summaryrefslogtreecommitdiffstats
path: root/arch/ia64/kernel/ptrace.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/ia64/kernel/ptrace.c')
-rw-r--r--arch/ia64/kernel/ptrace.c1627
1 files changed, 1627 insertions, 0 deletions
diff --git a/arch/ia64/kernel/ptrace.c b/arch/ia64/kernel/ptrace.c
new file mode 100644
index 0000000..55789fc
--- /dev/null
+++ b/arch/ia64/kernel/ptrace.c
@@ -0,0 +1,1627 @@
+/*
+ * Kernel support for the ptrace() and syscall tracing interfaces.
+ *
+ * Copyright (C) 1999-2005 Hewlett-Packard Co
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ *
+ * Derived from the x86 and Alpha versions.
+ */
+#include <linux/config.h>
+#include <linux/kernel.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/mm.h>
+#include <linux/errno.h>
+#include <linux/ptrace.h>
+#include <linux/smp_lock.h>
+#include <linux/user.h>
+#include <linux/security.h>
+#include <linux/audit.h>
+
+#include <asm/pgtable.h>
+#include <asm/processor.h>
+#include <asm/ptrace_offsets.h>
+#include <asm/rse.h>
+#include <asm/system.h>
+#include <asm/uaccess.h>
+#include <asm/unwind.h>
+#ifdef CONFIG_PERFMON
+#include <asm/perfmon.h>
+#endif
+
+#include "entry.h"
+
+/*
+ * Bits in the PSR that we allow ptrace() to change:
+ * be, up, ac, mfl, mfh (the user mask; five bits total)
+ * db (debug breakpoint fault; one bit)
+ * id (instruction debug fault disable; one bit)
+ * dd (data debug fault disable; one bit)
+ * ri (restart instruction; two bits)
+ * is (instruction set; one bit)
+ */
+#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
+ | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
+
+#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
+#define PFM_MASK MASK(38)
+
+#define PTRACE_DEBUG 0
+
+#if PTRACE_DEBUG
+# define dprintk(format...) printk(format)
+# define inline
+#else
+# define dprintk(format...)
+#endif
+
+/* Return TRUE if PT was created due to kernel-entry via a system-call. */
+
+static inline int
+in_syscall (struct pt_regs *pt)
+{
+ return (long) pt->cr_ifs >= 0;
+}
+
+/*
+ * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
+ * bitset where bit i is set iff the NaT bit of register i is set.
+ */
+unsigned long
+ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
+{
+# define GET_BITS(first, last, unat) \
+ ({ \
+ unsigned long bit = ia64_unat_pos(&pt->r##first); \
+ unsigned long nbits = (last - first + 1); \
+ unsigned long mask = MASK(nbits) << first; \
+ unsigned long dist; \
+ if (bit < first) \
+ dist = 64 + bit - first; \
+ else \
+ dist = bit - first; \
+ ia64_rotr(unat, dist) & mask; \
+ })
+ unsigned long val;
+
+ /*
+ * Registers that are stored consecutively in struct pt_regs
+ * can be handled in parallel. If the register order in
+ * struct_pt_regs changes, this code MUST be updated.
+ */
+ val = GET_BITS( 1, 1, scratch_unat);
+ val |= GET_BITS( 2, 3, scratch_unat);
+ val |= GET_BITS(12, 13, scratch_unat);
+ val |= GET_BITS(14, 14, scratch_unat);
+ val |= GET_BITS(15, 15, scratch_unat);
+ val |= GET_BITS( 8, 11, scratch_unat);
+ val |= GET_BITS(16, 31, scratch_unat);
+ return val;
+
+# undef GET_BITS
+}
+
+/*
+ * Set the NaT bits for the scratch registers according to NAT and
+ * return the resulting unat (assuming the scratch registers are
+ * stored in PT).
+ */
+unsigned long
+ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
+{
+# define PUT_BITS(first, last, nat) \
+ ({ \
+ unsigned long bit = ia64_unat_pos(&pt->r##first); \
+ unsigned long nbits = (last - first + 1); \
+ unsigned long mask = MASK(nbits) << first; \
+ long dist; \
+ if (bit < first) \
+ dist = 64 + bit - first; \
+ else \
+ dist = bit - first; \
+ ia64_rotl(nat & mask, dist); \
+ })
+ unsigned long scratch_unat;
+
+ /*
+ * Registers that are stored consecutively in struct pt_regs
+ * can be handled in parallel. If the register order in
+ * struct_pt_regs changes, this code MUST be updated.
+ */
+ scratch_unat = PUT_BITS( 1, 1, nat);
+ scratch_unat |= PUT_BITS( 2, 3, nat);
+ scratch_unat |= PUT_BITS(12, 13, nat);
+ scratch_unat |= PUT_BITS(14, 14, nat);
+ scratch_unat |= PUT_BITS(15, 15, nat);
+ scratch_unat |= PUT_BITS( 8, 11, nat);
+ scratch_unat |= PUT_BITS(16, 31, nat);
+
+ return scratch_unat;
+
+# undef PUT_BITS
+}
+
+#define IA64_MLX_TEMPLATE 0x2
+#define IA64_MOVL_OPCODE 6
+
+void
+ia64_increment_ip (struct pt_regs *regs)
+{
+ unsigned long w0, ri = ia64_psr(regs)->ri + 1;
+
+ if (ri > 2) {
+ ri = 0;
+ regs->cr_iip += 16;
+ } else if (ri == 2) {
+ get_user(w0, (char __user *) regs->cr_iip + 0);
+ if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
+ /*
+ * rfi'ing to slot 2 of an MLX bundle causes
+ * an illegal operation fault. We don't want
+ * that to happen...
+ */
+ ri = 0;
+ regs->cr_iip += 16;
+ }
+ }
+ ia64_psr(regs)->ri = ri;
+}
+
+void
+ia64_decrement_ip (struct pt_regs *regs)
+{
+ unsigned long w0, ri = ia64_psr(regs)->ri - 1;
+
+ if (ia64_psr(regs)->ri == 0) {
+ regs->cr_iip -= 16;
+ ri = 2;
+ get_user(w0, (char __user *) regs->cr_iip + 0);
+ if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
+ /*
+ * rfi'ing to slot 2 of an MLX bundle causes
+ * an illegal operation fault. We don't want
+ * that to happen...
+ */
+ ri = 1;
+ }
+ }
+ ia64_psr(regs)->ri = ri;
+}
+
+/*
+ * This routine is used to read an rnat bits that are stored on the
+ * kernel backing store. Since, in general, the alignment of the user
+ * and kernel are different, this is not completely trivial. In
+ * essence, we need to construct the user RNAT based on up to two
+ * kernel RNAT values and/or the RNAT value saved in the child's
+ * pt_regs.
+ *
+ * user rbs
+ *
+ * +--------+ <-- lowest address
+ * | slot62 |
+ * +--------+
+ * | rnat | 0x....1f8
+ * +--------+
+ * | slot00 | \
+ * +--------+ |
+ * | slot01 | > child_regs->ar_rnat
+ * +--------+ |
+ * | slot02 | / kernel rbs
+ * +--------+ +--------+
+ * <- child_regs->ar_bspstore | slot61 | <-- krbs
+ * +- - - - + +--------+
+ * | slot62 |
+ * +- - - - + +--------+
+ * | rnat |
+ * +- - - - + +--------+
+ * vrnat | slot00 |
+ * +- - - - + +--------+
+ * = =
+ * +--------+
+ * | slot00 | \
+ * +--------+ |
+ * | slot01 | > child_stack->ar_rnat
+ * +--------+ |
+ * | slot02 | /
+ * +--------+
+ * <--- child_stack->ar_bspstore
+ *
+ * The way to think of this code is as follows: bit 0 in the user rnat
+ * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
+ * value. The kernel rnat value holding this bit is stored in
+ * variable rnat0. rnat1 is loaded with the kernel rnat value that
+ * form the upper bits of the user rnat value.
+ *
+ * Boundary cases:
+ *
+ * o when reading the rnat "below" the first rnat slot on the kernel
+ * backing store, rnat0/rnat1 are set to 0 and the low order bits are
+ * merged in from pt->ar_rnat.
+ *
+ * o when reading the rnat "above" the last rnat slot on the kernel
+ * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
+ */
+static unsigned long
+get_rnat (struct task_struct *task, struct switch_stack *sw,
+ unsigned long *krbs, unsigned long *urnat_addr,
+ unsigned long *urbs_end)
+{
+ unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
+ unsigned long umask = 0, mask, m;
+ unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
+ long num_regs, nbits;
+ struct pt_regs *pt;
+
+ pt = ia64_task_regs(task);
+ kbsp = (unsigned long *) sw->ar_bspstore;
+ ubspstore = (unsigned long *) pt->ar_bspstore;
+
+ if (urbs_end < urnat_addr)
+ nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
+ else
+ nbits = 63;
+ mask = MASK(nbits);
+ /*
+ * First, figure out which bit number slot 0 in user-land maps
+ * to in the kernel rnat. Do this by figuring out how many
+ * register slots we're beyond the user's backingstore and
+ * then computing the equivalent address in kernel space.
+ */
+ num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
+ slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
+ shift = ia64_rse_slot_num(slot0_kaddr);
+ rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
+ rnat0_kaddr = rnat1_kaddr - 64;
+
+ if (ubspstore + 63 > urnat_addr) {
+ /* some bits need to be merged in from pt->ar_rnat */
+ umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
+ urnat = (pt->ar_rnat & umask);
+ mask &= ~umask;
+ if (!mask)
+ return urnat;
+ }
+
+ m = mask << shift;
+ if (rnat0_kaddr >= kbsp)
+ rnat0 = sw->ar_rnat;
+ else if (rnat0_kaddr > krbs)
+ rnat0 = *rnat0_kaddr;
+ urnat |= (rnat0 & m) >> shift;
+
+ m = mask >> (63 - shift);
+ if (rnat1_kaddr >= kbsp)
+ rnat1 = sw->ar_rnat;
+ else if (rnat1_kaddr > krbs)
+ rnat1 = *rnat1_kaddr;
+ urnat |= (rnat1 & m) << (63 - shift);
+ return urnat;
+}
+
+/*
+ * The reverse of get_rnat.
+ */
+static void
+put_rnat (struct task_struct *task, struct switch_stack *sw,
+ unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
+ unsigned long *urbs_end)
+{
+ unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
+ unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
+ long num_regs, nbits;
+ struct pt_regs *pt;
+ unsigned long cfm, *urbs_kargs;
+
+ pt = ia64_task_regs(task);
+ kbsp = (unsigned long *) sw->ar_bspstore;
+ ubspstore = (unsigned long *) pt->ar_bspstore;
+
+ urbs_kargs = urbs_end;
+ if (in_syscall(pt)) {
+ /*
+ * If entered via syscall, don't allow user to set rnat bits
+ * for syscall args.
+ */
+ cfm = pt->cr_ifs;
+ urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
+ }
+
+ if (urbs_kargs >= urnat_addr)
+ nbits = 63;
+ else {
+ if ((urnat_addr - 63) >= urbs_kargs)
+ return;
+ nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
+ }
+ mask = MASK(nbits);
+
+ /*
+ * First, figure out which bit number slot 0 in user-land maps
+ * to in the kernel rnat. Do this by figuring out how many
+ * register slots we're beyond the user's backingstore and
+ * then computing the equivalent address in kernel space.
+ */
+ num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
+ slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
+ shift = ia64_rse_slot_num(slot0_kaddr);
+ rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
+ rnat0_kaddr = rnat1_kaddr - 64;
+
+ if (ubspstore + 63 > urnat_addr) {
+ /* some bits need to be place in pt->ar_rnat: */
+ umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
+ pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
+ mask &= ~umask;
+ if (!mask)
+ return;
+ }
+ /*
+ * Note: Section 11.1 of the EAS guarantees that bit 63 of an
+ * rnat slot is ignored. so we don't have to clear it here.
+ */
+ rnat0 = (urnat << shift);
+ m = mask << shift;
+ if (rnat0_kaddr >= kbsp)
+ sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
+ else if (rnat0_kaddr > krbs)
+ *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
+
+ rnat1 = (urnat >> (63 - shift));
+ m = mask >> (63 - shift);
+ if (rnat1_kaddr >= kbsp)
+ sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
+ else if (rnat1_kaddr > krbs)
+ *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
+}
+
+static inline int
+on_kernel_rbs (unsigned long addr, unsigned long bspstore,
+ unsigned long urbs_end)
+{
+ unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
+ urbs_end);
+ return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
+}
+
+/*
+ * Read a word from the user-level backing store of task CHILD. ADDR
+ * is the user-level address to read the word from, VAL a pointer to
+ * the return value, and USER_BSP gives the end of the user-level
+ * backing store (i.e., it's the address that would be in ar.bsp after
+ * the user executed a "cover" instruction).
+ *
+ * This routine takes care of accessing the kernel register backing
+ * store for those registers that got spilled there. It also takes
+ * care of calculating the appropriate RNaT collection words.
+ */
+long
+ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
+ unsigned long user_rbs_end, unsigned long addr, long *val)
+{
+ unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
+ struct pt_regs *child_regs;
+ size_t copied;
+ long ret;
+
+ urbs_end = (long *) user_rbs_end;
+ laddr = (unsigned long *) addr;
+ child_regs = ia64_task_regs(child);
+ bspstore = (unsigned long *) child_regs->ar_bspstore;
+ krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
+ if (on_kernel_rbs(addr, (unsigned long) bspstore,
+ (unsigned long) urbs_end))
+ {
+ /*
+ * Attempt to read the RBS in an area that's actually
+ * on the kernel RBS => read the corresponding bits in
+ * the kernel RBS.
+ */
+ rnat_addr = ia64_rse_rnat_addr(laddr);
+ ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
+
+ if (laddr == rnat_addr) {
+ /* return NaT collection word itself */
+ *val = ret;
+ return 0;
+ }
+
+ if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
+ /*
+ * It is implementation dependent whether the
+ * data portion of a NaT value gets saved on a
+ * st8.spill or RSE spill (e.g., see EAS 2.6,
+ * 4.4.4.6 Register Spill and Fill). To get
+ * consistent behavior across all possible
+ * IA-64 implementations, we return zero in
+ * this case.
+ */
+ *val = 0;
+ return 0;
+ }
+
+ if (laddr < urbs_end) {
+ /*
+ * The desired word is on the kernel RBS and
+ * is not a NaT.
+ */
+ regnum = ia64_rse_num_regs(bspstore, laddr);
+ *val = *ia64_rse_skip_regs(krbs, regnum);
+ return 0;
+ }
+ }
+ copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
+ if (copied != sizeof(ret))
+ return -EIO;
+ *val = ret;
+ return 0;
+}
+
+long
+ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
+ unsigned long user_rbs_end, unsigned long addr, long val)
+{
+ unsigned long *bspstore, *krbs, regnum, *laddr;
+ unsigned long *urbs_end = (long *) user_rbs_end;
+ struct pt_regs *child_regs;
+
+ laddr = (unsigned long *) addr;
+ child_regs = ia64_task_regs(child);
+ bspstore = (unsigned long *) child_regs->ar_bspstore;
+ krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
+ if (on_kernel_rbs(addr, (unsigned long) bspstore,
+ (unsigned long) urbs_end))
+ {
+ /*
+ * Attempt to write the RBS in an area that's actually
+ * on the kernel RBS => write the corresponding bits
+ * in the kernel RBS.
+ */
+ if (ia64_rse_is_rnat_slot(laddr))
+ put_rnat(child, child_stack, krbs, laddr, val,
+ urbs_end);
+ else {
+ if (laddr < urbs_end) {
+ regnum = ia64_rse_num_regs(bspstore, laddr);
+ *ia64_rse_skip_regs(krbs, regnum) = val;
+ }
+ }
+ } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
+ != sizeof(val))
+ return -EIO;
+ return 0;
+}
+
+/*
+ * Calculate the address of the end of the user-level register backing
+ * store. This is the address that would have been stored in ar.bsp
+ * if the user had executed a "cover" instruction right before
+ * entering the kernel. If CFMP is not NULL, it is used to return the
+ * "current frame mask" that was active at the time the kernel was
+ * entered.
+ */
+unsigned long
+ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
+ unsigned long *cfmp)
+{
+ unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
+ long ndirty;
+
+ krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
+ bspstore = (unsigned long *) pt->ar_bspstore;
+ ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
+
+ if (in_syscall(pt))
+ ndirty += (cfm & 0x7f);
+ else
+ cfm &= ~(1UL << 63); /* clear valid bit */
+
+ if (cfmp)
+ *cfmp = cfm;
+ return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
+}
+
+/*
+ * Synchronize (i.e, write) the RSE backing store living in kernel
+ * space to the VM of the CHILD task. SW and PT are the pointers to
+ * the switch_stack and pt_regs structures, respectively.
+ * USER_RBS_END is the user-level address at which the backing store
+ * ends.
+ */
+long
+ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
+ unsigned long user_rbs_start, unsigned long user_rbs_end)
+{
+ unsigned long addr, val;
+ long ret;
+
+ /* now copy word for word from kernel rbs to user rbs: */
+ for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
+ ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
+ if (ret < 0)
+ return ret;
+ if (access_process_vm(child, addr, &val, sizeof(val), 1)
+ != sizeof(val))
+ return -EIO;
+ }
+ return 0;
+}
+
+static inline int
+thread_matches (struct task_struct *thread, unsigned long addr)
+{
+ unsigned long thread_rbs_end;
+ struct pt_regs *thread_regs;
+
+ if (ptrace_check_attach(thread, 0) < 0)
+ /*
+ * If the thread is not in an attachable state, we'll
+ * ignore it. The net effect is that if ADDR happens
+ * to overlap with the portion of the thread's
+ * register backing store that is currently residing
+ * on the thread's kernel stack, then ptrace() may end
+ * up accessing a stale value. But if the thread
+ * isn't stopped, that's a problem anyhow, so we're
+ * doing as well as we can...
+ */
+ return 0;
+
+ thread_regs = ia64_task_regs(thread);
+ thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
+ if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
+ return 0;
+
+ return 1; /* looks like we've got a winner */
+}
+
+/*
+ * GDB apparently wants to be able to read the register-backing store
+ * of any thread when attached to a given process. If we are peeking
+ * or poking an address that happens to reside in the kernel-backing
+ * store of another thread, we need to attach to that thread, because
+ * otherwise we end up accessing stale data.
+ *
+ * task_list_lock must be read-locked before calling this routine!
+ */
+static struct task_struct *
+find_thread_for_addr (struct task_struct *child, unsigned long addr)
+{
+ struct task_struct *g, *p;
+ struct mm_struct *mm;
+ int mm_users;
+
+ if (!(mm = get_task_mm(child)))
+ return child;
+
+ /* -1 because of our get_task_mm(): */
+ mm_users = atomic_read(&mm->mm_users) - 1;
+ if (mm_users <= 1)
+ goto out; /* not multi-threaded */
+
+ /*
+ * First, traverse the child's thread-list. Good for scalability with
+ * NPTL-threads.
+ */
+ p = child;
+ do {
+ if (thread_matches(p, addr)) {
+ child = p;
+ goto out;
+ }
+ if (mm_users-- <= 1)
+ goto out;
+ } while ((p = next_thread(p)) != child);
+
+ do_each_thread(g, p) {
+ if (child->mm != mm)
+ continue;
+
+ if (thread_matches(p, addr)) {
+ child = p;
+ goto out;
+ }
+ } while_each_thread(g, p);
+ out:
+ mmput(mm);
+ return child;
+}
+
+/*
+ * Write f32-f127 back to task->thread.fph if it has been modified.
+ */
+inline void
+ia64_flush_fph (struct task_struct *task)
+{
+ struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
+
+ if (ia64_is_local_fpu_owner(task) && psr->mfh) {
+ psr->mfh = 0;
+ task->thread.flags |= IA64_THREAD_FPH_VALID;
+ ia64_save_fpu(&task->thread.fph[0]);
+ }
+}
+
+/*
+ * Sync the fph state of the task so that it can be manipulated
+ * through thread.fph. If necessary, f32-f127 are written back to
+ * thread.fph or, if the fph state hasn't been used before, thread.fph
+ * is cleared to zeroes. Also, access to f32-f127 is disabled to
+ * ensure that the task picks up the state from thread.fph when it
+ * executes again.
+ */
+void
+ia64_sync_fph (struct task_struct *task)
+{
+ struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
+
+ ia64_flush_fph(task);
+ if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
+ task->thread.flags |= IA64_THREAD_FPH_VALID;
+ memset(&task->thread.fph, 0, sizeof(task->thread.fph));
+ }
+ ia64_drop_fpu(task);
+ psr->dfh = 1;
+}
+
+static int
+access_fr (struct unw_frame_info *info, int regnum, int hi,
+ unsigned long *data, int write_access)
+{
+ struct ia64_fpreg fpval;
+ int ret;
+
+ ret = unw_get_fr(info, regnum, &fpval);
+ if (ret < 0)
+ return ret;
+
+ if (write_access) {
+ fpval.u.bits[hi] = *data;
+ ret = unw_set_fr(info, regnum, fpval);
+ } else
+ *data = fpval.u.bits[hi];
+ return ret;
+}
+
+/*
+ * Change the machine-state of CHILD such that it will return via the normal
+ * kernel exit-path, rather than the syscall-exit path.
+ */
+static void
+convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
+ unsigned long cfm)
+{
+ struct unw_frame_info info, prev_info;
+ unsigned long ip, pr;
+
+ unw_init_from_blocked_task(&info, child);
+ while (1) {
+ prev_info = info;
+ if (unw_unwind(&info) < 0)
+ return;
+ if (unw_get_rp(&info, &ip) < 0)
+ return;
+ if (ip < FIXADDR_USER_END)
+ break;
+ }
+
+ unw_get_pr(&prev_info, &pr);
+ pr &= ~(1UL << PRED_SYSCALL);
+ pr |= (1UL << PRED_NON_SYSCALL);
+ unw_set_pr(&prev_info, pr);
+
+ pt->cr_ifs = (1UL << 63) | cfm;
+}
+
+static int
+access_nat_bits (struct task_struct *child, struct pt_regs *pt,
+ struct unw_frame_info *info,
+ unsigned long *data, int write_access)
+{
+ unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
+ char nat = 0;
+
+ if (write_access) {
+ nat_bits = *data;
+ scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
+ if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
+ dprintk("ptrace: failed to set ar.unat\n");
+ return -1;
+ }
+ for (regnum = 4; regnum <= 7; ++regnum) {
+ unw_get_gr(info, regnum, &dummy, &nat);
+ unw_set_gr(info, regnum, dummy,
+ (nat_bits >> regnum) & 1);
+ }
+ } else {
+ if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
+ dprintk("ptrace: failed to read ar.unat\n");
+ return -1;
+ }
+ nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
+ for (regnum = 4; regnum <= 7; ++regnum) {
+ unw_get_gr(info, regnum, &dummy, &nat);
+ nat_bits |= (nat != 0) << regnum;
+ }
+ *data = nat_bits;
+ }
+ return 0;
+}
+
+static int
+access_uarea (struct task_struct *child, unsigned long addr,
+ unsigned long *data, int write_access)
+{
+ unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm;
+ struct switch_stack *sw;
+ struct pt_regs *pt;
+# define pt_reg_addr(pt, reg) ((void *) \
+ ((unsigned long) (pt) \
+ + offsetof(struct pt_regs, reg)))
+
+
+ pt = ia64_task_regs(child);
+ sw = (struct switch_stack *) (child->thread.ksp + 16);
+
+ if ((addr & 0x7) != 0) {
+ dprintk("ptrace: unaligned register address 0x%lx\n", addr);
+ return -1;
+ }
+
+ if (addr < PT_F127 + 16) {
+ /* accessing fph */
+ if (write_access)
+ ia64_sync_fph(child);
+ else
+ ia64_flush_fph(child);
+ ptr = (unsigned long *)
+ ((unsigned long) &child->thread.fph + addr);
+ } else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) {
+ /* scratch registers untouched by kernel (saved in pt_regs) */
+ ptr = pt_reg_addr(pt, f10) + (addr - PT_F10);
+ } else if (addr >= PT_F12 && addr < PT_F15 + 16) {
+ /*
+ * Scratch registers untouched by kernel (saved in
+ * switch_stack).
+ */
+ ptr = (unsigned long *) ((long) sw
+ + (addr - PT_NAT_BITS - 32));
+ } else if (addr < PT_AR_LC + 8) {
+ /* preserved state: */
+ struct unw_frame_info info;
+ char nat = 0;
+ int ret;
+
+ unw_init_from_blocked_task(&info, child);
+ if (unw_unwind_to_user(&info) < 0)
+ return -1;
+
+ switch (addr) {
+ case PT_NAT_BITS:
+ return access_nat_bits(child, pt, &info,
+ data, write_access);
+
+ case PT_R4: case PT_R5: case PT_R6: case PT_R7:
+ if (write_access) {
+ /* read NaT bit first: */
+ unsigned long dummy;
+
+ ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4,
+ &dummy, &nat);
+ if (ret < 0)
+ return ret;
+ }
+ return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data,
+ &nat, write_access);
+
+ case PT_B1: case PT_B2: case PT_B3:
+ case PT_B4: case PT_B5:
+ return unw_access_br(&info, (addr - PT_B1)/8 + 1, data,
+ write_access);
+
+ case PT_AR_EC:
+ return unw_access_ar(&info, UNW_AR_EC, data,
+ write_access);
+
+ case PT_AR_LC:
+ return unw_access_ar(&info, UNW_AR_LC, data,
+ write_access);
+
+ default:
+ if (addr >= PT_F2 && addr < PT_F5 + 16)
+ return access_fr(&info, (addr - PT_F2)/16 + 2,
+ (addr & 8) != 0, data,
+ write_access);
+ else if (addr >= PT_F16 && addr < PT_F31 + 16)
+ return access_fr(&info,
+ (addr - PT_F16)/16 + 16,
+ (addr & 8) != 0,
+ data, write_access);
+ else {
+ dprintk("ptrace: rejecting access to register "
+ "address 0x%lx\n", addr);
+ return -1;
+ }
+ }
+ } else if (addr < PT_F9+16) {
+ /* scratch state */
+ switch (addr) {
+ case PT_AR_BSP:
+ /*
+ * By convention, we use PT_AR_BSP to refer to
+ * the end of the user-level backing store.
+ * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
+ * to get the real value of ar.bsp at the time
+ * the kernel was entered.
+ *
+ * Furthermore, when changing the contents of
+ * PT_AR_BSP (or PT_CFM) we MUST copy any
+ * users-level stacked registers that are
+ * stored on the kernel stack back to
+ * user-space because otherwise, we might end
+ * up clobbering kernel stacked registers.
+ * Also, if this happens while the task is
+ * blocked in a system call, which convert the
+ * state such that the non-system-call exit
+ * path is used. This ensures that the proper
+ * state will be picked up when resuming
+ * execution. However, it *also* means that
+ * once we write PT_AR_BSP/PT_CFM, it won't be
+ * possible to modify the syscall arguments of
+ * the pending system call any longer. This
+ * shouldn't be an issue because modifying
+ * PT_AR_BSP/PT_CFM generally implies that
+ * we're either abandoning the pending system
+ * call or that we defer it's re-execution
+ * (e.g., due to GDB doing an inferior
+ * function call).
+ */
+ urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
+ if (write_access) {
+ if (*data != urbs_end) {
+ if (ia64_sync_user_rbs(child, sw,
+ pt->ar_bspstore,
+ urbs_end) < 0)
+ return -1;
+ if (in_syscall(pt))
+ convert_to_non_syscall(child,
+ pt,
+ cfm);
+ /*
+ * Simulate user-level write
+ * of ar.bsp:
+ */
+ pt->loadrs = 0;
+ pt->ar_bspstore = *data;
+ }
+ } else
+ *data = urbs_end;
+ return 0;
+
+ case PT_CFM:
+ urbs_end = ia64_get_user_rbs_end(child, pt, &cfm);
+ if (write_access) {
+ if (((cfm ^ *data) & PFM_MASK) != 0) {
+ if (ia64_sync_user_rbs(child, sw,
+ pt->ar_bspstore,
+ urbs_end) < 0)
+ return -1;
+ if (in_syscall(pt))
+ convert_to_non_syscall(child,
+ pt,
+ cfm);
+ pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
+ | (*data & PFM_MASK));
+ }
+ } else
+ *data = cfm;
+ return 0;
+
+ case PT_CR_IPSR:
+ if (write_access)
+ pt->cr_ipsr = ((*data & IPSR_MASK)
+ | (pt->cr_ipsr & ~IPSR_MASK));
+ else
+ *data = (pt->cr_ipsr & IPSR_MASK);
+ return 0;
+
+ case PT_AR_RNAT:
+ urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
+ rnat_addr = (long) ia64_rse_rnat_addr((long *)
+ urbs_end);
+ if (write_access)
+ return ia64_poke(child, sw, urbs_end,
+ rnat_addr, *data);
+ else
+ return ia64_peek(child, sw, urbs_end,
+ rnat_addr, data);
+
+ case PT_R1:
+ ptr = pt_reg_addr(pt, r1);
+ break;
+ case PT_R2: case PT_R3:
+ ptr = pt_reg_addr(pt, r2) + (addr - PT_R2);
+ break;
+ case PT_R8: case PT_R9: case PT_R10: case PT_R11:
+ ptr = pt_reg_addr(pt, r8) + (addr - PT_R8);
+ break;
+ case PT_R12: case PT_R13:
+ ptr = pt_reg_addr(pt, r12) + (addr - PT_R12);
+ break;
+ case PT_R14:
+ ptr = pt_reg_addr(pt, r14);
+ break;
+ case PT_R15:
+ ptr = pt_reg_addr(pt, r15);
+ break;
+ case PT_R16: case PT_R17: case PT_R18: case PT_R19:
+ case PT_R20: case PT_R21: case PT_R22: case PT_R23:
+ case PT_R24: case PT_R25: case PT_R26: case PT_R27:
+ case PT_R28: case PT_R29: case PT_R30: case PT_R31:
+ ptr = pt_reg_addr(pt, r16) + (addr - PT_R16);
+ break;
+ case PT_B0:
+ ptr = pt_reg_addr(pt, b0);
+ break;
+ case PT_B6:
+ ptr = pt_reg_addr(pt, b6);
+ break;
+ case PT_B7:
+ ptr = pt_reg_addr(pt, b7);
+ break;
+ case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8:
+ case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8:
+ ptr = pt_reg_addr(pt, f6) + (addr - PT_F6);
+ break;
+ case PT_AR_BSPSTORE:
+ ptr = pt_reg_addr(pt, ar_bspstore);
+ break;
+ case PT_AR_RSC:
+ ptr = pt_reg_addr(pt, ar_rsc);
+ break;
+ case PT_AR_UNAT:
+ ptr = pt_reg_addr(pt, ar_unat);
+ break;
+ case PT_AR_PFS:
+ ptr = pt_reg_addr(pt, ar_pfs);
+ break;
+ case PT_AR_CCV:
+ ptr = pt_reg_addr(pt, ar_ccv);
+ break;
+ case PT_AR_FPSR:
+ ptr = pt_reg_addr(pt, ar_fpsr);
+ break;
+ case PT_CR_IIP:
+ ptr = pt_reg_addr(pt, cr_iip);
+ break;
+ case PT_PR:
+ ptr = pt_reg_addr(pt, pr);
+ break;
+ /* scratch register */
+
+ default:
+ /* disallow accessing anything else... */
+ dprintk("ptrace: rejecting access to register "
+ "address 0x%lx\n", addr);
+ return -1;
+ }
+ } else if (addr <= PT_AR_SSD) {
+ ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD);
+ } else {
+ /* access debug registers */
+
+ if (addr >= PT_IBR) {
+ regnum = (addr - PT_IBR) >> 3;
+ ptr = &child->thread.ibr[0];
+ } else {
+ regnum = (addr - PT_DBR) >> 3;
+ ptr = &child->thread.dbr[0];
+ }
+
+ if (regnum >= 8) {
+ dprintk("ptrace: rejecting access to register "
+ "address 0x%lx\n", addr);
+ return -1;
+ }
+#ifdef CONFIG_PERFMON
+ /*
+ * Check if debug registers are used by perfmon. This
+ * test must be done once we know that we can do the
+ * operation, i.e. the arguments are all valid, but
+ * before we start modifying the state.
+ *
+ * Perfmon needs to keep a count of how many processes
+ * are trying to modify the debug registers for system
+ * wide monitoring sessions.
+ *
+ * We also include read access here, because they may
+ * cause the PMU-installed debug register state
+ * (dbr[], ibr[]) to be reset. The two arrays are also
+ * used by perfmon, but we do not use
+ * IA64_THREAD_DBG_VALID. The registers are restored
+ * by the PMU context switch code.
+ */
+ if (pfm_use_debug_registers(child)) return -1;
+#endif
+
+ if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
+ child->thread.flags |= IA64_THREAD_DBG_VALID;
+ memset(child->thread.dbr, 0,
+ sizeof(child->thread.dbr));
+ memset(child->thread.ibr, 0,
+ sizeof(child->thread.ibr));
+ }
+
+ ptr += regnum;
+
+ if ((regnum & 1) && write_access) {
+ /* don't let the user set kernel-level breakpoints: */
+ *ptr = *data & ~(7UL << 56);
+ return 0;
+ }
+ }
+ if (write_access)
+ *ptr = *data;
+ else
+ *data = *ptr;
+ return 0;
+}
+
+static long
+ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
+{
+ unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
+ struct unw_frame_info info;
+ struct ia64_fpreg fpval;
+ struct switch_stack *sw;
+ struct pt_regs *pt;
+ long ret, retval = 0;
+ char nat = 0;
+ int i;
+
+ if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
+ return -EIO;
+
+ pt = ia64_task_regs(child);
+ sw = (struct switch_stack *) (child->thread.ksp + 16);
+ unw_init_from_blocked_task(&info, child);
+ if (unw_unwind_to_user(&info) < 0) {
+ return -EIO;
+ }
+
+ if (((unsigned long) ppr & 0x7) != 0) {
+ dprintk("ptrace:unaligned register address %p\n", ppr);
+ return -EIO;
+ }
+
+ if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
+ || access_uarea(child, PT_AR_EC, &ec, 0) < 0
+ || access_uarea(child, PT_AR_LC, &lc, 0) < 0
+ || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
+ || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
+ || access_uarea(child, PT_CFM, &cfm, 0)
+ || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
+ return -EIO;
+
+ /* control regs */
+
+ retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
+ retval |= __put_user(psr, &ppr->cr_ipsr);
+
+ /* app regs */
+
+ retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
+ retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
+ retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
+ retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
+ retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
+ retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
+
+ retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
+ retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
+ retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
+ retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
+ retval |= __put_user(cfm, &ppr->cfm);
+
+ /* gr1-gr3 */
+
+ retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
+ retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
+
+ /* gr4-gr7 */
+
+ for (i = 4; i < 8; i++) {
+ if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
+ return -EIO;
+ retval |= __put_user(val, &ppr->gr[i]);
+ }
+
+ /* gr8-gr11 */
+
+ retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
+
+ /* gr12-gr15 */
+
+ retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
+ retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
+ retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
+
+ /* gr16-gr31 */
+
+ retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
+
+ /* b0 */
+
+ retval |= __put_user(pt->b0, &ppr->br[0]);
+
+ /* b1-b5 */
+
+ for (i = 1; i < 6; i++) {
+ if (unw_access_br(&info, i, &val, 0) < 0)
+ return -EIO;
+ __put_user(val, &ppr->br[i]);
+ }
+
+ /* b6-b7 */
+
+ retval |= __put_user(pt->b6, &ppr->br[6]);
+ retval |= __put_user(pt->b7, &ppr->br[7]);
+
+ /* fr2-fr5 */
+
+ for (i = 2; i < 6; i++) {
+ if (unw_get_fr(&info, i, &fpval) < 0)
+ return -EIO;
+ retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
+ }
+
+ /* fr6-fr11 */
+
+ retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
+ sizeof(struct ia64_fpreg) * 6);
+
+ /* fp scratch regs(12-15) */
+
+ retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
+ sizeof(struct ia64_fpreg) * 4);
+
+ /* fr16-fr31 */
+
+ for (i = 16; i < 32; i++) {
+ if (unw_get_fr(&info, i, &fpval) < 0)
+ return -EIO;
+ retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
+ }
+
+ /* fph */
+
+ ia64_flush_fph(child);
+ retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
+ sizeof(ppr->fr[32]) * 96);
+
+ /* preds */
+
+ retval |= __put_user(pt->pr, &ppr->pr);
+
+ /* nat bits */
+
+ retval |= __put_user(nat_bits, &ppr->nat);
+
+ ret = retval ? -EIO : 0;
+ return ret;
+}
+
+static long
+ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
+{
+ unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
+ struct unw_frame_info info;
+ struct switch_stack *sw;
+ struct ia64_fpreg fpval;
+ struct pt_regs *pt;
+ long ret, retval = 0;
+ int i;
+
+ memset(&fpval, 0, sizeof(fpval));
+
+ if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
+ return -EIO;
+
+ pt = ia64_task_regs(child);
+ sw = (struct switch_stack *) (child->thread.ksp + 16);
+ unw_init_from_blocked_task(&info, child);
+ if (unw_unwind_to_user(&info) < 0) {
+ return -EIO;
+ }
+
+ if (((unsigned long) ppr & 0x7) != 0) {
+ dprintk("ptrace:unaligned register address %p\n", ppr);
+ return -EIO;
+ }
+
+ /* control regs */
+
+ retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
+ retval |= __get_user(psr, &ppr->cr_ipsr);
+
+ /* app regs */
+
+ retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
+ retval |= __get_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
+ retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
+ retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
+ retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
+ retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
+
+ retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
+ retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
+ retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
+ retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
+ retval |= __get_user(cfm, &ppr->cfm);
+
+ /* gr1-gr3 */
+
+ retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
+ retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
+
+ /* gr4-gr7 */
+
+ for (i = 4; i < 8; i++) {
+ retval |= __get_user(val, &ppr->gr[i]);
+ /* NaT bit will be set via PT_NAT_BITS: */
+ if (unw_set_gr(&info, i, val, 0) < 0)
+ return -EIO;
+ }
+
+ /* gr8-gr11 */
+
+ retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
+
+ /* gr12-gr15 */
+
+ retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
+ retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
+ retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
+
+ /* gr16-gr31 */
+
+ retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
+
+ /* b0 */
+
+ retval |= __get_user(pt->b0, &ppr->br[0]);
+
+ /* b1-b5 */
+
+ for (i = 1; i < 6; i++) {
+ retval |= __get_user(val, &ppr->br[i]);
+ unw_set_br(&info, i, val);
+ }
+
+ /* b6-b7 */
+
+ retval |= __get_user(pt->b6, &ppr->br[6]);
+ retval |= __get_user(pt->b7, &ppr->br[7]);
+
+ /* fr2-fr5 */
+
+ for (i = 2; i < 6; i++) {
+ retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
+ if (unw_set_fr(&info, i, fpval) < 0)
+ return -EIO;
+ }
+
+ /* fr6-fr11 */
+
+ retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
+ sizeof(ppr->fr[6]) * 6);
+
+ /* fp scratch regs(12-15) */
+
+ retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
+ sizeof(ppr->fr[12]) * 4);
+
+ /* fr16-fr31 */
+
+ for (i = 16; i < 32; i++) {
+ retval |= __copy_from_user(&fpval, &ppr->fr[i],
+ sizeof(fpval));
+ if (unw_set_fr(&info, i, fpval) < 0)
+ return -EIO;
+ }
+
+ /* fph */
+
+ ia64_sync_fph(child);
+ retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
+ sizeof(ppr->fr[32]) * 96);
+
+ /* preds */
+
+ retval |= __get_user(pt->pr, &ppr->pr);
+
+ /* nat bits */
+
+ retval |= __get_user(nat_bits, &ppr->nat);
+
+ retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
+ retval |= access_uarea(child, PT_AR_EC, &ec, 1);
+ retval |= access_uarea(child, PT_AR_LC, &lc, 1);
+ retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
+ retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
+ retval |= access_uarea(child, PT_CFM, &cfm, 1);
+ retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
+
+ ret = retval ? -EIO : 0;
+ return ret;
+}
+
+/*
+ * Called by kernel/ptrace.c when detaching..
+ *
+ * Make sure the single step bit is not set.
+ */
+void
+ptrace_disable (struct task_struct *child)
+{
+ struct ia64_psr *child_psr = ia64_psr(ia64_task_regs(child));
+
+ /* make sure the single step/taken-branch trap bits are not set: */
+ child_psr->ss = 0;
+ child_psr->tb = 0;
+}
+
+asmlinkage long
+sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data)
+{
+ struct pt_regs *pt;
+ unsigned long urbs_end, peek_or_poke;
+ struct task_struct *child;
+ struct switch_stack *sw;
+ long ret;
+
+ lock_kernel();
+ ret = -EPERM;
+ if (request == PTRACE_TRACEME) {
+ /* are we already being traced? */
+ if (current->ptrace & PT_PTRACED)
+ goto out;
+ ret = security_ptrace(current->parent, current);
+ if (ret)
+ goto out;
+ current->ptrace |= PT_PTRACED;
+ ret = 0;
+ goto out;
+ }
+
+ peek_or_poke = (request == PTRACE_PEEKTEXT
+ || request == PTRACE_PEEKDATA
+ || request == PTRACE_POKETEXT
+ || request == PTRACE_POKEDATA);
+ ret = -ESRCH;
+ read_lock(&tasklist_lock);
+ {
+ child = find_task_by_pid(pid);
+ if (child) {
+ if (peek_or_poke)
+ child = find_thread_for_addr(child, addr);
+ get_task_struct(child);
+ }
+ }
+ read_unlock(&tasklist_lock);
+ if (!child)
+ goto out;
+ ret = -EPERM;
+ if (pid == 1) /* no messing around with init! */
+ goto out_tsk;
+
+ if (request == PTRACE_ATTACH) {
+ ret = ptrace_attach(child);
+ goto out_tsk;
+ }
+
+ ret = ptrace_check_attach(child, request == PTRACE_KILL);
+ if (ret < 0)
+ goto out_tsk;
+
+ pt = ia64_task_regs(child);
+ sw = (struct switch_stack *) (child->thread.ksp + 16);
+
+ switch (request) {
+ case PTRACE_PEEKTEXT:
+ case PTRACE_PEEKDATA:
+ /* read word at location addr */
+ urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
+ ret = ia64_peek(child, sw, urbs_end, addr, &data);
+ if (ret == 0) {
+ ret = data;
+ /* ensure "ret" is not mistaken as an error code: */
+ force_successful_syscall_return();
+ }
+ goto out_tsk;
+
+ case PTRACE_POKETEXT:
+ case PTRACE_POKEDATA:
+ /* write the word at location addr */
+ urbs_end = ia64_get_user_rbs_end(child, pt, NULL);
+ ret = ia64_poke(child, sw, urbs_end, addr, data);
+ goto out_tsk;
+
+ case PTRACE_PEEKUSR:
+ /* read the word at addr in the USER area */
+ if (access_uarea(child, addr, &data, 0) < 0) {
+ ret = -EIO;
+ goto out_tsk;
+ }
+ ret = data;
+ /* ensure "ret" is not mistaken as an error code */
+ force_successful_syscall_return();
+ goto out_tsk;
+
+ case PTRACE_POKEUSR:
+ /* write the word at addr in the USER area */
+ if (access_uarea(child, addr, &data, 1) < 0) {
+ ret = -EIO;
+ goto out_tsk;
+ }
+ ret = 0;
+ goto out_tsk;
+
+ case PTRACE_OLD_GETSIGINFO:
+ /* for backwards-compatibility */
+ ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
+ goto out_tsk;
+
+ case PTRACE_OLD_SETSIGINFO:
+ /* for backwards-compatibility */
+ ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
+ goto out_tsk;
+
+ case PTRACE_SYSCALL:
+ /* continue and stop at next (return from) syscall */
+ case PTRACE_CONT:
+ /* restart after signal. */
+ ret = -EIO;
+ if (data > _NSIG)
+ goto out_tsk;
+ if (request == PTRACE_SYSCALL)
+ set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
+ else
+ clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
+ child->exit_code = data;
+
+ /*
+ * Make sure the single step/taken-branch trap bits
+ * are not set:
+ */
+ ia64_psr(pt)->ss = 0;
+ ia64_psr(pt)->tb = 0;
+
+ wake_up_process(child);
+ ret = 0;
+ goto out_tsk;
+
+ case PTRACE_KILL:
+ /*
+ * Make the child exit. Best I can do is send it a
+ * sigkill. Perhaps it should be put in the status
+ * that it wants to exit.
+ */
+ if (child->exit_state == EXIT_ZOMBIE)
+ /* already dead */
+ goto out_tsk;
+ child->exit_code = SIGKILL;
+
+ ptrace_disable(child);
+ wake_up_process(child);
+ ret = 0;
+ goto out_tsk;
+
+ case PTRACE_SINGLESTEP:
+ /* let child execute for one instruction */
+ case PTRACE_SINGLEBLOCK:
+ ret = -EIO;
+ if (data > _NSIG)
+ goto out_tsk;
+
+ clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
+ if (request == PTRACE_SINGLESTEP) {
+ ia64_psr(pt)->ss = 1;
+ } else {
+ ia64_psr(pt)->tb = 1;
+ }
+ child->exit_code = data;
+
+ /* give it a chance to run. */
+ wake_up_process(child);
+ ret = 0;
+ goto out_tsk;
+
+ case PTRACE_DETACH:
+ /* detach a process that was attached. */
+ ret = ptrace_detach(child, data);
+ goto out_tsk;
+
+ case PTRACE_GETREGS:
+ ret = ptrace_getregs(child,
+ (struct pt_all_user_regs __user *) data);
+ goto out_tsk;
+
+ case PTRACE_SETREGS:
+ ret = ptrace_setregs(child,
+ (struct pt_all_user_regs __user *) data);
+ goto out_tsk;
+
+ default:
+ ret = ptrace_request(child, request, addr, data);
+ goto out_tsk;
+ }
+ out_tsk:
+ put_task_struct(child);
+ out:
+ unlock_kernel();
+ return ret;
+}
+
+
+void
+syscall_trace (void)
+{
+ if (!test_thread_flag(TIF_SYSCALL_TRACE))
+ return;
+ if (!(current->ptrace & PT_PTRACED))
+ return;
+ /*
+ * The 0x80 provides a way for the tracing parent to
+ * distinguish between a syscall stop and SIGTRAP delivery.
+ */
+ ptrace_notify(SIGTRAP
+ | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
+
+ /*
+ * This isn't the same as continuing with a signal, but it
+ * will do for normal use. strace only continues with a
+ * signal if the stopping signal is not SIGTRAP. -brl
+ */
+ if (current->exit_code) {
+ send_sig(current->exit_code, current, 1);
+ current->exit_code = 0;
+ }
+}
+
+/* "asmlinkage" so the input arguments are preserved... */
+
+asmlinkage void
+syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
+ long arg4, long arg5, long arg6, long arg7,
+ struct pt_regs regs)
+{
+ long syscall;
+
+ if (unlikely(current->audit_context)) {
+ if (IS_IA32_PROCESS(&regs))
+ syscall = regs.r1;
+ else
+ syscall = regs.r15;
+
+ audit_syscall_entry(current, syscall, arg0, arg1, arg2, arg3);
+ }
+
+ if (test_thread_flag(TIF_SYSCALL_TRACE)
+ && (current->ptrace & PT_PTRACED))
+ syscall_trace();
+}
+
+/* "asmlinkage" so the input arguments are preserved... */
+
+asmlinkage void
+syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
+ long arg4, long arg5, long arg6, long arg7,
+ struct pt_regs regs)
+{
+ if (unlikely(current->audit_context))
+ audit_syscall_exit(current, regs.r8);
+
+ if (test_thread_flag(TIF_SYSCALL_TRACE)
+ && (current->ptrace & PT_PTRACED))
+ syscall_trace();
+}
OpenPOWER on IntegriCloud