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the + * range from 32-127, result is in the range from 0-95. + */ +static inline unsigned long +fph_index (struct pt_regs *regs, long regnum) +{ + unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f; + return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR)); +} + +static void +setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) +{ + struct switch_stack *sw = (struct switch_stack *)regs - 1; + unsigned long addr; + + /* + * From EAS-2.5: FPDisableFault has higher priority than Unaligned + * Fault. Thus, when we get here, we know the partition is enabled. + * To update f32-f127, there are three choices: + * + * (1) save f32-f127 to thread.fph and update the values there + * (2) use a gigantic switch statement to directly access the registers + * (3) generate code on the fly to update the desired register + * + * For now, we are using approach (1). + */ + if (regnum >= IA64_FIRST_ROTATING_FR) { + ia64_sync_fph(current); + current->thread.fph[fph_index(regs, regnum)] = *fpval; + } else { + /* + * pt_regs or switch_stack ? + */ + if (FR_IN_SW(regnum)) { + addr = (unsigned long)sw; + } else { + addr = (unsigned long)regs; + } + + DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum)); + + addr += FR_OFFS(regnum); + *(struct ia64_fpreg *)addr = *fpval; + + /* + * mark the low partition as being used now + * + * It is highly unlikely that this bit is not already set, but + * let's do it for safety. + */ + regs->cr_ipsr |= IA64_PSR_MFL; + } +} + +/* + * Those 2 inline functions generate the spilled versions of the constant floating point + * registers which can be used with stfX + */ +static inline void +float_spill_f0 (struct ia64_fpreg *final) +{ + ia64_stf_spill(final, 0); +} + +static inline void +float_spill_f1 (struct ia64_fpreg *final) +{ + ia64_stf_spill(final, 1); +} + +static void +getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) +{ + struct switch_stack *sw = (struct switch_stack *) regs - 1; + unsigned long addr; + + /* + * From EAS-2.5: FPDisableFault has higher priority than + * Unaligned Fault. Thus, when we get here, we know the partition is + * enabled. + * + * When regnum > 31, the register is still live and we need to force a save + * to current->thread.fph to get access to it. See discussion in setfpreg() + * for reasons and other ways of doing this. + */ + if (regnum >= IA64_FIRST_ROTATING_FR) { + ia64_flush_fph(current); + *fpval = current->thread.fph[fph_index(regs, regnum)]; + } else { + /* + * f0 = 0.0, f1= 1.0. Those registers are constant and are thus + * not saved, we must generate their spilled form on the fly + */ + switch(regnum) { + case 0: + float_spill_f0(fpval); + break; + case 1: + float_spill_f1(fpval); + break; + default: + /* + * pt_regs or switch_stack ? + */ + addr = FR_IN_SW(regnum) ? (unsigned long)sw + : (unsigned long)regs; + + DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n", + FR_IN_SW(regnum), addr, FR_OFFS(regnum)); + + addr += FR_OFFS(regnum); + *fpval = *(struct ia64_fpreg *)addr; + } + } +} + + +static void +getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs) +{ + struct switch_stack *sw = (struct switch_stack *) regs - 1; + unsigned long addr, *unat; + + if (regnum >= IA64_FIRST_STACKED_GR) { + get_rse_reg(regs, regnum, val, nat); + return; + } + + /* + * take care of r0 (read-only always evaluate to 0) + */ + if (regnum == 0) { + *val = 0; + if (nat) + *nat = 0; + return; + } + + /* + * Now look at registers in [0-31] range and init correct UNAT + */ + if (GR_IN_SW(regnum)) { + addr = (unsigned long)sw; + unat = &sw->ar_unat; + } else { + addr = (unsigned long)regs; + unat = &sw->caller_unat; + } + + DPRINT("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum)); + + addr += GR_OFFS(regnum); + + *val = *(unsigned long *)addr; + + /* + * do it only when requested + */ + if (nat) + *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL; +} + +static void +emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa) +{ + /* + * IMPORTANT: + * Given the way we handle unaligned speculative loads, we should + * not get to this point in the code but we keep this sanity check, + * just in case. + */ + if (ld.x6_op == 1 || ld.x6_op == 3) { + printk(KERN_ERR "%s: register update on speculative load, error\n", __FUNCTION__); + die_if_kernel("unaligned reference on speculative load with register update\n", + regs, 30); + } + + + /* + * at this point, we know that the base register to update is valid i.e., + * it's not r0 + */ + if (type == UPD_IMMEDIATE) { + unsigned long imm; + + /* + * Load +Imm: ldXZ r1=[r3],imm(9) + * + * + * form imm9: [13:19] contain the first 7 bits + */ + imm = ld.x << 7 | ld.imm; + + /* + * sign extend (1+8bits) if m set + */ + if (ld.m) imm |= SIGN_EXT9; + + /* + * ifa == r3 and we know that the NaT bit on r3 was clear so + * we can directly use ifa. + */ + ifa += imm; + + setreg(ld.r3, ifa, 0, regs); + + DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa); + + } else if (ld.m) { + unsigned long r2; + int nat_r2; + + /* + * Load +Reg Opcode: ldXZ r1=[r3],r2 + * + * Note: that we update r3 even in the case of ldfX.a + * (where the load does not happen) + * + * The way the load algorithm works, we know that r3 does not + * have its NaT bit set (would have gotten NaT consumption + * before getting the unaligned fault). So we can use ifa + * which equals r3 at this point. + * + * IMPORTANT: + * The above statement holds ONLY because we know that we + * never reach this code when trying to do a ldX.s. + * If we ever make it to here on an ldfX.s then + */ + getreg(ld.imm, &r2, &nat_r2, regs); + + ifa += r2; + + /* + * propagate Nat r2 -> r3 + */ + setreg(ld.r3, ifa, nat_r2, regs); + + DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2); + } +} + + +static int +emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) +{ + unsigned int len = 1 << ld.x6_sz; + unsigned long val = 0; + + /* + * r0, as target, doesn't need to be checked because Illegal Instruction + * faults have higher priority than unaligned faults. + * + * r0 cannot be found as the base as it would never generate an + * unaligned reference. + */ + + /* + * ldX.a we will emulate load and also invalidate the ALAT entry. + * See comment below for explanation on how we handle ldX.a + */ + + if (len != 2 && len != 4 && len != 8) { + DPRINT("unknown size: x6=%d\n", ld.x6_sz); + return -1; + } + /* this assumes little-endian byte-order: */ + if (copy_from_user(&val, (void __user *) ifa, len)) + return -1; + setreg(ld.r1, val, 0, regs); + + /* + * check for updates on any kind of loads + */ + if (ld.op == 0x5 || ld.m) + emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); + + /* + * handling of various loads (based on EAS2.4): + * + * ldX.acq (ordered load): + * - acquire semantics would have been used, so force fence instead. + * + * ldX.c.clr (check load and clear): + * - if we get to this handler, it's because the entry was not in the ALAT. + * Therefore the operation reverts to a normal load + * + * ldX.c.nc (check load no clear): + * - same as previous one + * + * ldX.c.clr.acq (ordered check load and clear): + * - same as above for c.clr part. The load needs to have acquire semantics. So + * we use the fence semantics which is stronger and thus ensures correctness. + * + * ldX.a (advanced load): + * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the + * address doesn't match requested size alignment. This means that we would + * possibly need more than one load to get the result. + * + * The load part can be handled just like a normal load, however the difficult + * part is to get the right thing into the ALAT. The critical piece of information + * in the base address of the load & size. To do that, a ld.a must be executed, + * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now + * if we use the same target register, we will be okay for the check.a instruction. + * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry + * which would overlap within [r3,r3+X] (the size of the load was store in the + * ALAT). If such an entry is found the entry is invalidated. But this is not good + * enough, take the following example: + * r3=3 + * ld4.a r1=[r3] + * + * Could be emulated by doing: + * ld1.a r1=[r3],1 + * store to temporary; + * ld1.a r1=[r3],1 + * store & shift to temporary; + * ld1.a r1=[r3],1 + * store & shift to temporary; + * ld1.a r1=[r3] + * store & shift to temporary; + * r1=temporary + * + * So in this case, you would get the right value is r1 but the wrong info in + * the ALAT. Notice that you could do it in reverse to finish with address 3 + * but you would still get the size wrong. To get the size right, one needs to + * execute exactly the same kind of load. You could do it from a aligned + * temporary location, but you would get the address wrong. + * + * So no matter what, it is not possible to emulate an advanced load + * correctly. But is that really critical ? + * + * We will always convert ld.a into a normal load with ALAT invalidated. This + * will enable compiler to do optimization where certain code path after ld.a + * is not required to have ld.c/chk.a, e.g., code path with no intervening stores. + * + * If there is a store after the advanced load, one must either do a ld.c.* or + * chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no + * entry found in ALAT), and that's perfectly ok because: + * + * - ld.c.*, if the entry is not present a normal load is executed + * - chk.a.*, if the entry is not present, execution jumps to recovery code + * + * In either case, the load can be potentially retried in another form. + * + * ALAT must be invalidated for the register (so that chk.a or ld.c don't pick + * up a stale entry later). The register base update MUST also be performed. + */ + + /* + * when the load has the .acq completer then + * use ordering fence. + */ + if (ld.x6_op == 0x5 || ld.x6_op == 0xa) + mb(); + + /* + * invalidate ALAT entry in case of advanced load + */ + if (ld.x6_op == 0x2) + invala_gr(ld.r1); + + return 0; +} + +static int +emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs) +{ + unsigned long r2; + unsigned int len = 1 << ld.x6_sz; + + /* + * if we get to this handler, Nat bits on both r3 and r2 have already + * been checked. so we don't need to do it + * + * extract the value to be stored + */ + getreg(ld.imm, &r2, NULL, regs); + + /* + * we rely on the macros in unaligned.h for now i.e., + * we let the compiler figure out how to read memory gracefully. + * + * We need this switch/case because the way the inline function + * works. The code is optimized by the compiler and looks like + * a single switch/case. + */ + DPRINT("st%d [%lx]=%lx\n", len, ifa, r2); + + if (len != 2 && len != 4 && len != 8) { + DPRINT("unknown size: x6=%d\n", ld.x6_sz); + return -1; + } + + /* this assumes little-endian byte-order: */ + if (copy_to_user((void __user *) ifa, &r2, len)) + return -1; + + /* + * stX [r3]=r2,imm(9) + * + * NOTE: + * ld.r3 can never be r0, because r0 would not generate an + * unaligned access. + */ + if (ld.op == 0x5) { + unsigned long imm; + + /* + * form imm9: [12:6] contain first 7bits + */ + imm = ld.x << 7 | ld.r1; + /* + * sign extend (8bits) if m set + */ + if (ld.m) imm |= SIGN_EXT9; + /* + * ifa == r3 (NaT is necessarily cleared) + */ + ifa += imm; + + DPRINT("imm=%lx r3=%lx\n", imm, ifa); + + setreg(ld.r3, ifa, 0, regs); + } + /* + * we don't have alat_invalidate_multiple() so we need + * to do the complete flush :-<< + */ + ia64_invala(); + + /* + * stX.rel: use fence instead of release + */ + if (ld.x6_op == 0xd) + mb(); + + return 0; +} + +/* + * floating point operations sizes in bytes + */ +static const unsigned char float_fsz[4]={ + 10, /* extended precision (e) */ + 8, /* integer (8) */ + 4, /* single precision (s) */ + 8 /* double precision (d) */ +}; + +static inline void +mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) +{ + ia64_ldfe(6, init); + ia64_stop(); + ia64_stf_spill(final, 6); +} + +static inline void +mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) +{ + ia64_ldf8(6, init); + ia64_stop(); + ia64_stf_spill(final, 6); +} + +static inline void +mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final) +{ + ia64_ldfs(6, init); + ia64_stop(); + ia64_stf_spill(final, 6); +} + +static inline void +mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final) +{ + ia64_ldfd(6, init); + ia64_stop(); + ia64_stf_spill(final, 6); +} + +static inline void +float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final) +{ + ia64_ldf_fill(6, init); + ia64_stop(); + ia64_stfe(final, 6); +} + +static inline void +float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final) +{ + ia64_ldf_fill(6, init); + ia64_stop(); + ia64_stf8(final, 6); +} + +static inline void +float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final) +{ + ia64_ldf_fill(6, init); + ia64_stop(); + ia64_stfs(final, 6); +} + +static inline void +float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final) +{ + ia64_ldf_fill(6, init); + ia64_stop(); + ia64_stfd(final, 6); +} + +static int +emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs) +{ + struct ia64_fpreg fpr_init[2]; + struct ia64_fpreg fpr_final[2]; + unsigned long len = float_fsz[ld.x6_sz]; + + /* + * fr0 & fr1 don't need to be checked because Illegal Instruction faults have + * higher priority than unaligned faults. + * + * r0 cannot be found as the base as it would never generate an unaligned + * reference. + */ + + /* + * make sure we get clean buffers + */ + memset(&fpr_init, 0, sizeof(fpr_init)); + memset(&fpr_final, 0, sizeof(fpr_final)); + + /* + * ldfpX.a: we don't try to emulate anything but we must + * invalidate the ALAT entry and execute updates, if any. + */ + if (ld.x6_op != 0x2) { + /* + * This assumes little-endian byte-order. Note that there is no "ldfpe" + * instruction: + */ + if (copy_from_user(&fpr_init[0], (void __user *) ifa, len) + || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len)) + return -1; + + DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz); + DDUMP("frp_init =", &fpr_init, 2*len); + /* + * XXX fixme + * Could optimize inlines by using ldfpX & 2 spills + */ + switch( ld.x6_sz ) { + case 0: + mem2float_extended(&fpr_init[0], &fpr_final[0]); + mem2float_extended(&fpr_init[1], &fpr_final[1]); + break; + case 1: + mem2float_integer(&fpr_init[0], &fpr_final[0]); + mem2float_integer(&fpr_init[1], &fpr_final[1]); + break; + case 2: + mem2float_single(&fpr_init[0], &fpr_final[0]); + mem2float_single(&fpr_init[1], &fpr_final[1]); + break; + case 3: + mem2float_double(&fpr_init[0], &fpr_final[0]); + mem2float_double(&fpr_init[1], &fpr_final[1]); + break; + } + DDUMP("fpr_final =", &fpr_final, 2*len); + /* + * XXX fixme + * + * A possible optimization would be to drop fpr_final and directly + * use the storage from the saved context i.e., the actual final + * destination (pt_regs, switch_stack or thread structure). + */ + setfpreg(ld.r1, &fpr_final[0], regs); + setfpreg(ld.imm, &fpr_final[1], regs); + } + + /* + * Check for updates: only immediate updates are available for this + * instruction. + */ + if (ld.m) { + /* + * the immediate is implicit given the ldsz of the operation: + * single: 8 (2x4) and for all others it's 16 (2x8) + */ + ifa += len<<1; + + /* + * IMPORTANT: + * the fact that we force the NaT of r3 to zero is ONLY valid + * as long as we don't come here with a ldfpX.s. + * For this reason we keep this sanity check + */ + if (ld.x6_op == 1 || ld.x6_op == 3) + printk(KERN_ERR "%s: register update on speculative load pair, error\n", + __FUNCTION__); + + setreg(ld.r3, ifa, 0, regs); + } + + /* + * Invalidate ALAT entries, if any, for both registers. + */ + if (ld.x6_op == 0x2) { + invala_fr(ld.r1); + invala_fr(ld.imm); + } + return 0; +} + + +static int +emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) +{ + struct ia64_fpreg fpr_init; + struct ia64_fpreg fpr_final; + unsigned long len = float_fsz[ld.x6_sz]; + + /* + * fr0 & fr1 don't need to be checked because Illegal Instruction + * faults have higher priority than unaligned faults. + * + * r0 cannot be found as the base as it would never generate an + * unaligned reference. + */ + + /* + * make sure we get clean buffers + */ + memset(&fpr_init,0, sizeof(fpr_init)); + memset(&fpr_final,0, sizeof(fpr_final)); + + /* + * ldfX.a we don't try to emulate anything but we must + * invalidate the ALAT entry. + * See comments in ldX for descriptions on how the various loads are handled. + */ + if (ld.x6_op != 0x2) { + if (copy_from_user(&fpr_init, (void __user *) ifa, len)) + return -1; + + DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); + DDUMP("fpr_init =", &fpr_init, len); + /* + * we only do something for x6_op={0,8,9} + */ + switch( ld.x6_sz ) { + case 0: + mem2float_extended(&fpr_init, &fpr_final); + break; + case 1: + mem2float_integer(&fpr_init, &fpr_final); + break; + case 2: + mem2float_single(&fpr_init, &fpr_final); + break; + case 3: + mem2float_double(&fpr_init, &fpr_final); + break; + } + DDUMP("fpr_final =", &fpr_final, len); + /* + * XXX fixme + * + * A possible optimization would be to drop fpr_final and directly + * use the storage from the saved context i.e., the actual final + * destination (pt_regs, switch_stack or thread structure). + */ + setfpreg(ld.r1, &fpr_final, regs); + } + + /* + * check for updates on any loads + */ + if (ld.op == 0x7 || ld.m) + emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); + + /* + * invalidate ALAT entry in case of advanced floating point loads + */ + if (ld.x6_op == 0x2) + invala_fr(ld.r1); + + return 0; +} + + +static int +emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs) +{ + struct ia64_fpreg fpr_init; + struct ia64_fpreg fpr_final; + unsigned long len = float_fsz[ld.x6_sz]; + + /* + * make sure we get clean buffers + */ + memset(&fpr_init,0, sizeof(fpr_init)); + memset(&fpr_final,0, sizeof(fpr_final)); + + /* + * if we get to this handler, Nat bits on both r3 and r2 have already + * been checked. so we don't need to do it + * + * extract the value to be stored + */ + getfpreg(ld.imm, &fpr_init, regs); + /* + * during this step, we extract the spilled registers from the saved + * context i.e., we refill. Then we store (no spill) to temporary + * aligned location + */ + switch( ld.x6_sz ) { + case 0: + float2mem_extended(&fpr_init, &fpr_final); + break; + case 1: + float2mem_integer(&fpr_init, &fpr_final); + break; + case 2: + float2mem_single(&fpr_init, &fpr_final); + break; + case 3: + float2mem_double(&fpr_init, &fpr_final); + break; + } + DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz); + DDUMP("fpr_init =", &fpr_init, len); + DDUMP("fpr_final =", &fpr_final, len); + + if (copy_to_user((void __user *) ifa, &fpr_final, len)) + return -1; + + /* + * stfX [r3]=r2,imm(9) + * + * NOTE: + * ld.r3 can never be r0, because r0 would not generate an + * unaligned access. + */ + if (ld.op == 0x7) { + unsigned long imm; + + /* + * form imm9: [12:6] contain first 7bits + */ + imm = ld.x << 7 | ld.r1; + /* + * sign extend (8bits) if m set + */ + if (ld.m) + imm |= SIGN_EXT9; + /* + * ifa == r3 (NaT is necessarily cleared) + */ + ifa += imm; + + DPRINT("imm=%lx r3=%lx\n", imm, ifa); + + setreg(ld.r3, ifa, 0, regs); + } + /* + * we don't have alat_invalidate_multiple() so we need + * to do the complete flush :-<< + */ + ia64_invala(); + + return 0; +} + +/* + * Make sure we log the unaligned access, so that user/sysadmin can notice it and + * eventually fix the program. However, we don't want to do that for every access so we + * pace it with jiffies. This isn't really MP-safe, but it doesn't really have to be + * either... + */ +static int +within_logging_rate_limit (void) +{ + static unsigned long count, last_time; + + if (jiffies - last_time > 5*HZ) + count = 0; + if (++count < 5) { + last_time = jiffies; + return 1; + } + return 0; + +} + +void +ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs) +{ + struct ia64_psr *ipsr = ia64_psr(regs); + mm_segment_t old_fs = get_fs(); + unsigned long bundle[2]; + unsigned long opcode; + struct siginfo si; + const struct exception_table_entry *eh = NULL; + union { + unsigned long l; + load_store_t insn; + } u; + int ret = -1; + + if (ia64_psr(regs)->be) { + /* we don't support big-endian accesses */ + die_if_kernel("big-endian unaligned accesses are not supported", regs, 0); + goto force_sigbus; + } + + /* + * Treat kernel accesses for which there is an exception handler entry the same as + * user-level unaligned accesses. Otherwise, a clever program could trick this + * handler into reading an arbitrary kernel addresses... + */ + if (!user_mode(regs)) + eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri); + if (user_mode(regs) || eh) { + if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0) + goto force_sigbus; + + if (!(current->thread.flags & IA64_THREAD_UAC_NOPRINT) + && within_logging_rate_limit()) + { + char buf[200]; /* comm[] is at most 16 bytes... */ + size_t len; + + len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, " + "ip=0x%016lx\n\r", current->comm, current->pid, + ifa, regs->cr_iip + ipsr->ri); + /* + * Don't call tty_write_message() if we're in the kernel; we might + * be holding locks... + */ + if (user_mode(regs)) + tty_write_message(current->signal->tty, buf); + buf[len-1] = '\0'; /* drop '\r' */ + printk(KERN_WARNING "%s", buf); /* watch for command names containing %s */ + } + } else { + if (within_logging_rate_limit()) + printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n", + ifa, regs->cr_iip + ipsr->ri); + set_fs(KERNEL_DS); + } + + DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n", + regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it); + + if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16)) + goto failure; + + /* + * extract the instruction from the bundle given the slot number + */ + switch (ipsr->ri) { + case 0: u.l = (bundle[0] >> 5); break; + case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break; + case 2: u.l = (bundle[1] >> 23); break; + } + opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK; + + DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d " + "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm, + u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op); + + /* + * IMPORTANT: + * Notice that the switch statement DOES not cover all possible instructions + * that DO generate unaligned references. This is made on purpose because for some + * instructions it DOES NOT make sense to try and emulate the access. Sometimes it + * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e., + * the program will get a signal and die: + * + * load/store: + * - ldX.spill + * - stX.spill + * Reason: RNATs are based on addresses + * - ld16 + * - st16 + * Reason: ld16 and st16 are supposed to occur in a single + * memory op + * + * synchronization: + * - cmpxchg + * - fetchadd + * - xchg + * Reason: ATOMIC operations cannot be emulated properly using multiple + * instructions. + * + * speculative loads: + * - ldX.sZ + * Reason: side effects, code must be ready to deal with failure so simpler + * to let the load fail. + * --------------------------------------------------------------------------------- + * XXX fixme + * + * I would like to get rid of this switch case and do something + * more elegant. + */ + switch (opcode) { + case LDS_OP: + case LDSA_OP: + if (u.insn.x) + /* oops, really a semaphore op (cmpxchg, etc) */ + goto failure; + /* no break */ + case LDS_IMM_OP: + case LDSA_IMM_OP: + case LDFS_OP: + case LDFSA_OP: + case LDFS_IMM_OP: + /* + * The instruction will be retried with deferred exceptions turned on, and + * we should get Nat bit installed + * + * IMPORTANT: When PSR_ED is set, the register & immediate update forms + * are actually executed even though the operation failed. So we don't + * need to take care of this. + */ + DPRINT("forcing PSR_ED\n"); + regs->cr_ipsr |= IA64_PSR_ED; + goto done; + + case LD_OP: + case LDA_OP: + case LDBIAS_OP: + case LDACQ_OP: + case LDCCLR_OP: + case LDCNC_OP: + case LDCCLRACQ_OP: + if (u.insn.x) + /* oops, really a semaphore op (cmpxchg, etc) */ + goto failure; + /* no break */ + case LD_IMM_OP: + case LDA_IMM_OP: + case LDBIAS_IMM_OP: + case LDACQ_IMM_OP: + case LDCCLR_IMM_OP: + case LDCNC_IMM_OP: + case LDCCLRACQ_IMM_OP: + ret = emulate_load_int(ifa, u.insn, regs); + break; + + case ST_OP: + case STREL_OP: + if (u.insn.x) + /* oops, really a semaphore op (cmpxchg, etc) */ + goto failure; + /* no break */ + case ST_IMM_OP: + case STREL_IMM_OP: + ret = emulate_store_int(ifa, u.insn, regs); + break; + + case LDF_OP: + case LDFA_OP: + case LDFCCLR_OP: + case LDFCNC_OP: + case LDF_IMM_OP: + case LDFA_IMM_OP: + case LDFCCLR_IMM_OP: + case LDFCNC_IMM_OP: + if (u.insn.x) + ret = emulate_load_floatpair(ifa, u.insn, regs); + else + ret = emulate_load_float(ifa, u.insn, regs); + break; + + case STF_OP: + case STF_IMM_OP: + ret = emulate_store_float(ifa, u.insn, regs); + break; + + default: + goto failure; + } + DPRINT("ret=%d\n", ret); + if (ret) + goto failure; + + if (ipsr->ri == 2) + /* + * given today's architecture this case is not likely to happen because a + * memory access instruction (M) can never be in the last slot of a + * bundle. But let's keep it for now. + */ + regs->cr_iip += 16; + ipsr->ri = (ipsr->ri + 1) & 0x3; + + DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip); + done: + set_fs(old_fs); /* restore original address limit */ + return; + + failure: + /* something went wrong... */ + if (!user_mode(regs)) { + if (eh) { + ia64_handle_exception(regs, eh); + goto done; + } + die_if_kernel("error during unaligned kernel access\n", regs, ret); + /* NOT_REACHED */ + } + force_sigbus: + si.si_signo = SIGBUS; + si.si_errno = 0; + si.si_code = BUS_ADRALN; + si.si_addr = (void __user *) ifa; + si.si_flags = 0; + si.si_isr = 0; + si.si_imm = 0; + force_sig_info(SIGBUS, &si, current); + goto done; +} |