diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/power/freezing-of-tasks.txt | 160 | ||||
-rw-r--r-- | Documentation/power/kernel_threads.txt | 40 | ||||
-rw-r--r-- | Documentation/power/swsusp.txt | 18 |
3 files changed, 164 insertions, 54 deletions
diff --git a/Documentation/power/freezing-of-tasks.txt b/Documentation/power/freezing-of-tasks.txt new file mode 100644 index 0000000..af1a282 --- /dev/null +++ b/Documentation/power/freezing-of-tasks.txt @@ -0,0 +1,160 @@ +Freezing of tasks + (C) 2007 Rafael J. Wysocki <rjw@sisk.pl>, GPL + +I. What is the freezing of tasks? + +The freezing of tasks is a mechanism by which user space processes and some +kernel threads are controlled during hibernation or system-wide suspend (on some +architectures). + +II. How does it work? + +There are four per-task flags used for that, PF_NOFREEZE, PF_FROZEN, TIF_FREEZE +and PF_FREEZER_SKIP (the last one is auxiliary). The tasks that have +PF_NOFREEZE unset (all user space processes and some kernel threads) are +regarded as 'freezable' and treated in a special way before the system enters a +suspend state as well as before a hibernation image is created (in what follows +we only consider hibernation, but the description also applies to suspend). + +Namely, as the first step of the hibernation procedure the function +freeze_processes() (defined in kernel/power/process.c) is called. It executes +try_to_freeze_tasks() that sets TIF_FREEZE for all of the freezable tasks and +sends a fake signal to each of them. A task that receives such a signal and has +TIF_FREEZE set, should react to it by calling the refrigerator() function +(defined in kernel/power/process.c), which sets the task's PF_FROZEN flag, +changes its state to TASK_UNINTERRUPTIBLE and makes it loop until PF_FROZEN is +cleared for it. Then, we say that the task is 'frozen' and therefore the set of +functions handling this mechanism is called 'the freezer' (these functions are +defined in kernel/power/process.c and include/linux/freezer.h). User space +processes are generally frozen before kernel threads. + +It is not recommended to call refrigerator() directly. Instead, it is +recommended to use the try_to_freeze() function (defined in +include/linux/freezer.h), that checks the task's TIF_FREEZE flag and makes the +task enter refrigerator() if the flag is set. + +For user space processes try_to_freeze() is called automatically from the +signal-handling code, but the freezable kernel threads need to call it +explicitly in suitable places. The code to do this may look like the following: + + do { + hub_events(); + wait_event_interruptible(khubd_wait, + !list_empty(&hub_event_list)); + try_to_freeze(); + } while (!signal_pending(current)); + +(from drivers/usb/core/hub.c::hub_thread()). + +If a freezable kernel thread fails to call try_to_freeze() after the freezer has +set TIF_FREEZE for it, the freezing of tasks will fail and the entire +hibernation operation will be cancelled. For this reason, freezable kernel +threads must call try_to_freeze() somewhere. + +After the system memory state has been restored from a hibernation image and +devices have been reinitialized, the function thaw_processes() is called in +order to clear the PF_FROZEN flag for each frozen task. Then, the tasks that +have been frozen leave refrigerator() and continue running. + +III. Which kernel threads are freezable? + +Kernel threads are not freezable by default. However, a kernel thread may clear +PF_NOFREEZE for itself by calling set_freezable() (the resetting of PF_NOFREEZE +directly is strongly discouraged). From this point it is regarded as freezable +and must call try_to_freeze() in a suitable place. + +IV. Why do we do that? + +Generally speaking, there is a couple of reasons to use the freezing of tasks: + +1. The principal reason is to prevent filesystems from being damaged after +hibernation. At the moment we have no simple means of checkpointing +filesystems, so if there are any modifications made to filesystem data and/or +metadata on disks, we cannot bring them back to the state from before the +modifications. At the same time each hibernation image contains some +filesystem-related information that must be consistent with the state of the +on-disk data and metadata after the system memory state has been restored from +the image (otherwise the filesystems will be damaged in a nasty way, usually +making them almost impossible to repair). We therefore freeze tasks that might +cause the on-disk filesystems' data and metadata to be modified after the +hibernation image has been created and before the system is finally powered off. +The majority of these are user space processes, but if any of the kernel threads +may cause something like this to happen, they have to be freezable. + +2. The second reason is to prevent user space processes and some kernel threads +from interfering with the suspending and resuming of devices. A user space +process running on a second CPU while we are suspending devices may, for +example, be troublesome and without the freezing of tasks we would need some +safeguards against race conditions that might occur in such a case. + +Although Linus Torvalds doesn't like the freezing of tasks, he said this in one +of the discussions on LKML (http://lkml.org/lkml/2007/4/27/608): + +"RJW:> Why we freeze tasks at all or why we freeze kernel threads? + +Linus: In many ways, 'at all'. + +I _do_ realize the IO request queue issues, and that we cannot actually do +s2ram with some devices in the middle of a DMA. So we want to be able to +avoid *that*, there's no question about that. And I suspect that stopping +user threads and then waiting for a sync is practically one of the easier +ways to do so. + +So in practice, the 'at all' may become a 'why freeze kernel threads?' and +freezing user threads I don't find really objectionable." + +Still, there are kernel threads that may want to be freezable. For example, if +a kernel that belongs to a device driver accesses the device directly, it in +principle needs to know when the device is suspended, so that it doesn't try to +access it at that time. However, if the kernel thread is freezable, it will be +frozen before the driver's .suspend() callback is executed and it will be +thawed after the driver's .resume() callback has run, so it won't be accessing +the device while it's suspended. + +3. Another reason for freezing tasks is to prevent user space processes from +realizing that hibernation (or suspend) operation takes place. Ideally, user +space processes should not notice that such a system-wide operation has occurred +and should continue running without any problems after the restore (or resume +from suspend). Unfortunately, in the most general case this is quite difficult +to achieve without the freezing of tasks. Consider, for example, a process +that depends on all CPUs being online while it's running. Since we need to +disable nonboot CPUs during the hibernation, if this process is not frozen, it +may notice that the number of CPUs has changed and may start to work incorrectly +because of that. + +V. Are there any problems related to the freezing of tasks? + +Yes, there are. + +First of all, the freezing of kernel threads may be tricky if they depend one +on another. For example, if kernel thread A waits for a completion (in the +TASK_UNINTERRUPTIBLE state) that needs to be done by freezable kernel thread B +and B is frozen in the meantime, then A will be blocked until B is thawed, which +may be undesirable. That's why kernel threads are not freezable by default. + +Second, there are the following two problems related to the freezing of user +space processes: +1. Putting processes into an uninterruptible sleep distorts the load average. +2. Now that we have FUSE, plus the framework for doing device drivers in +userspace, it gets even more complicated because some userspace processes are +now doing the sorts of things that kernel threads do +(https://lists.linux-foundation.org/pipermail/linux-pm/2007-May/012309.html). + +The problem 1. seems to be fixable, although it hasn't been fixed so far. The +other one is more serious, but it seems that we can work around it by using +hibernation (and suspend) notifiers (in that case, though, we won't be able to +avoid the realization by the user space processes that the hibernation is taking +place). + +There are also problems that the freezing of tasks tends to expose, although +they are not directly related to it. For example, if request_firmware() is +called from a device driver's .resume() routine, it will timeout and eventually +fail, because the user land process that should respond to the request is frozen +at this point. So, seemingly, the failure is due to the freezing of tasks. +Suppose, however, that the firmware file is located on a filesystem accessible +only through another device that hasn't been resumed yet. In that case, +request_firmware() will fail regardless of whether or not the freezing of tasks +is used. Consequently, the problem is not really related to the freezing of +tasks, since it generally exists anyway. [The solution to this particular +problem is to keep the firmware in memory after it's loaded for the first time +and upload if from memory to the device whenever necessary.] diff --git a/Documentation/power/kernel_threads.txt b/Documentation/power/kernel_threads.txt deleted file mode 100644 index fb57784..0000000 --- a/Documentation/power/kernel_threads.txt +++ /dev/null @@ -1,40 +0,0 @@ -KERNEL THREADS - - -Freezer - -Upon entering a suspended state the system will freeze all -tasks. This is done by delivering pseudosignals. This affects -kernel threads, too. To successfully freeze a kernel thread -the thread has to check for the pseudosignal and enter the -refrigerator. Code to do this looks like this: - - do { - hub_events(); - wait_event_interruptible(khubd_wait, !list_empty(&hub_event_list)); - try_to_freeze(); - } while (!signal_pending(current)); - -from drivers/usb/core/hub.c::hub_thread() - - -The Unfreezable - -Some kernel threads however, must not be frozen. The kernel must -be able to finish pending IO operations and later on be able to -write the memory image to disk. Kernel threads needed to do IO -must stay awake. Such threads must mark themselves unfreezable -like this: - - /* - * This thread doesn't need any user-level access, - * so get rid of all our resources. - */ - daemonize("usb-storage"); - - current->flags |= PF_NOFREEZE; - -from drivers/usb/storage/usb.c::usb_stor_control_thread() - -Such drivers are themselves responsible for staying quiet during -the actual snapshotting. diff --git a/Documentation/power/swsusp.txt b/Documentation/power/swsusp.txt index 152b510..aea7e92 100644 --- a/Documentation/power/swsusp.txt +++ b/Documentation/power/swsusp.txt @@ -140,21 +140,11 @@ should be sent to the mailing list available through the suspend2 website, and not to the Linux Kernel Mailing List. We are working toward merging suspend2 into the mainline kernel. -Q: A kernel thread must voluntarily freeze itself (call 'refrigerator'). -I found some kernel threads that don't do it, and they don't freeze -so the system can't sleep. Is this a known behavior? - -A: All such kernel threads need to be fixed, one by one. Select the -place where the thread is safe to be frozen (no kernel semaphores -should be held at that point and it must be safe to sleep there), and -add: - - try_to_freeze(); - -If the thread is needed for writing the image to storage, you should -instead set the PF_NOFREEZE process flag when creating the thread (and -be very careful). +Q: What is the freezing of tasks and why are we using it? +A: The freezing of tasks is a mechanism by which user space processes and some +kernel threads are controlled during hibernation or system-wide suspend (on some +architectures). See freezing-of-tasks.txt for details. Q: What is the difference between "platform" and "shutdown"? |