summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/stable/sysfs-devices-node96
-rw-r--r--Documentation/ABI/testing/ima_policy3
-rw-r--r--Documentation/ABI/testing/sysfs-bus-rbd4
-rw-r--r--Documentation/ABI/testing/sysfs-devices-node7
-rw-r--r--Documentation/DMA-API-HOWTO.txt126
-rw-r--r--Documentation/DMA-API.txt12
-rw-r--r--Documentation/DocBook/media/v4l/driver.xml6
-rw-r--r--Documentation/PCI/pci-iov-howto.txt6
-rw-r--r--Documentation/PCI/pci.txt20
-rw-r--r--Documentation/acpi/enumeration.txt2
-rw-r--r--Documentation/cgroups/memory.txt66
-rw-r--r--Documentation/cgroups/resource_counter.txt7
-rw-r--r--Documentation/devicetree/bindings/arm/davinci/nand.txt8
-rw-r--r--Documentation/devicetree/bindings/clock/imx23-clock.txt5
-rw-r--r--Documentation/devicetree/bindings/clock/imx25-clock.txt4
-rw-r--r--Documentation/devicetree/bindings/clock/imx28-clock.txt5
-rw-r--r--Documentation/devicetree/bindings/clock/imx6q-clock.txt4
-rw-r--r--Documentation/devicetree/bindings/gpio/gpio-poweroff.txt20
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-cbus-gpio.txt27
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-mux-gpio.txt81
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-ocores.txt2
-rw-r--r--Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt20
-rw-r--r--Documentation/devicetree/bindings/input/gpio-matrix-keypad.txt46
-rw-r--r--Documentation/devicetree/bindings/input/pwm-beeper.txt7
-rw-r--r--Documentation/devicetree/bindings/input/stmpe-keypad.txt39
-rw-r--r--Documentation/devicetree/bindings/input/tca8418_keypad.txt8
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/mms114.txt34
-rw-r--r--Documentation/devicetree/bindings/input/touchscreen/stmpe.txt43
-rw-r--r--Documentation/devicetree/bindings/mtd/denali-nand.txt23
-rw-r--r--Documentation/devicetree/bindings/mtd/flctl-nand.txt49
-rw-r--r--Documentation/devicetree/bindings/mtd/fsmc-nand.txt12
-rw-r--r--Documentation/devicetree/bindings/mtd/m25p80.txt29
-rw-r--r--Documentation/devicetree/bindings/mtd/mtd-physmap.txt3
-rw-r--r--Documentation/devicetree/bindings/pinctrl/pinctrl-sirf.txt47
-rw-r--r--Documentation/devicetree/bindings/powerpc/fsl/raideng.txt81
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-tiecap.txt23
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-tiehrpwm.txt23
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm-tipwmss.txt31
-rw-r--r--Documentation/devicetree/bindings/pwm/pwm.txt17
-rw-r--r--Documentation/devicetree/bindings/pwm/spear-pwm.txt18
-rw-r--r--Documentation/devicetree/bindings/pwm/ti,twl-pwm.txt17
-rw-r--r--Documentation/devicetree/bindings/pwm/ti,twl-pwmled.txt17
-rw-r--r--Documentation/devicetree/bindings/pwm/vt8500-pwm.txt17
-rw-r--r--Documentation/devicetree/bindings/spi/nvidia,tegra20-sflash.txt2
-rw-r--r--Documentation/devicetree/bindings/spi/nvidia,tegra20-slink.txt2
-rw-r--r--Documentation/devicetree/bindings/spi/spi_atmel.txt26
-rw-r--r--Documentation/devicetree/bindings/watchdog/davinci-wdt.txt12
-rw-r--r--Documentation/devicetree/bindings/watchdog/twl4030-wdt.txt10
-rw-r--r--Documentation/filesystems/00-INDEX2
-rw-r--r--Documentation/filesystems/Locking6
-rw-r--r--Documentation/filesystems/caching/backend-api.txt38
-rw-r--r--Documentation/filesystems/caching/netfs-api.txt46
-rw-r--r--Documentation/filesystems/caching/object.txt23
-rw-r--r--Documentation/filesystems/caching/operations.txt2
-rw-r--r--Documentation/filesystems/f2fs.txt421
-rw-r--r--Documentation/filesystems/nfs/nfs41-server.txt20
-rw-r--r--Documentation/filesystems/porting2
-rw-r--r--Documentation/filesystems/vfs.txt11
-rw-r--r--Documentation/hwmon/it8710
-rw-r--r--Documentation/i2c/instantiating-devices2
-rw-r--r--Documentation/kernel-parameters.txt6
-rw-r--r--Documentation/networking/ip-sysctl.txt16
-rw-r--r--Documentation/power/runtime_pm.txt9
-rw-r--r--Documentation/powerpc/ptrace.txt16
-rw-r--r--Documentation/rpmsg.txt4
-rw-r--r--Documentation/spi/spi-summary4
-rw-r--r--Documentation/sysctl/kernel.txt32
-rw-r--r--Documentation/video4linux/v4l2-framework.txt3
-rw-r--r--Documentation/x86/boot.txt3
-rw-r--r--Documentation/xtensa/atomctl.txt44
-rw-r--r--Documentation/zh_CN/video4linux/v4l2-framework.txt3
71 files changed, 1735 insertions, 155 deletions
diff --git a/Documentation/ABI/stable/sysfs-devices-node b/Documentation/ABI/stable/sysfs-devices-node
index 49b82ca..ce259c1 100644
--- a/Documentation/ABI/stable/sysfs-devices-node
+++ b/Documentation/ABI/stable/sysfs-devices-node
@@ -1,7 +1,101 @@
+What: /sys/devices/system/node/possible
+Date: October 2002
+Contact: Linux Memory Management list <linux-mm@kvack.org>
+Description:
+ Nodes that could be possibly become online at some point.
+
+What: /sys/devices/system/node/online
+Date: October 2002
+Contact: Linux Memory Management list <linux-mm@kvack.org>
+Description:
+ Nodes that are online.
+
+What: /sys/devices/system/node/has_normal_memory
+Date: October 2002
+Contact: Linux Memory Management list <linux-mm@kvack.org>
+Description:
+ Nodes that have regular memory.
+
+What: /sys/devices/system/node/has_cpu
+Date: October 2002
+Contact: Linux Memory Management list <linux-mm@kvack.org>
+Description:
+ Nodes that have one or more CPUs.
+
+What: /sys/devices/system/node/has_high_memory
+Date: October 2002
+Contact: Linux Memory Management list <linux-mm@kvack.org>
+Description:
+ Nodes that have regular or high memory.
+ Depends on CONFIG_HIGHMEM.
+
What: /sys/devices/system/node/nodeX
Date: October 2002
Contact: Linux Memory Management list <linux-mm@kvack.org>
Description:
When CONFIG_NUMA is enabled, this is a directory containing
information on node X such as what CPUs are local to the
- node.
+ node. Each file is detailed next.
+
+What: /sys/devices/system/node/nodeX/cpumap
+Date: October 2002
+Contact: Linux Memory Management list <linux-mm@kvack.org>
+Description:
+ The node's cpumap.
+
+What: /sys/devices/system/node/nodeX/cpulist
+Date: October 2002
+Contact: Linux Memory Management list <linux-mm@kvack.org>
+Description:
+ The CPUs associated to the node.
+
+What: /sys/devices/system/node/nodeX/meminfo
+Date: October 2002
+Contact: Linux Memory Management list <linux-mm@kvack.org>
+Description:
+ Provides information about the node's distribution and memory
+ utilization. Similar to /proc/meminfo, see Documentation/filesystems/proc.txt
+
+What: /sys/devices/system/node/nodeX/numastat
+Date: October 2002
+Contact: Linux Memory Management list <linux-mm@kvack.org>
+Description:
+ The node's hit/miss statistics, in units of pages.
+ See Documentation/numastat.txt
+
+What: /sys/devices/system/node/nodeX/distance
+Date: October 2002
+Contact: Linux Memory Management list <linux-mm@kvack.org>
+Description:
+ Distance between the node and all the other nodes
+ in the system.
+
+What: /sys/devices/system/node/nodeX/vmstat
+Date: October 2002
+Contact: Linux Memory Management list <linux-mm@kvack.org>
+Description:
+ The node's zoned virtual memory statistics.
+ This is a superset of numastat.
+
+What: /sys/devices/system/node/nodeX/compact
+Date: February 2010
+Contact: Mel Gorman <mel@csn.ul.ie>
+Description:
+ When this file is written to, all memory within that node
+ will be compacted. When it completes, memory will be freed
+ into blocks which have as many contiguous pages as possible
+
+What: /sys/devices/system/node/nodeX/scan_unevictable_pages
+Date: October 2008
+Contact: Lee Schermerhorn <lee.schermerhorn@hp.com>
+Description:
+ When set, it triggers scanning the node's unevictable lists
+ and move any pages that have become evictable onto the respective
+ zone's inactive list. See mm/vmscan.c
+
+What: /sys/devices/system/node/nodeX/hugepages/hugepages-<size>/
+Date: December 2009
+Contact: Lee Schermerhorn <lee.schermerhorn@hp.com>
+Description:
+ The node's huge page size control/query attributes.
+ See Documentation/vm/hugetlbpage.txt \ No newline at end of file
diff --git a/Documentation/ABI/testing/ima_policy b/Documentation/ABI/testing/ima_policy
index 9869466..ec0a38e 100644
--- a/Documentation/ABI/testing/ima_policy
+++ b/Documentation/ABI/testing/ima_policy
@@ -23,7 +23,7 @@ Description:
lsm: [[subj_user=] [subj_role=] [subj_type=]
[obj_user=] [obj_role=] [obj_type=]]
- base: func:= [BPRM_CHECK][FILE_MMAP][FILE_CHECK]
+ base: func:= [BPRM_CHECK][FILE_MMAP][FILE_CHECK][MODULE_CHECK]
mask:= [MAY_READ] [MAY_WRITE] [MAY_APPEND] [MAY_EXEC]
fsmagic:= hex value
uid:= decimal value
@@ -53,6 +53,7 @@ Description:
measure func=BPRM_CHECK
measure func=FILE_MMAP mask=MAY_EXEC
measure func=FILE_CHECK mask=MAY_READ uid=0
+ measure func=MODULE_CHECK uid=0
appraise fowner=0
The default policy measures all executables in bprm_check,
diff --git a/Documentation/ABI/testing/sysfs-bus-rbd b/Documentation/ABI/testing/sysfs-bus-rbd
index 1cf2adf..cd9213c 100644
--- a/Documentation/ABI/testing/sysfs-bus-rbd
+++ b/Documentation/ABI/testing/sysfs-bus-rbd
@@ -70,6 +70,10 @@ snap_*
A directory per each snapshot
+parent
+
+ Information identifying the pool, image, and snapshot id for
+ the parent image in a layered rbd image (format 2 only).
Entries under /sys/bus/rbd/devices/<dev-id>/snap_<snap-name>
-------------------------------------------------------------
diff --git a/Documentation/ABI/testing/sysfs-devices-node b/Documentation/ABI/testing/sysfs-devices-node
deleted file mode 100644
index 453a210..0000000
--- a/Documentation/ABI/testing/sysfs-devices-node
+++ /dev/null
@@ -1,7 +0,0 @@
-What: /sys/devices/system/node/nodeX/compact
-Date: February 2010
-Contact: Mel Gorman <mel@csn.ul.ie>
-Description:
- When this file is written to, all memory within that node
- will be compacted. When it completes, memory will be freed
- into blocks which have as many contiguous pages as possible
diff --git a/Documentation/DMA-API-HOWTO.txt b/Documentation/DMA-API-HOWTO.txt
index a0b6250..4a4fb29 100644
--- a/Documentation/DMA-API-HOWTO.txt
+++ b/Documentation/DMA-API-HOWTO.txt
@@ -468,11 +468,46 @@ To map a single region, you do:
size_t size = buffer->len;
dma_handle = dma_map_single(dev, addr, size, direction);
+ if (dma_mapping_error(dma_handle)) {
+ /*
+ * reduce current DMA mapping usage,
+ * delay and try again later or
+ * reset driver.
+ */
+ goto map_error_handling;
+ }
and to unmap it:
dma_unmap_single(dev, dma_handle, size, direction);
+You should call dma_mapping_error() as dma_map_single() could fail and return
+error. Not all dma implementations support dma_mapping_error() interface.
+However, it is a good practice to call dma_mapping_error() interface, which
+will invoke the generic mapping error check interface. Doing so will ensure
+that the mapping code will work correctly on all dma implementations without
+any dependency on the specifics of the underlying implementation. Using the
+returned address without checking for errors could result in failures ranging
+from panics to silent data corruption. Couple of example of incorrect ways to
+check for errors that make assumptions about the underlying dma implementation
+are as follows and these are applicable to dma_map_page() as well.
+
+Incorrect example 1:
+ dma_addr_t dma_handle;
+
+ dma_handle = dma_map_single(dev, addr, size, direction);
+ if ((dma_handle & 0xffff != 0) || (dma_handle >= 0x1000000)) {
+ goto map_error;
+ }
+
+Incorrect example 2:
+ dma_addr_t dma_handle;
+
+ dma_handle = dma_map_single(dev, addr, size, direction);
+ if (dma_handle == DMA_ERROR_CODE) {
+ goto map_error;
+ }
+
You should call dma_unmap_single when the DMA activity is finished, e.g.
from the interrupt which told you that the DMA transfer is done.
@@ -489,6 +524,14 @@ Specifically:
size_t size = buffer->len;
dma_handle = dma_map_page(dev, page, offset, size, direction);
+ if (dma_mapping_error(dma_handle)) {
+ /*
+ * reduce current DMA mapping usage,
+ * delay and try again later or
+ * reset driver.
+ */
+ goto map_error_handling;
+ }
...
@@ -496,6 +539,12 @@ Specifically:
Here, "offset" means byte offset within the given page.
+You should call dma_mapping_error() as dma_map_page() could fail and return
+error as outlined under the dma_map_single() discussion.
+
+You should call dma_unmap_page when the DMA activity is finished, e.g.
+from the interrupt which told you that the DMA transfer is done.
+
With scatterlists, you map a region gathered from several regions by:
int i, count = dma_map_sg(dev, sglist, nents, direction);
@@ -578,6 +627,14 @@ to use the dma_sync_*() interfaces.
dma_addr_t mapping;
mapping = dma_map_single(cp->dev, buffer, len, DMA_FROM_DEVICE);
+ if (dma_mapping_error(dma_handle)) {
+ /*
+ * reduce current DMA mapping usage,
+ * delay and try again later or
+ * reset driver.
+ */
+ goto map_error_handling;
+ }
cp->rx_buf = buffer;
cp->rx_len = len;
@@ -658,6 +715,75 @@ failure can be determined by:
* delay and try again later or
* reset driver.
*/
+ goto map_error_handling;
+ }
+
+- unmap pages that are already mapped, when mapping error occurs in the middle
+ of a multiple page mapping attempt. These example are applicable to
+ dma_map_page() as well.
+
+Example 1:
+ dma_addr_t dma_handle1;
+ dma_addr_t dma_handle2;
+
+ dma_handle1 = dma_map_single(dev, addr, size, direction);
+ if (dma_mapping_error(dev, dma_handle1)) {
+ /*
+ * reduce current DMA mapping usage,
+ * delay and try again later or
+ * reset driver.
+ */
+ goto map_error_handling1;
+ }
+ dma_handle2 = dma_map_single(dev, addr, size, direction);
+ if (dma_mapping_error(dev, dma_handle2)) {
+ /*
+ * reduce current DMA mapping usage,
+ * delay and try again later or
+ * reset driver.
+ */
+ goto map_error_handling2;
+ }
+
+ ...
+
+ map_error_handling2:
+ dma_unmap_single(dma_handle1);
+ map_error_handling1:
+
+Example 2: (if buffers are allocated a loop, unmap all mapped buffers when
+ mapping error is detected in the middle)
+
+ dma_addr_t dma_addr;
+ dma_addr_t array[DMA_BUFFERS];
+ int save_index = 0;
+
+ for (i = 0; i < DMA_BUFFERS; i++) {
+
+ ...
+
+ dma_addr = dma_map_single(dev, addr, size, direction);
+ if (dma_mapping_error(dev, dma_addr)) {
+ /*
+ * reduce current DMA mapping usage,
+ * delay and try again later or
+ * reset driver.
+ */
+ goto map_error_handling;
+ }
+ array[i].dma_addr = dma_addr;
+ save_index++;
+ }
+
+ ...
+
+ map_error_handling:
+
+ for (i = 0; i < save_index; i++) {
+
+ ...
+
+ dma_unmap_single(array[i].dma_addr);
}
Networking drivers must call dev_kfree_skb to free the socket buffer
diff --git a/Documentation/DMA-API.txt b/Documentation/DMA-API.txt
index 66bd97a..78a6c56 100644
--- a/Documentation/DMA-API.txt
+++ b/Documentation/DMA-API.txt
@@ -678,3 +678,15 @@ out of dma_debug_entries. These entries are preallocated at boot. The number
of preallocated entries is defined per architecture. If it is too low for you
boot with 'dma_debug_entries=<your_desired_number>' to overwrite the
architectural default.
+
+void debug_dmap_mapping_error(struct device *dev, dma_addr_t dma_addr);
+
+dma-debug interface debug_dma_mapping_error() to debug drivers that fail
+to check dma mapping errors on addresses returned by dma_map_single() and
+dma_map_page() interfaces. This interface clears a flag set by
+debug_dma_map_page() to indicate that dma_mapping_error() has been called by
+the driver. When driver does unmap, debug_dma_unmap() checks the flag and if
+this flag is still set, prints warning message that includes call trace that
+leads up to the unmap. This interface can be called from dma_mapping_error()
+routines to enable dma mapping error check debugging.
+
diff --git a/Documentation/DocBook/media/v4l/driver.xml b/Documentation/DocBook/media/v4l/driver.xml
index eacafe3..7c6638b 100644
--- a/Documentation/DocBook/media/v4l/driver.xml
+++ b/Documentation/DocBook/media/v4l/driver.xml
@@ -116,7 +116,7 @@ my_suspend (struct pci_dev * pci_dev,
return 0; /* a negative value on error, 0 on success. */
}
-static void __devexit
+static void
my_remove (struct pci_dev * pci_dev)
{
my_device *my = pci_get_drvdata (pci_dev);
@@ -124,7 +124,7 @@ my_remove (struct pci_dev * pci_dev)
/* Describe me. */
}
-static int __devinit
+static int
my_probe (struct pci_dev * pci_dev,
const struct pci_device_id * pci_id)
{
@@ -157,7 +157,7 @@ my_pci_driver = {
.id_table = my_pci_device_ids,
.probe = my_probe,
- .remove = __devexit_p (my_remove),
+ .remove = my_remove,
/* Power management functions. */
.suspend = my_suspend,
diff --git a/Documentation/PCI/pci-iov-howto.txt b/Documentation/PCI/pci-iov-howto.txt
index cfaca7e..86551cc 100644
--- a/Documentation/PCI/pci-iov-howto.txt
+++ b/Documentation/PCI/pci-iov-howto.txt
@@ -76,7 +76,7 @@ To notify SR-IOV core of Virtual Function Migration:
Following piece of code illustrates the usage of the SR-IOV API.
-static int __devinit dev_probe(struct pci_dev *dev, const struct pci_device_id *id)
+static int dev_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
pci_enable_sriov(dev, NR_VIRTFN);
@@ -85,7 +85,7 @@ static int __devinit dev_probe(struct pci_dev *dev, const struct pci_device_id *
return 0;
}
-static void __devexit dev_remove(struct pci_dev *dev)
+static void dev_remove(struct pci_dev *dev)
{
pci_disable_sriov(dev);
@@ -131,7 +131,7 @@ static struct pci_driver dev_driver = {
.name = "SR-IOV Physical Function driver",
.id_table = dev_id_table,
.probe = dev_probe,
- .remove = __devexit_p(dev_remove),
+ .remove = dev_remove,
.suspend = dev_suspend,
.resume = dev_resume,
.shutdown = dev_shutdown,
diff --git a/Documentation/PCI/pci.txt b/Documentation/PCI/pci.txt
index aa09e54..bccf602 100644
--- a/Documentation/PCI/pci.txt
+++ b/Documentation/PCI/pci.txt
@@ -183,12 +183,6 @@ Please mark the initialization and cleanup functions where appropriate
initializes.
__exit Exit code. Ignored for non-modular drivers.
-
- __devinit Device initialization code.
- Identical to __init if the kernel is not compiled
- with CONFIG_HOTPLUG, normal function otherwise.
- __devexit The same for __exit.
-
Tips on when/where to use the above attributes:
o The module_init()/module_exit() functions (and all
initialization functions called _only_ from these)
@@ -196,20 +190,6 @@ Tips on when/where to use the above attributes:
o Do not mark the struct pci_driver.
- o The ID table array should be marked __devinitconst; this is done
- automatically if the table is declared with DEFINE_PCI_DEVICE_TABLE().
-
- o The probe() and remove() functions should be marked __devinit
- and __devexit respectively. All initialization functions
- exclusively called by the probe() routine, can be marked __devinit.
- Ditto for remove() and __devexit.
-
- o If mydriver_remove() is marked with __devexit(), then all address
- references to mydriver_remove must use __devexit_p(mydriver_remove)
- (in the struct pci_driver declaration for example).
- __devexit_p() will generate the function name _or_ NULL if the
- function will be discarded. For an example, see drivers/net/tg3.c.
-
o Do NOT mark a function if you are not sure which mark to use.
Better to not mark the function than mark the function wrong.
diff --git a/Documentation/acpi/enumeration.txt b/Documentation/acpi/enumeration.txt
index 4f27785..54469bc 100644
--- a/Documentation/acpi/enumeration.txt
+++ b/Documentation/acpi/enumeration.txt
@@ -185,7 +185,7 @@ input driver:
.acpi_match_table ACPI_PTR(mpu3050_acpi_match),
},
.probe = mpu3050_probe,
- .remove = __devexit_p(mpu3050_remove),
+ .remove = mpu3050_remove,
.id_table = mpu3050_ids,
};
diff --git a/Documentation/cgroups/memory.txt b/Documentation/cgroups/memory.txt
index a25cb3f..8b8c28b 100644
--- a/Documentation/cgroups/memory.txt
+++ b/Documentation/cgroups/memory.txt
@@ -71,6 +71,11 @@ Brief summary of control files.
memory.oom_control # set/show oom controls.
memory.numa_stat # show the number of memory usage per numa node
+ memory.kmem.limit_in_bytes # set/show hard limit for kernel memory
+ memory.kmem.usage_in_bytes # show current kernel memory allocation
+ memory.kmem.failcnt # show the number of kernel memory usage hits limits
+ memory.kmem.max_usage_in_bytes # show max kernel memory usage recorded
+
memory.kmem.tcp.limit_in_bytes # set/show hard limit for tcp buf memory
memory.kmem.tcp.usage_in_bytes # show current tcp buf memory allocation
memory.kmem.tcp.failcnt # show the number of tcp buf memory usage hits limits
@@ -268,20 +273,73 @@ the amount of kernel memory used by the system. Kernel memory is fundamentally
different than user memory, since it can't be swapped out, which makes it
possible to DoS the system by consuming too much of this precious resource.
+Kernel memory won't be accounted at all until limit on a group is set. This
+allows for existing setups to continue working without disruption. The limit
+cannot be set if the cgroup have children, or if there are already tasks in the
+cgroup. Attempting to set the limit under those conditions will return -EBUSY.
+When use_hierarchy == 1 and a group is accounted, its children will
+automatically be accounted regardless of their limit value.
+
+After a group is first limited, it will be kept being accounted until it
+is removed. The memory limitation itself, can of course be removed by writing
+-1 to memory.kmem.limit_in_bytes. In this case, kmem will be accounted, but not
+limited.
+
Kernel memory limits are not imposed for the root cgroup. Usage for the root
-cgroup may or may not be accounted.
+cgroup may or may not be accounted. The memory used is accumulated into
+memory.kmem.usage_in_bytes, or in a separate counter when it makes sense.
+(currently only for tcp).
+The main "kmem" counter is fed into the main counter, so kmem charges will
+also be visible from the user counter.
Currently no soft limit is implemented for kernel memory. It is future work
to trigger slab reclaim when those limits are reached.
2.7.1 Current Kernel Memory resources accounted
+* stack pages: every process consumes some stack pages. By accounting into
+kernel memory, we prevent new processes from being created when the kernel
+memory usage is too high.
+
+* slab pages: pages allocated by the SLAB or SLUB allocator are tracked. A copy
+of each kmem_cache is created everytime the cache is touched by the first time
+from inside the memcg. The creation is done lazily, so some objects can still be
+skipped while the cache is being created. All objects in a slab page should
+belong to the same memcg. This only fails to hold when a task is migrated to a
+different memcg during the page allocation by the cache.
+
* sockets memory pressure: some sockets protocols have memory pressure
thresholds. The Memory Controller allows them to be controlled individually
per cgroup, instead of globally.
* tcp memory pressure: sockets memory pressure for the tcp protocol.
+2.7.3 Common use cases
+
+Because the "kmem" counter is fed to the main user counter, kernel memory can
+never be limited completely independently of user memory. Say "U" is the user
+limit, and "K" the kernel limit. There are three possible ways limits can be
+set:
+
+ U != 0, K = unlimited:
+ This is the standard memcg limitation mechanism already present before kmem
+ accounting. Kernel memory is completely ignored.
+
+ U != 0, K < U:
+ Kernel memory is a subset of the user memory. This setup is useful in
+ deployments where the total amount of memory per-cgroup is overcommited.
+ Overcommiting kernel memory limits is definitely not recommended, since the
+ box can still run out of non-reclaimable memory.
+ In this case, the admin could set up K so that the sum of all groups is
+ never greater than the total memory, and freely set U at the cost of his
+ QoS.
+
+ U != 0, K >= U:
+ Since kmem charges will also be fed to the user counter and reclaim will be
+ triggered for the cgroup for both kinds of memory. This setup gives the
+ admin a unified view of memory, and it is also useful for people who just
+ want to track kernel memory usage.
+
3. User Interface
0. Configuration
@@ -290,6 +348,7 @@ a. Enable CONFIG_CGROUPS
b. Enable CONFIG_RESOURCE_COUNTERS
c. Enable CONFIG_MEMCG
d. Enable CONFIG_MEMCG_SWAP (to use swap extension)
+d. Enable CONFIG_MEMCG_KMEM (to use kmem extension)
1. Prepare the cgroups (see cgroups.txt, Why are cgroups needed?)
# mount -t tmpfs none /sys/fs/cgroup
@@ -406,6 +465,11 @@ About use_hierarchy, see Section 6.
Because rmdir() moves all pages to parent, some out-of-use page caches can be
moved to the parent. If you want to avoid that, force_empty will be useful.
+ Also, note that when memory.kmem.limit_in_bytes is set the charges due to
+ kernel pages will still be seen. This is not considered a failure and the
+ write will still return success. In this case, it is expected that
+ memory.kmem.usage_in_bytes == memory.usage_in_bytes.
+
About use_hierarchy, see Section 6.
5.2 stat file
diff --git a/Documentation/cgroups/resource_counter.txt b/Documentation/cgroups/resource_counter.txt
index 0c4a344..c4d99ed 100644
--- a/Documentation/cgroups/resource_counter.txt
+++ b/Documentation/cgroups/resource_counter.txt
@@ -83,16 +83,17 @@ to work with it.
res_counter->lock internally (it must be called with res_counter->lock
held). The force parameter indicates whether we can bypass the limit.
- e. void res_counter_uncharge[_locked]
+ e. u64 res_counter_uncharge[_locked]
(struct res_counter *rc, unsigned long val)
When a resource is released (freed) it should be de-accounted
from the resource counter it was accounted to. This is called
- "uncharging".
+ "uncharging". The return value of this function indicate the amount
+ of charges still present in the counter.
The _locked routines imply that the res_counter->lock is taken.
- f. void res_counter_uncharge_until
+ f. u64 res_counter_uncharge_until
(struct res_counter *rc, struct res_counter *top,
unsinged long val)
diff --git a/Documentation/devicetree/bindings/arm/davinci/nand.txt b/Documentation/devicetree/bindings/arm/davinci/nand.txt
index 49fc7ad..3545ea7 100644
--- a/Documentation/devicetree/bindings/arm/davinci/nand.txt
+++ b/Documentation/devicetree/bindings/arm/davinci/nand.txt
@@ -23,6 +23,9 @@ Recommended properties :
- ti,davinci-nand-buswidth: buswidth 8 or 16
- ti,davinci-nand-use-bbt: use flash based bad block table support.
+nand device bindings may contain additional sub-nodes describing
+partitions of the address space. See partition.txt for more detail.
+
Example(da850 EVM ):
nand_cs3@62000000 {
compatible = "ti,davinci-nand";
@@ -35,4 +38,9 @@ nand_cs3@62000000 {
ti,davinci-ecc-mode = "hw";
ti,davinci-ecc-bits = <4>;
ti,davinci-nand-use-bbt;
+
+ partition@180000 {
+ label = "ubifs";
+ reg = <0x180000 0x7e80000>;
+ };
};
diff --git a/Documentation/devicetree/bindings/clock/imx23-clock.txt b/Documentation/devicetree/bindings/clock/imx23-clock.txt
index baadbb1..5083c0b 100644
--- a/Documentation/devicetree/bindings/clock/imx23-clock.txt
+++ b/Documentation/devicetree/bindings/clock/imx23-clock.txt
@@ -60,11 +60,6 @@ clks: clkctrl@80040000 {
compatible = "fsl,imx23-clkctrl";
reg = <0x80040000 0x2000>;
#clock-cells = <1>;
- clock-output-names =
- ...
- "uart", /* 32 */
- ...
- "end_of_list";
};
auart0: serial@8006c000 {
diff --git a/Documentation/devicetree/bindings/clock/imx25-clock.txt b/Documentation/devicetree/bindings/clock/imx25-clock.txt
index c2a3525..db4f2f0 100644
--- a/Documentation/devicetree/bindings/clock/imx25-clock.txt
+++ b/Documentation/devicetree/bindings/clock/imx25-clock.txt
@@ -146,10 +146,6 @@ clks: ccm@53f80000 {
compatible = "fsl,imx25-ccm";
reg = <0x53f80000 0x4000>;
interrupts = <31>;
- clock-output-names = ...
- "uart_ipg",
- "uart_serial",
- ...;
};
uart1: serial@43f90000 {
diff --git a/Documentation/devicetree/bindings/clock/imx28-clock.txt b/Documentation/devicetree/bindings/clock/imx28-clock.txt
index 52a49a4..e6587af 100644
--- a/Documentation/devicetree/bindings/clock/imx28-clock.txt
+++ b/Documentation/devicetree/bindings/clock/imx28-clock.txt
@@ -83,11 +83,6 @@ clks: clkctrl@80040000 {
compatible = "fsl,imx28-clkctrl";
reg = <0x80040000 0x2000>;
#clock-cells = <1>;
- clock-output-names =
- ...
- "uart", /* 45 */
- ...
- "end_of_list";
};
auart0: serial@8006a000 {
diff --git a/Documentation/devicetree/bindings/clock/imx6q-clock.txt b/Documentation/devicetree/bindings/clock/imx6q-clock.txt
index d77b4e6..f73fdf5 100644
--- a/Documentation/devicetree/bindings/clock/imx6q-clock.txt
+++ b/Documentation/devicetree/bindings/clock/imx6q-clock.txt
@@ -211,10 +211,6 @@ clks: ccm@020c4000 {
reg = <0x020c4000 0x4000>;
interrupts = <0 87 0x04 0 88 0x04>;
#clock-cells = <1>;
- clock-output-names = ...
- "uart_ipg",
- "uart_serial",
- ...;
};
uart1: serial@02020000 {
diff --git a/Documentation/devicetree/bindings/gpio/gpio-poweroff.txt b/Documentation/devicetree/bindings/gpio/gpio-poweroff.txt
index 558cdf3..d4eab92 100644
--- a/Documentation/devicetree/bindings/gpio/gpio-poweroff.txt
+++ b/Documentation/devicetree/bindings/gpio/gpio-poweroff.txt
@@ -1,4 +1,19 @@
-GPIO line that should be set high/low to power off a device
+Driver a GPIO line that can be used to turn the power off.
+
+The driver supports both level triggered and edge triggered power off.
+At driver load time, the driver will request the given gpio line and
+install a pm_power_off handler. If the optional properties 'input' is
+not found, the GPIO line will be driven in the inactive
+state. Otherwise its configured as an input.
+
+When the pm_power_off is called, the gpio is configured as an output,
+and drive active, so triggering a level triggered power off
+condition. This will also cause an inactive->active edge condition, so
+triggering positive edge triggered power off. After a delay of 100ms,
+the GPIO is set to inactive, thus causing an active->inactive edge,
+triggering negative edge triggered power off. After another 100ms
+delay the GPIO is driver active again. If the power is still on and
+the CPU still running after a 3000ms delay, a WARN_ON(1) is emitted.
Required properties:
- compatible : should be "gpio-poweroff".
@@ -13,10 +28,9 @@ Optional properties:
property is not specified, the GPIO is initialized as an output in its
inactive state.
-
Examples:
gpio-poweroff {
compatible = "gpio-poweroff";
- gpios = <&gpio 4 0>; /* GPIO 4 Active Low */
+ gpios = <&gpio 4 0>;
};
diff --git a/Documentation/devicetree/bindings/i2c/i2c-cbus-gpio.txt b/Documentation/devicetree/bindings/i2c/i2c-cbus-gpio.txt
new file mode 100644
index 0000000..8ce9cd2
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-cbus-gpio.txt
@@ -0,0 +1,27 @@
+Device tree bindings for i2c-cbus-gpio driver
+
+Required properties:
+ - compatible = "i2c-cbus-gpio";
+ - gpios: clk, dat, sel
+ - #address-cells = <1>;
+ - #size-cells = <0>;
+
+Optional properties:
+ - child nodes conforming to i2c bus binding
+
+Example:
+
+i2c@0 {
+ compatible = "i2c-cbus-gpio";
+ gpios = <&gpio 66 0 /* clk */
+ &gpio 65 0 /* dat */
+ &gpio 64 0 /* sel */
+ >;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ retu-mfd: retu@1 {
+ compatible = "retu-mfd";
+ reg = <0x1>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/i2c/i2c-mux-gpio.txt b/Documentation/devicetree/bindings/i2c/i2c-mux-gpio.txt
new file mode 100644
index 0000000..66709a8
--- /dev/null
+++ b/Documentation/devicetree/bindings/i2c/i2c-mux-gpio.txt
@@ -0,0 +1,81 @@
+GPIO-based I2C Bus Mux
+
+This binding describes an I2C bus multiplexer that uses GPIOs to
+route the I2C signals.
+
+ +-----+ +-----+
+ | dev | | dev |
+ +------------+ +-----+ +-----+
+ | SoC | | |
+ | | /--------+--------+
+ | +------+ | +------+ child bus A, on GPIO value set to 0
+ | | I2C |-|--| Mux |
+ | +------+ | +--+---+ child bus B, on GPIO value set to 1
+ | | | \----------+--------+--------+
+ | +------+ | | | | |
+ | | GPIO |-|-----+ +-----+ +-----+ +-----+
+ | +------+ | | dev | | dev | | dev |
+ +------------+ +-----+ +-----+ +-----+
+
+Required properties:
+- compatible: i2c-mux-gpio
+- i2c-parent: The phandle of the I2C bus that this multiplexer's master-side
+ port is connected to.
+- mux-gpios: list of gpios used to control the muxer
+* Standard I2C mux properties. See mux.txt in this directory.
+* I2C child bus nodes. See mux.txt in this directory.
+
+Optional properties:
+- idle-state: value to set the muxer to when idle. When no value is
+ given, it defaults to the last value used.
+
+For each i2c child node, an I2C child bus will be created. They will
+be numbered based on their order in the device tree.
+
+Whenever an access is made to a device on a child bus, the value set
+in the revelant node's reg property will be output using the list of
+GPIOs, the first in the list holding the least-significant value.
+
+If an idle state is defined, using the idle-state (optional) property,
+whenever an access is not being made to a device on a child bus, the
+GPIOs will be set according to the idle value.
+
+If an idle state is not defined, the most recently used value will be
+left programmed into hardware whenever no access is being made to a
+device on a child bus.
+
+Example:
+ i2cmux {
+ compatible = "i2c-mux-gpio";
+ #address-cells = <1>;
+ #size-cells = <0>;
+ mux-gpios = <&gpio1 22 0 &gpio1 23 0>;
+ i2c-parent = <&i2c1>;
+
+ i2c@1 {
+ reg = <1>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ ssd1307: oled@3c {
+ compatible = "solomon,ssd1307fb-i2c";
+ reg = <0x3c>;
+ pwms = <&pwm 4 3000>;
+ reset-gpios = <&gpio2 7 1>;
+ reset-active-low;
+ };
+ };
+
+ i2c@3 {
+ reg = <3>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ pca9555: pca9555@20 {
+ compatible = "nxp,pca9555";
+ gpio-controller;
+ #gpio-cells = <2>;
+ reg = <0x20>;
+ };
+ };
+ };
diff --git a/Documentation/devicetree/bindings/i2c/i2c-ocores.txt b/Documentation/devicetree/bindings/i2c/i2c-ocores.txt
index c15781f..1637c29 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-ocores.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-ocores.txt
@@ -1,7 +1,7 @@
Device tree configuration for i2c-ocores
Required properties:
-- compatible : "opencores,i2c-ocores"
+- compatible : "opencores,i2c-ocores" or "aeroflexgaisler,i2cmst"
- reg : bus address start and address range size of device
- interrupts : interrupt number
- clock-frequency : frequency of bus clock in Hz
diff --git a/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt b/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt
index b6cb5a1..e9611ac 100644
--- a/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt
+++ b/Documentation/devicetree/bindings/i2c/i2c-s3c2410.txt
@@ -13,11 +13,17 @@ Required properties:
- interrupts: interrupt number to the cpu.
- samsung,i2c-sda-delay: Delay (in ns) applied to data line (SDA) edges.
+Required for all cases except "samsung,s3c2440-hdmiphy-i2c":
+ - Samsung GPIO variant (deprecated):
+ - gpios: The order of the gpios should be the following: <SDA, SCL>.
+ The gpio specifier depends on the gpio controller. Required in all
+ cases except for "samsung,s3c2440-hdmiphy-i2c" whose input/output
+ lines are permanently wired to the respective clienta
+ - Pinctrl variant (preferred, if available):
+ - pinctrl-0: Pin control group to be used for this controller.
+ - pinctrl-names: Should contain only one value - "default".
+
Optional properties:
- - gpios: The order of the gpios should be the following: <SDA, SCL>.
- The gpio specifier depends on the gpio controller. Required in all
- cases except for "samsung,s3c2440-hdmiphy-i2c" whose input/output
- lines are permanently wired to the respective client
- samsung,i2c-slave-addr: Slave address in multi-master enviroment. If not
specified, default value is 0.
- samsung,i2c-max-bus-freq: Desired frequency in Hz of the bus. If not
@@ -31,8 +37,14 @@ Example:
interrupts = <345>;
samsung,i2c-sda-delay = <100>;
samsung,i2c-max-bus-freq = <100000>;
+ /* Samsung GPIO variant begins here */
gpios = <&gpd1 2 0 /* SDA */
&gpd1 3 0 /* SCL */>;
+ /* Samsung GPIO variant ends here */
+ /* Pinctrl variant begins here */
+ pinctrl-0 = <&i2c3_bus>;
+ pinctrl-names = "default";
+ /* Pinctrl variant ends here */
#address-cells = <1>;
#size-cells = <0>;
diff --git a/Documentation/devicetree/bindings/input/gpio-matrix-keypad.txt b/Documentation/devicetree/bindings/input/gpio-matrix-keypad.txt
new file mode 100644
index 0000000..ead641c
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/gpio-matrix-keypad.txt
@@ -0,0 +1,46 @@
+* GPIO driven matrix keypad device tree bindings
+
+GPIO driven matrix keypad is used to interface a SoC with a matrix keypad.
+The matrix keypad supports multiple row and column lines, a key can be
+placed at each intersection of a unique row and a unique column. The matrix
+keypad can sense a key-press and key-release by means of GPIO lines and
+report the event using GPIO interrupts to the cpu.
+
+Required Properties:
+- compatible: Should be "gpio-matrix-keypad"
+- row-gpios: List of gpios used as row lines. The gpio specifier
+ for this property depends on the gpio controller to
+ which these row lines are connected.
+- col-gpios: List of gpios used as column lines. The gpio specifier
+ for this property depends on the gpio controller to
+ which these column lines are connected.
+- linux,keymap: The definition can be found at
+ bindings/input/matrix-keymap.txt
+
+Optional Properties:
+- linux,no-autorepeat: do no enable autorepeat feature.
+- linux,wakeup: use any event on keypad as wakeup event.
+- debounce-delay-ms: debounce interval in milliseconds
+- col-scan-delay-us: delay, measured in microseconds, that is needed
+ before we can scan keypad after activating column gpio
+
+Example:
+ matrix-keypad {
+ compatible = "gpio-matrix-keypad";
+ debounce-delay-ms = <5>;
+ col-scan-delay-us = <2>;
+
+ row-gpios = <&gpio2 25 0
+ &gpio2 26 0
+ &gpio2 27 0>;
+
+ col-gpios = <&gpio2 21 0
+ &gpio2 22 0>;
+
+ linux,keymap = <0x0000008B
+ 0x0100009E
+ 0x02000069
+ 0x0001006A
+ 0x0101001C
+ 0x0201006C>;
+ };
diff --git a/Documentation/devicetree/bindings/input/pwm-beeper.txt b/Documentation/devicetree/bindings/input/pwm-beeper.txt
new file mode 100644
index 0000000..be332ae
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/pwm-beeper.txt
@@ -0,0 +1,7 @@
+* PWM beeper device tree bindings
+
+Registers a PWM device as beeper.
+
+Required properties:
+- compatible: should be "pwm-beeper"
+- pwms: phandle to the physical PWM device
diff --git a/Documentation/devicetree/bindings/input/stmpe-keypad.txt b/Documentation/devicetree/bindings/input/stmpe-keypad.txt
new file mode 100644
index 0000000..1b97222
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/stmpe-keypad.txt
@@ -0,0 +1,39 @@
+* STMPE Keypad
+
+Required properties:
+ - compatible : "st,stmpe-keypad"
+ - linux,keymap : See ./matrix-keymap.txt
+
+Optional properties:
+ - debounce-interval : Debouncing interval time in milliseconds
+ - st,scan-count : Scanning cycles elapsed before key data is updated
+ - st,no-autorepeat : If specified device will not autorepeat
+
+Example:
+
+ stmpe_keypad {
+ compatible = "st,stmpe-keypad";
+
+ debounce-interval = <64>;
+ st,scan-count = <8>;
+ st,no-autorepeat;
+
+ linux,keymap = <0x205006b
+ 0x4010074
+ 0x3050072
+ 0x1030004
+ 0x502006a
+ 0x500000a
+ 0x5008b
+ 0x706001c
+ 0x405000b
+ 0x6070003
+ 0x3040067
+ 0x303006c
+ 0x60400e7
+ 0x602009e
+ 0x4020073
+ 0x5050002
+ 0x4030069
+ 0x3020008>;
+ };
diff --git a/Documentation/devicetree/bindings/input/tca8418_keypad.txt b/Documentation/devicetree/bindings/input/tca8418_keypad.txt
new file mode 100644
index 0000000..2a1538f
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/tca8418_keypad.txt
@@ -0,0 +1,8 @@
+
+Required properties:
+- compatible: "ti,tca8418"
+- reg: the I2C address
+- interrupts: IRQ line number, should trigger on falling edge
+- keypad,num-rows: The number of rows
+- keypad,num-columns: The number of columns
+- linux,keymap: Keys definitions, see keypad-matrix.
diff --git a/Documentation/devicetree/bindings/input/touchscreen/mms114.txt b/Documentation/devicetree/bindings/input/touchscreen/mms114.txt
new file mode 100644
index 0000000..89d4c56
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/touchscreen/mms114.txt
@@ -0,0 +1,34 @@
+* MELFAS MMS114 touchscreen controller
+
+Required properties:
+- compatible: must be "melfas,mms114"
+- reg: I2C address of the chip
+- interrupts: interrupt to which the chip is connected
+- x-size: horizontal resolution of touchscreen
+- y-size: vertical resolution of touchscreen
+
+Optional properties:
+- contact-threshold:
+- moving-threshold:
+- x-invert: invert X axis
+- y-invert: invert Y axis
+
+Example:
+
+ i2c@00000000 {
+ /* ... */
+
+ touchscreen@48 {
+ compatible = "melfas,mms114";
+ reg = <0x48>;
+ interrupts = <39 0>;
+ x-size = <720>;
+ y-size = <1280>;
+ contact-threshold = <10>;
+ moving-threshold = <10>;
+ x-invert;
+ y-invert;
+ };
+
+ /* ... */
+ };
diff --git a/Documentation/devicetree/bindings/input/touchscreen/stmpe.txt b/Documentation/devicetree/bindings/input/touchscreen/stmpe.txt
new file mode 100644
index 0000000..127baa3
--- /dev/null
+++ b/Documentation/devicetree/bindings/input/touchscreen/stmpe.txt
@@ -0,0 +1,43 @@
+STMPE Touchscreen
+----------------
+
+Required properties:
+ - compatible: "st,stmpe-ts"
+
+Optional properties:
+- st,sample-time: ADC converstion time in number of clock. (0 -> 36 clocks, 1 ->
+ 44 clocks, 2 -> 56 clocks, 3 -> 64 clocks, 4 -> 80 clocks, 5 -> 96 clocks, 6
+ -> 144 clocks), recommended is 4.
+- st,mod-12b: ADC Bit mode (0 -> 10bit ADC, 1 -> 12bit ADC)
+- st,ref-sel: ADC reference source (0 -> internal reference, 1 -> external
+ reference)
+- st,adc-freq: ADC Clock speed (0 -> 1.625 MHz, 1 -> 3.25 MHz, 2 || 3 -> 6.5 MHz)
+- st,ave-ctrl: Sample average control (0 -> 1 sample, 1 -> 2 samples, 2 -> 4
+ samples, 3 -> 8 samples)
+- st,touch-det-delay: Touch detect interrupt delay (0 -> 10 us, 1 -> 50 us, 2 ->
+ 100 us, 3 -> 500 us, 4-> 1 ms, 5 -> 5 ms, 6 -> 10 ms, 7 -> 50 ms) recommended
+ is 3
+- st,settling: Panel driver settling time (0 -> 10 us, 1 -> 100 us, 2 -> 500 us, 3
+ -> 1 ms, 4 -> 5 ms, 5 -> 10 ms, 6 for 50 ms, 7 -> 100 ms) recommended is 2
+- st,fraction-z: Length of the fractional part in z (fraction-z ([0..7]) = Count of
+ the fractional part) recommended is 7
+- st,i-drive: current limit value of the touchscreen drivers (0 -> 20 mA typical 35
+ mA max, 1 -> 50 mA typical 80 mA max)
+
+Node name must be stmpe_touchscreen and should be child node of stmpe node to
+which it belongs.
+
+Example:
+
+ stmpe_touchscreen {
+ compatible = "st,stmpe-ts";
+ st,sample-time = <4>;
+ st,mod-12b = <1>;
+ st,ref-sel = <0>;
+ st,adc-freq = <1>;
+ st,ave-ctrl = <1>;
+ st,touch-det-delay = <2>;
+ st,settling = <2>;
+ st,fraction-z = <7>;
+ st,i-drive = <1>;
+ };
diff --git a/Documentation/devicetree/bindings/mtd/denali-nand.txt b/Documentation/devicetree/bindings/mtd/denali-nand.txt
new file mode 100644
index 0000000..b04d03a
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/denali-nand.txt
@@ -0,0 +1,23 @@
+* Denali NAND controller
+
+Required properties:
+ - compatible : should be "denali,denali-nand-dt"
+ - reg : should contain registers location and length for data and reg.
+ - reg-names: Should contain the reg names "nand_data" and "denali_reg"
+ - interrupts : The interrupt number.
+ - dm-mask : DMA bit mask
+
+The device tree may optionally contain sub-nodes describing partitions of the
+address space. See partition.txt for more detail.
+
+Examples:
+
+nand: nand@ff900000 {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ compatible = "denali,denali-nand-dt";
+ reg = <0xff900000 0x100000>, <0xffb80000 0x10000>;
+ reg-names = "nand_data", "denali_reg";
+ interrupts = <0 144 4>;
+ dma-mask = <0xffffffff>;
+};
diff --git a/Documentation/devicetree/bindings/mtd/flctl-nand.txt b/Documentation/devicetree/bindings/mtd/flctl-nand.txt
new file mode 100644
index 0000000..427f46d
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/flctl-nand.txt
@@ -0,0 +1,49 @@
+FLCTL NAND controller
+
+Required properties:
+- compatible : "renesas,shmobile-flctl-sh7372"
+- reg : Address range of the FLCTL
+- interrupts : flste IRQ number
+- nand-bus-width : bus width to NAND chip
+
+Optional properties:
+- dmas: DMA specifier(s)
+- dma-names: name for each DMA specifier. Valid names are
+ "data_tx", "data_rx", "ecc_tx", "ecc_rx"
+
+The DMA fields are not used yet in the driver but are listed here for
+completing the bindings.
+
+The device tree may optionally contain sub-nodes describing partitions of the
+address space. See partition.txt for more detail.
+
+Example:
+
+ flctl@e6a30000 {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ compatible = "renesas,shmobile-flctl-sh7372";
+ reg = <0xe6a30000 0x100>;
+ interrupts = <0x0d80>;
+
+ nand-bus-width = <16>;
+
+ dmas = <&dmac 1 /* data_tx */
+ &dmac 2;> /* data_rx */
+ dma-names = "data_tx", "data_rx";
+
+ system@0 {
+ label = "system";
+ reg = <0x0 0x8000000>;
+ };
+
+ userdata@8000000 {
+ label = "userdata";
+ reg = <0x8000000 0x10000000>;
+ };
+
+ cache@18000000 {
+ label = "cache";
+ reg = <0x18000000 0x8000000>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/mtd/fsmc-nand.txt b/Documentation/devicetree/bindings/mtd/fsmc-nand.txt
index e2c663b..e3ea32e 100644
--- a/Documentation/devicetree/bindings/mtd/fsmc-nand.txt
+++ b/Documentation/devicetree/bindings/mtd/fsmc-nand.txt
@@ -3,9 +3,7 @@
Required properties:
- compatible : "st,spear600-fsmc-nand"
- reg : Address range of the mtd chip
-- reg-names: Should contain the reg names "fsmc_regs" and "nand_data"
-- st,ale-off : Chip specific offset to ALE
-- st,cle-off : Chip specific offset to CLE
+- reg-names: Should contain the reg names "fsmc_regs", "nand_data", "nand_addr" and "nand_cmd"
Optional properties:
- bank-width : Width (in bytes) of the device. If not present, the width
@@ -19,10 +17,10 @@ Example:
#address-cells = <1>;
#size-cells = <1>;
reg = <0xd1800000 0x1000 /* FSMC Register */
- 0xd2000000 0x4000>; /* NAND Base */
- reg-names = "fsmc_regs", "nand_data";
- st,ale-off = <0x20000>;
- st,cle-off = <0x10000>;
+ 0xd2000000 0x0010 /* NAND Base DATA */
+ 0xd2020000 0x0010 /* NAND Base ADDR */
+ 0xd2010000 0x0010>; /* NAND Base CMD */
+ reg-names = "fsmc_regs", "nand_data", "nand_addr", "nand_cmd";
bank-width = <1>;
nand-skip-bbtscan;
diff --git a/Documentation/devicetree/bindings/mtd/m25p80.txt b/Documentation/devicetree/bindings/mtd/m25p80.txt
new file mode 100644
index 0000000..6d3d576
--- /dev/null
+++ b/Documentation/devicetree/bindings/mtd/m25p80.txt
@@ -0,0 +1,29 @@
+* MTD SPI driver for ST M25Pxx (and similar) serial flash chips
+
+Required properties:
+- #address-cells, #size-cells : Must be present if the device has sub-nodes
+ representing partitions.
+- compatible : Should be the manufacturer and the name of the chip. Bear in mind
+ the DT binding is not Linux-only, but in case of Linux, see the
+ "m25p_ids" table in drivers/mtd/devices/m25p80.c for the list of
+ supported chips.
+- reg : Chip-Select number
+- spi-max-frequency : Maximum frequency of the SPI bus the chip can operate at
+
+Optional properties:
+- m25p,fast-read : Use the "fast read" opcode to read data from the chip instead
+ of the usual "read" opcode. This opcode is not supported by
+ all chips and support for it can not be detected at runtime.
+ Refer to your chips' datasheet to check if this is supported
+ by your chip.
+
+Example:
+
+ flash: m25p80@0 {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ compatible = "spansion,m25p80";
+ reg = <0>;
+ spi-max-frequency = <40000000>;
+ m25p,fast-read;
+ };
diff --git a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt
index 94de19b..dab7847 100644
--- a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt
+++ b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt
@@ -23,6 +23,9 @@ file systems on embedded devices.
unaligned accesses as implemented in the JFFS2 code via memcpy().
By defining "no-unaligned-direct-access", the flash will not be
exposed directly to the MTD users (e.g. JFFS2) any more.
+ - linux,mtd-name: allow to specify the mtd name for retro capability with
+ physmap-flash drivers as boot loader pass the mtd partition via the old
+ device name physmap-flash.
For JEDEC compatible devices, the following additional properties
are defined:
diff --git a/Documentation/devicetree/bindings/pinctrl/pinctrl-sirf.txt b/Documentation/devicetree/bindings/pinctrl/pinctrl-sirf.txt
new file mode 100644
index 0000000..c596a6a
--- /dev/null
+++ b/Documentation/devicetree/bindings/pinctrl/pinctrl-sirf.txt
@@ -0,0 +1,47 @@
+CSR SiRFprimaII pinmux controller
+
+Required properties:
+- compatible : "sirf,prima2-pinctrl"
+- reg : Address range of the pinctrl registers
+- interrupts : Interrupts used by every GPIO group
+- gpio-controller : Indicates this device is a GPIO controller
+- interrupt-controller : Marks the device node as an interrupt controller
+Optional properties:
+- sirf,pullups : if n-th bit of m-th bank is set, set a pullup on GPIO-n of bank m
+- sirf,pulldowns : if n-th bit of m-th bank is set, set a pulldown on GPIO-n of bank m
+
+Please refer to pinctrl-bindings.txt in this directory for details of the common
+pinctrl bindings used by client devices.
+
+SiRFprimaII's pinmux nodes act as a container for an abitrary number of subnodes.
+Each of these subnodes represents some desired configuration for a group of pins.
+
+Required subnode-properties:
+- sirf,pins : An array of strings. Each string contains the name of a group.
+- sirf,function: A string containing the name of the function to mux to the
+ group.
+
+ Valid values for group and function names can be found from looking at the
+ group and function arrays in driver files:
+ drivers/pinctrl/pinctrl-sirf.c
+
+For example, pinctrl might have subnodes like the following:
+ uart2_pins_a: uart2@0 {
+ uart {
+ sirf,pins = "uart2grp";
+ sirf,function = "uart2";
+ };
+ };
+ uart2_noflow_pins_a: uart2@1 {
+ uart {
+ sirf,pins = "uart2_nostreamctrlgrp";
+ sirf,function = "uart2_nostreamctrl";
+ };
+ };
+
+For a specific board, if it wants to use uart2 without hardware flow control,
+it can add the following to its board-specific .dts file.
+uart2: uart@0xb0070000 {
+ pinctrl-names = "default";
+ pinctrl-0 = <&uart2_noflow_pins_a>;
+}
diff --git a/Documentation/devicetree/bindings/powerpc/fsl/raideng.txt b/Documentation/devicetree/bindings/powerpc/fsl/raideng.txt
new file mode 100644
index 0000000..4ad29b9
--- /dev/null
+++ b/Documentation/devicetree/bindings/powerpc/fsl/raideng.txt
@@ -0,0 +1,81 @@
+* Freescale 85xx RAID Engine nodes
+
+RAID Engine nodes are defined to describe on-chip RAID accelerators. Each RAID
+Engine should have a separate node.
+
+Supported chips:
+P5020, P5040
+
+Required properties:
+
+- compatible: Should contain "fsl,raideng-v1.0" as the value
+ This identifies RAID Engine block. 1 in 1.0 represents
+ major number whereas 0 represents minor number. The
+ version matches the hardware IP version.
+- reg: offset and length of the register set for the device
+- ranges: standard ranges property specifying the translation
+ between child address space and parent address space
+
+Example:
+ /* P5020 */
+ raideng: raideng@320000 {
+ compatible = "fsl,raideng-v1.0";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ reg = <0x320000 0x10000>;
+ ranges = <0 0x320000 0x10000>;
+ };
+
+
+There must be a sub-node for each job queue present in RAID Engine
+This node must be a sub-node of the main RAID Engine node
+
+- compatible: Should contain "fsl,raideng-v1.0-job-queue" as the value
+ This identifies the job queue interface
+- reg: offset and length of the register set for job queue
+- ranges: standard ranges property specifying the translation
+ between child address space and parent address space
+
+Example:
+ /* P5020 */
+ raideng_jq0@1000 {
+ compatible = "fsl,raideng-v1.0-job-queue";
+ reg = <0x1000 0x1000>;
+ ranges = <0x0 0x1000 0x1000>;
+ };
+
+
+There must be a sub-node for each job ring present in RAID Engine
+This node must be a sub-node of job queue node
+
+- compatible: Must contain "fsl,raideng-v1.0-job-ring" as the value
+ This identifies job ring. Should contain either
+ "fsl,raideng-v1.0-hp-ring" or "fsl,raideng-v1.0-lp-ring"
+ depending upon whether ring has high or low priority
+- reg: offset and length of the register set for job ring
+- interrupts: interrupt mapping for job ring IRQ
+
+Optional property:
+
+- fsl,liodn: Specifies the LIODN to be used for Job Ring. This
+ property is normally set by firmware. Value
+ is of 12-bits which is the LIODN number for this JR.
+ This property is used by the IOMMU (PAMU) to distinquish
+ transactions from this JR and than be able to do address
+ translation & protection accordingly.
+
+Example:
+ /* P5020 */
+ raideng_jq0@1000 {
+ compatible = "fsl,raideng-v1.0-job-queue";
+ reg = <0x1000 0x1000>;
+ ranges = <0x0 0x1000 0x1000>;
+
+ raideng_jr0: jr@0 {
+ compatible = "fsl,raideng-v1.0-job-ring", "fsl,raideng-v1.0-hp-ring";
+ reg = <0x0 0x400>;
+ interrupts = <139 2 0 0>;
+ interrupt-parent = <&mpic>;
+ fsl,liodn = <0x41>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/pwm/pwm-tiecap.txt b/Documentation/devicetree/bindings/pwm/pwm-tiecap.txt
new file mode 100644
index 0000000..131e8c11
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/pwm-tiecap.txt
@@ -0,0 +1,23 @@
+TI SOC ECAP based APWM controller
+
+Required properties:
+- compatible: Must be "ti,am33xx-ecap"
+- #pwm-cells: Should be 3. Number of cells being used to specify PWM property.
+ First cell specifies the per-chip index of the PWM to use, the second
+ cell is the period in nanoseconds and bit 0 in the third cell is used to
+ encode the polarity of PWM output. Set bit 0 of the third in PWM specifier
+ to 1 for inverse polarity & set to 0 for normal polarity.
+- reg: physical base address and size of the registers map.
+
+Optional properties:
+- ti,hwmods: Name of the hwmod associated to the ECAP:
+ "ecap<x>", <x> being the 0-based instance number from the HW spec
+
+Example:
+
+ecap0: ecap@0 {
+ compatible = "ti,am33xx-ecap";
+ #pwm-cells = <3>;
+ reg = <0x48300100 0x80>;
+ ti,hwmods = "ecap0";
+};
diff --git a/Documentation/devicetree/bindings/pwm/pwm-tiehrpwm.txt b/Documentation/devicetree/bindings/pwm/pwm-tiehrpwm.txt
new file mode 100644
index 0000000..4fc7079
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/pwm-tiehrpwm.txt
@@ -0,0 +1,23 @@
+TI SOC EHRPWM based PWM controller
+
+Required properties:
+- compatible : Must be "ti,am33xx-ehrpwm"
+- #pwm-cells: Should be 3. Number of cells being used to specify PWM property.
+ First cell specifies the per-chip index of the PWM to use, the second
+ cell is the period in nanoseconds and bit 0 in the third cell is used to
+ encode the polarity of PWM output. Set bit 0 of the third in PWM specifier
+ to 1 for inverse polarity & set to 0 for normal polarity.
+- reg: physical base address and size of the registers map.
+
+Optional properties:
+- ti,hwmods: Name of the hwmod associated to the EHRPWM:
+ "ehrpwm<x>", <x> being the 0-based instance number from the HW spec
+
+Example:
+
+ehrpwm0: ehrpwm@0 {
+ compatible = "ti,am33xx-ehrpwm";
+ #pwm-cells = <3>;
+ reg = <0x48300200 0x100>;
+ ti,hwmods = "ehrpwm0";
+};
diff --git a/Documentation/devicetree/bindings/pwm/pwm-tipwmss.txt b/Documentation/devicetree/bindings/pwm/pwm-tipwmss.txt
new file mode 100644
index 0000000..f7eae77
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/pwm-tipwmss.txt
@@ -0,0 +1,31 @@
+TI SOC based PWM Subsystem
+
+Required properties:
+- compatible: Must be "ti,am33xx-pwmss";
+- reg: physical base address and size of the registers map.
+- address-cells: Specify the number of u32 entries needed in child nodes.
+ Should set to 1.
+- size-cells: specify number of u32 entries needed to specify child nodes size
+ in reg property. Should set to 1.
+- ranges: describes the address mapping of a memory-mapped bus. Should set to
+ physical address map of child's base address, physical address within
+ parent's address space and length of the address map. For am33xx,
+ 3 set of child register maps present, ECAP register space, EQEP
+ register space, EHRPWM register space.
+
+Also child nodes should also populated under PWMSS DT node.
+
+Example:
+pwmss0: pwmss@48300000 {
+ compatible = "ti,am33xx-pwmss";
+ reg = <0x48300000 0x10>;
+ ti,hwmods = "epwmss0";
+ #address-cells = <1>;
+ #size-cells = <1>;
+ status = "disabled";
+ ranges = <0x48300100 0x48300100 0x80 /* ECAP */
+ 0x48300180 0x48300180 0x80 /* EQEP */
+ 0x48300200 0x48300200 0x80>; /* EHRPWM */
+
+ /* child nodes go here */
+};
diff --git a/Documentation/devicetree/bindings/pwm/pwm.txt b/Documentation/devicetree/bindings/pwm/pwm.txt
index 73ec962..06e6724 100644
--- a/Documentation/devicetree/bindings/pwm/pwm.txt
+++ b/Documentation/devicetree/bindings/pwm/pwm.txt
@@ -37,10 +37,21 @@ device:
pwm-names = "backlight";
};
+Note that in the example above, specifying the "pwm-names" is redundant
+because the name "backlight" would be used as fallback anyway.
+
pwm-specifier typically encodes the chip-relative PWM number and the PWM
-period in nanoseconds. Note that in the example above, specifying the
-"pwm-names" is redundant because the name "backlight" would be used as
-fallback anyway.
+period in nanoseconds.
+
+Optionally, the pwm-specifier can encode a number of flags in a third cell:
+- bit 0: PWM signal polarity (0: normal polarity, 1: inverse polarity)
+
+Example with optional PWM specifier for inverse polarity
+
+ bl: backlight {
+ pwms = <&pwm 0 5000000 1>;
+ pwm-names = "backlight";
+ };
2) PWM controller nodes
-----------------------
diff --git a/Documentation/devicetree/bindings/pwm/spear-pwm.txt b/Documentation/devicetree/bindings/pwm/spear-pwm.txt
new file mode 100644
index 0000000..3ac779d
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/spear-pwm.txt
@@ -0,0 +1,18 @@
+== ST SPEAr SoC PWM controller ==
+
+Required properties:
+- compatible: should be one of:
+ - "st,spear320-pwm"
+ - "st,spear1340-pwm"
+- reg: physical base address and length of the controller's registers
+- #pwm-cells: number of cells used to specify PWM which is fixed to 2 on
+ SPEAr. The first cell specifies the per-chip index of the PWM to use and
+ the second cell is the period in nanoseconds.
+
+Example:
+
+ pwm: pwm@a8000000 {
+ compatible ="st,spear320-pwm";
+ reg = <0xa8000000 0x1000>;
+ #pwm-cells = <2>;
+ };
diff --git a/Documentation/devicetree/bindings/pwm/ti,twl-pwm.txt b/Documentation/devicetree/bindings/pwm/ti,twl-pwm.txt
new file mode 100644
index 0000000..2943ee5
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/ti,twl-pwm.txt
@@ -0,0 +1,17 @@
+Texas Instruments TWL series PWM drivers
+
+Supported PWMs:
+On TWL4030 series: PWM1 and PWM2
+On TWL6030 series: PWM0 and PWM1
+
+Required properties:
+- compatible: "ti,twl4030-pwm" or "ti,twl6030-pwm"
+- #pwm-cells: should be 2. The first cell specifies the per-chip index
+ of the PWM to use and the second cell is the period in nanoseconds.
+
+Example:
+
+twl_pwm: pwm {
+ compatible = "ti,twl6030-pwm";
+ #pwm-cells = <2>;
+};
diff --git a/Documentation/devicetree/bindings/pwm/ti,twl-pwmled.txt b/Documentation/devicetree/bindings/pwm/ti,twl-pwmled.txt
new file mode 100644
index 0000000..cb64f3a
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/ti,twl-pwmled.txt
@@ -0,0 +1,17 @@
+Texas Instruments TWL series PWM drivers connected to LED terminals
+
+Supported PWMs:
+On TWL4030 series: PWMA and PWMB (connected to LEDA and LEDB terminals)
+On TWL6030 series: LED PWM (mainly used as charging indicator LED)
+
+Required properties:
+- compatible: "ti,twl4030-pwmled" or "ti,twl6030-pwmled"
+- #pwm-cells: should be 2. The first cell specifies the per-chip index
+ of the PWM to use and the second cell is the period in nanoseconds.
+
+Example:
+
+twl_pwmled: pwmled {
+ compatible = "ti,twl6030-pwmled";
+ #pwm-cells = <2>;
+};
diff --git a/Documentation/devicetree/bindings/pwm/vt8500-pwm.txt b/Documentation/devicetree/bindings/pwm/vt8500-pwm.txt
new file mode 100644
index 0000000..bcc6367
--- /dev/null
+++ b/Documentation/devicetree/bindings/pwm/vt8500-pwm.txt
@@ -0,0 +1,17 @@
+VIA/Wondermedia VT8500/WM8xxx series SoC PWM controller
+
+Required properties:
+- compatible: should be "via,vt8500-pwm"
+- reg: physical base address and length of the controller's registers
+- #pwm-cells: should be 2. The first cell specifies the per-chip index
+ of the PWM to use and the second cell is the period in nanoseconds.
+- clocks: phandle to the PWM source clock
+
+Example:
+
+pwm1: pwm@d8220000 {
+ #pwm-cells = <2>;
+ compatible = "via,vt8500-pwm";
+ reg = <0xd8220000 0x1000>;
+ clocks = <&clkpwm>;
+};
diff --git a/Documentation/devicetree/bindings/spi/nvidia,tegra20-sflash.txt b/Documentation/devicetree/bindings/spi/nvidia,tegra20-sflash.txt
index 8cf24f6..7b53da5 100644
--- a/Documentation/devicetree/bindings/spi/nvidia,tegra20-sflash.txt
+++ b/Documentation/devicetree/bindings/spi/nvidia,tegra20-sflash.txt
@@ -13,7 +13,7 @@ Recommended properties:
Example:
-spi@7000d600 {
+spi@7000c380 {
compatible = "nvidia,tegra20-sflash";
reg = <0x7000c380 0x80>;
interrupts = <0 39 0x04>;
diff --git a/Documentation/devicetree/bindings/spi/nvidia,tegra20-slink.txt b/Documentation/devicetree/bindings/spi/nvidia,tegra20-slink.txt
index f5b1ad1..eefe15e 100644
--- a/Documentation/devicetree/bindings/spi/nvidia,tegra20-slink.txt
+++ b/Documentation/devicetree/bindings/spi/nvidia,tegra20-slink.txt
@@ -13,7 +13,7 @@ Recommended properties:
Example:
-slink@7000d600 {
+spi@7000d600 {
compatible = "nvidia,tegra20-slink";
reg = <0x7000d600 0x200>;
interrupts = <0 82 0x04>;
diff --git a/Documentation/devicetree/bindings/spi/spi_atmel.txt b/Documentation/devicetree/bindings/spi/spi_atmel.txt
new file mode 100644
index 0000000..07e04cd
--- /dev/null
+++ b/Documentation/devicetree/bindings/spi/spi_atmel.txt
@@ -0,0 +1,26 @@
+Atmel SPI device
+
+Required properties:
+- compatible : should be "atmel,at91rm9200-spi".
+- reg: Address and length of the register set for the device
+- interrupts: Should contain spi interrupt
+- cs-gpios: chipselects
+
+Example:
+
+spi1: spi@fffcc000 {
+ compatible = "atmel,at91rm9200-spi";
+ reg = <0xfffcc000 0x4000>;
+ interrupts = <13 4 5>;
+ #address-cells = <1>;
+ #size-cells = <0>;
+ cs-gpios = <&pioB 3 0>;
+ status = "okay";
+
+ mmc-slot@0 {
+ compatible = "mmc-spi-slot";
+ reg = <0>;
+ gpios = <&pioC 4 0>; /* CD */
+ spi-max-frequency = <25000000>;
+ };
+};
diff --git a/Documentation/devicetree/bindings/watchdog/davinci-wdt.txt b/Documentation/devicetree/bindings/watchdog/davinci-wdt.txt
new file mode 100644
index 0000000..75558cc
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/davinci-wdt.txt
@@ -0,0 +1,12 @@
+DaVinci Watchdog Timer (WDT) Controller
+
+Required properties:
+- compatible : Should be "ti,davinci-wdt"
+- reg : Should contain WDT registers location and length
+
+Examples:
+
+wdt: wdt@2320000 {
+ compatible = "ti,davinci-wdt";
+ reg = <0x02320000 0x80>;
+};
diff --git a/Documentation/devicetree/bindings/watchdog/twl4030-wdt.txt b/Documentation/devicetree/bindings/watchdog/twl4030-wdt.txt
new file mode 100644
index 0000000..80a3719
--- /dev/null
+++ b/Documentation/devicetree/bindings/watchdog/twl4030-wdt.txt
@@ -0,0 +1,10 @@
+Device tree bindings for twl4030-wdt driver (TWL4030 watchdog)
+
+Required properties:
+ compatible = "ti,twl4030-wdt";
+
+Example:
+
+watchdog {
+ compatible = "ti,twl4030-wdt";
+};
diff --git a/Documentation/filesystems/00-INDEX b/Documentation/filesystems/00-INDEX
index 7b52ba7..8042050 100644
--- a/Documentation/filesystems/00-INDEX
+++ b/Documentation/filesystems/00-INDEX
@@ -50,6 +50,8 @@ ext4.txt
- info, mount options and specifications for the Ext4 filesystem.
files.txt
- info on file management in the Linux kernel.
+f2fs.txt
+ - info and mount options for the F2FS filesystem.
fuse.txt
- info on the Filesystem in User SpacE including mount options.
gfs2.txt
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/Locking
index e540a24..f48e0c6 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/Locking
@@ -80,7 +80,6 @@ rename: yes (all) (see below)
readlink: no
follow_link: no
put_link: no
-truncate: yes (see below)
setattr: yes
permission: no (may not block if called in rcu-walk mode)
get_acl: no
@@ -96,11 +95,6 @@ atomic_open: yes
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_mutex on
victim.
cross-directory ->rename() has (per-superblock) ->s_vfs_rename_sem.
- ->truncate() is never called directly - it's a callback, not a
-method. It's called by vmtruncate() - deprecated library function used by
-->setattr(). Locking information above applies to that call (i.e. is
-inherited from ->setattr() - vmtruncate() is used when ATTR_SIZE had been
-passed).
See Documentation/filesystems/directory-locking for more detailed discussion
of the locking scheme for directory operations.
diff --git a/Documentation/filesystems/caching/backend-api.txt b/Documentation/filesystems/caching/backend-api.txt
index 382d52c..d78bab9 100644
--- a/Documentation/filesystems/caching/backend-api.txt
+++ b/Documentation/filesystems/caching/backend-api.txt
@@ -308,6 +308,18 @@ performed on the denizens of the cache. These are held in a structure of type:
obtained by calling object->cookie->def->get_aux()/get_attr().
+ (*) Invalidate data object [mandatory]:
+
+ int (*invalidate_object)(struct fscache_operation *op)
+
+ This is called to invalidate a data object (as pointed to by op->object).
+ All the data stored for this object should be discarded and an
+ attr_changed operation should be performed. The caller will follow up
+ with an object update operation.
+
+ fscache_op_complete() must be called on op before returning.
+
+
(*) Discard object [mandatory]:
void (*drop_object)(struct fscache_object *object)
@@ -419,7 +431,10 @@ performed on the denizens of the cache. These are held in a structure of type:
If an I/O error occurs, fscache_io_error() should be called and -ENOBUFS
returned if possible or fscache_end_io() called with a suitable error
- code..
+ code.
+
+ fscache_put_retrieval() should be called after a page or pages are dealt
+ with. This will complete the operation when all pages are dealt with.
(*) Request pages be read from cache [mandatory]:
@@ -526,6 +541,27 @@ FS-Cache provides some utilities that a cache backend may make use of:
error value should be 0 if successful and an error otherwise.
+ (*) Record that one or more pages being retrieved or allocated have been dealt
+ with:
+
+ void fscache_retrieval_complete(struct fscache_retrieval *op,
+ int n_pages);
+
+ This is called to record the fact that one or more pages have been dealt
+ with and are no longer the concern of this operation. When the number of
+ pages remaining in the operation reaches 0, the operation will be
+ completed.
+
+
+ (*) Record operation completion:
+
+ void fscache_op_complete(struct fscache_operation *op);
+
+ This is called to record the completion of an operation. This deducts
+ this operation from the parent object's run state, potentially permitting
+ one or more pending operations to start running.
+
+
(*) Set highest store limit:
void fscache_set_store_limit(struct fscache_object *object,
diff --git a/Documentation/filesystems/caching/netfs-api.txt b/Documentation/filesystems/caching/netfs-api.txt
index 7cc6bf2..97e6c0e 100644
--- a/Documentation/filesystems/caching/netfs-api.txt
+++ b/Documentation/filesystems/caching/netfs-api.txt
@@ -35,8 +35,9 @@ This document contains the following sections:
(12) Index and data file update
(13) Miscellaneous cookie operations
(14) Cookie unregistration
- (15) Index and data file invalidation
- (16) FS-Cache specific page flags.
+ (15) Index invalidation
+ (16) Data file invalidation
+ (17) FS-Cache specific page flags.
=============================
@@ -767,13 +768,42 @@ the cookies for "child" indices, objects and pages have been relinquished
first.
-================================
-INDEX AND DATA FILE INVALIDATION
-================================
+==================
+INDEX INVALIDATION
+==================
+
+There is no direct way to invalidate an index subtree. To do this, the caller
+should relinquish and retire the cookie they have, and then acquire a new one.
+
+
+======================
+DATA FILE INVALIDATION
+======================
+
+Sometimes it will be necessary to invalidate an object that contains data.
+Typically this will be necessary when the server tells the netfs of a foreign
+change - at which point the netfs has to throw away all the state it had for an
+inode and reload from the server.
+
+To indicate that a cache object should be invalidated, the following function
+can be called:
+
+ void fscache_invalidate(struct fscache_cookie *cookie);
+
+This can be called with spinlocks held as it defers the work to a thread pool.
+All extant storage, retrieval and attribute change ops at this point are
+cancelled and discarded. Some future operations will be rejected until the
+cache has had a chance to insert a barrier in the operations queue. After
+that, operations will be queued again behind the invalidation operation.
+
+The invalidation operation will perform an attribute change operation and an
+auxiliary data update operation as it is very likely these will have changed.
+
+Using the following function, the netfs can wait for the invalidation operation
+to have reached a point at which it can start submitting ordinary operations
+once again:
-There is no direct way to invalidate an index subtree or a data file. To do
-this, the caller should relinquish and retire the cookie they have, and then
-acquire a new one.
+ void fscache_wait_on_invalidate(struct fscache_cookie *cookie);
===========================
diff --git a/Documentation/filesystems/caching/object.txt b/Documentation/filesystems/caching/object.txt
index 5831334..100ff41 100644
--- a/Documentation/filesystems/caching/object.txt
+++ b/Documentation/filesystems/caching/object.txt
@@ -216,7 +216,14 @@ servicing netfs requests:
The normal running state. In this state, requests the netfs makes will be
passed on to the cache.
- (6) State FSCACHE_OBJECT_UPDATING.
+ (6) State FSCACHE_OBJECT_INVALIDATING.
+
+ The object is undergoing invalidation. When the state comes here, it
+ discards all pending read, write and attribute change operations as it is
+ going to clear out the cache entirely and reinitialise it. It will then
+ continue to the FSCACHE_OBJECT_UPDATING state.
+
+ (7) State FSCACHE_OBJECT_UPDATING.
The state machine comes here to update the object in the cache from the
netfs's records. This involves updating the auxiliary data that is used
@@ -225,13 +232,13 @@ servicing netfs requests:
And there are terminal states in which an object cleans itself up, deallocates
memory and potentially deletes stuff from disk:
- (7) State FSCACHE_OBJECT_LC_DYING.
+ (8) State FSCACHE_OBJECT_LC_DYING.
The object comes here if it is dying because of a lookup or creation
error. This would be due to a disk error or system error of some sort.
Temporary data is cleaned up, and the parent is released.
- (8) State FSCACHE_OBJECT_DYING.
+ (9) State FSCACHE_OBJECT_DYING.
The object comes here if it is dying due to an error, because its parent
cookie has been relinquished by the netfs or because the cache is being
@@ -241,27 +248,27 @@ memory and potentially deletes stuff from disk:
can destroy themselves. This object waits for all its children to go away
before advancing to the next state.
- (9) State FSCACHE_OBJECT_ABORT_INIT.
+(10) State FSCACHE_OBJECT_ABORT_INIT.
The object comes to this state if it was waiting on its parent in
FSCACHE_OBJECT_INIT, but its parent died. The object will destroy itself
so that the parent may proceed from the FSCACHE_OBJECT_DYING state.
-(10) State FSCACHE_OBJECT_RELEASING.
-(11) State FSCACHE_OBJECT_RECYCLING.
+(11) State FSCACHE_OBJECT_RELEASING.
+(12) State FSCACHE_OBJECT_RECYCLING.
The object comes to one of these two states when dying once it is rid of
all its children, if it is dying because the netfs relinquished its
cookie. In the first state, the cached data is expected to persist, and
in the second it will be deleted.
-(12) State FSCACHE_OBJECT_WITHDRAWING.
+(13) State FSCACHE_OBJECT_WITHDRAWING.
The object transits to this state if the cache decides it wants to
withdraw the object from service, perhaps to make space, but also due to
error or just because the whole cache is being withdrawn.
-(13) State FSCACHE_OBJECT_DEAD.
+(14) State FSCACHE_OBJECT_DEAD.
The object transits to this state when the in-memory object record is
ready to be deleted. The object processor shouldn't ever see an object in
diff --git a/Documentation/filesystems/caching/operations.txt b/Documentation/filesystems/caching/operations.txt
index b6b070c..bee2a5f 100644
--- a/Documentation/filesystems/caching/operations.txt
+++ b/Documentation/filesystems/caching/operations.txt
@@ -174,7 +174,7 @@ Operations are used through the following procedure:
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
- fscache_put_operation() on it.
+ fscache_op_complete() and fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
diff --git a/Documentation/filesystems/f2fs.txt b/Documentation/filesystems/f2fs.txt
new file mode 100644
index 0000000..dcf338e
--- /dev/null
+++ b/Documentation/filesystems/f2fs.txt
@@ -0,0 +1,421 @@
+================================================================================
+WHAT IS Flash-Friendly File System (F2FS)?
+================================================================================
+
+NAND flash memory-based storage devices, such as SSD, eMMC, and SD cards, have
+been equipped on a variety systems ranging from mobile to server systems. Since
+they are known to have different characteristics from the conventional rotating
+disks, a file system, an upper layer to the storage device, should adapt to the
+changes from the sketch in the design level.
+
+F2FS is a file system exploiting NAND flash memory-based storage devices, which
+is based on Log-structured File System (LFS). The design has been focused on
+addressing the fundamental issues in LFS, which are snowball effect of wandering
+tree and high cleaning overhead.
+
+Since a NAND flash memory-based storage device shows different characteristic
+according to its internal geometry or flash memory management scheme, namely FTL,
+F2FS and its tools support various parameters not only for configuring on-disk
+layout, but also for selecting allocation and cleaning algorithms.
+
+The file system formatting tool, "mkfs.f2fs", is available from the following
+git tree:
+>> git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs-tools.git
+
+For reporting bugs and sending patches, please use the following mailing list:
+>> linux-f2fs-devel@lists.sourceforge.net
+
+================================================================================
+BACKGROUND AND DESIGN ISSUES
+================================================================================
+
+Log-structured File System (LFS)
+--------------------------------
+"A log-structured file system writes all modifications to disk sequentially in
+a log-like structure, thereby speeding up both file writing and crash recovery.
+The log is the only structure on disk; it contains indexing information so that
+files can be read back from the log efficiently. In order to maintain large free
+areas on disk for fast writing, we divide the log into segments and use a
+segment cleaner to compress the live information from heavily fragmented
+segments." from Rosenblum, M. and Ousterhout, J. K., 1992, "The design and
+implementation of a log-structured file system", ACM Trans. Computer Systems
+10, 1, 26–52.
+
+Wandering Tree Problem
+----------------------
+In LFS, when a file data is updated and written to the end of log, its direct
+pointer block is updated due to the changed location. Then the indirect pointer
+block is also updated due to the direct pointer block update. In this manner,
+the upper index structures such as inode, inode map, and checkpoint block are
+also updated recursively. This problem is called as wandering tree problem [1],
+and in order to enhance the performance, it should eliminate or relax the update
+propagation as much as possible.
+
+[1] Bityutskiy, A. 2005. JFFS3 design issues. http://www.linux-mtd.infradead.org/
+
+Cleaning Overhead
+-----------------
+Since LFS is based on out-of-place writes, it produces so many obsolete blocks
+scattered across the whole storage. In order to serve new empty log space, it
+needs to reclaim these obsolete blocks seamlessly to users. This job is called
+as a cleaning process.
+
+The process consists of three operations as follows.
+1. A victim segment is selected through referencing segment usage table.
+2. It loads parent index structures of all the data in the victim identified by
+ segment summary blocks.
+3. It checks the cross-reference between the data and its parent index structure.
+4. It moves valid data selectively.
+
+This cleaning job may cause unexpected long delays, so the most important goal
+is to hide the latencies to users. And also definitely, it should reduce the
+amount of valid data to be moved, and move them quickly as well.
+
+================================================================================
+KEY FEATURES
+================================================================================
+
+Flash Awareness
+---------------
+- Enlarge the random write area for better performance, but provide the high
+ spatial locality
+- Align FS data structures to the operational units in FTL as best efforts
+
+Wandering Tree Problem
+----------------------
+- Use a term, “node”, that represents inodes as well as various pointer blocks
+- Introduce Node Address Table (NAT) containing the locations of all the “node”
+ blocks; this will cut off the update propagation.
+
+Cleaning Overhead
+-----------------
+- Support a background cleaning process
+- Support greedy and cost-benefit algorithms for victim selection policies
+- Support multi-head logs for static/dynamic hot and cold data separation
+- Introduce adaptive logging for efficient block allocation
+
+================================================================================
+MOUNT OPTIONS
+================================================================================
+
+background_gc_off Turn off cleaning operations, namely garbage collection,
+ triggered in background when I/O subsystem is idle.
+disable_roll_forward Disable the roll-forward recovery routine
+discard Issue discard/TRIM commands when a segment is cleaned.
+no_heap Disable heap-style segment allocation which finds free
+ segments for data from the beginning of main area, while
+ for node from the end of main area.
+nouser_xattr Disable Extended User Attributes. Note: xattr is enabled
+ by default if CONFIG_F2FS_FS_XATTR is selected.
+noacl Disable POSIX Access Control List. Note: acl is enabled
+ by default if CONFIG_F2FS_FS_POSIX_ACL is selected.
+active_logs=%u Support configuring the number of active logs. In the
+ current design, f2fs supports only 2, 4, and 6 logs.
+ Default number is 6.
+disable_ext_identify Disable the extension list configured by mkfs, so f2fs
+ does not aware of cold files such as media files.
+
+================================================================================
+DEBUGFS ENTRIES
+================================================================================
+
+/sys/kernel/debug/f2fs/ contains information about all the partitions mounted as
+f2fs. Each file shows the whole f2fs information.
+
+/sys/kernel/debug/f2fs/status includes:
+ - major file system information managed by f2fs currently
+ - average SIT information about whole segments
+ - current memory footprint consumed by f2fs.
+
+================================================================================
+USAGE
+================================================================================
+
+1. Download userland tools and compile them.
+
+2. Skip, if f2fs was compiled statically inside kernel.
+ Otherwise, insert the f2fs.ko module.
+ # insmod f2fs.ko
+
+3. Create a directory trying to mount
+ # mkdir /mnt/f2fs
+
+4. Format the block device, and then mount as f2fs
+ # mkfs.f2fs -l label /dev/block_device
+ # mount -t f2fs /dev/block_device /mnt/f2fs
+
+Format options
+--------------
+-l [label] : Give a volume label, up to 256 unicode name.
+-a [0 or 1] : Split start location of each area for heap-based allocation.
+ 1 is set by default, which performs this.
+-o [int] : Set overprovision ratio in percent over volume size.
+ 5 is set by default.
+-s [int] : Set the number of segments per section.
+ 1 is set by default.
+-z [int] : Set the number of sections per zone.
+ 1 is set by default.
+-e [str] : Set basic extension list. e.g. "mp3,gif,mov"
+
+================================================================================
+DESIGN
+================================================================================
+
+On-disk Layout
+--------------
+
+F2FS divides the whole volume into a number of segments, each of which is fixed
+to 2MB in size. A section is composed of consecutive segments, and a zone
+consists of a set of sections. By default, section and zone sizes are set to one
+segment size identically, but users can easily modify the sizes by mkfs.
+
+F2FS splits the entire volume into six areas, and all the areas except superblock
+consists of multiple segments as described below.
+
+ align with the zone size <-|
+ |-> align with the segment size
+ _________________________________________________________________________
+ | | | Segment | Node | Segment | |
+ | Superblock | Checkpoint | Info. | Address | Summary | Main |
+ | (SB) | (CP) | Table (SIT) | Table (NAT) | Area (SSA) | |
+ |____________|_____2______|______N______|______N______|______N_____|__N___|
+ . .
+ . .
+ . .
+ ._________________________________________.
+ |_Segment_|_..._|_Segment_|_..._|_Segment_|
+ . .
+ ._________._________
+ |_section_|__...__|_
+ . .
+ .________.
+ |__zone__|
+
+- Superblock (SB)
+ : It is located at the beginning of the partition, and there exist two copies
+ to avoid file system crash. It contains basic partition information and some
+ default parameters of f2fs.
+
+- Checkpoint (CP)
+ : It contains file system information, bitmaps for valid NAT/SIT sets, orphan
+ inode lists, and summary entries of current active segments.
+
+- Segment Information Table (SIT)
+ : It contains segment information such as valid block count and bitmap for the
+ validity of all the blocks.
+
+- Node Address Table (NAT)
+ : It is composed of a block address table for all the node blocks stored in
+ Main area.
+
+- Segment Summary Area (SSA)
+ : It contains summary entries which contains the owner information of all the
+ data and node blocks stored in Main area.
+
+- Main Area
+ : It contains file and directory data including their indices.
+
+In order to avoid misalignment between file system and flash-based storage, F2FS
+aligns the start block address of CP with the segment size. Also, it aligns the
+start block address of Main area with the zone size by reserving some segments
+in SSA area.
+
+Reference the following survey for additional technical details.
+https://wiki.linaro.org/WorkingGroups/Kernel/Projects/FlashCardSurvey
+
+File System Metadata Structure
+------------------------------
+
+F2FS adopts the checkpointing scheme to maintain file system consistency. At
+mount time, F2FS first tries to find the last valid checkpoint data by scanning
+CP area. In order to reduce the scanning time, F2FS uses only two copies of CP.
+One of them always indicates the last valid data, which is called as shadow copy
+mechanism. In addition to CP, NAT and SIT also adopt the shadow copy mechanism.
+
+For file system consistency, each CP points to which NAT and SIT copies are
+valid, as shown as below.
+
+ +--------+----------+---------+
+ | CP | SIT | NAT |
+ +--------+----------+---------+
+ . . . .
+ . . . .
+ . . . .
+ +-------+-------+--------+--------+--------+--------+
+ | CP #0 | CP #1 | SIT #0 | SIT #1 | NAT #0 | NAT #1 |
+ +-------+-------+--------+--------+--------+--------+
+ | ^ ^
+ | | |
+ `----------------------------------------'
+
+Index Structure
+---------------
+
+The key data structure to manage the data locations is a "node". Similar to
+traditional file structures, F2FS has three types of node: inode, direct node,
+indirect node. F2FS assigns 4KB to an inode block which contains 923 data block
+indices, two direct node pointers, two indirect node pointers, and one double
+indirect node pointer as described below. One direct node block contains 1018
+data blocks, and one indirect node block contains also 1018 node blocks. Thus,
+one inode block (i.e., a file) covers:
+
+ 4KB * (923 + 2 * 1018 + 2 * 1018 * 1018 + 1018 * 1018 * 1018) := 3.94TB.
+
+ Inode block (4KB)
+ |- data (923)
+ |- direct node (2)
+ | `- data (1018)
+ |- indirect node (2)
+ | `- direct node (1018)
+ | `- data (1018)
+ `- double indirect node (1)
+ `- indirect node (1018)
+ `- direct node (1018)
+ `- data (1018)
+
+Note that, all the node blocks are mapped by NAT which means the location of
+each node is translated by the NAT table. In the consideration of the wandering
+tree problem, F2FS is able to cut off the propagation of node updates caused by
+leaf data writes.
+
+Directory Structure
+-------------------
+
+A directory entry occupies 11 bytes, which consists of the following attributes.
+
+- hash hash value of the file name
+- ino inode number
+- len the length of file name
+- type file type such as directory, symlink, etc
+
+A dentry block consists of 214 dentry slots and file names. Therein a bitmap is
+used to represent whether each dentry is valid or not. A dentry block occupies
+4KB with the following composition.
+
+ Dentry Block(4 K) = bitmap (27 bytes) + reserved (3 bytes) +
+ dentries(11 * 214 bytes) + file name (8 * 214 bytes)
+
+ [Bucket]
+ +--------------------------------+
+ |dentry block 1 | dentry block 2 |
+ +--------------------------------+
+ . .
+ . .
+ . [Dentry Block Structure: 4KB] .
+ +--------+----------+----------+------------+
+ | bitmap | reserved | dentries | file names |
+ +--------+----------+----------+------------+
+ [Dentry Block: 4KB] . .
+ . .
+ . .
+ +------+------+-----+------+
+ | hash | ino | len | type |
+ +------+------+-----+------+
+ [Dentry Structure: 11 bytes]
+
+F2FS implements multi-level hash tables for directory structure. Each level has
+a hash table with dedicated number of hash buckets as shown below. Note that
+"A(2B)" means a bucket includes 2 data blocks.
+
+----------------------
+A : bucket
+B : block
+N : MAX_DIR_HASH_DEPTH
+----------------------
+
+level #0 | A(2B)
+ |
+level #1 | A(2B) - A(2B)
+ |
+level #2 | A(2B) - A(2B) - A(2B) - A(2B)
+ . | . . . .
+level #N/2 | A(2B) - A(2B) - A(2B) - A(2B) - A(2B) - ... - A(2B)
+ . | . . . .
+level #N | A(4B) - A(4B) - A(4B) - A(4B) - A(4B) - ... - A(4B)
+
+The number of blocks and buckets are determined by,
+
+ ,- 2, if n < MAX_DIR_HASH_DEPTH / 2,
+ # of blocks in level #n = |
+ `- 4, Otherwise
+
+ ,- 2^n, if n < MAX_DIR_HASH_DEPTH / 2,
+ # of buckets in level #n = |
+ `- 2^((MAX_DIR_HASH_DEPTH / 2) - 1), Otherwise
+
+When F2FS finds a file name in a directory, at first a hash value of the file
+name is calculated. Then, F2FS scans the hash table in level #0 to find the
+dentry consisting of the file name and its inode number. If not found, F2FS
+scans the next hash table in level #1. In this way, F2FS scans hash tables in
+each levels incrementally from 1 to N. In each levels F2FS needs to scan only
+one bucket determined by the following equation, which shows O(log(# of files))
+complexity.
+
+ bucket number to scan in level #n = (hash value) % (# of buckets in level #n)
+
+In the case of file creation, F2FS finds empty consecutive slots that cover the
+file name. F2FS searches the empty slots in the hash tables of whole levels from
+1 to N in the same way as the lookup operation.
+
+The following figure shows an example of two cases holding children.
+ --------------> Dir <--------------
+ | |
+ child child
+
+ child - child [hole] - child
+
+ child - child - child [hole] - [hole] - child
+
+ Case 1: Case 2:
+ Number of children = 6, Number of children = 3,
+ File size = 7 File size = 7
+
+Default Block Allocation
+------------------------
+
+At runtime, F2FS manages six active logs inside "Main" area: Hot/Warm/Cold node
+and Hot/Warm/Cold data.
+
+- Hot node contains direct node blocks of directories.
+- Warm node contains direct node blocks except hot node blocks.
+- Cold node contains indirect node blocks
+- Hot data contains dentry blocks
+- Warm data contains data blocks except hot and cold data blocks
+- Cold data contains multimedia data or migrated data blocks
+
+LFS has two schemes for free space management: threaded log and copy-and-compac-
+tion. The copy-and-compaction scheme which is known as cleaning, is well-suited
+for devices showing very good sequential write performance, since free segments
+are served all the time for writing new data. However, it suffers from cleaning
+overhead under high utilization. Contrarily, the threaded log scheme suffers
+from random writes, but no cleaning process is needed. F2FS adopts a hybrid
+scheme where the copy-and-compaction scheme is adopted by default, but the
+policy is dynamically changed to the threaded log scheme according to the file
+system status.
+
+In order to align F2FS with underlying flash-based storage, F2FS allocates a
+segment in a unit of section. F2FS expects that the section size would be the
+same as the unit size of garbage collection in FTL. Furthermore, with respect
+to the mapping granularity in FTL, F2FS allocates each section of the active
+logs from different zones as much as possible, since FTL can write the data in
+the active logs into one allocation unit according to its mapping granularity.
+
+Cleaning process
+----------------
+
+F2FS does cleaning both on demand and in the background. On-demand cleaning is
+triggered when there are not enough free segments to serve VFS calls. Background
+cleaner is operated by a kernel thread, and triggers the cleaning job when the
+system is idle.
+
+F2FS supports two victim selection policies: greedy and cost-benefit algorithms.
+In the greedy algorithm, F2FS selects a victim segment having the smallest number
+of valid blocks. In the cost-benefit algorithm, F2FS selects a victim segment
+according to the segment age and the number of valid blocks in order to address
+log block thrashing problem in the greedy algorithm. F2FS adopts the greedy
+algorithm for on-demand cleaner, while background cleaner adopts cost-benefit
+algorithm.
+
+In order to identify whether the data in the victim segment are valid or not,
+F2FS manages a bitmap. Each bit represents the validity of a block, and the
+bitmap is composed of a bit stream covering whole blocks in main area.
diff --git a/Documentation/filesystems/nfs/nfs41-server.txt b/Documentation/filesystems/nfs/nfs41-server.txt
index 092fad9..01c2db7 100644
--- a/Documentation/filesystems/nfs/nfs41-server.txt
+++ b/Documentation/filesystems/nfs/nfs41-server.txt
@@ -39,21 +39,10 @@ interoperability problems with future clients. Known issues:
from a linux client are possible, but we aren't really
conformant with the spec (for example, we don't use kerberos
on the backchannel correctly).
- - Incomplete backchannel support: incomplete backchannel gss
- support and no support for BACKCHANNEL_CTL mean that
- callbacks (hence delegations and layouts) may not be
- available and clients confused by the incomplete
- implementation may fail.
- We do not support SSV, which provides security for shared
client-server state (thus preventing unauthorized tampering
with locks and opens, for example). It is mandatory for
servers to support this, though no clients use it yet.
- - Mandatory operations which we do not support, such as
- DESTROY_CLIENTID, are not currently used by clients, but will be
- (and the spec recommends their uses in common cases), and
- clients should not be expected to know how to recover from the
- case where they are not supported. This will eventually cause
- interoperability failures.
In addition, some limitations are inherited from the current NFSv4
implementation:
@@ -89,7 +78,7 @@ Operations
| | MNI | or OPT) | |
+----------------------+------------+--------------+----------------+
| ACCESS | REQ | | Section 18.1 |
-NS | BACKCHANNEL_CTL | REQ | | Section 18.33 |
+I | BACKCHANNEL_CTL | REQ | | Section 18.33 |
I | BIND_CONN_TO_SESSION | REQ | | Section 18.34 |
| CLOSE | REQ | | Section 18.2 |
| COMMIT | REQ | | Section 18.3 |
@@ -99,7 +88,7 @@ NS*| DELEGPURGE | OPT | FDELG (REQ) | Section 18.5 |
| DELEGRETURN | OPT | FDELG, | Section 18.6 |
| | | DDELG, pNFS | |
| | | (REQ) | |
-NS | DESTROY_CLIENTID | REQ | | Section 18.50 |
+I | DESTROY_CLIENTID | REQ | | Section 18.50 |
I | DESTROY_SESSION | REQ | | Section 18.37 |
I | EXCHANGE_ID | REQ | | Section 18.35 |
I | FREE_STATEID | REQ | | Section 18.38 |
@@ -192,7 +181,6 @@ EXCHANGE_ID:
CREATE_SESSION:
* backchannel attributes are ignored
-* backchannel security parameters are ignored
SEQUENCE:
* no support for dynamic slot table renegotiation (optional)
@@ -202,7 +190,7 @@ Nonstandard compound limitations:
ca_maxrequestsize request and a ca_maxresponsesize reply, so we may
fail to live up to the promise we made in CREATE_SESSION fore channel
negotiation.
-* No more than one IO operation (read, write, readdir) allowed per
- compound.
+* No more than one read-like operation allowed per compound; encoding
+ replies that cross page boundaries (except for read data) not handled.
See also http://wiki.linux-nfs.org/wiki/index.php/Server_4.0_and_4.1_issues.
diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting
index 0742fee..0472c31 100644
--- a/Documentation/filesystems/porting
+++ b/Documentation/filesystems/porting
@@ -281,7 +281,7 @@ ext2_write_failed and callers for an example.
[mandatory]
- ->truncate is going away. The whole truncate sequence needs to be
+ ->truncate is gone. The whole truncate sequence needs to be
implemented in ->setattr, which is now mandatory for filesystems
implementing on-disk size changes. Start with a copy of the old inode_setattr
and vmtruncate, and the reorder the vmtruncate + foofs_vmtruncate sequence to
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt
index 2ee133e..e3869098 100644
--- a/Documentation/filesystems/vfs.txt
+++ b/Documentation/filesystems/vfs.txt
@@ -350,7 +350,6 @@ struct inode_operations {
int (*readlink) (struct dentry *, char __user *,int);
void * (*follow_link) (struct dentry *, struct nameidata *);
void (*put_link) (struct dentry *, struct nameidata *, void *);
- void (*truncate) (struct inode *);
int (*permission) (struct inode *, int);
int (*get_acl)(struct inode *, int);
int (*setattr) (struct dentry *, struct iattr *);
@@ -431,16 +430,6 @@ otherwise noted.
started might not be in the page cache at the end of the
walk).
- truncate: Deprecated. This will not be called if ->setsize is defined.
- Called by the VFS to change the size of a file. The
- i_size field of the inode is set to the desired size by the
- VFS before this method is called. This method is called by
- the truncate(2) system call and related functionality.
-
- Note: ->truncate and vmtruncate are deprecated. Do not add new
- instances/calls of these. Filesystems should be converted to do their
- truncate sequence via ->setattr().
-
permission: called by the VFS to check for access rights on a POSIX-like
filesystem.
diff --git a/Documentation/hwmon/it87 b/Documentation/hwmon/it87
index 87850d8..8386aad 100644
--- a/Documentation/hwmon/it87
+++ b/Documentation/hwmon/it87
@@ -209,3 +209,13 @@ doesn't use CPU cycles.
Trip points must be set properly before switching to automatic fan speed
control mode. The driver will perform basic integrity checks before
actually switching to automatic control mode.
+
+
+Temperature offset attributes
+-----------------------------
+
+The driver supports temp[1-3]_offset sysfs attributes to adjust the reported
+temperature for thermal diodes or diode-connected thermal transistors.
+If a temperature sensor is configured for thermistors, the attribute values
+are ignored. If the thermal sensor type is Intel PECI, the temperature offset
+must be programmed to the critical CPU temperature.
diff --git a/Documentation/i2c/instantiating-devices b/Documentation/i2c/instantiating-devices
index abf6361..2218266 100644
--- a/Documentation/i2c/instantiating-devices
+++ b/Documentation/i2c/instantiating-devices
@@ -91,7 +91,7 @@ Example (from the nxp OHCI driver):
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, I2C_CLIENT_END };
-static int __devinit usb_hcd_nxp_probe(struct platform_device *pdev)
+static int usb_hcd_nxp_probe(struct platform_device *pdev)
{
(...)
struct i2c_adapter *i2c_adap;
diff --git a/Documentation/kernel-parameters.txt b/Documentation/kernel-parameters.txt
index ddd84d6..363e348 100644
--- a/Documentation/kernel-parameters.txt
+++ b/Documentation/kernel-parameters.txt
@@ -446,12 +446,6 @@ bytes respectively. Such letter suffixes can also be entirely omitted.
possible to determine what the correct size should be.
This option provides an override for these situations.
- capability.disable=
- [SECURITY] Disable capabilities. This would normally
- be used only if an alternative security model is to be
- configured. Potentially dangerous and should only be
- used if you are entirely sure of the consequences.
-
ccw_timeout_log [S390]
See Documentation/s390/CommonIO for details.
diff --git a/Documentation/networking/ip-sysctl.txt b/Documentation/networking/ip-sysctl.txt
index dd52d51..dbca661 100644
--- a/Documentation/networking/ip-sysctl.txt
+++ b/Documentation/networking/ip-sysctl.txt
@@ -36,7 +36,7 @@ neigh/default/unres_qlen_bytes - INTEGER
The maximum number of bytes which may be used by packets
queued for each unresolved address by other network layers.
(added in linux 3.3)
- Seting negative value is meaningless and will retrun error.
+ Setting negative value is meaningless and will return error.
Default: 65536 Bytes(64KB)
neigh/default/unres_qlen - INTEGER
@@ -215,7 +215,7 @@ tcp_ecn - INTEGER
Possible values are:
0 Disable ECN. Neither initiate nor accept ECN.
1 Always request ECN on outgoing connection attempts.
- 2 Enable ECN when requested by incomming connections
+ 2 Enable ECN when requested by incoming connections
but do not request ECN on outgoing connections.
Default: 2
@@ -503,7 +503,7 @@ tcp_fastopen - INTEGER
tcp_syn_retries - INTEGER
Number of times initial SYNs for an active TCP connection attempt
will be retransmitted. Should not be higher than 255. Default value
- is 6, which corresponds to 63seconds till the last restransmission
+ is 6, which corresponds to 63seconds till the last retransmission
with the current initial RTO of 1second. With this the final timeout
for an active TCP connection attempt will happen after 127seconds.
@@ -1331,6 +1331,12 @@ force_tllao - BOOLEAN
race condition where the sender deletes the cached link-layer address
prior to receiving a response to a previous solicitation."
+ndisc_notify - BOOLEAN
+ Define mode for notification of address and device changes.
+ 0 - (default): do nothing
+ 1 - Generate unsolicited neighbour advertisements when device is brought
+ up or hardware address changes.
+
icmp/*:
ratelimit - INTEGER
Limit the maximal rates for sending ICMPv6 packets.
@@ -1530,7 +1536,7 @@ cookie_hmac_alg - STRING
* sha1
* none
Ability to assign md5 or sha1 as the selected alg is predicated on the
- configuarion of those algorithms at build time (CONFIG_CRYPTO_MD5 and
+ configuration of those algorithms at build time (CONFIG_CRYPTO_MD5 and
CONFIG_CRYPTO_SHA1).
Default: Dependent on configuration. MD5 if available, else SHA1 if
@@ -1548,7 +1554,7 @@ rcvbuf_policy - INTEGER
blocking.
1: rcvbuf space is per association
- 0: recbuf space is per socket
+ 0: rcvbuf space is per socket
Default: 0
diff --git a/Documentation/power/runtime_pm.txt b/Documentation/power/runtime_pm.txt
index 4abe83e..03591a7 100644
--- a/Documentation/power/runtime_pm.txt
+++ b/Documentation/power/runtime_pm.txt
@@ -642,12 +642,13 @@ out the following operations:
* During system suspend it calls pm_runtime_get_noresume() and
pm_runtime_barrier() for every device right before executing the
subsystem-level .suspend() callback for it. In addition to that it calls
- pm_runtime_disable() for every device right after executing the
- subsystem-level .suspend() callback for it.
+ __pm_runtime_disable() with 'false' as the second argument for every device
+ right before executing the subsystem-level .suspend_late() callback for it.
* During system resume it calls pm_runtime_enable() and pm_runtime_put_sync()
- for every device right before and right after executing the subsystem-level
- .resume() callback for it, respectively.
+ for every device right after executing the subsystem-level .resume_early()
+ callback and right after executing the subsystem-level .resume() callback
+ for it, respectively.
7. Generic subsystem callbacks
diff --git a/Documentation/powerpc/ptrace.txt b/Documentation/powerpc/ptrace.txt
index f4a5499..f2a7a39 100644
--- a/Documentation/powerpc/ptrace.txt
+++ b/Documentation/powerpc/ptrace.txt
@@ -127,6 +127,22 @@ Some examples of using the structure to:
p.addr2 = (uint64_t) end_range;
p.condition_value = 0;
+- set a watchpoint in server processors (BookS)
+
+ p.version = 1;
+ p.trigger_type = PPC_BREAKPOINT_TRIGGER_RW;
+ p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
+ or
+ p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
+
+ p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
+ p.addr = (uint64_t) begin_range;
+ /* For PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE addr2 needs to be specified, where
+ * addr2 - addr <= 8 Bytes.
+ */
+ p.addr2 = (uint64_t) end_range;
+ p.condition_value = 0;
+
3. PTRACE_DELHWDEBUG
Takes an integer which identifies an existing breakpoint or watchpoint
diff --git a/Documentation/rpmsg.txt b/Documentation/rpmsg.txt
index 409d9f9..f7edc3a 100644
--- a/Documentation/rpmsg.txt
+++ b/Documentation/rpmsg.txt
@@ -236,7 +236,7 @@ static int rpmsg_sample_probe(struct rpmsg_channel *rpdev)
return 0;
}
-static void __devexit rpmsg_sample_remove(struct rpmsg_channel *rpdev)
+static void rpmsg_sample_remove(struct rpmsg_channel *rpdev)
{
dev_info(&rpdev->dev, "rpmsg sample client driver is removed\n");
}
@@ -253,7 +253,7 @@ static struct rpmsg_driver rpmsg_sample_client = {
.id_table = rpmsg_driver_sample_id_table,
.probe = rpmsg_sample_probe,
.callback = rpmsg_sample_cb,
- .remove = __devexit_p(rpmsg_sample_remove),
+ .remove = rpmsg_sample_remove,
};
static int __init init(void)
diff --git a/Documentation/spi/spi-summary b/Documentation/spi/spi-summary
index 7312ec1..2331eb2 100644
--- a/Documentation/spi/spi-summary
+++ b/Documentation/spi/spi-summary
@@ -345,7 +345,7 @@ SPI protocol drivers somewhat resemble platform device drivers:
},
.probe = CHIP_probe,
- .remove = __devexit_p(CHIP_remove),
+ .remove = CHIP_remove,
.suspend = CHIP_suspend,
.resume = CHIP_resume,
};
@@ -355,7 +355,7 @@ device whose board_info gave a modalias of "CHIP". Your probe() code
might look like this unless you're creating a device which is managing
a bus (appearing under /sys/class/spi_master).
- static int __devinit CHIP_probe(struct spi_device *spi)
+ static int CHIP_probe(struct spi_device *spi)
{
struct CHIP *chip;
struct CHIP_platform_data *pdata;
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt
index 2907ba6..ccd4258 100644
--- a/Documentation/sysctl/kernel.txt
+++ b/Documentation/sysctl/kernel.txt
@@ -38,6 +38,7 @@ show up in /proc/sys/kernel:
- l2cr [ PPC only ]
- modprobe ==> Documentation/debugging-modules.txt
- modules_disabled
+- msg_next_id [ sysv ipc ]
- msgmax
- msgmnb
- msgmni
@@ -62,7 +63,9 @@ show up in /proc/sys/kernel:
- rtsig-max
- rtsig-nr
- sem
+- sem_next_id [ sysv ipc ]
- sg-big-buff [ generic SCSI device (sg) ]
+- shm_next_id [ sysv ipc ]
- shm_rmid_forced
- shmall
- shmmax [ sysv ipc ]
@@ -320,6 +323,22 @@ to false.
==============================================================
+msg_next_id, sem_next_id, and shm_next_id:
+
+These three toggles allows to specify desired id for next allocated IPC
+object: message, semaphore or shared memory respectively.
+
+By default they are equal to -1, which means generic allocation logic.
+Possible values to set are in range {0..INT_MAX}.
+
+Notes:
+1) kernel doesn't guarantee, that new object will have desired id. So,
+it's up to userspace, how to handle an object with "wrong" id.
+2) Toggle with non-default value will be set back to -1 by kernel after
+successful IPC object allocation.
+
+==============================================================
+
nmi_watchdog:
Enables/Disables the NMI watchdog on x86 systems. When the value is
@@ -542,6 +561,19 @@ are doing anyway :)
==============================================================
+shmall:
+
+This parameter sets the total amount of shared memory pages that
+can be used system wide. Hence, SHMALL should always be at least
+ceil(shmmax/PAGE_SIZE).
+
+If you are not sure what the default PAGE_SIZE is on your Linux
+system, you can run the following command:
+
+# getconf PAGE_SIZE
+
+==============================================================
+
shmmax:
This value can be used to query and set the run time limit
diff --git a/Documentation/video4linux/v4l2-framework.txt b/Documentation/video4linux/v4l2-framework.txt
index 32bfe92..b89567a 100644
--- a/Documentation/video4linux/v4l2-framework.txt
+++ b/Documentation/video4linux/v4l2-framework.txt
@@ -174,8 +174,7 @@ The recommended approach is as follows:
static atomic_t drv_instance = ATOMIC_INIT(0);
-static int __devinit drv_probe(struct pci_dev *pdev,
- const struct pci_device_id *pci_id)
+static int drv_probe(struct pci_dev *pdev, const struct pci_device_id *pci_id)
{
...
state->instance = atomic_inc_return(&drv_instance) - 1;
diff --git a/Documentation/x86/boot.txt b/Documentation/x86/boot.txt
index f15cb74..406d82d 100644
--- a/Documentation/x86/boot.txt
+++ b/Documentation/x86/boot.txt
@@ -373,7 +373,7 @@ Protocol: 2.00+
1 Loadlin
2 bootsect-loader (0x20, all other values reserved)
3 Syslinux
- 4 Etherboot/gPXE
+ 4 Etherboot/gPXE/iPXE
5 ELILO
7 GRUB
8 U-Boot
@@ -381,6 +381,7 @@ Protocol: 2.00+
A Gujin
B Qemu
C Arcturus Networks uCbootloader
+ D kexec-tools
E Extended (see ext_loader_type)
F Special (0xFF = undefined)
10 Reserved
diff --git a/Documentation/xtensa/atomctl.txt b/Documentation/xtensa/atomctl.txt
new file mode 100644
index 0000000..10a8d1f
--- /dev/null
+++ b/Documentation/xtensa/atomctl.txt
@@ -0,0 +1,44 @@
+We Have Atomic Operation Control (ATOMCTL) Register.
+This register determines the effect of using a S32C1I instruction
+with various combinations of:
+
+ 1. With and without an Coherent Cache Controller which
+ can do Atomic Transactions to the memory internally.
+
+ 2. With and without An Intelligent Memory Controller which
+ can do Atomic Transactions itself.
+
+The Core comes up with a default value of for the three types of cache ops:
+
+ 0x28: (WB: Internal, WT: Internal, BY:Exception)
+
+On the FPGA Cards we typically simulate an Intelligent Memory controller
+which can implement RCW transactions. For FPGA cards with an External
+Memory controller we let it to the atomic operations internally while
+doing a Cached (WB) transaction and use the Memory RCW for un-cached
+operations.
+
+For systems without an coherent cache controller, non-MX, we always
+use the memory controllers RCW, thought non-MX controlers likely
+support the Internal Operation.
+
+CUSTOMER-WARNING:
+ Virtually all customers buy their memory controllers from vendors that
+ don't support atomic RCW memory transactions and will likely want to
+ configure this register to not use RCW.
+
+Developers might find using RCW in Bypass mode convenient when testing
+with the cache being bypassed; for example studying cache alias problems.
+
+See Section 4.3.12.4 of ISA; Bits:
+
+ WB WT BY
+ 5 4 | 3 2 | 1 0
+ 2 Bit
+ Field
+ Values WB - Write Back WT - Write Thru BY - Bypass
+--------- --------------- ----------------- ----------------
+ 0 Exception Exception Exception
+ 1 RCW Transaction RCW Transaction RCW Transaction
+ 2 Internal Operation Exception Reserved
+ 3 Reserved Reserved Reserved
diff --git a/Documentation/zh_CN/video4linux/v4l2-framework.txt b/Documentation/zh_CN/video4linux/v4l2-framework.txt
index 3e74f13..44c1d93 100644
--- a/Documentation/zh_CN/video4linux/v4l2-framework.txt
+++ b/Documentation/zh_CN/video4linux/v4l2-framework.txt
@@ -182,8 +182,7 @@ int iterate(void *p)
static atomic_t drv_instance = ATOMIC_INIT(0);
-static int __devinit drv_probe(struct pci_dev *pdev,
- const struct pci_device_id *pci_id)
+static int drv_probe(struct pci_dev *pdev, const struct pci_device_id *pci_id)
{
...
state->instance = atomic_inc_return(&drv_instance) - 1;
OpenPOWER on IntegriCloud