diff options
Diffstat (limited to 'Documentation')
52 files changed, 657 insertions, 449 deletions
diff --git a/Documentation/00-INDEX b/Documentation/00-INDEX index 1b777b9..1f89424 100644 --- a/Documentation/00-INDEX +++ b/Documentation/00-INDEX @@ -192,10 +192,6 @@ kernel-docs.txt - listing of various WWW + books that document kernel internals. kernel-parameters.txt - summary listing of command line / boot prompt args for the kernel. -keys-request-key.txt - - description of the kernel key request service. -keys.txt - - description of the kernel key retention service. kobject.txt - info of the kobject infrastructure of the Linux kernel. kprobes.txt @@ -294,6 +290,8 @@ scheduler/ - directory with info on the scheduler. scsi/ - directory with info on Linux scsi support. +security/ + - directory that contains security-related info serial/ - directory with info on the low level serial API. serial-console.txt diff --git a/Documentation/ABI/testing/sysfs-class-backlight-driver-adp8870 b/Documentation/ABI/testing/sysfs-class-backlight-driver-adp8870 new file mode 100644 index 0000000..aa11dbd --- /dev/null +++ b/Documentation/ABI/testing/sysfs-class-backlight-driver-adp8870 @@ -0,0 +1,56 @@ +What: /sys/class/backlight/<backlight>/<ambient light zone>_max +What: /sys/class/backlight/<backlight>/l1_daylight_max +What: /sys/class/backlight/<backlight>/l2_bright_max +What: /sys/class/backlight/<backlight>/l3_office_max +What: /sys/class/backlight/<backlight>/l4_indoor_max +What: /sys/class/backlight/<backlight>/l5_dark_max +Date: Mai 2011 +KernelVersion: 2.6.40 +Contact: device-drivers-devel@blackfin.uclinux.org +Description: + Control the maximum brightness for <ambient light zone> + on this <backlight>. Values are between 0 and 127. This file + will also show the brightness level stored for this + <ambient light zone>. + +What: /sys/class/backlight/<backlight>/<ambient light zone>_dim +What: /sys/class/backlight/<backlight>/l2_bright_dim +What: /sys/class/backlight/<backlight>/l3_office_dim +What: /sys/class/backlight/<backlight>/l4_indoor_dim +What: /sys/class/backlight/<backlight>/l5_dark_dim +Date: Mai 2011 +KernelVersion: 2.6.40 +Contact: device-drivers-devel@blackfin.uclinux.org +Description: + Control the dim brightness for <ambient light zone> + on this <backlight>. Values are between 0 and 127, typically + set to 0. Full off when the backlight is disabled. + This file will also show the dim brightness level stored for + this <ambient light zone>. + +What: /sys/class/backlight/<backlight>/ambient_light_level +Date: Mai 2011 +KernelVersion: 2.6.40 +Contact: device-drivers-devel@blackfin.uclinux.org +Description: + Get conversion value of the light sensor. + This value is updated every 80 ms (when the light sensor + is enabled). Returns integer between 0 (dark) and + 8000 (max ambient brightness) + +What: /sys/class/backlight/<backlight>/ambient_light_zone +Date: Mai 2011 +KernelVersion: 2.6.40 +Contact: device-drivers-devel@blackfin.uclinux.org +Description: + Get/Set current ambient light zone. Reading returns + integer between 1..5 (1 = daylight, 2 = bright, ..., 5 = dark). + Writing a value between 1..5 forces the backlight controller + to enter the corresponding ambient light zone. + Writing 0 returns to normal/automatic ambient light level + operation. The ambient light sensing feature on these devices + is an extension to the API documented in + Documentation/ABI/stable/sysfs-class-backlight. + It can be enabled by writing the value stored in + /sys/class/backlight/<backlight>/max_brightness to + /sys/class/backlight/<backlight>/brightness.
\ No newline at end of file diff --git a/Documentation/DocBook/dvb/dvbproperty.xml b/Documentation/DocBook/dvb/dvbproperty.xml index 52d5e3c..b5365f6 100644 --- a/Documentation/DocBook/dvb/dvbproperty.xml +++ b/Documentation/DocBook/dvb/dvbproperty.xml @@ -141,13 +141,15 @@ struct dtv_properties { </row></tbody></tgroup></informaltable> </section> +<section> + <title>Property types</title> <para> On <link linkend="FE_GET_PROPERTY">FE_GET_PROPERTY</link>/<link linkend="FE_SET_PROPERTY">FE_SET_PROPERTY</link>, the actual action is determined by the dtv_property cmd/data pairs. With one single ioctl, is possible to get/set up to 64 properties. The actual meaning of each property is described on the next sections. </para> -<para>The Available frontend property types are:</para> +<para>The available frontend property types are:</para> <programlisting> #define DTV_UNDEFINED 0 #define DTV_TUNE 1 @@ -193,6 +195,7 @@ get/set up to 64 properties. The actual meaning of each property is described on #define DTV_ISDBT_LAYER_ENABLED 41 #define DTV_ISDBS_TS_ID 42 </programlisting> +</section> <section id="fe_property_common"> <title>Parameters that are common to all Digital TV standards</title> diff --git a/Documentation/DocBook/media-entities.tmpl b/Documentation/DocBook/media-entities.tmpl index c8abb23..e5fe094 100644 --- a/Documentation/DocBook/media-entities.tmpl +++ b/Documentation/DocBook/media-entities.tmpl @@ -293,6 +293,7 @@ <!ENTITY sub-yuyv SYSTEM "v4l/pixfmt-yuyv.xml"> <!ENTITY sub-yvyu SYSTEM "v4l/pixfmt-yvyu.xml"> <!ENTITY sub-srggb10 SYSTEM "v4l/pixfmt-srggb10.xml"> +<!ENTITY sub-srggb12 SYSTEM "v4l/pixfmt-srggb12.xml"> <!ENTITY sub-srggb8 SYSTEM "v4l/pixfmt-srggb8.xml"> <!ENTITY sub-y10 SYSTEM "v4l/pixfmt-y10.xml"> <!ENTITY sub-y12 SYSTEM "v4l/pixfmt-y12.xml"> @@ -373,9 +374,9 @@ <!ENTITY sub-media-indices SYSTEM "media-indices.tmpl"> <!ENTITY sub-media-controller SYSTEM "v4l/media-controller.xml"> -<!ENTITY sub-media-open SYSTEM "v4l/media-func-open.xml"> -<!ENTITY sub-media-close SYSTEM "v4l/media-func-close.xml"> -<!ENTITY sub-media-ioctl SYSTEM "v4l/media-func-ioctl.xml"> +<!ENTITY sub-media-func-open SYSTEM "v4l/media-func-open.xml"> +<!ENTITY sub-media-func-close SYSTEM "v4l/media-func-close.xml"> +<!ENTITY sub-media-func-ioctl SYSTEM "v4l/media-func-ioctl.xml"> <!ENTITY sub-media-ioc-device-info SYSTEM "v4l/media-ioc-device-info.xml"> <!ENTITY sub-media-ioc-enum-entities SYSTEM "v4l/media-ioc-enum-entities.xml"> <!ENTITY sub-media-ioc-enum-links SYSTEM "v4l/media-ioc-enum-links.xml"> diff --git a/Documentation/DocBook/mtdnand.tmpl b/Documentation/DocBook/mtdnand.tmpl index 6f242d5..17910e2 100644 --- a/Documentation/DocBook/mtdnand.tmpl +++ b/Documentation/DocBook/mtdnand.tmpl @@ -189,8 +189,7 @@ static void __iomem *baseaddr; <title>Partition defines</title> <para> If you want to divide your device into partitions, then - enable the configuration switch CONFIG_MTD_PARTITIONS and define - a partitioning scheme suitable to your board. + define a partitioning scheme suitable to your board. </para> <programlisting> #define NUM_PARTITIONS 2 diff --git a/Documentation/DocBook/v4l/media-controller.xml b/Documentation/DocBook/v4l/media-controller.xml index 2dc25e1..873ac3a 100644 --- a/Documentation/DocBook/v4l/media-controller.xml +++ b/Documentation/DocBook/v4l/media-controller.xml @@ -78,9 +78,9 @@ <appendix id="media-user-func"> <title>Function Reference</title> <!-- Keep this alphabetically sorted. --> - &sub-media-open; - &sub-media-close; - &sub-media-ioctl; + &sub-media-func-open; + &sub-media-func-close; + &sub-media-func-ioctl; <!-- All ioctls go here. --> &sub-media-ioc-device-info; &sub-media-ioc-enum-entities; diff --git a/Documentation/DocBook/v4l/pixfmt.xml b/Documentation/DocBook/v4l/pixfmt.xml index dbfe3b0..deb6602 100644 --- a/Documentation/DocBook/v4l/pixfmt.xml +++ b/Documentation/DocBook/v4l/pixfmt.xml @@ -673,6 +673,7 @@ access the palette, this must be done with ioctls of the Linux framebuffer API.< &sub-srggb8; &sub-sbggr16; &sub-srggb10; + &sub-srggb12; </section> <section id="yuv-formats"> diff --git a/Documentation/DocBook/v4l/subdev-formats.xml b/Documentation/DocBook/v4l/subdev-formats.xml index a26b10c..8d3409d 100644 --- a/Documentation/DocBook/v4l/subdev-formats.xml +++ b/Documentation/DocBook/v4l/subdev-formats.xml @@ -2531,13 +2531,13 @@ <constant>_JPEG</constant> prefix the format code is made of the following information. <itemizedlist> - <listitem>The number of bus samples per entropy encoded byte.</listitem> - <listitem>The bus width.</listitem> + <listitem><para>The number of bus samples per entropy encoded byte.</para></listitem> + <listitem><para>The bus width.</para></listitem> </itemizedlist> + </para> - <para>For instance, for a JPEG baseline process and an 8-bit bus width - the format will be named <constant>V4L2_MBUS_FMT_JPEG_1X8</constant>. - </para> + <para>For instance, for a JPEG baseline process and an 8-bit bus width + the format will be named <constant>V4L2_MBUS_FMT_JPEG_1X8</constant>. </para> <para>The following table lists existing JPEG compressed formats.</para> diff --git a/Documentation/RCU/trace.txt b/Documentation/RCU/trace.txt index c078ad4..8173cec 100644 --- a/Documentation/RCU/trace.txt +++ b/Documentation/RCU/trace.txt @@ -99,18 +99,11 @@ o "qp" indicates that RCU still expects a quiescent state from o "dt" is the current value of the dyntick counter that is incremented when entering or leaving dynticks idle state, either by the - scheduler or by irq. The number after the "/" is the interrupt - nesting depth when in dyntick-idle state, or one greater than - the interrupt-nesting depth otherwise. - - This field is displayed only for CONFIG_NO_HZ kernels. - -o "dn" is the current value of the dyntick counter that is incremented - when entering or leaving dynticks idle state via NMI. If both - the "dt" and "dn" values are even, then this CPU is in dynticks - idle mode and may be ignored by RCU. If either of these two - counters is odd, then RCU must be alert to the possibility of - an RCU read-side critical section running on this CPU. + scheduler or by irq. This number is even if the CPU is in + dyntick idle mode and odd otherwise. The number after the first + "/" is the interrupt nesting depth when in dyntick-idle state, + or one greater than the interrupt-nesting depth otherwise. + The number after the second "/" is the NMI nesting depth. This field is displayed only for CONFIG_NO_HZ kernels. diff --git a/Documentation/accounting/cgroupstats.txt b/Documentation/accounting/cgroupstats.txt index eda40fd..d16a984 100644 --- a/Documentation/accounting/cgroupstats.txt +++ b/Documentation/accounting/cgroupstats.txt @@ -21,7 +21,7 @@ information will not be available. To extract cgroup statistics a utility very similar to getdelays.c has been developed, the sample output of the utility is shown below -~/balbir/cgroupstats # ./getdelays -C "/cgroup/a" +~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup/a" sleeping 1, blocked 0, running 1, stopped 0, uninterruptible 0 -~/balbir/cgroupstats # ./getdelays -C "/cgroup" +~/balbir/cgroupstats # ./getdelays -C "/sys/fs/cgroup" sleeping 155, blocked 0, running 1, stopped 0, uninterruptible 2 diff --git a/Documentation/acpi/method-customizing.txt b/Documentation/acpi/method-customizing.txt index 3e1d25a..5f55373 100644 --- a/Documentation/acpi/method-customizing.txt +++ b/Documentation/acpi/method-customizing.txt @@ -66,3 +66,8 @@ Note: We can use a kernel with multiple custom ACPI method running, But each individual write to debugfs can implement a SINGLE method override. i.e. if we want to insert/override multiple ACPI methods, we need to redo step c) ~ g) for multiple times. + +Note: Be aware that root can mis-use this driver to modify arbitrary + memory and gain additional rights, if root's privileges got + restricted (for example if root is not allowed to load additional + modules after boot). diff --git a/Documentation/arm/Booting b/Documentation/arm/Booting index 7685029..4e686a2 100644 --- a/Documentation/arm/Booting +++ b/Documentation/arm/Booting @@ -65,13 +65,19 @@ looks at the connected hardware is beyond the scope of this document. The boot loader must ultimately be able to provide a MACH_TYPE_xxx value to the kernel. (see linux/arch/arm/tools/mach-types). - -4. Setup the kernel tagged list -------------------------------- +4. Setup boot data +------------------ Existing boot loaders: OPTIONAL, HIGHLY RECOMMENDED New boot loaders: MANDATORY +The boot loader must provide either a tagged list or a dtb image for +passing configuration data to the kernel. The physical address of the +boot data is passed to the kernel in register r2. + +4a. Setup the kernel tagged list +-------------------------------- + The boot loader must create and initialise the kernel tagged list. A valid tagged list starts with ATAG_CORE and ends with ATAG_NONE. The ATAG_CORE tag may or may not be empty. An empty ATAG_CORE tag @@ -101,6 +107,24 @@ The tagged list must be placed in a region of memory where neither the kernel decompressor nor initrd 'bootp' program will overwrite it. The recommended placement is in the first 16KiB of RAM. +4b. Setup the device tree +------------------------- + +The boot loader must load a device tree image (dtb) into system ram +at a 64bit aligned address and initialize it with the boot data. The +dtb format is documented in Documentation/devicetree/booting-without-of.txt. +The kernel will look for the dtb magic value of 0xd00dfeed at the dtb +physical address to determine if a dtb has been passed instead of a +tagged list. + +The boot loader must pass at a minimum the size and location of the +system memory, and the root filesystem location. The dtb must be +placed in a region of memory where the kernel decompressor will not +overwrite it. The recommended placement is in the first 16KiB of RAM +with the caveat that it may not be located at physical address 0 since +the kernel interprets a value of 0 in r2 to mean neither a tagged list +nor a dtb were passed. + 5. Calling the kernel image --------------------------- @@ -125,7 +149,8 @@ In either case, the following conditions must be met: - CPU register settings r0 = 0, r1 = machine type number discovered in (3) above. - r2 = physical address of tagged list in system RAM. + r2 = physical address of tagged list in system RAM, or + physical address of device tree block (dtb) in system RAM - CPU mode All forms of interrupts must be disabled (IRQs and FIQs) diff --git a/Documentation/arm/Samsung/Overview.txt b/Documentation/arm/Samsung/Overview.txt index c3094ea..658abb2 100644 --- a/Documentation/arm/Samsung/Overview.txt +++ b/Documentation/arm/Samsung/Overview.txt @@ -14,7 +14,6 @@ Introduction - S3C24XX: See Documentation/arm/Samsung-S3C24XX/Overview.txt for full list - S3C64XX: S3C6400 and S3C6410 - S5P6440 - - S5P6442 - S5PC100 - S5PC110 / S5PV210 @@ -36,7 +35,6 @@ Configuration unifying all the SoCs into one kernel. s5p6440_defconfig - S5P6440 specific default configuration - s5p6442_defconfig - S5P6442 specific default configuration s5pc100_defconfig - S5PC100 specific default configuration s5pc110_defconfig - S5PC110 specific default configuration s5pv210_defconfig - S5PV210 specific default configuration diff --git a/Documentation/cgroups/blkio-controller.txt b/Documentation/cgroups/blkio-controller.txt index 465351d..cd45c8e 100644 --- a/Documentation/cgroups/blkio-controller.txt +++ b/Documentation/cgroups/blkio-controller.txt @@ -28,16 +28,19 @@ cgroups. Here is what you can do. - Enable group scheduling in CFQ CONFIG_CFQ_GROUP_IOSCHED=y -- Compile and boot into kernel and mount IO controller (blkio). +- Compile and boot into kernel and mount IO controller (blkio); see + cgroups.txt, Why are cgroups needed?. - mount -t cgroup -o blkio none /cgroup + mount -t tmpfs cgroup_root /sys/fs/cgroup + mkdir /sys/fs/cgroup/blkio + mount -t cgroup -o blkio none /sys/fs/cgroup/blkio - Create two cgroups - mkdir -p /cgroup/test1/ /cgroup/test2 + mkdir -p /sys/fs/cgroup/blkio/test1/ /sys/fs/cgroup/blkio/test2 - Set weights of group test1 and test2 - echo 1000 > /cgroup/test1/blkio.weight - echo 500 > /cgroup/test2/blkio.weight + echo 1000 > /sys/fs/cgroup/blkio/test1/blkio.weight + echo 500 > /sys/fs/cgroup/blkio/test2/blkio.weight - Create two same size files (say 512MB each) on same disk (file1, file2) and launch two dd threads in different cgroup to read those files. @@ -46,12 +49,12 @@ cgroups. Here is what you can do. echo 3 > /proc/sys/vm/drop_caches dd if=/mnt/sdb/zerofile1 of=/dev/null & - echo $! > /cgroup/test1/tasks - cat /cgroup/test1/tasks + echo $! > /sys/fs/cgroup/blkio/test1/tasks + cat /sys/fs/cgroup/blkio/test1/tasks dd if=/mnt/sdb/zerofile2 of=/dev/null & - echo $! > /cgroup/test2/tasks - cat /cgroup/test2/tasks + echo $! > /sys/fs/cgroup/blkio/test2/tasks + cat /sys/fs/cgroup/blkio/test2/tasks - At macro level, first dd should finish first. To get more precise data, keep on looking at (with the help of script), at blkio.disk_time and @@ -68,13 +71,13 @@ Throttling/Upper Limit policy - Enable throttling in block layer CONFIG_BLK_DEV_THROTTLING=y -- Mount blkio controller - mount -t cgroup -o blkio none /cgroup/blkio +- Mount blkio controller (see cgroups.txt, Why are cgroups needed?) + mount -t cgroup -o blkio none /sys/fs/cgroup/blkio - Specify a bandwidth rate on particular device for root group. The format for policy is "<major>:<minor> <byes_per_second>". - echo "8:16 1048576" > /cgroup/blkio/blkio.read_bps_device + echo "8:16 1048576" > /sys/fs/cgroup/blkio/blkio.read_bps_device Above will put a limit of 1MB/second on reads happening for root group on device having major/minor number 8:16. @@ -108,7 +111,7 @@ Hierarchical Cgroups CFQ and throttling will practically treat all groups at same level. pivot - / | \ \ + / / \ \ root test1 test2 test3 Down the line we can implement hierarchical accounting/control support @@ -149,7 +152,7 @@ Proportional weight policy files Following is the format. - #echo dev_maj:dev_minor weight > /path/to/cgroup/blkio.weight_device + # echo dev_maj:dev_minor weight > blkio.weight_device Configure weight=300 on /dev/sdb (8:16) in this cgroup # echo 8:16 300 > blkio.weight_device # cat blkio.weight_device diff --git a/Documentation/cgroups/cgroups.txt b/Documentation/cgroups/cgroups.txt index 0ed99f0..cd67e90 100644 --- a/Documentation/cgroups/cgroups.txt +++ b/Documentation/cgroups/cgroups.txt @@ -138,11 +138,11 @@ With the ability to classify tasks differently for different resources the admin can easily set up a script which receives exec notifications and depending on who is launching the browser he can - # echo browser_pid > /mnt/<restype>/<userclass>/tasks + # echo browser_pid > /sys/fs/cgroup/<restype>/<userclass>/tasks With only a single hierarchy, he now would potentially have to create a separate cgroup for every browser launched and associate it with -approp network and other resource class. This may lead to +appropriate network and other resource class. This may lead to proliferation of such cgroups. Also lets say that the administrator would like to give enhanced network @@ -153,9 +153,9 @@ apps enhanced CPU power, With ability to write pids directly to resource classes, it's just a matter of : - # echo pid > /mnt/network/<new_class>/tasks + # echo pid > /sys/fs/cgroup/network/<new_class>/tasks (after some time) - # echo pid > /mnt/network/<orig_class>/tasks + # echo pid > /sys/fs/cgroup/network/<orig_class>/tasks Without this ability, he would have to split the cgroup into multiple separate ones and then associate the new cgroups with the @@ -310,21 +310,24 @@ subsystem, this is the case for the cpuset. To start a new job that is to be contained within a cgroup, using the "cpuset" cgroup subsystem, the steps are something like: - 1) mkdir /dev/cgroup - 2) mount -t cgroup -ocpuset cpuset /dev/cgroup - 3) Create the new cgroup by doing mkdir's and write's (or echo's) in - the /dev/cgroup virtual file system. - 4) Start a task that will be the "founding father" of the new job. - 5) Attach that task to the new cgroup by writing its pid to the - /dev/cgroup tasks file for that cgroup. - 6) fork, exec or clone the job tasks from this founding father task. + 1) mount -t tmpfs cgroup_root /sys/fs/cgroup + 2) mkdir /sys/fs/cgroup/cpuset + 3) mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset + 4) Create the new cgroup by doing mkdir's and write's (or echo's) in + the /sys/fs/cgroup virtual file system. + 5) Start a task that will be the "founding father" of the new job. + 6) Attach that task to the new cgroup by writing its pid to the + /sys/fs/cgroup/cpuset/tasks file for that cgroup. + 7) fork, exec or clone the job tasks from this founding father task. For example, the following sequence of commands will setup a cgroup named "Charlie", containing just CPUs 2 and 3, and Memory Node 1, and then start a subshell 'sh' in that cgroup: - mount -t cgroup cpuset -ocpuset /dev/cgroup - cd /dev/cgroup + mount -t tmpfs cgroup_root /sys/fs/cgroup + mkdir /sys/fs/cgroup/cpuset + mount -t cgroup cpuset -ocpuset /sys/fs/cgroup/cpuset + cd /sys/fs/cgroup/cpuset mkdir Charlie cd Charlie /bin/echo 2-3 > cpuset.cpus @@ -345,7 +348,7 @@ Creating, modifying, using the cgroups can be done through the cgroup virtual filesystem. To mount a cgroup hierarchy with all available subsystems, type: -# mount -t cgroup xxx /dev/cgroup +# mount -t cgroup xxx /sys/fs/cgroup The "xxx" is not interpreted by the cgroup code, but will appear in /proc/mounts so may be any useful identifying string that you like. @@ -354,23 +357,32 @@ Note: Some subsystems do not work without some user input first. For instance, if cpusets are enabled the user will have to populate the cpus and mems files for each new cgroup created before that group can be used. +As explained in section `1.2 Why are cgroups needed?' you should create +different hierarchies of cgroups for each single resource or group of +resources you want to control. Therefore, you should mount a tmpfs on +/sys/fs/cgroup and create directories for each cgroup resource or resource +group. + +# mount -t tmpfs cgroup_root /sys/fs/cgroup +# mkdir /sys/fs/cgroup/rg1 + To mount a cgroup hierarchy with just the cpuset and memory subsystems, type: -# mount -t cgroup -o cpuset,memory hier1 /dev/cgroup +# mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1 To change the set of subsystems bound to a mounted hierarchy, just remount with different options: -# mount -o remount,cpuset,blkio hier1 /dev/cgroup +# mount -o remount,cpuset,blkio hier1 /sys/fs/cgroup/rg1 Now memory is removed from the hierarchy and blkio is added. Note this will add blkio to the hierarchy but won't remove memory or cpuset, because the new options are appended to the old ones: -# mount -o remount,blkio /dev/cgroup +# mount -o remount,blkio /sys/fs/cgroup/rg1 To Specify a hierarchy's release_agent: # mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \ - xxx /dev/cgroup + xxx /sys/fs/cgroup/rg1 Note that specifying 'release_agent' more than once will return failure. @@ -379,17 +391,17 @@ when the hierarchy consists of a single (root) cgroup. Supporting the ability to arbitrarily bind/unbind subsystems from an existing cgroup hierarchy is intended to be implemented in the future. -Then under /dev/cgroup you can find a tree that corresponds to the -tree of the cgroups in the system. For instance, /dev/cgroup +Then under /sys/fs/cgroup/rg1 you can find a tree that corresponds to the +tree of the cgroups in the system. For instance, /sys/fs/cgroup/rg1 is the cgroup that holds the whole system. If you want to change the value of release_agent: -# echo "/sbin/new_release_agent" > /dev/cgroup/release_agent +# echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent It can also be changed via remount. -If you want to create a new cgroup under /dev/cgroup: -# cd /dev/cgroup +If you want to create a new cgroup under /sys/fs/cgroup/rg1: +# cd /sys/fs/cgroup/rg1 # mkdir my_cgroup Now you want to do something with this cgroup. diff --git a/Documentation/cgroups/cpuacct.txt b/Documentation/cgroups/cpuacct.txt index 8b93094..9ad85df 100644 --- a/Documentation/cgroups/cpuacct.txt +++ b/Documentation/cgroups/cpuacct.txt @@ -10,26 +10,25 @@ directly present in its group. Accounting groups can be created by first mounting the cgroup filesystem. -# mkdir /cgroups -# mount -t cgroup -ocpuacct none /cgroups - -With the above step, the initial or the parent accounting group -becomes visible at /cgroups. At bootup, this group includes all the -tasks in the system. /cgroups/tasks lists the tasks in this cgroup. -/cgroups/cpuacct.usage gives the CPU time (in nanoseconds) obtained by -this group which is essentially the CPU time obtained by all the tasks +# mount -t cgroup -ocpuacct none /sys/fs/cgroup + +With the above step, the initial or the parent accounting group becomes +visible at /sys/fs/cgroup. At bootup, this group includes all the tasks in +the system. /sys/fs/cgroup/tasks lists the tasks in this cgroup. +/sys/fs/cgroup/cpuacct.usage gives the CPU time (in nanoseconds) obtained +by this group which is essentially the CPU time obtained by all the tasks in the system. -New accounting groups can be created under the parent group /cgroups. +New accounting groups can be created under the parent group /sys/fs/cgroup. -# cd /cgroups +# cd /sys/fs/cgroup # mkdir g1 # echo $$ > g1 The above steps create a new group g1 and move the current shell process (bash) into it. CPU time consumed by this bash and its children can be obtained from g1/cpuacct.usage and the same is accumulated in -/cgroups/cpuacct.usage also. +/sys/fs/cgroup/cpuacct.usage also. cpuacct.stat file lists a few statistics which further divide the CPU time obtained by the cgroup into user and system times. Currently diff --git a/Documentation/cgroups/cpusets.txt b/Documentation/cgroups/cpusets.txt index 98a3082..5b0d78e 100644 --- a/Documentation/cgroups/cpusets.txt +++ b/Documentation/cgroups/cpusets.txt @@ -661,21 +661,21 @@ than stress the kernel. To start a new job that is to be contained within a cpuset, the steps are: - 1) mkdir /dev/cpuset - 2) mount -t cgroup -ocpuset cpuset /dev/cpuset + 1) mkdir /sys/fs/cgroup/cpuset + 2) mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset 3) Create the new cpuset by doing mkdir's and write's (or echo's) in - the /dev/cpuset virtual file system. + the /sys/fs/cgroup/cpuset virtual file system. 4) Start a task that will be the "founding father" of the new job. 5) Attach that task to the new cpuset by writing its pid to the - /dev/cpuset tasks file for that cpuset. + /sys/fs/cgroup/cpuset tasks file for that cpuset. 6) fork, exec or clone the job tasks from this founding father task. For example, the following sequence of commands will setup a cpuset named "Charlie", containing just CPUs 2 and 3, and Memory Node 1, and then start a subshell 'sh' in that cpuset: - mount -t cgroup -ocpuset cpuset /dev/cpuset - cd /dev/cpuset + mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset + cd /sys/fs/cgroup/cpuset mkdir Charlie cd Charlie /bin/echo 2-3 > cpuset.cpus @@ -710,14 +710,14 @@ Creating, modifying, using the cpusets can be done through the cpuset virtual filesystem. To mount it, type: -# mount -t cgroup -o cpuset cpuset /dev/cpuset +# mount -t cgroup -o cpuset cpuset /sys/fs/cgroup/cpuset -Then under /dev/cpuset you can find a tree that corresponds to the -tree of the cpusets in the system. For instance, /dev/cpuset +Then under /sys/fs/cgroup/cpuset you can find a tree that corresponds to the +tree of the cpusets in the system. For instance, /sys/fs/cgroup/cpuset is the cpuset that holds the whole system. -If you want to create a new cpuset under /dev/cpuset: -# cd /dev/cpuset +If you want to create a new cpuset under /sys/fs/cgroup/cpuset: +# cd /sys/fs/cgroup/cpuset # mkdir my_cpuset Now you want to do something with this cpuset. @@ -765,12 +765,12 @@ wrapper around the cgroup filesystem. The command -mount -t cpuset X /dev/cpuset +mount -t cpuset X /sys/fs/cgroup/cpuset is equivalent to -mount -t cgroup -ocpuset,noprefix X /dev/cpuset -echo "/sbin/cpuset_release_agent" > /dev/cpuset/release_agent +mount -t cgroup -ocpuset,noprefix X /sys/fs/cgroup/cpuset +echo "/sbin/cpuset_release_agent" > /sys/fs/cgroup/cpuset/release_agent 2.2 Adding/removing cpus ------------------------ diff --git a/Documentation/cgroups/devices.txt b/Documentation/cgroups/devices.txt index 57ca4c8..16624a7f8 100644 --- a/Documentation/cgroups/devices.txt +++ b/Documentation/cgroups/devices.txt @@ -22,16 +22,16 @@ removed from the child(ren). An entry is added using devices.allow, and removed using devices.deny. For instance - echo 'c 1:3 mr' > /cgroups/1/devices.allow + echo 'c 1:3 mr' > /sys/fs/cgroup/1/devices.allow allows cgroup 1 to read and mknod the device usually known as /dev/null. Doing - echo a > /cgroups/1/devices.deny + echo a > /sys/fs/cgroup/1/devices.deny will remove the default 'a *:* rwm' entry. Doing - echo a > /cgroups/1/devices.allow + echo a > /sys/fs/cgroup/1/devices.allow will add the 'a *:* rwm' entry to the whitelist. diff --git a/Documentation/cgroups/freezer-subsystem.txt b/Documentation/cgroups/freezer-subsystem.txt index 41f37fe..c21d777 100644 --- a/Documentation/cgroups/freezer-subsystem.txt +++ b/Documentation/cgroups/freezer-subsystem.txt @@ -59,28 +59,28 @@ is non-freezable. * Examples of usage : - # mkdir /containers - # mount -t cgroup -ofreezer freezer /containers - # mkdir /containers/0 - # echo $some_pid > /containers/0/tasks + # mkdir /sys/fs/cgroup/freezer + # mount -t cgroup -ofreezer freezer /sys/fs/cgroup/freezer + # mkdir /sys/fs/cgroup/freezer/0 + # echo $some_pid > /sys/fs/cgroup/freezer/0/tasks to get status of the freezer subsystem : - # cat /containers/0/freezer.state + # cat /sys/fs/cgroup/freezer/0/freezer.state THAWED to freeze all tasks in the container : - # echo FROZEN > /containers/0/freezer.state - # cat /containers/0/freezer.state + # echo FROZEN > /sys/fs/cgroup/freezer/0/freezer.state + # cat /sys/fs/cgroup/freezer/0/freezer.state FREEZING - # cat /containers/0/freezer.state + # cat /sys/fs/cgroup/freezer/0/freezer.state FROZEN to unfreeze all tasks in the container : - # echo THAWED > /containers/0/freezer.state - # cat /containers/0/freezer.state + # echo THAWED > /sys/fs/cgroup/freezer/0/freezer.state + # cat /sys/fs/cgroup/freezer/0/freezer.state THAWED This is the basic mechanism which should do the right thing for user space task diff --git a/Documentation/cgroups/memory.txt b/Documentation/cgroups/memory.txt index 7c16347..06eb6d9 100644 --- a/Documentation/cgroups/memory.txt +++ b/Documentation/cgroups/memory.txt @@ -1,8 +1,8 @@ Memory Resource Controller -NOTE: The Memory Resource Controller has been generically been referred - to as the memory controller in this document. Do not confuse memory - controller used here with the memory controller that is used in hardware. +NOTE: The Memory Resource Controller has generically been referred to as the + memory controller in this document. Do not confuse memory controller + used here with the memory controller that is used in hardware. (For editors) In this document: @@ -70,6 +70,7 @@ Brief summary of control files. (See sysctl's vm.swappiness) memory.move_charge_at_immigrate # set/show controls of moving charges memory.oom_control # set/show oom controls. + memory.numa_stat # show the number of memory usage per numa node 1. History @@ -181,7 +182,7 @@ behind this approach is that a cgroup that aggressively uses a shared page will eventually get charged for it (once it is uncharged from the cgroup that brought it in -- this will happen on memory pressure). -Exception: If CONFIG_CGROUP_CGROUP_MEM_RES_CTLR_SWAP is not used.. +Exception: If CONFIG_CGROUP_CGROUP_MEM_RES_CTLR_SWAP is not used. When you do swapoff and make swapped-out pages of shmem(tmpfs) to be backed into memory in force, charges for pages are accounted against the caller of swapoff rather than the users of shmem. @@ -213,7 +214,7 @@ affecting global LRU, memory+swap limit is better than just limiting swap from OS point of view. * What happens when a cgroup hits memory.memsw.limit_in_bytes -When a cgroup his memory.memsw.limit_in_bytes, it's useless to do swap-out +When a cgroup hits memory.memsw.limit_in_bytes, it's useless to do swap-out in this cgroup. Then, swap-out will not be done by cgroup routine and file caches are dropped. But as mentioned above, global LRU can do swapout memory from it for sanity of the system's memory management state. You can't forbid @@ -263,16 +264,17 @@ b. Enable CONFIG_RESOURCE_COUNTERS c. Enable CONFIG_CGROUP_MEM_RES_CTLR d. Enable CONFIG_CGROUP_MEM_RES_CTLR_SWAP (to use swap extension) -1. Prepare the cgroups -# mkdir -p /cgroups -# mount -t cgroup none /cgroups -o memory +1. Prepare the cgroups (see cgroups.txt, Why are cgroups needed?) +# mount -t tmpfs none /sys/fs/cgroup +# mkdir /sys/fs/cgroup/memory +# mount -t cgroup none /sys/fs/cgroup/memory -o memory 2. Make the new group and move bash into it -# mkdir /cgroups/0 -# echo $$ > /cgroups/0/tasks +# mkdir /sys/fs/cgroup/memory/0 +# echo $$ > /sys/fs/cgroup/memory/0/tasks Since now we're in the 0 cgroup, we can alter the memory limit: -# echo 4M > /cgroups/0/memory.limit_in_bytes +# echo 4M > /sys/fs/cgroup/memory/0/memory.limit_in_bytes NOTE: We can use a suffix (k, K, m, M, g or G) to indicate values in kilo, mega or gigabytes. (Here, Kilo, Mega, Giga are Kibibytes, Mebibytes, Gibibytes.) @@ -280,11 +282,11 @@ mega or gigabytes. (Here, Kilo, Mega, Giga are Kibibytes, Mebibytes, Gibibytes.) NOTE: We can write "-1" to reset the *.limit_in_bytes(unlimited). NOTE: We cannot set limits on the root cgroup any more. -# cat /cgroups/0/memory.limit_in_bytes +# cat /sys/fs/cgroup/memory/0/memory.limit_in_bytes 4194304 We can check the usage: -# cat /cgroups/0/memory.usage_in_bytes +# cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes 1216512 A successful write to this file does not guarantee a successful set of @@ -464,6 +466,24 @@ value for efficient access. (Of course, when necessary, it's synchronized.) If you want to know more exact memory usage, you should use RSS+CACHE(+SWAP) value in memory.stat(see 5.2). +5.6 numa_stat + +This is similar to numa_maps but operates on a per-memcg basis. This is +useful for providing visibility into the numa locality information within +an memcg since the pages are allowed to be allocated from any physical +node. One of the usecases is evaluating application performance by +combining this information with the application's cpu allocation. + +We export "total", "file", "anon" and "unevictable" pages per-node for +each memcg. The ouput format of memory.numa_stat is: + +total=<total pages> N0=<node 0 pages> N1=<node 1 pages> ... +file=<total file pages> N0=<node 0 pages> N1=<node 1 pages> ... +anon=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ... +unevictable=<total anon pages> N0=<node 0 pages> N1=<node 1 pages> ... + +And we have total = file + anon + unevictable. + 6. Hierarchy support The memory controller supports a deep hierarchy and hierarchical accounting. @@ -471,13 +491,13 @@ The hierarchy is created by creating the appropriate cgroups in the cgroup filesystem. Consider for example, the following cgroup filesystem hierarchy - root + root / | \ - / | \ - a b c - | \ - | \ - d e + / | \ + a b c + | \ + | \ + d e In the diagram above, with hierarchical accounting enabled, all memory usage of e, is accounted to its ancestors up until the root (i.e, c and root), diff --git a/Documentation/devicetree/booting-without-of.txt b/Documentation/devicetree/booting-without-of.txt index 50619a0..7c1329d 100644 --- a/Documentation/devicetree/booting-without-of.txt +++ b/Documentation/devicetree/booting-without-of.txt @@ -12,8 +12,9 @@ Table of Contents ================= I - Introduction - 1) Entry point for arch/powerpc - 2) Entry point for arch/x86 + 1) Entry point for arch/arm + 2) Entry point for arch/powerpc + 3) Entry point for arch/x86 II - The DT block format 1) Header @@ -148,7 +149,46 @@ upgrades without significantly impacting the kernel code or cluttering it with special cases. -1) Entry point for arch/powerpc +1) Entry point for arch/arm +--------------------------- + + There is one single entry point to the kernel, at the start + of the kernel image. That entry point supports two calling + conventions. A summary of the interface is described here. A full + description of the boot requirements is documented in + Documentation/arm/Booting + + a) ATAGS interface. Minimal information is passed from firmware + to the kernel with a tagged list of predefined parameters. + + r0 : 0 + + r1 : Machine type number + + r2 : Physical address of tagged list in system RAM + + b) Entry with a flattened device-tree block. Firmware loads the + physical address of the flattened device tree block (dtb) into r2, + r1 is not used, but it is considered good practise to use a valid + machine number as described in Documentation/arm/Booting. + + r0 : 0 + + r1 : Valid machine type number. When using a device tree, + a single machine type number will often be assigned to + represent a class or family of SoCs. + + r2 : physical pointer to the device-tree block + (defined in chapter II) in RAM. Device tree can be located + anywhere in system RAM, but it should be aligned on a 64 bit + boundary. + + The kernel will differentiate between ATAGS and device tree booting by + reading the memory pointed to by r2 and looking for either the flattened + device tree block magic value (0xd00dfeed) or the ATAG_CORE value at + offset 0x4 from r2 (0x54410001). + +2) Entry point for arch/powerpc ------------------------------- There is one single entry point to the kernel, at the start @@ -226,7 +266,7 @@ it with special cases. cannot support both configurations with Book E and configurations with classic Powerpc architectures. -2) Entry point for arch/x86 +3) Entry point for arch/x86 ------------------------------- There is one single 32bit entry point to the kernel at code32_start, diff --git a/Documentation/dmaengine.txt b/Documentation/dmaengine.txt index 0c1c2f6..5a0cb1e 100644 --- a/Documentation/dmaengine.txt +++ b/Documentation/dmaengine.txt @@ -1 +1,96 @@ -See Documentation/crypto/async-tx-api.txt + DMA Engine API Guide + ==================== + + Vinod Koul <vinod dot koul at intel.com> + +NOTE: For DMA Engine usage in async_tx please see: + Documentation/crypto/async-tx-api.txt + + +Below is a guide to device driver writers on how to use the Slave-DMA API of the +DMA Engine. This is applicable only for slave DMA usage only. + +The slave DMA usage consists of following steps +1. Allocate a DMA slave channel +2. Set slave and controller specific parameters +3. Get a descriptor for transaction +4. Submit the transaction and wait for callback notification + +1. Allocate a DMA slave channel +Channel allocation is slightly different in the slave DMA context, client +drivers typically need a channel from a particular DMA controller only and even +in some cases a specific channel is desired. To request a channel +dma_request_channel() API is used. + +Interface: +struct dma_chan *dma_request_channel(dma_cap_mask_t mask, + dma_filter_fn filter_fn, + void *filter_param); +where dma_filter_fn is defined as: +typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); + +When the optional 'filter_fn' parameter is set to NULL dma_request_channel +simply returns the first channel that satisfies the capability mask. Otherwise, +when the mask parameter is insufficient for specifying the necessary channel, +the filter_fn routine can be used to disposition the available channels in the +system. The filter_fn routine is called once for each free channel in the +system. Upon seeing a suitable channel filter_fn returns DMA_ACK which flags +that channel to be the return value from dma_request_channel. A channel +allocated via this interface is exclusive to the caller, until +dma_release_channel() is called. + +2. Set slave and controller specific parameters +Next step is always to pass some specific information to the DMA driver. Most of +the generic information which a slave DMA can use is in struct dma_slave_config. +It allows the clients to specify DMA direction, DMA addresses, bus widths, DMA +burst lengths etc. If some DMA controllers have more parameters to be sent then +they should try to embed struct dma_slave_config in their controller specific +structure. That gives flexibility to client to pass more parameters, if +required. + +Interface: +int dmaengine_slave_config(struct dma_chan *chan, + struct dma_slave_config *config) + +3. Get a descriptor for transaction +For slave usage the various modes of slave transfers supported by the +DMA-engine are: +slave_sg - DMA a list of scatter gather buffers from/to a peripheral +dma_cyclic - Perform a cyclic DMA operation from/to a peripheral till the + operation is explicitly stopped. +The non NULL return of this transfer API represents a "descriptor" for the given +transaction. + +Interface: +struct dma_async_tx_descriptor *(*chan->device->device_prep_dma_sg)( + struct dma_chan *chan, + struct scatterlist *dst_sg, unsigned int dst_nents, + struct scatterlist *src_sg, unsigned int src_nents, + unsigned long flags); +struct dma_async_tx_descriptor *(*chan->device->device_prep_dma_cyclic)( + struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, + size_t period_len, enum dma_data_direction direction); + +4. Submit the transaction and wait for callback notification +To schedule the transaction to be scheduled by dma device, the "descriptor" +returned in above (3) needs to be submitted. +To tell the dma driver that a transaction is ready to be serviced, the +descriptor->submit() callback needs to be invoked. This chains the descriptor to +the pending queue. +The transactions in the pending queue can be activated by calling the +issue_pending API. If channel is idle then the first transaction in queue is +started and subsequent ones queued up. +On completion of the DMA operation the next in queue is submitted and a tasklet +triggered. The tasklet would then call the client driver completion callback +routine for notification, if set. +Interface: +void dma_async_issue_pending(struct dma_chan *chan); + +============================================================================== + +Additional usage notes for dma driver writers +1/ Although DMA engine specifies that completion callback routines cannot submit +any new operations, but typically for slave DMA subsequent transaction may not +be available for submit prior to callback routine being called. This requirement +is not a requirement for DMA-slave devices. But they should take care to drop +the spin-lock they might be holding before calling the callback routine diff --git a/Documentation/feature-removal-schedule.txt b/Documentation/feature-removal-schedule.txt index ff31b1c..72e2384 100644 --- a/Documentation/feature-removal-schedule.txt +++ b/Documentation/feature-removal-schedule.txt @@ -6,6 +6,42 @@ be removed from this file. --------------------------- +What: x86 floppy disable_hlt +When: 2012 +Why: ancient workaround of dubious utility clutters the + code used by everybody else. +Who: Len Brown <len.brown@intel.com> + +--------------------------- + +What: CONFIG_APM_CPU_IDLE, and its ability to call APM BIOS in idle +When: 2012 +Why: This optional sub-feature of APM is of dubious reliability, + and ancient APM laptops are likely better served by calling HLT. + Deleting CONFIG_APM_CPU_IDLE allows x86 to stop exporting + the pm_idle function pointer to modules. +Who: Len Brown <len.brown@intel.com> + +---------------------------- + +What: x86_32 "no-hlt" cmdline param +When: 2012 +Why: remove a branch from idle path, simplify code used by everybody. + This option disabled the use of HLT in idle and machine_halt() + for hardware that was flakey 15-years ago. Today we have + "idle=poll" that removed HLT from idle, and so if such a machine + is still running the upstream kernel, "idle=poll" is likely sufficient. +Who: Len Brown <len.brown@intel.com> + +---------------------------- + +What: x86 "idle=mwait" cmdline param +When: 2012 +Why: simplify x86 idle code +Who: Len Brown <len.brown@intel.com> + +---------------------------- + What: PRISM54 When: 2.6.34 @@ -445,23 +481,6 @@ Who: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp> ---------------------------- -What: namespace cgroup (ns_cgroup) -When: 2.6.38 -Why: The ns_cgroup leads to some problems: - * cgroup creation is out-of-control - * cgroup name can conflict when pids are looping - * it is not possible to have a single process handling - a lot of namespaces without falling in a exponential creation time - * we may want to create a namespace without creating a cgroup - - The ns_cgroup is replaced by a compatibility flag 'clone_children', - where a newly created cgroup will copy the parent cgroup values. - The userspace has to manually create a cgroup and add a task to - the 'tasks' file. -Who: Daniel Lezcano <daniel.lezcano@free.fr> - ----------------------------- - What: iwlwifi disable_hw_scan module parameters When: 2.6.40 Why: Hareware scan is the prefer method for iwlwifi devices for diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking index 61b31ac..57d827d6 100644 --- a/Documentation/filesystems/Locking +++ b/Documentation/filesystems/Locking @@ -104,7 +104,7 @@ of the locking scheme for directory operations. prototypes: struct inode *(*alloc_inode)(struct super_block *sb); void (*destroy_inode)(struct inode *); - void (*dirty_inode) (struct inode *); + void (*dirty_inode) (struct inode *, int flags); int (*write_inode) (struct inode *, struct writeback_control *wbc); int (*drop_inode) (struct inode *); void (*evict_inode) (struct inode *); @@ -126,7 +126,7 @@ locking rules: s_umount alloc_inode: destroy_inode: -dirty_inode: (must not sleep) +dirty_inode: write_inode: drop_inode: !!!inode->i_lock!!! evict_inode: diff --git a/Documentation/filesystems/nfs/idmapper.txt b/Documentation/filesystems/nfs/idmapper.txt index b9b4192..9c8fd61 100644 --- a/Documentation/filesystems/nfs/idmapper.txt +++ b/Documentation/filesystems/nfs/idmapper.txt @@ -47,8 +47,8 @@ request-key will find the first matching line and corresponding program. In this case, /some/other/program will handle all uid lookups and /usr/sbin/nfs.idmap will handle gid, user, and group lookups. -See <file:Documentation/keys-request-keys.txt> for more information about the -request-key function. +See <file:Documentation/security/keys-request-keys.txt> for more information +about the request-key function. ========= diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt index f481780..db3b1ab 100644 --- a/Documentation/filesystems/proc.txt +++ b/Documentation/filesystems/proc.txt @@ -843,6 +843,7 @@ Provides counts of softirq handlers serviced since boot time, for each cpu. TASKLET: 0 0 0 290 SCHED: 27035 26983 26971 26746 HRTIMER: 0 0 0 0 + RCU: 1678 1769 2178 2250 1.3 IDE devices in /proc/ide diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt index 21a7dc4..88b9f55 100644 --- a/Documentation/filesystems/vfs.txt +++ b/Documentation/filesystems/vfs.txt @@ -211,7 +211,7 @@ struct super_operations { struct inode *(*alloc_inode)(struct super_block *sb); void (*destroy_inode)(struct inode *); - void (*dirty_inode) (struct inode *); + void (*dirty_inode) (struct inode *, int flags); int (*write_inode) (struct inode *, int); void (*drop_inode) (struct inode *); void (*delete_inode) (struct inode *); diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt index 5438a2d..fd248a31 100644 --- a/Documentation/kernel-parameters.txt +++ b/Documentation/kernel-parameters.txt @@ -999,7 +999,10 @@ bytes respectively. Such letter suffixes can also be entirely omitted. With this option on every unmap_single operation will result in a hardware IOTLB flush operation as opposed to batching them for performance. - + sp_off [Default Off] + By default, super page will be supported if Intel IOMMU + has the capability. With this option, super page will + not be supported. intremap= [X86-64, Intel-IOMMU] Format: { on (default) | off | nosid } on enable Interrupt Remapping (default) @@ -2595,6 +2598,8 @@ bytes respectively. Such letter suffixes can also be entirely omitted. unlock ejectable media); m = MAX_SECTORS_64 (don't transfer more than 64 sectors = 32 KB at a time); + n = INITIAL_READ10 (force a retry of the + initial READ(10) command); o = CAPACITY_OK (accept the capacity reported by the device); r = IGNORE_RESIDUE (the device reports diff --git a/Documentation/kmemleak.txt b/Documentation/kmemleak.txt index 090e6ee..51063e6 100644 --- a/Documentation/kmemleak.txt +++ b/Documentation/kmemleak.txt @@ -11,7 +11,9 @@ with the difference that the orphan objects are not freed but only reported via /sys/kernel/debug/kmemleak. A similar method is used by the Valgrind tool (memcheck --leak-check) to detect the memory leaks in user-space applications. -Kmemleak is supported on x86, arm, powerpc, sparc, sh, microblaze and tile. + +Please check DEBUG_KMEMLEAK dependencies in lib/Kconfig.debug for supported +architectures. Usage ----- diff --git a/Documentation/laptops/acer-wmi.txt b/Documentation/laptops/acer-wmi.txt deleted file mode 100644 index 4beafa6..0000000 --- a/Documentation/laptops/acer-wmi.txt +++ /dev/null @@ -1,184 +0,0 @@ -Acer Laptop WMI Extras Driver -http://code.google.com/p/aceracpi -Version 0.3 -4th April 2009 - -Copyright 2007-2009 Carlos Corbacho <carlos@strangeworlds.co.uk> - -acer-wmi is a driver to allow you to control various parts of your Acer laptop -hardware under Linux which are exposed via ACPI-WMI. - -This driver completely replaces the old out-of-tree acer_acpi, which I am -currently maintaining for bug fixes only on pre-2.6.25 kernels. All development -work is now focused solely on acer-wmi. - -Disclaimer -********** - -Acer and Wistron have provided nothing towards the development acer_acpi or -acer-wmi. All information we have has been through the efforts of the developers -and the users to discover as much as possible about the hardware. - -As such, I do warn that this could break your hardware - this is extremely -unlikely of course, but please bear this in mind. - -Background -********** - -acer-wmi is derived from acer_acpi, originally developed by Mark -Smith in 2005, then taken over by Carlos Corbacho in 2007, in order to activate -the wireless LAN card under a 64-bit version of Linux, as acerhk[1] (the -previous solution to the problem) relied on making 32 bit BIOS calls which are -not possible in kernel space from a 64 bit OS. - -[1] acerhk: http://www.cakey.de/acerhk/ - -Supported Hardware -****************** - -NOTE: The Acer Aspire One is not supported hardware. It cannot work with -acer-wmi until Acer fix their ACPI-WMI implementation on them, so has been -blacklisted until that happens. - -Please see the website for the current list of known working hardware: - -http://code.google.com/p/aceracpi/wiki/SupportedHardware - -If your laptop is not listed, or listed as unknown, and works with acer-wmi, -please contact me with a copy of the DSDT. - -If your Acer laptop doesn't work with acer-wmi, I would also like to see the -DSDT. - -To send me the DSDT, as root/sudo: - -cat /sys/firmware/acpi/tables/DSDT > dsdt - -And send me the resulting 'dsdt' file. - -Usage -***** - -On Acer laptops, acer-wmi should already be autoloaded based on DMI matching. -For non-Acer laptops, until WMI based autoloading support is added, you will -need to manually load acer-wmi. - -acer-wmi creates /sys/devices/platform/acer-wmi, and fills it with various -files whose usage is detailed below, which enables you to control some of the -following (varies between models): - -* the wireless LAN card radio -* inbuilt Bluetooth adapter -* inbuilt 3G card -* mail LED of your laptop -* brightness of the LCD panel - -Wireless -******** - -With regards to wireless, all acer-wmi does is enable the radio on the card. It -is not responsible for the wireless LED - once the radio is enabled, this is -down to the wireless driver for your card. So the behaviour of the wireless LED, -once you enable the radio, will depend on your hardware and driver combination. - -e.g. With the BCM4318 on the Acer Aspire 5020 series: - -ndiswrapper: Light blinks on when transmitting -b43: Solid light, blinks off when transmitting - -Wireless radio control is unconditionally enabled - all Acer laptops that support -acer-wmi come with built-in wireless. However, should you feel so inclined to -ever wish to remove the card, or swap it out at some point, please get in touch -with me, as we may well be able to gain some data on wireless card detection. - -The wireless radio is exposed through rfkill. - -Bluetooth -********* - -For bluetooth, this is an internal USB dongle, so once enabled, you will get -a USB device connection event, and a new USB device appears. When you disable -bluetooth, you get the reverse - a USB device disconnect event, followed by the -device disappearing again. - -Bluetooth is autodetected by acer-wmi, so if you do not have a bluetooth module -installed in your laptop, this file won't exist (please be aware that it is -quite common for Acer not to fit bluetooth to their laptops - so just because -you have a bluetooth button on the laptop, doesn't mean that bluetooth is -installed). - -For the adventurously minded - if you want to buy an internal bluetooth -module off the internet that is compatible with your laptop and fit it, then -it will work just fine with acer-wmi. - -Bluetooth is exposed through rfkill. - -3G -** - -3G is currently not autodetected, so the 'threeg' file is always created under -sysfs. So far, no-one in possession of an Acer laptop with 3G built-in appears to -have tried Linux, or reported back, so we don't have any information on this. - -If you have an Acer laptop that does have a 3G card in, please contact me so we -can properly detect these, and find out a bit more about them. - -To read the status of the 3G card (0=off, 1=on): -cat /sys/devices/platform/acer-wmi/threeg - -To enable the 3G card: -echo 1 > /sys/devices/platform/acer-wmi/threeg - -To disable the 3G card: -echo 0 > /sys/devices/platform/acer-wmi/threeg - -To set the state of the 3G card when loading acer-wmi, pass: -threeg=X (where X is 0 or 1) - -Mail LED -******** - -This can be found in most older Acer laptops supported by acer-wmi, and many -newer ones - it is built into the 'mail' button, and blinks when active. - -On newer (WMID) laptops though, we have no way of detecting the mail LED. If -your laptop identifies itself in dmesg as a WMID model, then please try loading -acer_acpi with: - -force_series=2490 - -This will use a known alternative method of reading/ writing the mail LED. If -it works, please report back to me with the DMI data from your laptop so this -can be added to acer-wmi. - -The LED is exposed through the LED subsystem, and can be found in: - -/sys/devices/platform/acer-wmi/leds/acer-wmi::mail/ - -The mail LED is autodetected, so if you don't have one, the LED device won't -be registered. - -Backlight -********* - -The backlight brightness control is available on all acer-wmi supported -hardware. The maximum brightness level is usually 15, but on some newer laptops -it's 10 (this is again autodetected). - -The backlight is exposed through the backlight subsystem, and can be found in: - -/sys/devices/platform/acer-wmi/backlight/acer-wmi/ - -Credits -******* - -Olaf Tauber, who did the real hard work when he developed acerhk -http://www.cakey.de/acerhk/ -All the authors of laptop ACPI modules in the kernel, whose work -was an inspiration in the early days of acer_acpi -Mathieu Segaud, who solved the problem with having to modprobe the driver -twice in acer_acpi 0.2. -Jim Ramsay, who added support for the WMID interface -Mark Smith, who started the original acer_acpi - -And the many people who have used both acer_acpi and acer-wmi. diff --git a/Documentation/lockstat.txt b/Documentation/lockstat.txt index 9c0a80d..cef00d4 100644 --- a/Documentation/lockstat.txt +++ b/Documentation/lockstat.txt @@ -12,8 +12,9 @@ Because things like lock contention can severely impact performance. - HOW Lockdep already has hooks in the lock functions and maps lock instances to -lock classes. We build on that. The graph below shows the relation between -the lock functions and the various hooks therein. +lock classes. We build on that (see Documentation/lockdep-design.txt). +The graph below shows the relation between the lock functions and the various +hooks therein. __acquire | @@ -128,6 +129,37 @@ points are the points we're contending with. The integer part of the time values is in us. +Dealing with nested locks, subclasses may appear: + +32............................................................................................................................................................................................... +33 +34 &rq->lock: 13128 13128 0.43 190.53 103881.26 97454 3453404 0.00 401.11 13224683.11 +35 --------- +36 &rq->lock 645 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75 +37 &rq->lock 297 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a +38 &rq->lock 360 [<ffffffff8103c4c5>] select_task_rq_fair+0x1f0/0x74a +39 &rq->lock 428 [<ffffffff81045f98>] scheduler_tick+0x46/0x1fb +40 --------- +41 &rq->lock 77 [<ffffffff8103bfc4>] task_rq_lock+0x43/0x75 +42 &rq->lock 174 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a +43 &rq->lock 4715 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54 +44 &rq->lock 893 [<ffffffff81340524>] schedule+0x157/0x7b8 +45 +46............................................................................................................................................................................................... +47 +48 &rq->lock/1: 11526 11488 0.33 388.73 136294.31 21461 38404 0.00 37.93 109388.53 +49 ----------- +50 &rq->lock/1 11526 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54 +51 ----------- +52 &rq->lock/1 5645 [<ffffffff8103ed4b>] double_rq_lock+0x42/0x54 +53 &rq->lock/1 1224 [<ffffffff81340524>] schedule+0x157/0x7b8 +54 &rq->lock/1 4336 [<ffffffff8103ed58>] double_rq_lock+0x4f/0x54 +55 &rq->lock/1 181 [<ffffffff8104ba65>] try_to_wake_up+0x127/0x25a + +Line 48 shows statistics for the second subclass (/1) of &rq->lock class +(subclass starts from 0), since in this case, as line 50 suggests, +double_rq_lock actually acquires a nested lock of two spinlocks. + View the top contending locks: # grep : /proc/lock_stat | head diff --git a/Documentation/md.txt b/Documentation/md.txt index 2366b1c..f0eee83 100644 --- a/Documentation/md.txt +++ b/Documentation/md.txt @@ -555,7 +555,7 @@ also have sync_min sync_max The two values, given as numbers of sectors, indicate a range - withing the array where 'check'/'repair' will operate. Must be + within the array where 'check'/'repair' will operate. Must be a multiple of chunk_size. When it reaches "sync_max" it will pause, rather than complete. You can use 'select' or 'poll' on "sync_completed" to wait for diff --git a/Documentation/networking/dns_resolver.txt b/Documentation/networking/dns_resolver.txt index 04ca0632..7f531ad 100644 --- a/Documentation/networking/dns_resolver.txt +++ b/Documentation/networking/dns_resolver.txt @@ -139,8 +139,8 @@ the key will be discarded and recreated when the data it holds has expired. dns_query() returns a copy of the value attached to the key, or an error if that is indicated instead. -See <file:Documentation/keys-request-key.txt> for further information about -request-key function. +See <file:Documentation/security/keys-request-key.txt> for further +information about request-key function. ========= diff --git a/Documentation/power/devices.txt b/Documentation/power/devices.txt index 8888083..64565aa 100644 --- a/Documentation/power/devices.txt +++ b/Documentation/power/devices.txt @@ -520,59 +520,20 @@ Support for power domains is provided through the pwr_domain field of struct device. This field is a pointer to an object of type struct dev_power_domain, defined in include/linux/pm.h, providing a set of power management callbacks analogous to the subsystem-level and device driver callbacks that are executed -for the given device during all power transitions, in addition to the respective -subsystem-level callbacks. Specifically, the power domain "suspend" callbacks -(i.e. ->runtime_suspend(), ->suspend(), ->freeze(), ->poweroff(), etc.) are -executed after the analogous subsystem-level callbacks, while the power domain -"resume" callbacks (i.e. ->runtime_resume(), ->resume(), ->thaw(), ->restore, -etc.) are executed before the analogous subsystem-level callbacks. Error codes -returned by the "suspend" and "resume" power domain callbacks are ignored. - -Power domain ->runtime_idle() callback is executed before the subsystem-level -->runtime_idle() callback and the result returned by it is not ignored. Namely, -if it returns error code, the subsystem-level ->runtime_idle() callback will not -be called and the helper function rpm_idle() executing it will return error -code. This mechanism is intended to help platforms where saving device state -is a time consuming operation and should only be carried out if all devices -in the power domain are idle, before turning off the shared power resource(s). -Namely, the power domain ->runtime_idle() callback may return error code until -the pm_runtime_idle() helper (or its asychronous version) has been called for -all devices in the power domain (it is recommended that the returned error code -be -EBUSY in those cases), preventing the subsystem-level ->runtime_idle() -callback from being run prematurely. - -The support for device power domains is only relevant to platforms needing to -use the same subsystem-level (e.g. platform bus type) and device driver power -management callbacks in many different power domain configurations and wanting -to avoid incorporating the support for power domains into the subsystem-level -callbacks. The other platforms need not implement it or take it into account -in any way. - - -System Devices --------------- -System devices (sysdevs) follow a slightly different API, which can be found in - - include/linux/sysdev.h - drivers/base/sys.c - -System devices will be suspended with interrupts disabled, and after all other -devices have been suspended. On resume, they will be resumed before any other -devices, and also with interrupts disabled. These things occur in special -"sysdev_driver" phases, which affect only system devices. - -Thus, after the suspend_noirq (or freeze_noirq or poweroff_noirq) phase, when -the non-boot CPUs are all offline and IRQs are disabled on the remaining online -CPU, then a sysdev_driver.suspend phase is carried out, and the system enters a -sleep state (or a system image is created). During resume (or after the image -has been created or loaded) a sysdev_driver.resume phase is carried out, IRQs -are enabled on the only online CPU, the non-boot CPUs are enabled, and the -resume_noirq (or thaw_noirq or restore_noirq) phase begins. - -Code to actually enter and exit the system-wide low power state sometimes -involves hardware details that are only known to the boot firmware, and -may leave a CPU running software (from SRAM or flash memory) that monitors -the system and manages its wakeup sequence. +for the given device during all power transitions, instead of the respective +subsystem-level callbacks. Specifically, if a device's pm_domain pointer is +not NULL, the ->suspend() callback from the object pointed to by it will be +executed instead of its subsystem's (e.g. bus type's) ->suspend() callback and +anlogously for all of the remaining callbacks. In other words, power management +domain callbacks, if defined for the given device, always take precedence over +the callbacks provided by the device's subsystem (e.g. bus type). + +The support for device power management domains is only relevant to platforms +needing to use the same device driver power management callbacks in many +different power domain configurations and wanting to avoid incorporating the +support for power domains into subsystem-level callbacks, for example by +modifying the platform bus type. Other platforms need not implement it or take +it into account in any way. Device Low Power (suspend) States diff --git a/Documentation/power/regulator/machine.txt b/Documentation/power/regulator/machine.txt index bdec39b..b42419b 100644 --- a/Documentation/power/regulator/machine.txt +++ b/Documentation/power/regulator/machine.txt @@ -53,11 +53,11 @@ static struct regulator_init_data regulator1_data = { Regulator-1 supplies power to Regulator-2. This relationship must be registered with the core so that Regulator-1 is also enabled when Consumer A enables its -supply (Regulator-2). The supply regulator is set by the supply_regulator_dev +supply (Regulator-2). The supply regulator is set by the supply_regulator field below:- static struct regulator_init_data regulator2_data = { - .supply_regulator_dev = &platform_regulator1_device.dev, + .supply_regulator = "regulator_name", .constraints = { .min_uV = 1800000, .max_uV = 2000000, diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt index 654097b..22accb3 100644 --- a/Documentation/power/runtime_pm.txt +++ b/Documentation/power/runtime_pm.txt @@ -566,11 +566,6 @@ to do this is: pm_runtime_set_active(dev); pm_runtime_enable(dev); -The PM core always increments the run-time usage counter before calling the -->prepare() callback and decrements it after calling the ->complete() callback. -Hence disabling run-time PM temporarily like this will not cause any run-time -suspend callbacks to be lost. - 7. Generic subsystem callbacks Subsystems may wish to conserve code space by using the set of generic power diff --git a/Documentation/printk-formats.txt b/Documentation/printk-formats.txt index 1b5a5dd..5df176e 100644 --- a/Documentation/printk-formats.txt +++ b/Documentation/printk-formats.txt @@ -9,7 +9,121 @@ If variable is of Type, use printk format specifier: size_t %zu or %zx ssize_t %zd or %zx -Raw pointer value SHOULD be printed with %p. +Raw pointer value SHOULD be printed with %p. The kernel supports +the following extended format specifiers for pointer types: + +Symbols/Function Pointers: + + %pF versatile_init+0x0/0x110 + %pf versatile_init + %pS versatile_init+0x0/0x110 + %ps versatile_init + %pB prev_fn_of_versatile_init+0x88/0x88 + + For printing symbols and function pointers. The 'S' and 's' specifiers + result in the symbol name with ('S') or without ('s') offsets. Where + this is used on a kernel without KALLSYMS - the symbol address is + printed instead. + + The 'B' specifier results in the symbol name with offsets and should be + used when printing stack backtraces. The specifier takes into + consideration the effect of compiler optimisations which may occur + when tail-call's are used and marked with the noreturn GCC attribute. + + On ia64, ppc64 and parisc64 architectures function pointers are + actually function descriptors which must first be resolved. The 'F' and + 'f' specifiers perform this resolution and then provide the same + functionality as the 'S' and 's' specifiers. + +Kernel Pointers: + + %pK 0x01234567 or 0x0123456789abcdef + + For printing kernel pointers which should be hidden from unprivileged + users. The behaviour of %pK depends on the kptr_restrict sysctl - see + Documentation/sysctl/kernel.txt for more details. + +Struct Resources: + + %pr [mem 0x60000000-0x6fffffff flags 0x2200] or + [mem 0x0000000060000000-0x000000006fffffff flags 0x2200] + %pR [mem 0x60000000-0x6fffffff pref] or + [mem 0x0000000060000000-0x000000006fffffff pref] + + For printing struct resources. The 'R' and 'r' specifiers result in a + printed resource with ('R') or without ('r') a decoded flags member. + +MAC/FDDI addresses: + + %pM 00:01:02:03:04:05 + %pMF 00-01-02-03-04-05 + %pm 000102030405 + + For printing 6-byte MAC/FDDI addresses in hex notation. The 'M' and 'm' + specifiers result in a printed address with ('M') or without ('m') byte + separators. The default byte separator is the colon (':'). + + Where FDDI addresses are concerned the 'F' specifier can be used after + the 'M' specifier to use dash ('-') separators instead of the default + separator. + +IPv4 addresses: + + %pI4 1.2.3.4 + %pi4 001.002.003.004 + %p[Ii][hnbl] + + For printing IPv4 dot-separated decimal addresses. The 'I4' and 'i4' + specifiers result in a printed address with ('i4') or without ('I4') + leading zeros. + + The additional 'h', 'n', 'b', and 'l' specifiers are used to specify + host, network, big or little endian order addresses respectively. Where + no specifier is provided the default network/big endian order is used. + +IPv6 addresses: + + %pI6 0001:0002:0003:0004:0005:0006:0007:0008 + %pi6 00010002000300040005000600070008 + %pI6c 1:2:3:4:5:6:7:8 + + For printing IPv6 network-order 16-bit hex addresses. The 'I6' and 'i6' + specifiers result in a printed address with ('I6') or without ('i6') + colon-separators. Leading zeros are always used. + + The additional 'c' specifier can be used with the 'I' specifier to + print a compressed IPv6 address as described by + http://tools.ietf.org/html/rfc5952 + +UUID/GUID addresses: + + %pUb 00010203-0405-0607-0809-0a0b0c0d0e0f + %pUB 00010203-0405-0607-0809-0A0B0C0D0E0F + %pUl 03020100-0504-0706-0809-0a0b0c0e0e0f + %pUL 03020100-0504-0706-0809-0A0B0C0E0E0F + + For printing 16-byte UUID/GUIDs addresses. The additional 'l', 'L', + 'b' and 'B' specifiers are used to specify a little endian order in + lower ('l') or upper case ('L') hex characters - and big endian order + in lower ('b') or upper case ('B') hex characters. + + Where no additional specifiers are used the default little endian + order with lower case hex characters will be printed. + +struct va_format: + + %pV + + For printing struct va_format structures. These contain a format string + and va_list as follows: + + struct va_format { + const char *fmt; + va_list *va; + }; + + Do not use this feature without some mechanism to verify the + correctness of the format string and va_list arguments. u64 SHOULD be printed with %llu/%llx, (unsigned long long): @@ -32,4 +146,5 @@ Reminder: sizeof() result is of type size_t. Thank you for your cooperation and attention. -By Randy Dunlap <rdunlap@xenotime.net> +By Randy Dunlap <rdunlap@xenotime.net> and +Andrew Murray <amurray@mpc-data.co.uk> diff --git a/Documentation/scheduler/sched-design-CFS.txt b/Documentation/scheduler/sched-design-CFS.txt index 9996199..91ecff0 100644 --- a/Documentation/scheduler/sched-design-CFS.txt +++ b/Documentation/scheduler/sched-design-CFS.txt @@ -223,9 +223,10 @@ When CONFIG_FAIR_GROUP_SCHED is defined, a "cpu.shares" file is created for each group created using the pseudo filesystem. See example steps below to create task groups and modify their CPU share using the "cgroups" pseudo filesystem. - # mkdir /dev/cpuctl - # mount -t cgroup -ocpu none /dev/cpuctl - # cd /dev/cpuctl + # mount -t tmpfs cgroup_root /sys/fs/cgroup + # mkdir /sys/fs/cgroup/cpu + # mount -t cgroup -ocpu none /sys/fs/cgroup/cpu + # cd /sys/fs/cgroup/cpu # mkdir multimedia # create "multimedia" group of tasks # mkdir browser # create "browser" group of tasks diff --git a/Documentation/scheduler/sched-rt-group.txt b/Documentation/scheduler/sched-rt-group.txt index 605b0d4..71b54d5 100644 --- a/Documentation/scheduler/sched-rt-group.txt +++ b/Documentation/scheduler/sched-rt-group.txt @@ -129,9 +129,8 @@ priority! Enabling CONFIG_RT_GROUP_SCHED lets you explicitly allocate real CPU bandwidth to task groups. -This uses the /cgroup virtual file system and -"/cgroup/<cgroup>/cpu.rt_runtime_us" to control the CPU time reserved for each -control group. +This uses the cgroup virtual file system and "<cgroup>/cpu.rt_runtime_us" +to control the CPU time reserved for each control group. For more information on working with control groups, you should read Documentation/cgroups/cgroups.txt as well. @@ -150,7 +149,7 @@ For now, this can be simplified to just the following (but see Future plans): =============== There is work in progress to make the scheduling period for each group -("/cgroup/<cgroup>/cpu.rt_period_us") configurable as well. +("<cgroup>/cpu.rt_period_us") configurable as well. The constraint on the period is that a subgroup must have a smaller or equal period to its parent. But realistically its not very useful _yet_ diff --git a/Documentation/scsi/ChangeLog.megaraid_sas b/Documentation/scsi/ChangeLog.megaraid_sas index 4d9ce73..9ed1d9d 100644 --- a/Documentation/scsi/ChangeLog.megaraid_sas +++ b/Documentation/scsi/ChangeLog.megaraid_sas @@ -1,3 +1,17 @@ +Release Date : Wed. May 11, 2011 17:00:00 PST 2010 - + (emaild-id:megaraidlinux@lsi.com) + Adam Radford +Current Version : 00.00.05.38-rc1 +Old Version : 00.00.05.34-rc1 + 1. Remove MSI-X black list, use MFI_REG_STATE.ready.msiEnable. + 2. Remove un-used function megasas_return_cmd_for_smid(). + 3. Check MFI_REG_STATE.fault.resetAdapter in megasas_reset_fusion(). + 4. Disable interrupts/free_irq() in megasas_shutdown(). + 5. Fix bug where AENs could be lost in probe() and resume(). + 6. Convert 6,10,12 byte CDB's to 16 byte CDB for large LBA's for FastPath + IO. + 7. Add 1078 OCR support. +------------------------------------------------------------------------------- Release Date : Thu. Feb 24, 2011 17:00:00 PST 2010 - (emaild-id:megaraidlinux@lsi.com) Adam Radford diff --git a/Documentation/security/00-INDEX b/Documentation/security/00-INDEX new file mode 100644 index 0000000..19bc494 --- /dev/null +++ b/Documentation/security/00-INDEX @@ -0,0 +1,18 @@ +00-INDEX + - this file. +SELinux.txt + - how to get started with the SELinux security enhancement. +Smack.txt + - documentation on the Smack Linux Security Module. +apparmor.txt + - documentation on the AppArmor security extension. +credentials.txt + - documentation about credentials in Linux. +keys-request-key.txt + - description of the kernel key request service. +keys-trusted-encrypted.txt + - info on the Trusted and Encrypted keys in the kernel key ring service. +keys.txt + - description of the kernel key retention service. +tomoyo.txt + - documentation on the TOMOYO Linux Security Module. diff --git a/Documentation/SELinux.txt b/Documentation/security/SELinux.txt index 07eae00f..07eae00f 100644 --- a/Documentation/SELinux.txt +++ b/Documentation/security/SELinux.txt diff --git a/Documentation/Smack.txt b/Documentation/security/Smack.txt index e9dab41..e9dab41 100644 --- a/Documentation/Smack.txt +++ b/Documentation/security/Smack.txt diff --git a/Documentation/apparmor.txt b/Documentation/security/apparmor.txt index 93c1fd7..93c1fd7 100644 --- a/Documentation/apparmor.txt +++ b/Documentation/security/apparmor.txt diff --git a/Documentation/credentials.txt b/Documentation/security/credentials.txt index 995baf3..fc0366c 100644 --- a/Documentation/credentials.txt +++ b/Documentation/security/credentials.txt @@ -216,7 +216,7 @@ The Linux kernel supports the following types of credentials: When a process accesses a key, if not already present, it will normally be cached on one of these keyrings for future accesses to find. - For more information on using keys, see Documentation/keys.txt. + For more information on using keys, see Documentation/security/keys.txt. (5) LSM diff --git a/Documentation/keys-request-key.txt b/Documentation/security/keys-request-key.txt index 69686ad..51987bf 100644 --- a/Documentation/keys-request-key.txt +++ b/Documentation/security/keys-request-key.txt @@ -3,8 +3,8 @@ =================== The key request service is part of the key retention service (refer to -Documentation/keys.txt). This document explains more fully how the requesting -algorithm works. +Documentation/security/keys.txt). This document explains more fully how +the requesting algorithm works. The process starts by either the kernel requesting a service by calling request_key*(): diff --git a/Documentation/keys-trusted-encrypted.txt b/Documentation/security/keys-trusted-encrypted.txt index 8fb79bc..8fb79bc 100644 --- a/Documentation/keys-trusted-encrypted.txt +++ b/Documentation/security/keys-trusted-encrypted.txt diff --git a/Documentation/keys.txt b/Documentation/security/keys.txt index 6523a9e..4d75931 100644 --- a/Documentation/keys.txt +++ b/Documentation/security/keys.txt @@ -434,7 +434,7 @@ The main syscalls are: /sbin/request-key will be invoked in an attempt to obtain a key. The callout_info string will be passed as an argument to the program. - See also Documentation/keys-request-key.txt. + See also Documentation/security/keys-request-key.txt. The keyctl syscall functions are: @@ -864,7 +864,7 @@ payload contents" for more information. If successful, the key will have been attached to the default keyring for implicitly obtained request-key keys, as set by KEYCTL_SET_REQKEY_KEYRING. - See also Documentation/keys-request-key.txt. + See also Documentation/security/keys-request-key.txt. (*) To search for a key, passing auxiliary data to the upcaller, call: diff --git a/Documentation/tomoyo.txt b/Documentation/security/tomoyo.txt index 200a2d3..200a2d3 100644 --- a/Documentation/tomoyo.txt +++ b/Documentation/security/tomoyo.txt diff --git a/Documentation/virtual/lguest/Makefile b/Documentation/virtual/lguest/Makefile index bebac6b..0ac3420 100644 --- a/Documentation/virtual/lguest/Makefile +++ b/Documentation/virtual/lguest/Makefile @@ -1,5 +1,5 @@ # This creates the demonstration utility "lguest" which runs a Linux guest. -# Missing headers? Add "-I../../include -I../../arch/x86/include" +# Missing headers? Add "-I../../../include -I../../../arch/x86/include" CFLAGS:=-m32 -Wall -Wmissing-declarations -Wmissing-prototypes -O3 -U_FORTIFY_SOURCE all: lguest diff --git a/Documentation/virtual/lguest/lguest.c b/Documentation/virtual/lguest/lguest.c index d9da7e1..cd9d6af 100644 --- a/Documentation/virtual/lguest/lguest.c +++ b/Documentation/virtual/lguest/lguest.c @@ -49,7 +49,7 @@ #include <linux/virtio_rng.h> #include <linux/virtio_ring.h> #include <asm/bootparam.h> -#include "../../include/linux/lguest_launcher.h" +#include "../../../include/linux/lguest_launcher.h" /*L:110 * We can ignore the 42 include files we need for this program, but I do want * to draw attention to the use of kernel-style types. @@ -135,9 +135,6 @@ struct device { /* Is it operational */ bool running; - /* Does Guest want an intrrupt on empty? */ - bool irq_on_empty; - /* Device-specific data. */ void *priv; }; @@ -637,10 +634,7 @@ static void trigger_irq(struct virtqueue *vq) /* If they don't want an interrupt, don't send one... */ if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT) { - /* ... unless they've asked us to force one on empty. */ - if (!vq->dev->irq_on_empty - || lg_last_avail(vq) != vq->vring.avail->idx) - return; + return; } /* Send the Guest an interrupt tell them we used something up. */ @@ -1057,15 +1051,6 @@ static void create_thread(struct virtqueue *vq) close(vq->eventfd); } -static bool accepted_feature(struct device *dev, unsigned int bit) -{ - const u8 *features = get_feature_bits(dev) + dev->feature_len; - - if (dev->feature_len < bit / CHAR_BIT) - return false; - return features[bit / CHAR_BIT] & (1 << (bit % CHAR_BIT)); -} - static void start_device(struct device *dev) { unsigned int i; @@ -1079,8 +1064,6 @@ static void start_device(struct device *dev) verbose(" %02x", get_feature_bits(dev) [dev->feature_len+i]); - dev->irq_on_empty = accepted_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY); - for (vq = dev->vq; vq; vq = vq->next) { if (vq->service) create_thread(vq); @@ -1564,7 +1547,6 @@ static void setup_tun_net(char *arg) /* Set up the tun device. */ configure_device(ipfd, tapif, ip); - add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY); /* Expect Guest to handle everything except UFO */ add_feature(dev, VIRTIO_NET_F_CSUM); add_feature(dev, VIRTIO_NET_F_GUEST_CSUM); diff --git a/Documentation/vm/hwpoison.txt b/Documentation/vm/hwpoison.txt index 12f9ba2..5500684 100644 --- a/Documentation/vm/hwpoison.txt +++ b/Documentation/vm/hwpoison.txt @@ -129,12 +129,12 @@ Limit injection to pages owned by memgroup. Specified by inode number of the memcg. Example: - mkdir /cgroup/hwpoison + mkdir /sys/fs/cgroup/mem/hwpoison usemem -m 100 -s 1000 & - echo `jobs -p` > /cgroup/hwpoison/tasks + echo `jobs -p` > /sys/fs/cgroup/mem/hwpoison/tasks - memcg_ino=$(ls -id /cgroup/hwpoison | cut -f1 -d' ') + memcg_ino=$(ls -id /sys/fs/cgroup/mem/hwpoison | cut -f1 -d' ') echo $memcg_ino > /debug/hwpoison/corrupt-filter-memcg page-types -p `pidof init` --hwpoison # shall do nothing |